
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Real-time phase reconstruction for
dielectrophoretic micromanipulation

Bc. Viktor-Adam Koropecký

Supervisor: Ing. Martin Gurtner
Field of study: Cybernetics and Robotics
May 2021

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

465906Personal ID number:Koropecký Viktor-AdamStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Real-time phase reconstruction for dielectrophoretic micromanipulation

Master’s thesis title in Czech:

Fázová rekonstrukce pro dielektroforetickou mikromanipulaci v reálném čase

Guidelines:
Design, implement and test a real-time algorithm for phase reconstruction in lensless digital holographic microscopy used
on a platform for dielectrophoretic micromanipulation. The algorithm will clear twin-images from back-propagated holograms
and display the resulting pictures on a monitor. The algorithm will run in real time on a GPU on a dedicated computing
device and be implemented in CUDA.
1. Review state-of-the-art methods for phase-reconstruction and choose the most promising one for real-time use.
2. Prototype the chosen method in Matlab or Python not taking into account the real-time aspect.
3. Optimize the method by implementing it in CUDA so that it can run in real-time (at least few frames per second).
4. Implement the final method on the used platform for dielectrophoretic micromanipulation.

Bibliography / sources:
[1] M. Gurtner and J. Zemánek, "Twin-beam real-time position estimation of micro-objects in 3D," Meas. Sci. Technol.,
vol. 27, no. 12, p. 127003, 2016.
[2] Y. Wu and A. Ozcan, "Lensless digital holographic microscopy and its applications in biomedicine and environmental
monitoring," Methods, vol. 136, pp. 4-16, Mar. 2018
[3] F. Momey, L. Denis, T. Olivier, and C. Fournier, "From Fienup's phase retrieval techniques to regularized inversion for
in-line holography: tutorial," J. Opt. Soc. Am. A, vol. 36, no. 12, p. D62, Nov. 2019

Name and workplace of master’s thesis supervisor:

Ing. Martin Gurtner, Department of Control Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 21.05.2021Date of master’s thesis assignment: 28.01.2021

Assignment valid until:
by the end of summer semester 2021/2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Martin Gurtner
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements
I owe my supervisor, Martin Gurtner, a
great debt of gratitude for all of his help
and guidance throughout the very hectic
last year. I would also like to thank him
for the opportunity to start working on
this project last summer.

My thanks also goes to Fabien Momey,
who, in the very brief correspondence that
we shared, managed to point me in the
right direction in my research.

Of course, I have to thank my fam-
ily, friends and Anička, who have all sup-
ported me immensely throughout the past
several months that I spent working on
this thesis. Thanks to them it was a plea-
surable experience.

This thesis is the culmination of almost
a year of work and it could not have been
finished without the amazing people on
this list.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 21. May 2021
Bc. Viktor-Adam Koropecký

v

Abstract
This diploma thesis focuses on designing,
implementing and testing a real-time al-
gorithm for phase reconstruction in lens-
less digital holographic microscopy. The
chosen method approaches phase recon-
struction as an inverse problem regular-
ized by sparsity and positivity constraints.
It uses a proximal gradient method as its
optimization strategy. The algorithm was
first prototyped in Matlab and tuned on
recorded holograms. It was then reimple-
mented in CUDA and optimized for real-
time use with the help of warm-starting.
Finally, it was implemented on a platform
intended for feedback dielectrophoretic mi-
cromanipulation where it runs on a ded-
icated GPU computing device, NVIDIA
Jetson AGX Xavier. Here it provides
real-time hologram reconstructions with
well-suppressed twin-images. These re-
constructions are displayed on a monitor
connected to the platform. The imple-
mentation presented in this thesis pro-
vides quality hologram reconstructions in
speeds that exceed commonly used meth-
ods. The resulting CUDA implementa-
tion, as well as the Matlab prototype, are
published online as open-source software.

Keywords: phase reconstruction, digital
holographic microscopy, GPU, CUDA,
regularized inversion, FISTA

Supervisor: Ing. Martin Gurtner
Faculty of Electrical Engineering,
Karlovo náměstí 13,
Praha 2

Abstrakt
Tato diplomová práce se zaměřuje na ná-
vrh, implementaci a testování algoritmu
pro fázovou rekonstrukci v reálném čase
pro digitální holografickou mikroskopii
bez použití optických prvků. Vybraná me-
toda přistupuje k problému jako k inverzní
úloze regularizované na řídkost a nezápor-
nost řešení. Pro optimalizaci úlohy je vyu-
žita proximální gradientní metoda. Proto-
typ algoritmu byl nejprve implementován
v Matlabu, kde byl nastaven za pomoci na-
hraných hologramů. Algoritmus byl poté
reimplementován v CUDA a optimalizo-
vaná pro běh v reálném čase za pomoci
zrychleného startování. Nakonec byl algo-
ritmus implementován na platformu urče-
nou pro zpětnovazební dielektroforetickou
mikromanipulaci, kde běží na dedikova-
ném grafickém vypočetním zařízení, NVI-
DIA Jetson AGX Xavier. Na této plat-
formě algoritmus v reálném čase posky-
tuje rekonstrukce hologramů s dobře po-
tlačenými artefakty (twin-images). Tyto
rekonstrukce jsou pak zobrazeny na dis-
pleji, který je připojený k platformě. Im-
plementace prezentována v této práci po-
skytuje kvalitní rekonstrukce hologramů
v rychlostech, které přesahují běžně po-
užívané metody. Výsledná implementace
v CUDA i prototyp v Matlabu jsou do-
stupné online ve formě otevřeného soft-
waru.

Klíčová slova: fázová rekontrukce,
digitální holografická mikroskopie, GPU,
CUDA, regularizovaná inverze, FISTA

Překlad názvu: Fázová rekonstrukce
pro dielektroforetickou mikromanipulaci
v reálném čase

vi

Contents
1 Introduction 1
1.1 Structure of the thesis 2
2 Theoretical background 5
2.1 In-line Digital Holography 5
2.2 Backpropagation 6
2.3 Twin-Image Problem 7
2.4 Used platform 8
3 Related works 11
3.1 Twin-image elimination methods 11
3.1.1 Fourier-quotient methods . . . 11
3.1.2 Iterative elimination methods 12

3.2 Iterative phase reconstruction
methods . 13

3.3 Deep learning 14
3.4 Conclusion 14
4 Selected method 17
4.1 Cost function 17
4.2 Iterative Shrinkage-Thresholding
Algorithm . 19

4.3 Fast Iterative
Shrinkage-Thresholding Algorithm 21

4.4 Warm-Starting 22
5 Implementation 23
5.1 Phase Reconstruction Algorithm 23
5.2 Matlab Prototype 24
5.2.1 Hologram simulation 25

5.3 CUDA Implementation 26
5.3.1 CUDA . 27
5.3.2 Used software 28

5.4 Integration 28
6 Experiments 29
6.1 Simulated Hologram 29
6.2 Parameter Tuning 32
6.2.1 Wavelength λ and pixel size dx 33
6.2.2 Refractive index n 33
6.2.3 Propagation distance z 33
6.2.4 Constant gradient step length t 37
6.2.5 Sparsity hyperparameter µ . . 38

6.2.6 Further tests 39
6.3 Real-time Experiment 39
6.3.1 Warm-starting 42

6.4 Integration Testing 44
6.5 Additional reconstructions 44
6.6 Results and possible
improvements 46
6.6.1 Incorporation of prior
knowledge . 48

7 Conclusion 49
Bibliography 51

vii

Chapter 1
Introduction

This thesis focuses on designing, implementing and then testing a real-time
algorithm for phase reconstruction in lensless digital holographic microscopy
(DHM). This algorithm is supposed to run on a platform designed for feedback
dielectrophoretic micromanipulation [2]. The algorithm will be used for
estimating the phase of holograms captured by this platform after which the
holograms will be reconstructed and the results will be displayed on a monitor
connected to the micromanipulation platform.

In DHM, an image sensor is used to capture interference patterns, also
called holograms, which are formed when a scattering microscopic sample is
illuminated by a source of coherent light. These captured holograms can then
be reconstructed to show the actual geometry of observed objects. To do
such a reconstruction properly, both the amplitude and phase of the captured
interference patterns have to be known. However, since an image sensor can
only capture the intensity of the interference patterns, the reconstructions
are affected by the so-called twin images which obscure the geometry of the
observed objects. This is caused by the lack of information about the phase
of the captured holograms. The occurrence of twin-images is visible in figure
1.1, where a reconstruction of a hologram recorded on the micromanipulation
platform is compared to an image of the same situation recorded by a regular
optical microscope.

Phase reconstruction algorithms, such as the one that will be implemented
in this thesis, are procedures of estimating the phase of the recorded holograms.
Reconstructions of holograms with properly estimated phase have suppressed
twin-images and thus the geometry of the observed objects is more clearly
visible.

First, a suitable phase reconstruction algorithm will be selected from a
review of appropriate already existing phase reconstruction algorithms. Then
a prototype of the algorithm will be implemented in Matlab to test its func-

1

1. Introduction

(a) (b) (c)

Figure 1.1 Recorded hologram of two polystyrene particles with a diameter of
approximately 50 µm next to a dust particle. (a) The original hologram, (b)
reconstruction of the hologram affected by twin-images, (c) image captured on
the regular optical microscope

tionality. After that, the algorithm will be implemented in CUDA so that
it can run on a graphical processing unit (GPU) and it will be optimized
for real-time use. Finally, the algorithm will be implemented on the embed-
ded computing device connected to the dielectrophoretic micromanipulation
platform.

The platform [1, 2] has already been developed and has been in use by
the research group Advanced Algorithms for Control and Communications
(AA4CC) at the Faculty of Electrical Engineering of the Czech Technical
University in Prague. Thus, the algorithm has to be integrated into the
already existing code implemented on the platform alongside algorithms used
for estimating and tracking the positions of the manipulated particles. The
integrated algorithm should not restrict in any way the original functionality
of the existing code and it should completely suppress twin-images from
reconstructions of holograms captured on the platform.

1.1 Structure of the thesis

The author will first provide a brief introductions to in-line digital holography,
then he define the most commonly used method of hologram reconstruction
called backpropagation, introduce the twin-image problem and briefly describe
the micromanipulation platform in Chapter 2. Later, the author will review
already existing phase reconstruction methods in in-line digital holography
and discuss their suitability for use with the provided platform in Chapter 3.
In the following Chapter 4, the selected method will be described in more

2

................................ 1.1. Structure of the thesis

detail along with possible improvements to the methods for its better real-time
implementation. After that, all three implementations of the selected method
will be briefly described in Chapter 5. The implementations will then be
experimented on and evaluated in Chapter 6. And finally, in Chapter 7 the
results achieved in this thesis will be summarized.

3

4

Chapter 2
Theoretical background

This chapter provides a short introduction to in-line digital holography,
followed by a description of the backpropagation method. Then, the twin-
image problem will be introduced and, finally, the provided micromanipulation
platform will be described in detail.

2.1 In-line Digital Holography

Digital holography can be defined as a group of methods for recording an
interference created when a plane reference wave interferes with a wave
that interacted with an observed object. These patterns are recorded on an
electrical image sensor, such as a complementary metal oxide semiconductor
(CMOS) image sensor. Digital holography is a broad field a detailed review
of which can be found in [3].

A plethora of hardware arrangements can be used in digital holography,
however, in this thesis, the focus is mainly on the simplest arrangement that
is the in-line digital holography, which is derived from the original setup
invented by Gabor [4].

In in-line digital holography, the image sensor is placed directly beneath
the observed sample, which is then illuminated from above by a coherent
light source. Considering that a usual observed object is at least partially
transparent and small, the planar wave that interacts with the object is
modified by a combination of several phenomena: It can be either diffracted,
absorbed, reflected and or it can pass through the object itself. The sensor
then records the intensity of the generated interference patterns in which
both the position and shape of the object are partially — due to the lack of
any phase information in the recording — encoded.

The quality of captured interference patterns stems from the coherence of

5

2. Theoretical background
the used light source. The more both spatially and temporally coherent a
light source is, the more visible the interference patterns or holograms are.

It should be noted that lensless in-line digital holography setups can be
an incredibly cheap alternative to regular optical microscopes when used for
observing microscopic objects. The most expensive part of such a setup is
usually the image sensor. Additionally, regular optical microscopes tend to
be much larger than the in-line digital holography setups.

2.2 Backpropagation

It is very difficult to deduce any information about the shape of the observed
object from just the recorded interference patterns, regardless of their quality.
For this reason, one can utilize backpropagation, which is a method that
convolves the hologram with some specific propagator function, otherwise
called a backpropagation kernel. This operation simulates what the planar
wave captured by the sensor would look like at a different axial distance above
the sensor. A result of backpropagation can be seen in figure 1.1. Further in
this thesis, sensor plane refers to the plane on which the hologram is recorded
and sample plane is the plane where an observed object is located.

In this thesis, the used propagator function is the Fourier transform of the
Rayleigh-Sommerfeld diffraction integral [5], which can be calculated as

H−z(fx, fy) =


exp

−i2πzn
λ

√
1−

(
λfx
n

)2
−
(
λfy
n

)2
 , √

f2
x + f2

y ≤
n

λ
,

0, otherwise,
(2.1)

where H−z is the backpropagation kernel, n is the refractive index of the
medium between the sensor plane and the sample plane, λ is the wavelength
of the said light source, z is the backpropagation distance and fy, fx are
the spatial-frequency coordinates. These coordinates depend on the size of
individual pixels dx on the image sensor.

Since the propagator function is acquired in the Fourier domain, the actual
operation of backpropagation is done in the form of

Iz(x, y) = F−1{H−z(fx, fy)F{IH(x, y)}}, (2.2)
where Iz is the backpropagated image, IH is the recorded intensity, x, y are
the image coordinates and fx, fy are the spatial-frequency coordinates. F and
F−1 are spatial Fourier and inverse spatial Fourier transforms, respectively.

6

................................. 2.3. Twin-Image Problem

An image can also be propagated, to simulate how the image would look
further from the light source. This means that the only difference between the
backpropagation and the propagation operations lies in the direction in which
the operation propagates the complex planar wave. This difference between
the two kernels will be signified by a negative sign with the distance parameter
for the backpropagation kernel H−z, which is omitted in propagation. The
sign is also omitted during the calculation of propagation kernels in (2.1),
from which it can be easily seen that a propagation kernel is just a complex
conjugate of the appropriate backpropagation kernel.

The phase reconstruction method designed later in this thesis utilizes both
propagation and backpropagation to alternate projections between the sample
plane and the sensor plane.

Further in this text, the notation for both the propagation or backprop-
agation operation at (2.2) will be simplified by the use of the expression
of

prop(h(fx, fy), a(x, y)) = F−1{h(fx, fy)F{a(x, y)}}, (2.3)

where the first input h is the input kernel that drives the operation and a is
the input complex planar wave that undergoes the operation.

2.3 Twin-Image Problem

Considering that the observed object is located only at the sample plane, the
complex amplitude of its interaction with the reference planar wave can be
written in vector form as

Az(x, y) = r(x, y)− az(x, y), (2.4)

where r is the reference planar wave at the sample plane, which is considered
to have an amplitude equal to 1, Az is the complex amplitude at the sample
plane and az is the disturbance caused by the observed object.

The complex amplitude at the sensor plane is then given as

AH(x, y) = prop (Hz(fy, fx), [r(x, y)− az(x, y)]) , (2.5)

where Hz is the propagation kernel with a distance parameter of z.
The reference planar complex wave is assumed to be constant in all coordi-

nates. When such a wave is propagated to the sensor plane it undergoes a
phase shift that can be characterized by the following equation:

prop(Hz(fx, fy), r(x, y)) = Hz(0, 0)r(x, y). (2.6)

7

2. Theoretical background
In this thesis, an assumption is made that when the reference wave at

sample plane is propagated to the sensor plane, its value changes to a real
one, more specifically that

prop(Hz(fx, fy), r(x, y)) = 1. (2.7)

This assumption is made strictly for simplification purposes and should not
negatively impact any results computed under its influence. Taking the
squared magnitude at each pixel, or intensity, which is what the image sensor
records, and taking into account the previous assumption, one gets

IH(x, y) = |1− prop(Hz(fx, fy), az(x, y))|2, (2.8)

and after further expansion [6], one gets

IH(x, y) = 1− prop (H−z(fx, fy), āz(x, y))− prop(Hz(fx, fy), az(x, y)) =
(2.9)

= 1− 2Re{prop(Hz(fx, fy), az(x, y))}, (2.10)

where āz(x, y) is the complex conjugate of az(x, y) and Re{az(x, y)} is the
real part of the complex number az(x, y).

If this result is backpropagated using a kernel H−z, one gets

Iz(x, y) = 1− az(x, y)− prop(H−2z(fx, fy), āz(x, y)), (2.11)

where the final term is the mathematical expression of a twin-image.

2.4 Used platform

The experimental platform for feedback micromanipulation used in this thesis
was developed in the past years by the AA4CC group [1, 2]. A cross-section
of the platform along with its 3D render can be seen in figure 2.1.

The platform consists of a small pool of distilled water in which the observed
objects are submerged. In the case of this thesis, these objects are polystyrene
particles of approximately 50 µm. An electrode field is situated at the bottom
of this pool. Through this electrode field, dielectrophoretic micromanipulation
is performed. Finally, there is a small gap below the electrode field with an
image sensor placed at the bottom. This apparatus is covered by a lid to
protect it from surrounding light sources. The pool is then illuminated by
two LEDs attached to the top of the protective lid. Each of these LEDs is

8

.................................... 2.4. Used platform

(a) (b)

Figure 2.1 The platform for dielectrophoretic micromanipulation without the
attached computer and a power supply: (a) 3D render of the platform with
opened cover, (b) side cross-section of the platform with labels

situated behind its own 50 µm pinhole, which allows their light to be partially
coherent.

One of the light sources is situated some distance directly above the pool
and has a green peak wavelength of 515 nm. The other light source is placed
slightly off to the side and has a red peak wavelength of 630 nm. This is
really important for determining the position of observed objects as the
green channel allows precise tracking of lateral position with the red channel
showing the axial position.

The image sensor used is the LI-IMX477-MIPI-M12 image sensor with a
resolution of 4056×3040 pixels. A single pixel of this sensor is a square with a
side of 1.55 µm. It uses three colour channels encoded in the YUV-420 format
with two green pixels per one red pixel. Having different colour channels, it
is easily possible to separate the interference patterns caused by individual
light sources and thus generate two different holograms from one recording.
In this thesis, only the green channel is considered, since the geometry of the
observed samples is not skewed on this channel. Since the green channel has
double the pixels of the red channel, the hologram on the green channel is
clearer. A captured hologram of the complete observable area on the green
channel can be seen in figure 2.2.

The image sensor is connected via the camera serial interface (CSI) to
Jetson AGX Xavier, an embedded computer developed by NVIDIA. This
computer was designed with image processing in mind, so it is a great fit for
the problem of phase reconstruction. All graphical computations needed for
the micromanipulation to take place are done on this computer.

9

2. Theoretical background

(a) (b)

Figure 2.2 Hologram captured on the green channel. (a) Full view of the pool
with submerged microparticles above the electrode field. (b) A close up of a
single interference pattern caused by the observed polystyrene microparticles.

The complete setup poses a couple of challenges for phase reconstruction:
Firstly, the backpropagation operation assumes that the medium between
the sample plane and the sensor plane is homogeneous. This is however not
the case. The light coming from the light source has to pass through multiple
layers with different refractive indices before reaching the image sensor. This
means that when a hologram is backpropagated to some distance z using
a kernel calculated from one refractive index, the resulting complex planar
wave does not actually match the complex planar wave at the distance z but
rather a complex planar wave shifted with respect to the refractive indices of
the different mediums.

Secondly, the recorded holograms are densely populated and interference
patterns generated by one object interfere with interference patterns generated
by other objects. This can lead to inaccuracies in the reconstructions. The
chosen phase reconstruction method should have no trouble working with
this setup.

10

Chapter 3
Related works

In this chapter, a brief review of several methods used for phase reconstruction
is provided.

The methods discussed in this chapter will be compared to one another
based on their suitability for work with the provided micromanipulation
platform described in section 2.4. That means the optimal method should
have no problem eliminating twin-images from both the electrode field and
the observed particles. Further, it needs to be designed for work on an in-line
digital holography platform without the use of optical lenses and it should
work properly without the need for multiple holograms needed per phase
reconstruction. It also has to be suitable for real-time implementation.

Overall, three different groups of methods will be discussed in this chapter
[7, 8]. The first group focuses on the iterative elimination of twin-images
directly. The second group consists of methods that focus on retrieving
the phase information by iteratively imposing constraints on the captured
hologram on both the sensor plane and on the sample plane. The final group
of methods utilizes deep learning for the purpose of phase reconstruction.

3.1 Twin-image elimination methods

The twin-image elimination methods focus primarily on the recovery of the
complex amplitude of sample interference az(x, y) from either 2.9 or 2.11.

3.1.1 Fourier-quotient methods

For strictly planar samples a fairly straightforward solution is to find a filter
in the frequency domain that tries to invert the convolution kernel of the
propagation operation in 2.10.

11

3. Related works
Such a filter has a singularity in its transfer function at each zero of the

convolution kernel and methods using this approach differ in the way that they
deal with these singularities. Nugent proposed adding a positive constant to
the denominator of said transfer function [9]. There are other two algorithms
that expand the filter’s transfer function into a series and only consider the
first term [6, 10].

The main disadvantage of the previous methods is that they only work for
samples with real interference az, which is not necessarily the case on the
provided platform. This problem is fixed in the method proposed by Maleki
and Devaney [11], which also solves the singularity problem by setting the
transfer function to 1 whenever a singularity is approached.

While all of the algorithms mentioned in this section can be easily im-
plemented for real-time use, they only work for planar objects and return
completely wrong results if z is guessed with accuracy worse than 5 %.

3.1.2 Iterative elimination methods

Iterative approaches to twin-image elimination utilize masking to separate
the twin-image from the real image. Usually, these methods are only suitable
for planar samples [12, 13] and work by alternating between the planes where
the twin-image is located and the plane of the real image at the sample plane,
while imposing spatial constraints by masking.

The algorithm proposed by Denis et. al. [14], which also belongs to this
group, allows twin-image elimination from samples in a volume. This is
done by first sampling the volume to as many sample planes as needed and
separates the twin-images from real images in each one by masking. The
complex amplitude of the twin-images is calculated and subtracted from the
hologram for each plane in each iteration. The mask can be updated at the
start of each iteration.

The methods mentioned in this section all could be implemented to use
warm starting, where they would use the resulting guess of one run of their
procedure as the initial guess of the second run so that fewer iterations are
needed in this second run. This could potentially speed up the algorithm for
all runs after the first one.

The iterative elimination methods seem promising but proper masking of
twin-images in reconstructions as densely populated as the ones gathered
from the provided platform could be very inaccurate.

12

......................... 3.2. Iterative phase reconstruction methods

3.2 Iterative phase reconstruction methods

A considerable number of iterative phase retrieval algorithms is derived from
the Gerchberg-Saxton error reduction algorithm [15, 16]. These procedures
are then sometimes referred to as the GS-based algorithms. This section will
mainly focus on such methods, but a really thorough description of others
that would fit into this section can be found in [17].

In the original procedure, two different intensity recordings are required.
One of these is in the sample plane and the other in the sensor plane which
corresponds to the hologram. The algorithm then randomly guesses what
the phase information will be and enforces it to the sensor plane modulus
measurements. In each iteration, the algorithm then applies four different
operations:..1. Backpropagate to the sample plane..2. Enforce sample plane modulus..3. Propagate to the sensor plane..4. Enforce sensor plane modulus

Fienup [18] designed a method derived from the original error reduction
algorithm, in which he replaced the second step by introducing the object
support constraints, which works by assigning zero to places, where the
observed objects are not believed to be. Later, Fienup generalized the
procedure [19], so that other constraints can be enforced. The need for the
predefined object support makes Fienup’s algorithm difficult to use in the
micromanipulation setting where the object support changes with time.

The original error reduction algorithm as well as the Fienup’s algorithm
were developed specifically for coherent diffraction imaging, where the sensor
plane is the Fourier transform of the sample plane. Latychevskaia and Fink
[20] changed the procedure to work in digital lensless in-line holography. The
change was already included in the iteration description above.

Other GS-based algorithms for digital holography were developed in recent
years, with their main differences stemming from the constraints that they use
in the sample plane. Typical examples include positive absorption constraint
[20], sparsity constraints [21] and object support constraints [22].

A GS-based algorithm could definitely be used for the provided microma-
nipulation platform depending on the constraint used.

13

3. Related works
Regularized inversion [23, 24, 25, 26, 27] is another way to approach phase

reconstruction which can be analogous to the GS-based algorithms. The focus
is shifted from reconstructing the phase information at the sensor plane to
reconstructing the disturbance caused by the observed objects at the sample
plane. It works by comparing a current disturbance guess by pushing it as a
parameter for the direct model for hologram formation and calculating the
optimal scaling factor for the model by comparing the model to the actual
hologram. Depending on the chosen optimization strategy, the algorithm
then can take a similar form to the alternating projections structure seen in
the GS-based algorithms [23]. It is also possible to apply constraints at the
sample plane just like with Fienup’s algorithm.

The regularized inversion methodology [27] can be adjusted to work with
multiple sample planes.

Since the regularized inversion algorithms estimate the disturbance at the
sample plane, the hologram reconstruction is achieved without the need for
additional backpropagation after the algorithm has ended. This can lead to a
significant reduction in computation times when compared with GS-based
algorithms.

Warm-starting can be used in the implementation of each of the algorithms
mentioned in this section by carrying over the last estimate of one run of the
algorithm to be used as the first estimate in the following run.

3.3 Deep learning

A fairly obvious approach to the problem of phase reconstruction would
be using deep learning. Several authors [28, 29, 30] have already tested
this approach with success using the convolutional neural network (CNN)
architecture. However, for use in the scope of this thesis, CNNs have a major
disadvantage: They are quite computationally demanding and therefore
might be slow compared to some of the iterative algorithms discussed above,
especially if the iterative algorithms utilized warm starting.

3.4 Conclusion

As was shown in this chapter, a plethora of methods exist for phase reconstruc-
tion in in-line digital holography, with many not even discussed in this thesis.
Most of the ones described in this chapter can also be suitable for use with
the provided micromanipulation platform such as the iterative twin-image
elimination algorithm for samples in a volume [14], a GS-based algorithm

14

..................................... 3.4. Conclusion

with properly chosen constraints [16] or the regularized inversion approach
[23].

The problem with these methods stems from their speed as each one
requires two computationally demanding propagation operations per sample
plane in each iteration. However, if warm starting is utilized it can lower the
number of iterations needed after the first run. Additionally, if implemented
on a GPU such as the one used in the Jetson AGX Xavier included in the
provided platform, the algorithms might speed up enough to run in real-time.

It must also be noted that in the literature only sparsely populated samples
were used, usually with complete knowledge about the support of the observed
objects and rarely any overlap. It is possible that the results achieved by any
of the mentioned methods on holograms recorded from the provided platform
will not be comparable to the results achieved in the literature.

For this thesis, a regularized inversion approach will be used, thanks to the
speed up gained by omitting the final backpropagation operation required by
the GS-based algorithms. The implementation will then utilize the positivity
constraint and the sparsity constraint.

15

16

Chapter 4
Selected method

In this chapter, the chosen phase reconstruction method [23] will be described
in greater detail. The direct model for hologram formation will be explained,
from which a cost function will be derived. Possible constraints will be
introduced later along with corresponding changes to the cost function. Two
different algorithms for minimization of the designed cost function will be
then described, the latter of which will be used for implementation. Finally,
warm-starting is briefly introduced and its implementation with the selected
method is explained.

It is important to note that in this chapter, a vector notation will be used
that is different from the notation used in the previous chapters. To easily
differentiate between the two notations, a vector p = (x, y) is defined as the
column vector of all possible 2D spatial coordinates. As an example, the
column vector az can be then written as

az = az(p). (4.1)
Furthermore, the output of the expression used for propagation and back-

propagation operations, prop(h(fx, fy), a(x, y)), will retain the structure of
the second input parameter. If it is a column vector, the output is also a
column vector.

4.1 Cost function

In the chosen method, a direct model for hologram formation is given as:

IH = cm(o) + η, m(o) = |1− prop(Hz,o)|2, (4.2)
where scalar c is the scaling factor, m(o) is the hologram formation model
and vector o is the estimated complex disturbance caused by the observed

17

4. Selected method
objects at the sample plane. Vector η corresponds to the measurement noise.
Like in the earlier sections, IH represents the captured hologram and Hz is a
propagation kernel.

From this hologram formation model, it is easy to derive a cost function
that checks the quality of the model. That is done with squared l2 norm,

Jfid(c,o, IH) = ||cm(o)− IH ||2 = (cm(o)− IH)T (cm(o)− IH), (4.3)

where IH is the captured hologram. In the original article, the l2 norm is
weighted by a positive definite matrix W which allows taking into account
the quality of captured data at individual pixels. In this thesis, said matrix
W will be considered equal to identity and will therefore be omitted from all
equations. The presented l2 norm will be referred to as the data-fidelity term.

From (4.3) it is simple to get a minimization problem: To find the optimal
solution, one must find the best values of both c∗ and o∗. The optimal scaling
factor can be found in closed form from (4.3):

c∗(o) = m(o)T IH
m(o)Tm(o) , (4.4)

Now the minimization problem can be solved with respect to the estimated
complex amplitude at the sample plane:

o∗ = arg min
o

Jfid(c∗(o),o, IH). (4.5)

The data fidelity term is, however, not enough to properly reconstruct
the phase, as a plethora of estimated complex amplitudes could fit a noisy
hologram without actually being satisfactory. For this reason, it is possible
to include some prior knowledge about the observed objects in the form
of constraints. Adding constraints to the cost function is done simply by
adding a new regularization term to the already established data fidelity. The
minimization problem then has the form of

o∗ = arg min
o

Jfid(c∗(o),o, IH) + Jreg(o, θ), (4.6)

where θ represents the constraint parameters.
As for the constraints used, the most obvious choices are the positivity

constraint and the sparsity constraint.
The positivity constraint is very simple and works on the idea, that since

the observed objects do not emit their own light, so their absorption has to

18

....................... 4.2. Iterative Shrinkage-Thresholding Algorithm

be positive. That is all elements of the estimated matrix o need to have a
positive real value.

An additional constraint used in this thesis is the sparsity constraint. Phase
reconstruction under the sparsity constraint favours pixels with zero value.
The cost portion created by the sparsity constraint takes the form of the term

Jl1(o, µ) = µ||o||1, (4.7)

where ||o||1 is the l1 norm of o and µ is the sparsity hyperparameter. Actually,
the sparsity constraint corresponds better to minimizing the l0, or the sum of
non-zero elements of o, however, the l1 norm is easier to minimize and proves
to be sufficient for enforcing sparsity.

With both the constraints defined, the regularization term can now be
written as

Jreg =
{
Jl1 , Re{o} ≥ 0
∞, otherwise

. (4.8)

With this term defined, the minimization problem can be rewritten to the
form

o∗ = arg min
Re{o}≥0

||cm(o)− IH ||22 + µ||o||1. (4.9)

4.2 Iterative Shrinkage-Thresholding Algorithm

Now the next problem becomes the question of actually finding the optimal
estimated disturbance by observed objects at the sample plane, o∗. To solve
this minimization problem, a proximal gradient method [31] called Iterative
Shrinkage-Thresholding Algorithm (ISTA) can be used.

In the ISTA algorithm, the difficult direct minimization of the cost function
is circumvented by instead iteratively minimizing a local majorant approxima-
tion of the cost function. In the case of the minimization problem (4.6), the
approximation takes form of a proximal operator of the sparsity constraint
term Jl1(o, µ) which can be written as the mapping [32]

x 7→ arg min
Re{o}≥0

1
2t ||o− x||

2
2 + Jl1(o, µ), (4.10)

where t is the constant step length, and x is the expression

x = o(i) − t∇Jfid(c∗(o(i)),o(i), IH), (4.11)

19

4. Selected method
where o(i) represents to current best estimate of o. The parameter t is then
the constant gradient descent step length. If this parameter is set to a low
enough value, the algorithm can reach convergence.

Calculating the minimal value of the proximal operator gives the value of
the next best estimate, o(i+1).

It is useful to notice, that this proximal operator is separable, or that it
is minimal only if its value at each pixel is minimal as well. The mapping
(4.10) can be then rewritten to the form

x 7→ arg min
Re{o}≥0

∑
q

1
2t
[
(oq − xq)2 + µ|oq|

]
, (4.12)

where oq and xq are values of o and x, respectively, at pixel pixel coordinates
(xq, yq).

Minimum of the summed expression in (4.12) is for real-valued oq found
easily with the shrinkage operator:

o(i+1)
q = Tµt(xq) = sgn(xq)max(0, |xq| − µt). (4.13)

This operator can be applied to (4.10) to give the following ISTA iteration:

o(i+1) = Tµt
(
o(i) − t∇Jfid(c∗(o(i)),o(i), IH)

)
. (4.14)

Now, the gradient of Jfid(c∗(o),o, IH) can be calculated as

∇Jfid(c∗(o),o, IH) = ∇||c∗(o)|1− prop(Hz,o)|2 − IH ||22 =

= 2tc∗(o)prop
(
HT
z ,
(
(1− prop(Hz,o))T (c∗(o)m(o)− IH)

))
,

(4.15)

where HT
z = H−z as can be seen from (2.1). This solved gradient can be then

used to get a complete iteration of the ISTA method.
Since the shrinkage operator does not bind the estimate only to positive

values, the real part of the estimate has to be bounded to non-negative
numbers after applying the shrinkage operation. This can be done as:

Re{o(i+1)
q } = Bpos(Re{o(i+1)

q }) = max(0,Re{o(i+1)
q }), (4.16)

where Re{oq} is the real part of the complex number oq.
One problem still has to be addressed: The shrinkage operator from (4.13)

only works for real-valued arguments. This is solved easily by separating
the real and imaginary parts of its input matrix and running the shrinkage

20

..................... 4.3. Fast Iterative Shrinkage-Thresholding Algorithm

operator on both of these parts separately. The results are then combined back
together to form the new complex estimate. In the following sections, it will
be assumed that the shrinkage operator undergoes these steps automatically
for complex inputs.

4.3 Fast Iterative Shrinkage-Thresholding
Algorithm

In this thesis, the minimization algorithm used is actually the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [33]. Instead of calculating the
new estimate o(i+1) from just the value of o(i) as was done with ISTA, the new
estimate is actually calculated from a specific linear combination of o(i) and
o(i−i), corresponding to the accelerated gradient descent method proposed
by Nesterov [34]. This is achieved by adding two additional steps to each
iteration.

At the start of the algorithm, the original estimate is assigned to o(0), as
well as to the initial intermediate value of o(1/2). The most straightforward
initial estimate for these two matrices is the recorded hologram for which the
phase is to be reconstructed. A variable FISTA scalar factor s1 = 1 is also
assigned at the start. Every iteration of this algorithm then has these four
steps:

o(i+1) = Tµt
(
o(i+1/2) − t∇Jfid(c∗(o(i+1/2)),o(i+1/2), IH)

)
, (4.17)

Re{o(i+1)} = Bpos(Re{o(i+1)}) (4.18)

si+1 =
1 +

√
1 + 4s2

i

2 , (4.19)

o(i+3/2) = o(i+1) +
(
si − 1
si+1

)
(o(i+1) − o(i)). (4.20)

When the algorithm converges, the estimated hologram reconstruction can
be calculated by adding the first value of the backpropagation kernel to each
value of the final FISTA estimate and calculating the absolute value of the
result.

The FISTA method has a major advantage in comparison to the original
ISTA method: Whereas the ISTA method has a worst case complexity result
of O(1/k) [33], the FISTA method has a worst case complexity result of only
O(1/k2).

21

4. Selected method
4.4 Warm-Starting

During the control process, the platform will record subsequent holograms
which should have their phase reconstructed in real-time, if possible. And
while the FISTA method has a fast rate of convergence, small improvements
can still be made to achieve faster execution times in the implementation.

It can be assumed that between recordings the observed particles will not
change their position by a significant amount. This assumption allows the
use of information gathered from one run of the algorithm in the subsequent
run. In other words, this assumptions allows the use of warm-starting.

Warm-starting can be implemented easily by using the final estimate and
the final intermediate estimate from one run as the initial corresponding
estimates in the next run. This can be done by reconstructing each hologram
after the first one that passes through the algorithm.

22

Chapter 5
Implementation

In this chapter, the different implementations of the selected method are
described in detail. As was mentioned at the start of this thesis, the selected
method is to be implemented three times: First, a prototype of the selected
method is to be implemented in Matlab to test its functionality and tune
its parameters, without any regard for real-time use. Then the method is
to be reimplemented in CUDA and optimized for real-time use. Finally, the
algorithm is to be integrated into the already existing code running on the
micromanipulation platform, in which it is supposed to process all captured
holograms and portray them on a display connected to the platform.

Since the selected phase reconstruction algorithm will remain mostly un-
changed between the different implementations, its implementation will be
briefly described first. This will be followed by descriptions of the three
different implementations.

The Matlab and CUDA implementations can be found in an online repos-
itory at: https://github.com/vikroe/phasereconstruction along with
documentation that explains, how each of the implementations can be tested.

The integrated algorithm is available on a repository branch at: https:
//github.com/aa4cc/twinbeam-setup/tree/phasereconstruction. It is
possible that this branch will be updated even after this thesis is finished.

5.1 Phase Reconstruction Algorithm

The proposed implementation of FISTA for phase reconstruction is straight-
forward and mostly follows the process described in the previous chapter.
The implementation has one major difference from the previous chapter, in
which the direct model is calculated as:

m(o) = |1 + prop(Hz,o)|2. (5.1)

23

https://github.com/vikroe/phasereconstruction
https://github.com/aa4cc/twinbeam-setup/tree/phasereconstruction
https://github.com/aa4cc/twinbeam-setup/tree/phasereconstruction

5. Implementation....................................
This means that in the implementation, the estimated disturbance has a

negative real part. The positivity constraint, therefore, becomes the negativity
constraint.

The input parameters of the algorithm are:. Propagation kernel. Hologram. Sparsity hyperparameter.Gradient descent step length.Maximum number of iterations

During initialization, the initial estimates o(0) and o(1/2) are set equal to
the input hologram. Then the backpropagation kernel is calculated as the
complex conjugate of the propagation kernel. Finally, the variable scalar
factor used for the acceleration steps of FISTA is set to its initial value of
s = 1. After this the main loop of FISTA starts.

The algorithm itself then does not deviate much from the description of
FISTA given by (4.17)-(4.20). Actually, the only major difference is that cost
at each iteration is calculated after calculating the optimal scaling factor
c∗(o(i+1/2)). This cost is usually then printed to the console and can be used
as a useful metric for evaluating how good are the current estimates at each
iteration.

When the maximum number of iterations is reached, the algorithm termi-
nates and the final estimate is post processed so that the desired hologram
reconstruction can be obtained. This post-processing is done as follows:

Az = o(max) +H−z(0, 0), (5.2)

where H−z(0, 0) is the constant value of the reference planar wave at the
sample plane. The result Az is then an estimate of the complex planar wave
at the sample plane. In the future sections, the result of this algorithm will
be considered to be the absolute value of Az as it should provide a good
enough image of the sample plane for displaying. The phase of Az can be
discarded as it will not be required anymore.

5.2 Matlab Prototype

The Matlab prototype operates on a sequence of a few elementary steps:
First, the parameters for the FISTA algorithm, as well as for the calculation

24

.................................. 5.2. Matlab Prototype

of a desirable propagation kernel are loaded into the Matlab workspace from
a configuration file with their values. The propagation kernel is calculated
immediately after that.

The configuration file also selects whether the input hologram is to be
simulated or if it is supposed to be loaded in from an image file that contains
hologram recorded from the micromanipulation platform.

If the input hologram comes from an actual recording, it is first normalized
so that its average value is equal to one, so that the assumption in (2.7) is
kept. That is done by calculating its original average and then dividing each
pixel of the recorded hologram by said average. The average is stored for
later use.

The hologram is then run passed to FISTA and the result is pictured to
provide visual proof of the reconstruction effectiveness. In this implementation,
the phase information is also pictured but it serves no purpose. If the hologram
was originally scaled by its average value, each element of the calculated
modulus is multiplied by this saved average value so that the modulus matches
the original hologram in intensity. The results are compared to an ordinary
backpropagation of the hologram. Cost calculated at each iteration of FISTA
is printed to console during the run of the algorithm.

In the configuration file, it can be specified if the pictured results are to be
saved as images.

5.2.1 Hologram simulation

As was already mentioned, the input data for the prototype can come in
the form of a simulated hologram. For this reason, a method of generating
reasonable holograms has to be designed.

To simulate a hologram, first, a disturbance caused by the simulated
observed objects is generated and stored for later use. This true disturbance
is then propagated to the simulated sensor plane and each pixel of the
propagation result is summed with 1. Finally, according to (2.8), the absolute
value of this generated complex amplitude is calculated and squared element-
wise. The result of this is a simulated hologram. Of course, real recorded
holograms are affected by additional noise, which can be simulated by adding
Gaussian noise with zero mean and a small standard deviation to the hologram.

The generated disturbance should have a complex 0 at most pixels with
non-positive real values at the places where simulated objects are supposed
to be situated on the sample plane. At the same places, the imaginary values
are not restricted.

One advantage in using the simulated holograms is that the actual distur-

25

5. Implementation....................................
bance at sample plane is known and can be used to measure how effective the
algorithm is at reconstructing the phase information. One common metric
that can be used to quantify this effectiveness is the signal-to-noise ratio
(SNR), which is calculated by the equation:

SNR = 20log
(||az||2
||o− az||2

)
, (5.3)

where az is the ground truth and o is the estimate of the complex disturbance.
||az||2 is of course the l2 norm of az.

SNR is automatically calculated if the input hologram is a simulation.

5.3 CUDA Implementation

The CUDA implementation deviates from the prototype in a major way: A
sequence of holograms can be uploaded from a video recording and sequentially
processed by FISTA. Since it is assumed at this point that the algorithm
works well, only actual recorded holograms either in picture or video format
are used with simulations omitted in this implementation.

In this implementation, first, the parameters are uploaded into memory
from a JSON configuration file. The parameters that can be specified in this file
are, of course, the necessary parameters for generating a propagation kernel
listed in section 2.2 and the parameters necessary for running FISTA listed
in 5.1. Warm-starting can be enabled in the configuration as well. A different
number of iterations can be specified for warm-started reconstructions than
for the first reconstruction. Saving of results received from FISTA can also
be enabled. Another important parameter is the input file type, which can be
either set to AVI which signifies that the input is a video recording captured
on the provided platform, or it can be set to PNG which signifies that the
input is, just like in the prototype, only a single hologram.

If the file type parameter is set to PNG the algorithm continues more or less
in the same fashion as the Matlab prototype: The implementation is initialized
by loading parameters from the configuration file. The input hologram is
loaded during initialization and is passed along other parameters to FISTA.
Both the propagation and the backpropagation kernels are calculated during
the initialization of FISTA. After the algorithm ends, the result is displayed
in a separate window. If enabled in the configuration file, the displayed result
is saved to a new image file.

On the other hand, if the file type is AVI the implementation utilizes multi-
threading to optimize the phase reconstruction process so that each frame of

26

................................ 5.3. CUDA Implementation

the recording can be processed by FISTA as fast as possible. Three threads
were overall implemented:

. Frame thread. Image processing thread. Display thread

The frame thread holds the pipeline for uploading individual frames from
the video file. A frame is uploaded and then stored into a global array.
The thread then waits for a signal from the image processing thread before
uploading another frame.

The image processing thread starts after the first frame is uploaded by the
frame thread. It copies said frame into its local array and sends a signal to
the frame thread so that it can upload a new frame. FISTA is then run on
the stored frame.

If warm-starting was enabled in the configuration file, FISTA can use the
final estimates of the disturbance at the sample plane calculated for one frame
as the new initial estimates for the next frame. This is, of course, possible
only after the first frame was already processed. Warm-started runs of FISTA
should have a greatly reduced cost of initial estimates compared to runs that
are not warm-started. For this reason, fewer iterations should be needed in
warm-started runs to reach satisfactory results. The configuration file thus
also allows setting a different number of iterations for processing the first
frame of the recording and for processing all the other frames.

After the algorithm finishes processing the current frame, the image pro-
cessing thread copies the result to a global array and sends a signal to the
display thread. The display thread then copies the result to its local memory
and displays it in a separate window. In the configuration file, saving of the
results to a new video file can be enabled.

5.3.1 CUDA

As was stated earlier in this thesis, this implementation was programmed in
C++ utilizing CUDA. The main advantage of using CUDA for this imple-
mentation is that it allows sections of the implemented code to run directly
on a CUDA-enabled GPU. This is greatly advantageous for such sections that
can be easily parallelizable, which most of the image processing operations
used in FISTA are.

27

5. Implementation....................................
5.3.2 Used software

Three external, publicly available, libraries were needed for finishing this
implementation excluding CUDA. Those are OpenCV which was used for
uploading holograms from both possible input file types and for displaying
the results received from FISTA as well as for saving those results.

Another library used was the C++ JSON parser created by Niels Lohmann.
The last external library used was cuFFT, which provides parallelized

implementations of the spatial Fourier transform and its inverse. Both of
these operations are needed each time an image is to be backpropagated or
propagated.

5.4 Integration

The code into which FISTA for phase reconstruction needs to be integrated
has a similar structure to the CUDA implementation designed in the earlier
section for processing video recordings from the provided platform. Most
importantly it also shares the same architecture of having a frame thread that
collects the input holograms — this time directly from the image sensor —
which are then sent over to an image processing thread where the holograms
are processed and the results are, finally, sent over to a display thread from
where they are displayed on a monitor connected to the micromanipulation
platform and saved if so desired.

Normally, the image processing thread is used in this code to backpropagate
captured holograms on each of the two relevant colour channels of the image
sensor. These backpropagations are then used to estimate the 3D positions of
polystyrene particles and for their subsequent tracking. The backpropagations
of holograms from one of the channels can also be displayed on a monitor
connected to the platform or saved in a video format.

The integration kept the backpropagations of both channels for position
estimation and tracking of the particles but added a step in the image
processing thread in which the hologram recorded on the green channel is also
passed to FISTA that was set to the same parameters as it was in the CUDA
implementation. Instead of displaying the simple backpropagation, the result
of FISTA are sent to the display thread instead. All other functionality of
the original code is otherwise retained.

28

Chapter 6
Experiments

In this chapter, first, the selected method will be tested against a simulated
hologram generated by the process explained in section 5.2.1. After that,
the FISTA parameters will be tuned by running the algorithm on an actual
hologram captured from the provided platform until satisfactory results are
gathered. Then the real-time CUDA implementation will be tested on video
recordings captured from the provided platform and the speed per video
frame of the algorithm will be measured. Additionally, experiments on the
video recordings are supposed to show how effective warm-starting is with
the selected method. Finally, the ability of the algorithm to run in real-time
while integrated into the micromanipulation code on the platform will be
tested at the end.

6.1 Simulated Hologram

Before experimenting with the algorithm on holograms captured on the
micromanipulation platform, it would be useful to find a way of testing
whether and how well FISTA works for reconstructing phase on holograms at
all. For this reason, a hologram can be simulated by the process described in
section 5.2.1.

The parameters needed for generating a propagation kernel can be set to
any values in this experiment since the propagation kernel will be used for both
simulating the hologram and reconstructing its phase. The parameters were
therefore selected with values similar to the values which will be probably
required for properly reconstructing phase in holograms captured on the
platform. Such values can be found in table 6.1.

29

6. Experiments
Parameter Value

λ 515 nm
dx 1.55 µm
n 1.45
z 2.4 mm

Table 6.1 Table of parameters selected for generating the propagation kernel
used for generating the simulated hologram.

The disturbance on the sample plane, or the ground truth, was then
generated from 3 filled in circles with a diameter of 32 pixels which comes up
to a simulated diameter of almost 50 µm if the pixel size dx in table 6.1 is
taken into account. All circles have their real part equal to 0.5 and imaginary
part somewhere on the interval [-0.2; 0.2].

Finally, Gaussian noise can be added to the generated hologram to show
how FISTA deals with noisy holograms. The value used for standard deviation
in the experiment is σ = 0.05. The algorithm will then run 5 times with the
added Gaussian noise for 5 iterations and the cost and SNR will be recorded
at each iteration. The same will be done for a single run without Gaussian
noise. SNR is calculated according to (5.3).

The calculated values of SNR will be in both cases compared to the SNR
of an appropriate backpropagation of the simulated hologram. To calculate
this value, the result of the backpropagation has to be normalized first by
having the first value in the backpropagation kernel subtracted from each
value to suppress the effect of the reference planar wave.

The sparsity hyperparameter was set to the value of µ = 0.25 and the
constant gradient step length was set to the value of t = 0.25.

The resulting images of the last iteration from one run of each experiment
compared to the original hologram, simple backpropagation, and the ground
truth can be seen in figure 6.1. The calculated costs and appropriate SNRs
can be found in table 6.2. For the runs with added noise, the resulting values
are averaged across the 5 runs and their standard deviation is calculated as
well. In the table, there is a row for iteration 0, which corresponds to the
initial guesses. For the backpropagation, only the SNR was calculated.

30

................................. 6.1. Simulated Hologram

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 6.1 Results of the simulated hologram experiments. (a) Ground truth
summed with the first element of the backpropagation kernel. (b)-(c) Generated
hologram (b) without and (c) with the added noise. (d)-(e) Backpropagations of
the holograms (d) without and (e) with the added noise. (f)-(g) Final results of
FISTA on holograms (f) without and (g) with the added noise.

31

6. Experiments
Iteration Noise σ = 0 Noise σ = 0.05

Cost SNR Cost SNR
0 17138 -20.642 17500 ± 5 -20.652 ± 0.001
1 442 -0.016 606 ± 3 -0.020 ± 0.001
2 223 0.541 372 ± 1 0.535 ± 0.002
3 215 0.813 365 ± 1 0.799 ± 0.004
4 211 0.977 360 ± 1 0.957 ± 0.005
5 212 1.061 361 ± 1 1.0411 ± 0.007

Backpropagation - -0.878 - -1.728 ± 0.008

Table 6.2 Table of recorded costs and SNRs for the run of FISTA without added
noise and 5 runs with the added Gaussian noise of σ = 0.05. The SNRs are
compared to the corresponding values gathered from simple backpropagations.

As can be seen from both the figure 6.1 and table 6.2, FISTA does return
clearer reconstructions than a simple backpropagation without the interfer-
ence of twin-images. It also deals well with the Gaussian noise affecting
the simulated hologram. The reconstructions are not perfect representa-
tions of ground truth but look better than the ones gathered using regular
backpropagation.

6.2 Parameter Tuning

In the previous section, FISTA was shown to be able to estimate the complex
amplitude at the sample plane of a simulated hologram. This section then
serves to provide a detailed explanation of the process used to find the proper
values for each of the required parameters. The parameters in question
are then the parameters needed for calculation of the propagation kernel,
described in section 2.2, and the parameters needed for properly running the
FISTA algorithm.

The parameters will be selected in the following order:..1. Wavelength λ and pixel size dx..2. Refractive index n..3. Propagation distance z..4. Constant gradient step length t..5. Sparsity hyperparameter µ

32

.................................. 6.2. Parameter Tuning

6.2.1 Wavelength λ and pixel size dx

These two parameters are determined from the properties of the used micro-
manipulation platform, and their values were already mentioned in section
2.4. The pixel size is therefore equal to dx = 1.55 µm and the wavelength of
the light source is then λ = 515 nm, which corresponds to the wavelength of
the green LED used in the platform. Since only holograms captured on the
green channel are used for phase reconstruction, the red light source can be
omitted in this thesis.

6.2.2 Refractive index n

The propagation and backpropagation operations expect the medium between
the sample plane and the sensor plane to be homogeneous. That is, however,
not true, as was earlier stated in section 2.4 and the medium consists of
layers of mediums with differing refractive indices. Nonetheless, this does
not pose a significant problem, thanks to the fact that the refractive index
only corresponds to the speed at which the planar complex wave produced by
the light source propagates through the medium. Therefore, if, for example,
a hologram is backpropagated to some axial distance using just one of the
refractive indices, the resulting planar complex wave does not match the
actual planar complex wave at that axial distance but rather a planar complex
wave at a different axial distance shifted with respect to the real refractive
indices of the different mediums between the two planes.

The choice of the refractive index used for backpropagation and propagation
kernels is thus free and its error only results in a shift between the input
axial distances and the real ones as long as the selected value is sensible
(n ≥ 1). For all experiments the refractive index was selected to have a value
of n = 1.45, which is close to the refractive indices of the mediums between
the observed objects and the image sensor. The selected value should not
result in a significant shift between the used and real axial distances.

6.2.3 Propagation distance z

The distance used for propagation z and with a negative sign for backpropa-
gation can be estimated to a satisfactory degree by just visually comparing
results of backpropagation operations with different distances on the same
hologram. In the case of the used platform, propagation distance will be
tuned around the polystyrene particles, which should have a well-defined
edge and a diameter of approximately 32 pixels. Since the electrodes are very

33

6. Experiments
close to the particles, a result with well-defined particles should have fairly
well-defined electrodes as well.

A small section of the hologram pictured in figure 2.2a along with five of
its backpropagations at different distances can be seen in figure 6.2. From
the figure, it can be seen that satisfactory results are gathered from back-
propagations with propagation distances ranging from 2.3 mm to 2.5 mm.

(a) z = 0 mm (b) z = 2.2 mm

(c) z = 2.3 mm (d) z = 2.4 mm

(e) z = 2.5 mm (f) z = 2.6 mm

Figure 6.2 Results on backpropagation with different propagation distance on a
(a) section of a hologram recorded from the provided platform. The propagation
distances are (b) 2.2 mm, (c) 2.3 mm, (d) 2.4 mm, (e) 2.5 mm and (f) 2.6 mm.

34

.................................. 6.2. Parameter Tuning

A surprising behaviour can be observed when running FISTA on recorded
holograms with differing values of propagation distance: The absolute value
of the final estimate returned from FISTA summed with the first element of
the backpropagation kernel changes drastically with even small variations in
propagation distance. To show this, sensible values for FISTA parameters
have to be assumed as they are not tuned yet, so let t = 0.2 and µ = 0,
which means that the sparsity constraint is turned off for now. The number
of iterations is set to 5. In figure 6.3, it is possible to see the absolute values
of the complex planar wave at the sample plane estimated by FISTA from
the same hologram section as before with just slightly differing propagation
distances.

(a) z = 2.320 mm (b) z = 2.325 mm

(c) z = 2.339 mm (d) z = 2.345 mm

Figure 6.3 Resulting complex amplitudes at sample plane estimated by FISTA
on a section of a hologram captured on the platform. For propagation distances
(a)-(b) the estimation returns satisfactory results while for (c)-(d) the estimation
returns bad reconstructions or it outright diverges.

Interestingly, it can also be shown that some periodicity occurs with

35

6. Experiments
respect to the propagation distance which leads to having reconstruction
results that appear very similar if their associated propagation distance differs
by a multiple of 0.027 mm. This behaviour is visualized in figure 6.4. This
behaviour stems from the way that the propagation and backpropagation
kernels are calculated in (2.1) and from the way by which the ratio of z/λ
changes with changing propagation distance z. Just a small change in the
propagation distance can lead to a drastic change in the phase of the whole
kernel. This does not affect simple backpropagations of holograms in which
the phase information is discarded. However, in phase reconstruction, it takes
effect each time the new estimate is calculated and then finally when the final
estimate is offset by the first element of the backpropagation kernel.

(a) z = 2.293 mm (b) z = 2.320 mm

(c) z = 2.347 mm (d) z = 2.374 mm

Figure 6.4 Resulting complex amplitudes at sample plane estimated by FISTA
on a hologram section. The periodical behaviour when the propagation distance
differs by a multiple of 0.027 mm can be observed.

From the multiple experiments done with the propagation distance, the
chosen value for the propagation distance will be z = 2.347 mm, the effect of

36

.................................. 6.2. Parameter Tuning

which on the estimated complex amplitude at sample plane can be seen in
figure 6.4. The reason for this is that the resulting reconstruction has a large
enough contrast between the particles and their surroundings while it also
sufficiently reconstructs the electrodes.

6.2.4 Constant gradient step length t

The constant gradient step length is an important parameter for the speed
at which FISTA converges. If it is set as too large, the algorithm overshoots
and can’t get to the minimum value of the cost function. If it, on the other
hand, is set as too small the algorithm will converge too slowly.

Setting its value is rather simple: Run FISTA multiple times with µ = 0
and other parameters set to the already found values and only change the
value of t between runs. The algorithm should run for a sufficiently large
number of iterations with 10 iterations being an adequate amount. Then
record the calculated cost at each iteration for each run and compare the
results. A graph showing the calculated cost at each iteration of FISTA for
multiple runs with t ∈ [0.1; 0.3] can be seen in figure 6.5. The actual values
of the calculated costs at each iteration can then be seen in table 6.3.

0 2 4 6 8 10

Iteration

0

0.5

1

1.5

2

C
o

s
t

10
4 Cost per iteration

 t = 0.10

 t = 0.15

 t = 0.20

 t = 0.25

 t = 0.30

Figure 6.5 A graph showing the calculated cost at each iteration of multiple
runs of FISTA with differing values of the constant gradient step length t.

37

6. Experiments
t \Iteration 0 1 2 3 4 5 6 7

0.10 16129 13849 5688 2310 1021 443 173 64
0.15 16129 12752 3227 1079 352 99 33 17
0.20 16129 11788 2058 546 122 38 22 20
0.25 16129 10959 1725 529 380 764 1131 2974
0.30 16129 10265 1887 1368 2478 7017 6093 11501

Table 6.3 Table of calculated costs per iteration for multiple runs of FISTA with
differing values of constant gradient step length. The last 3 iterations are cut as
they will definitely not be used for actual reconstructions.

From both the table and the figure, it is fairly easy to select the step length
value of t = 0.2. At 3 iterations it achieves very low cost and continues to
converge. In real-time experiments, FISTA will usually be run to at most 3
iterations, which gets the algorithm sufficiently close to convergence in as few
iterations as possible. Additionally, larger values tend to increase the value of
the cost function after several iterations, which could have a negative impact
on warm-started executions of the algorithm.

6.2.5 Sparsity hyperparameter µ

The final parameter set in this section will be the sparsity hyperparameter
µ. When setting this parameter it is useful to recall the definition for the
shrinkage operator from (4.13), in which each pixel is set to zero if its absolute
value is smaller than the product µt. The hyperparameter is therefore set to
such a value that the operator reduces noise and removes twin-images but
does not significantly affect the shape of the actual observed objects.

With the other parameters already set, FISTA is run several times for 5
iterations with different values of µ ∈ [0.0; 0.3] on the same hologram section
as before. The resulting absolute values of complex amplitudes at the sample
plane can be seen on figure 6.6.

The chosen value of the hyperparameter will be µ = 0.3 as it removes
almost all of the twin-images from the reconstruction while not disrupting
too much the geometry of electrodes and the polystyrene particles. The cost
evolves the same way with enabled sparsity constraint as it did on figure 6.5,
just with an offset caused by the regularization term.

38

.................................6.3. Real-time Experiment

(a) µ = 0.0 (b) µ = 0.1

(c) µ = 0.2 (d) µ = 0.3

Figure 6.6 Resulting complex amplitudes at sample plane estimated by FISTA
on a hologram section from 4 runs with differing values of the sparsity hyperpa-
rameter.

6.2.6 Further tests

Now that all parameters have been set to good enough values, the results
generated by the tuned algorithm can be compared to a regular optical
microscope. Such comparisons can be seen in figure 6.7. From the images, it
can be seen that the tuned algorithm fares well when compared to recordings
from an optical microscope.

6.3 Real-time Experiment

Now that the algorithm parameters are properly tuned it is time to find out
how well suited the algorithm is for real-time use. In this section, this will be
tested on the CUDA implementation with the use of NVIDIA GTX 660 as

39

6. Experiments

(a) (b)

(c) (d)

Figure 6.7 Comparisons between the images captured on an optical microscope
and results generated by tuned FISTA.

the GPU.
In this experiment, two different video recordings of micromanipulation

experiments were used to determine the quality of FISTA as a real-time
algorithm for phase reconstruction1. One of these videos is in the same 4
megapixel (MP) resolution as the hologram found on figure 2.2a, specifically
2048 × 2048 pixels. The other video is in a reduced resolution of only
1024× 1024, or 1 MP. The reduced resolution is achieved by taking adjacent
squares of 2× 2 pixels and taking their average as a new pixel value in their
place. The tuned algorithm can be run on this reduced resolution without
any problem, only the pixel size has to be doubled to dx = 3.1 µm.

The first frame of either video will be always processed by FISTA running
for 12 iterations since the processing of the first frame can be considered to

1The video recordings can be found on a Youtube playlist found at
https://youtube.com/playlist?list=PLMChF1jy7Ihrs6QmfWcMJlV2mtYQRiF9W

40

https://youtube.com/playlist?list=PLMChF1jy7Ihrs6QmfWcMJlV2mtYQRiF9W

.................................6.3. Real-time Experiment

be just another step in the initialization of this implementation.
The first experiment is rather straightforward and depends on running

the algorithm on both of the two video recordings for a limited number
of iterations for a specified number of frames. The execution time of the
algorithm will be measured for each combination of input videos and number
of iterations. The maximum number of iterations used in this experiment
will be 3 since as can be seen from 6.3, this number of iterations is enough
to get very close to convergence with the tuned parameters. The resulting
execution times will be averaged for all frames and the standard deviation
will be calculated as well.

The results of this experiment can be found in table 6.4. From the table, it
is obvious that it is not viable to run FISTA for more than two iterations on
a 4 MP video recording. However, from table 6.3 it is clear that running the
algorithm for just one iteration will most probably not result in satisfactory
reconstructions. Running the algorithm on the 1 MP recordings is suitable
for all the tested numbers of iterations.

1 MP 4 MP
#Iterations t [ms] t [ms]

1 19.2± 1.4 62.4± 1.6
2 27.0± 1.1 94.4± 0.7
3 35.8± 0.8 129.0± 2.3

Table 6.4 Calculated execution times for combinations of input videos of different
resolutions (1 MP and 4 MP) with the maximum number of iterations of FISTA.
Averaged over 450 frames of video. Standard deviation calculated for each of the
results.

It would be preferable to reach execution times, at least, as low as 33 ms to
be able to process 30 frames per second (FPS). That will be especially useful
when integrating the algorithm into the existing code running on the Jetson
AGX Xavier, which already uses the processing power of its GPU for esti-
mating the positions of individual polystyrene particles. Integrating a slower
algorithm could lead to a radical slowdown of the micromanipulation process
which is not desirable. Finding a way of reaching satisfactory reconstructions
with just 2 iterations of FISTA or even with only 1 iteration on the 1 MP
recording would solve this potential problem. This can, of course, be done
with warm-starting.

41

6. Experiments
6.3.1 Warm-starting

When warm-starting is enabled, the algorithm uses the final estimate and
final intermediate estimate calculated for one frame as the initial estimate
and initial intermediate estimate, respectively, for the next frame.

To test how much better the reconstructions get with warm-starting, the
algorithm was again run on both of the videos. The number of iterations
was again set to 3. The algorithm ran once on either video recording with
warm-starting and then once again without warm-starting. The calculated
costs for frames 2 to 6 were recorded and averaged for each of the four runs
and for each iteration as well as for the initial estimates. Standard deviation
was, of course, calculated for each of the values. The results can be found in
table 6.5.

Resolution 1 MP 1 MP 4 MP 4 MP
Warm-Start NO YES NO YES

Iter. 0 100605± 1690 24595± 328 385536± 5397 101722± 862
Iter. 1 78636± 1062 20688± 211 309876± 3450 83373± 676
Iter. 2 31098± 250 19797± 203 121031± 730 79373± 661
Iter. 3 22853± 111 19445± 171 88618± 318 77820± 505

Table 6.5 Comparison between the calculated costs for runs of the algorithm
with and without warm-starting.

In section 6.2.4 it was stated that the algorithm gets sufficiently close to
convergence at 3 iterations. As can be seen from table 6.5 the runs without
warm-starting reach higher costs at 3 iterations than the cost warm-started
runs reach after just one iteration.

The algorithm was finally run on both video recordings, with and with-
out warm-starting, for a number of iterations equal to 1, 2 and finally
3. The captured video results for the first 450 frames are available in
a Youtube playlist at the address https://youtube.com/playlist?list=
PLMChF1jy7IhqkeNyWt_jjZ5-xODGdqU80. Some of the 1 MP videos in the
playlist have significantly shorter lengths than the others which is caused by
the fact that the display thread of the CUDA implementation was sometimes
slower than the reconstruction thread and therefore skipped a few frames.

To clearly show the comparison between the recorded results, a section
taken from each reconstruction of the 1 MP video recording focusing on one
moving particle at frame number 50 can be found in figure 6.8. From the
figure, it can be seen that the electrodes are really well reconstructed on all

42

https://youtube.com/playlist?list=PLMChF1jy7IhqkeNyWt_jjZ5-xODGdqU80
https://youtube.com/playlist?list=PLMChF1jy7IhqkeNyWt_jjZ5-xODGdqU80

.................................6.3. Real-time Experiment

results of the algorithm that were warm-started. That is actually true for
all non-moving objects in the warm-started reconstructions. On the other
hand, executions of the algorithm that were not warm-started struggle with
non-moving objects with only becoming satisfactory after 3 iterations. Twin-
images were successfully suppressed in each reconstruction with recognizable
features.

(a) (b) (c)

(d) (e) (f)

Figure 6.8 Comparisons between the results of different runs of the algorithm on
the 1 MP hologram video recording. The comparison is of the same frame and
focus is on a currently moving polystyrene particle. Runs (a)-(c) are not warm-
started as opposed to runs (d)-(e). Executions (a) and (d) ran for 1 iteration,
(b) and (e) ran for 2 iterations and, finally, (c) and (f) ran for 3 iterations.

In figure 6.8, it can be seen that the moving particle looks particularly
blurred for warm-started reconstructions. This is most probably caused by
the fact that the moving particle retains its position from the previous frame
in the initial estimates of a warm-started run. In a low number of iterations,
FISTA is unable to forget the previous position. This unfortunate drawback
will be overlooked in favour of well reconstructed non-moving objects and low
execution times, especially as the distortion on the moving object is not that
substantial at 2 and more iterations.

Additionally, in the recorded videos available online, it can be seen that the

43

6. Experiments
moving particle gets heavily distorted when passing over individual electrodes
in reconstructions of the reduced 1 MP holograms but not in reconstructions of
the 4 MP holograms. This is most probably caused by the loss of information
caused by reducing the holograms.

On the micromanipulation platform, FISTA will be run on reduced holo-
grams for 2 iterations. The distortion on the moving objects is not significant
enough to warrant increasing the computation time.

6.4 Integration Testing

The CUDA implementation of FISTA was successfully integrated into the
micromanipulation code running on the provided platform. This integration
was successfully tested when a micromanipulation experiment was running
with FISTA reconstructing each captured hologram in real-time. The resulting
images were then portrayed on a display connected to the platform. Each
captured frame which originally had 4 MP was reduced to 1 MP and passed
for processing to FISTA, which ran for 2 iterations. The same section taken
from several captured frames from this experiment can be seen in figure 6.9.
The complete recording of the experiment can be found online at the address
https://youtu.be/2uY98i34kaE.

This experiment was performed with obsolete parameter tunings with
z = 2.303 mm and µ = 0.08. Additionally, there was an error in this earlier
implementation, where normally the final estimate received from FISTA
should be offset at each pixel by the first value of the backpropagation kernel,
while in this experiment, the final estimate was offset by a real one. The
resulting reconstructions were still satisfactory.

6.5 Additional reconstructions

This section is more of a side note, just to show that the algorithm was also
tested on holograms that do not match the usual setup with polystyrene
particles over the electrode fields. Two holograms that differ from the usually
expected sample were also passed to FISTA to see how well it would fare.

The first of these holograms is of a situation where an opaque microscopic
diode was dropped on the electrode field. The hologram and the result of its
reconstruction can be seen in figure 6.10.

The second hologram captured the situation where a number of opaque
glass balls was dropped on the electrode field. The hologram, the result of its

44

https://youtu.be/2uY98i34kaE

............................... 6.5. Additional reconstructions

(a) (b)

(c) (d)

Figure 6.9 Several frames captured during a micromanipulation experiment on
the provided platform. The frames captured are frames number (a) 40, (b) 800,
(c) 1500, (d) 2000.

45

6. Experiments

(a) (b)

Figure 6.10 Result of FISTA reconstruction for a hologram containing opaque
microscopic diode. (a) The original hologram, (b) the result of FISTA recon-
struction.

reconstruction and the same situation captured on an optical microscope can
be seen in figure 6.11.

6.6 Results and possible improvements

From the previous sections in this chapter, it can be seen that all of the
different implementations reached satisfactory results: The selected method
can almost completely remove the effect of twin images as well as noise from
the reconstructed complex planar wave at the sample plane. More so, if the
algorithm is properly tuned, the results of processing holograms with the
implemented algorithm are comparable to recordings captured by a regular
optical microscope as can be seen on figure 6.7.

With the use of warm-starting and reduction of input holograms from 4
MP to 1 MP, it is also possible to confidently say that the algorithm can
process holograms in real-time. This was, actually, successfully confirmed by
running a dielectrophoretic micromanipulation experiment with the code in
which the phase reconstruction algorithm was integrated without noticing any
significant slowdown that could negatively affect the manipulation process.

Therefore, it can be said that all of the tasks presented in the assignment
of this thesis were fully completed.

However, despite these positive results, perhaps there is still a matter that
can be addressed to perhaps improve the quality of the phase reconstruction

46

........................... 6.6. Results and possible improvements

(a)

(b) (c)

Figure 6.11 Result of FISTA reconstruction for a hologram containing opaque
glass balls. (a) The original hologram, (b) the result of FISTA reconstruction
and (c) the same situation captured on an optical microscope.

47

6. Experiments
results.

6.6.1 Incorporation of prior knowledge

Since the electrode field remains static throughout all holograms captured on
the provided platform, further research could be invested into finding ways of
incorporating the knowledge of their support into the phase reconstruction
algorithm. This could improve the way they appear in the phase reconstruction
results. Such incorporation has to be done with special care as not to
negatively affect the way that the polystyrene particles appear in the same
reconstruction results.

48

Chapter 7
Conclusion

The main goal of this thesis was to design, implement and test a phase
reconstruction algorithm that can be used in real-time alongside an already
existing code on a dielectrophoretic micromanipulation platform. On this
platform, the algorithm should provide reconstructions of captured holograms
with completely suppressed twin-images that could be used for displaying.
This goal was fully achieved with just a small drawback.

First, a suitable method was selected from already existing methods for
phase reconstruction in in-line digital holography. The selected method
approaches phase reconstruction as an inverse problem regularized by sparsity
and positivity constraints. The goal of this problem is to estimate the
disturbance caused by the observed objects at the sample plane. The method
uses FISTA as the optimization strategy.

A prototype of the selected phase reconstruction algorithm was then im-
plemented in Matlab, where it was first tested against simulated holograms.
These tests showed that the algorithm is really appropriate for the given
problem. The algorithm in the prototype was then tuned against holograms
captured on the micromanipulation platform. The tuned algorithm was then
able to significantly suppress the effect of twin-images in reconstructions of
holograms captured on the platform after just 5 iterations.

The algorithm was then implemented in CUDA with warm-starting to test
its capability of running in real-time. It was determined that if warm-starting
is enabled and the processed holograms are reduced to 1 MP, the algorithm
can run in real-time and result in good reconstructions after just 2 iterations.
The drawback here is that the moving particles are, unfortunately, affected
by noticeable blurring in their reconstructions.

The algorithm was finally integrated into the existing code on the di-
electrophoretic micromanipulation platform. This integration was then suc-
cessfully tested by running a feedback dielectrophoretic micromanipulation

49

7. Conclusion......................................
experiment on the platform. During this experiment, reconstructions es-
timated by the implemented algorithm were portrayed for each captured
hologram on a display connected to the platform. The integrated algorithm
did not negatively affect the process of micromanipulation.

With the quality of hologram reconstructions and the speed at which they
are calculated, the implemented algorithm can be considered an improve-
ment when compared to common phase reconstruction algorithms for in-line
holographic microscopy.

50

Bibliography

[1] M. Gurtner and J. Zemánek, “Twin-beam real-time position estimation
of micro-objects in 3d,” Measurement Science and Technology, vol. 27,
p. 127003, Nov. 2016.

[2] M. Gurtner, Real-time Optimization-based Control and Estimation for
Dielectrophoretic Micromanipulation. Master’s thesis, Czech Technical
University in Prague, Prague, Feb. 2016.

[3] U. Schnars, C. Falldorf, J. Watson, and W. Jüptner, Digital Holography
and Wavefront Sensing. Springer Berlin Heidelberg, 2015.

[4] D. Gabor, “A new microscopic principle,” Nature, vol. 161, pp. 777–778,
May 1948.

[5] J. Goodman, Introduction to Fourier optics. New York: McGraw-Hill,
1996.

[6] L. Onural, “Digital decoding of in-line holograms,” Optical Engineering,
vol. 26, p. 261124, Nov. 1987.

[7] L. Allen and M. Oxley, “Phase retrieval from series of images obtained
by defocus variation,” Optics Communications, vol. 199, pp. 65–75, Nov.
2001.

[8] A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman,
A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses:
achievements and remaining challenges of wide-field on-chip microscopy,”
Nature Methods, vol. 9, pp. 889–895, Aug. 2012.

[9] K. Nugent, “Twin-image elimination in gabor holography,” Optics Com-
munications, vol. 78, pp. 293–299, Sept. 1990.

51

7. Conclusion......................................
[10] S. Yang, X. Xie, Y. Zhao, and C. Jia, “Reconstruction of near-field in-line

hologram,” Optics Communications, vol. 159, pp. 29–31, Jan. 1999.

[11] A. J. Devaney, “Noniterative reconstruction of complex-valued objects
from two intensity measurements,” Optical Engineering, vol. 33, p. 3243,
Oct. 1994.

[12] G. Koren, F. Polack, and D. Joyeux, “Twin-image elimination in in-line
holography of finite-support complex objects,” Optics Letters, vol. 16,
p. 1979, Dec. 1991.

[13] A. Lannes, “Correction des effets de l'image jumelle et du terme quadra-
tique en holographie de gabor,” Optics Communications, vol. 20, pp. 356–
359, Mar. 1977.

[14] L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Numerical suppres-
sion of the twin image in in-line holography of a volume of micro-objects,”
Measurement Science and Technology, vol. 19, p. 074004, May 2008.

[15] R. W. Gerchberg, “A practical algorithm for the determination of phase
from image and diffraction plane pictures,” Optik, vol. 35, pp. 237–246,
1972.

[16] T. Latychevskaia, “Iterative phase retrieval for digital holography: tuto-
rial,” Journal of the Optical Society of America A, vol. 36, p. D31, Nov.
2019.

[17] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and
M. Segev, “Phase retrieval with application to optical imaging: A contem-
porary overview,” IEEE Signal Processing Magazine, vol. 32, pp. 87–109,
May 2015.

[18] J. R. Fienup, “Reconstruction of an object from the modulus of its
fourier transform,” Optics Letters, vol. 3, p. 27, July 1978.

[19] J. R. Fienup, “Phase retrieval algorithms: a comparison,” Applied Optics,
vol. 21, p. 2758, Aug. 1982.

[20] T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem
in holography,” Physical Review Letters, vol. 98, June 2007.

[21] S. Mukherjee and C. S. Seelamantula, “An iterative algorithm for phase
retrieval with sparsity constraints: application to frequency domain
optical coherence tomography,” in 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Mar. 2012.

52

...................................... 7. Conclusion

[22] M. L. Moravec, J. K. Romberg, and R. G. Baraniuk, “Compressive
phase retrieval,” in Wavelets XII (D. V. D. Ville, V. K. Goyal, and
M. Papadakis, eds.), SPIE, Sept. 2007.

[23] F. Momey, L. Denis, T. Olivier, and C. Fournier, “From fienup’s phase
retrieval techniques to regularized inversion for in-line holography: tuto-
rial,” Journal of the Optical Society of America A, vol. 36, p. D62, Nov.
2019.

[24] F. Jolivet, F. Momey, L. Denis, L. Méès, N. Faure, N. Grosjean, F. Pin-
ston, J.-L. Marié, and C. Fournier, “Regularized reconstruction of ab-
sorbing and phase objects from a single in-line hologram, application
to fluid mechanics and micro-biology,” Optics Express, vol. 26, p. 8923,
Mar. 2018.

[25] A. Berdeu, O. Flasseur, L. Méès, L. Denis, F. Momey, T. Olivier, N. Gros-
jean, and C. Fournier, “Reconstruction of in-line holograms: combining
model-based and regularized inversion,” Optics Express, vol. 27, p. 14951,
May 2019.

[26] A. Berdeu, T. Olivier, F. Momey, L. Denis, F. Pinston, N. Faure, and
C. Fournier, “Joint reconstruction of an in-focus image and of the
background signal in in-line holographic microscopy,” 2020.

[27] A. Berdeu, O. Flasseur, L. Denis, F. Momey, M. Loïc, N. Grosjean,
and C. Fournier, “Joint reconstruction in in-line holography combining
parametric and non-parametric inverse approaches: Application to fluid
mechanics,” in Holophi5 : 5ème rencontre francophone d’holographie
numérique appliquée à la métrologie des fluides, (Montpellier, France),
Nov. 2018.

[28] Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase
recovery and holographic image reconstruction using deep learning in
neural networks,” Light: Science & Applications, vol. 7, pp. 17141–17141,
Oct. 2017.

[29] Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and
A. Ozcan, “Extended depth-of-field in holographic imaging using deep-
learning-based autofocusing and phase recovery,” Optica, vol. 5, p. 704,
May 2018.

[30] A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational
imaging through deep learning,” Optica, vol. 4, p. 1117, Sept. 2017.

53

7. Conclusion......................................
[31] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends®

in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[32] A. Beck and M. Teboulle, “Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems,” IEEE
Transactions on Image Processing, vol. 18, pp. 2419–2434, Nov. 2009.

[33] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, pp. 183–202, Jan. 2009.

[34] Y. E. Nesterov, “A method of solving a convex programming problem
with convergence rate o

(
1
k2

)
,” Dokl. Akad. Nauk SSSR, vol. 269, no. 3,

pp. 543–547, 1983.

54

	Introduction
	Structure of the thesis

	Theoretical background
	In-line Digital Holography
	Backpropagation
	Twin-Image Problem
	Used platform

	Related works
	Twin-image elimination methods
	Fourier-quotient methods
	Iterative elimination methods

	Iterative phase reconstruction methods
	Deep learning
	Conclusion

	Selected method
	Cost function
	Iterative Shrinkage-Thresholding Algorithm
	Fast Iterative Shrinkage-Thresholding Algorithm
	Warm-Starting

	Implementation
	Phase Reconstruction Algorithm
	Matlab Prototype
	Hologram simulation

	CUDA Implementation
	CUDA
	Used software

	Integration

	Experiments
	Simulated Hologram
	Parameter Tuning
	Wavelength and pixel size dx
	Refractive index n
	Propagation distance z
	Constant gradient step length t
	Sparsity hyperparameter
	Further tests

	Real-time Experiment
	Warm-starting

	Integration Testing
	Additional reconstructions
	Results and possible improvements
	Incorporation of prior knowledge

	Conclusion
	Bibliography

