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Abstrakt / Abstract

Pro určení správné diagnostiky
onemocnění nebo studia jejich
projevů, výzkumu nových lečéb-
ných metod a pozorování změn
ve tkáni histologických vzorků je
nutné ručně identifikovat jednot-
livé části tkáně, zjistit zastoupení,
nebo vzájemnou polohu v tkáni.
Ruční segmentace histologických
snímků může být velmi časově
náročná a neúčinná, či zkres-
lená subjektivním biasem. Nástup
technologických průlomů v ob-
lasti automatického rozpoznávání
obrazu umožnilo rychlejší a přes-
nějí vyhodnocení s porovnání s
člověkem. Využití automatická
segmentace tkáně může v i tomto
ohledu výrazně přispět. Mnoho ná-
strojů na zpracování medicínských
obrazů a dat jsou navíc většinou
proprietární, nebo jednoúčelové,
či zastarelé a bez jednoduchého
uživatelského rozhraní, znesnadňu-
jící jejich použití a přizpůsobení.
V této diplomové práci jsem se
rozhodl přiblížit řešení tohoto pro-
blému implementací state-of-art
metod umělé intelegence v oblasti
počítačového vidění na segmentaci
histologických snímků pankreasu a
detekci Langerhansových ostrůvků.
Cílem bylo také demonstrovat jed-
noduchost použití tohoto nástroje
pomocí webové aplikace pro snadné
použití uživatelem, histologických
expertem.

Klíčová slova: buňky, slinivka
břišní, tkáň, Langerhansovy os-
trůvky, segmentace, počítačové
vidění, neuronové sítě, hluboké
neuronové sítě, detekce objektů,
předzpracování dat, Python

Překlad titulu: Automatická de-
tekce a kvantifikace Langerhanso-
vých ostrůvků v pankreatické tkáni

To determine the correct diag-
nosis of the disease or study of
its manifestations, research of new
treatment methods and observa-
tion of changes in the tissue of
histological samples, it is necessary
to manually identify individual
sections of the tissue, determine
the representation or mutual po-
sition of the sections withing the
tissue. Manual segmentation of
histological images can be very
time consuming and inefficient,
or distorted by subjective bias.
The advent of technological break-
throughs in the field of automatic
image recognition has enabled
faster and more accurate evalua-
tion compared to human. The use
of automatic tissue segmentation
can make a significant contribu-
tion in this regard as well. In
addition, many medical image and
data processing tools are mostly
proprietary, or single-purpose, or
obsolete, and without a simple user
interface, making them difficult to
use and customize. In this diploma
thesis, I decided to approach the
solution of this problem by imple-
menting state-of-art methods of
artificial intelligence in the field of
computer vision for the segmen-
tation of the pancreas histological
images and the Langerhans islets
detection. The goal was also to
demonstrate the ease of use of this
tool by developing an easy-to-use
web application for the end user -
a histological expert.

Keywords: cells, pancreas, tis-
sue, Langerhans islets, segmen-
tation, computer vision, neural
networks, deep neural networks,
object detection, data preprocess-
ing, Python
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Chapter 1
Introduction

1.1 Motivation

People with type 1 diabetes mellitus (T1M) do not produce their own insulin,
an essential hormone that lowers blood sugar. Insulin is produced in the β-
cells of the islets of Langerhans, which are dispersed in the pancreatic tissue.
Type 1 diabetes mellitus is characterized by autoimmune destruction of β-beta
cells and the complete or almost complete absence of insulin, which must then
be administered by lifetime by injection or subcutaneous infusion. Its exact
dosing according to the current needs of the patient is very difficult, as a result
of which the blood sugar level easily exceeds normal values or, conversely, falls
into the area of hypoglycemia. [1–2]

Lack of insulin secretion can also be replaced by transplantation of insulin-
producing tissues. Currently, two basic options are used, namely transplan-
tation of the entire pancreas or only isolated islets of Langerhans from the
endocrine gland, which represents only about 1-2% of the total pancreatic
tissue. Transplantation of the entire pancreas is a relatively difficult surgi-
cal procedure due to the high number of risks and possible complications,
and therefore in many cases today, transplantation of islets by less invasive
methods is preferred. [2]

Although islet transplantation is still considered an experimental treatment,
many studies have shown that over the years, thanks to improved islet extrac-
tion and isolation techniques and proper donor selection, a transplant patient
may not have to use insulin injections for one year, or even longer.

To speed up and refine research in the field of islet transplantation but also
pancreatic diseases in general, it is desirable to use modern procedures and
computer technology in observing changes in histological tissue, comparing
samples over time and also with each other. [3]

Manual histology image segmentation can be very time consuming and in-
effective and automatic tissue segmentation can hugely impact both speed
and precision in this process. There are not many easy to use tools for cus-
tomizable, yet precise automatic analysis of the histology (pancreatic) images.
Some open source programs and tools are available, but their accuracy is far
from the quality that could be used in clinical research. Therefore, I decided
to help contribute to solving this problem using a custom solution with state-
of-the art methods of AI when segmentating the pancreatic tissue.
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Goals

(i) Describe the existing methods for the analysis of histological scans and al-
gorithms for the detection and segmentation of areas of interest and objects
in these images.

(ii) Examine the source microscopy data, prepare suitable tools for annotating
the data and preprocessing and prepare the dataset for training.

(iii) Design and implement the scan image analysis pipeline solving the given
tasks, and evaluate it experimentally.

(iv) Create a web-application for users to easily load and segment new scan
images. Create a viewing module for displaying whole-slide images with
aligned overlay layers of the output segmentation.

2



Chapter 2
Research

2.1 Machine Learning
Machine learning is a subclass of artificial intelligence based on the concept
of extracting knowledge from observed states or experiences, followed by the
application of knowledge to evaluate new observations.

Formally, a machine learning solution, often referred to as the M model,
can be seen as an approximation of the probability distribution P , a random
variable x, representing the problem being solved. The model is often imple-
mented by a parametric differentiable function Mθ and the process of finding
a solution for a given task is called training and consists in finding the optimal
set of parameters θ, often referred to as model weights. [4]

Model training depends on the quality and amount of training data. The
optimal set of parameters is searched using the maximum likelihood estimate
(MLE) principle so that the distribution of model PMθ matches the probability
distribution of random variable x in the best possible way. This process is
implemented to minimize the so called loss function.

Machine learning tasks can be divided into two categories according to the
properties of the training data - supervised and unsupervised. Data in the
case of supervised learning have the form (x, y), where x is an input and y i
a desired output. The aim is to best approximate the conditional probability
distribution P (y|x). [5]

In the case of unsupervised learning, the data take the form of singletons x,
i.e. samples of unknown distribution. The goal is usually to find an unknown
structure (clustering), be able to generate new samples, i.e. the approximate
probability of distribution P (x), or transform the data into some latent space
with useful properties. [5, 4]

2.2 Neural Networks
Neuron (or Neural) network (NN) is a computer model heavily inspired by
the human brain and nervous system. A neural network is defined as a set
of neurons and the connections between them. Neurons are computing units
which are interconnected by weighted connections weights. The basic model
of a neural network is unidirectional graph, meaning a signal from one neuron
enters several other neurons in one way. The learning process of a neural
network takes place in such a way that we give the network some sample
input data - called training data (representing for example an image, sound,
text, etc.), for which we want to get an evaluation at the output, again in
the form of arbitrary data - image, text, etc.). During learning, the neural
network automatically optimizes the weights between the neurons so that

3



2. Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
the output with the smallest possible error coincides with our desired ground
truth output - called label. Multilayer neural networks has one or more hidden
layers which reside in-between input and output layers and they perform
nonlinear transformations of the inputs entered into the network. Illustration
of a multilayer neural network can be seen in the following Figure 2.1. [6]

Figure 2.1. Example of Neural Network with hidden layers. Source: extreme-
tech.com1.

2.3 Single Neuron - Perceptron
The basic unit in a neural network is one neuron. The perceptron is then an
algorithm (neural network) with a single such neuron - the perceptron. This
artificial neuron is remotely inspired by natural neurons. It has several inputs
xi and one output. Each of the inputs is assigned a weight wi. The perceptron
first calculates its activation as a weighted sum of the inputs Φ = b+

∑n
i=1 wixi,

where b is the so-called threshold (bias) and affects how much the weighted
sum must be greater than 0 for the perceptron to activate. If this activation
is greater than threshold 0, the output of the perceptron is 1, otherwise it is
0. [7]

2.4 Convolutional Neural Networks
A Convolutional Neural Network (CNN or ConvNet) is a subclass of ordinary
NN, designed with assumption that the inputs are images, allowing us to
encode certain properties into the architecture. The problem with regular
Neural Networks is that they don’t scale well to images, because even for
a low resolution images, when using fully-connected structure of layers, we
would have a very big numbers of weights/parameters, which would quickly
lead to overfitting (explained in the following section) [8]. As there is a big

1 http://www.extremetech.com/wp-content/uploads/2015/07/NeuralNetwork.png
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overlap with introduction of CNN also in my previous Bachelor’s thesis [9], I
derive some of the following information from it.

There are four main operations in the CNN:

. Convolution. Non Linearity (ReLU). Pooling. Classification (Fully Connected Layers)

These operations are the basic building blocks of every Convolutional Neu-
ral Network.

2.5 Convolution
The primary purpose of Convolution in case of a CNN is to extract features
from the input image. Convolution preserves the spatial relationship between
pixels by learning image features using small squares of input data.

Every image is considered by a computer as an matrix of numbers (where
numbers specify pixel color intensity). We create a Convolution Layers by
convolving or sliding a filter (sometimes referred to as a kernel) by N pixels
(also called stride) across the input image, where the current region bellow
the filter is called receptive field, and multiplying the the values in the filter
with the original pixel values of the image, thus computing element wise mul-
tiplications. We add the multiplication outputs to get the final integer which
forms a single element of the output matrix. The final output matrix is called
Convolved Image, Activation Map or Feature Map. [10]

As an example, considering an I as an input image, matrix K as a fil-
ter/kernel of size h× w, we can compute the Convolved Image I ∗K as

(I ∗K)xy =
h∑
i=1

w∑
j=1

Kij ∗ Ix+i−1,y+j−1 (1)

which can be illustrated with Figure 2.2.

Figure 2.2. Overview of applying convolution. Source: [11].
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2. Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1 Pooling Layer

Pooling layer is another essential block of well-performing CNN architecture.
Pooling is also referred to as a downsampling. Several options exists (Average
Pooling, L2-Norm Pooling), but the one being the most used and popular is
Max-Pooling. Max-Pooling is an operation, where a filter convolves around
each subregion (again with specified stride), and outputs the maximum num-
ber of this subregion to the output matrix. To better illustrate this process,
see Figure 2.3.

Pooling layers are used in part to reduce overfitting by providing an ab-
stracted form of the representation. It also reduces the computational cost by
reducing number of parameters to learn. Lastly, it provides basic translation
invariance to the internal interpretation, which is the reason some networks,
where object specific positions are needed, don’t use them at all. [11]

Figure 2.3. Max-Pooling with filter of size 2× 2. Source: [11]

2.5.2 CNN Architecture and Training
Convolution Neural Network is commonly made up of only three layer types:
Convolution (CONV), Pooling (POOL), and Fully Connected (FC) layers,
where CONV and POOL layers are ordinarily repeated several times to create
a Deep Neural Network and extract high-level features.

A Fully Connected layer is a normal Multi Layer Perceptron that uses a
softmax activation function in the output layer.

The whole architecture is then trained by updating and adjusting
filters/weights in the Neural Network though a training process called
backpropagation in the similar way as with a normal NN. [10]

2.5.3 Pre-trained Networks
Learning the whole neural network is also very time consuming for powerful
computers. Such learning takes days, sometimes weeks, for really large net-
works. Therefore, in practice, in order to reduce the time required to train
the network, a partially pre-learned network is used, which only needs to be
fine-tuned to our required data. Here is an example of several popular network
architectures that are used as so-called backbones in many other architectures.

. AlexNet - the first network to become more popular with CNN in 2012
in the field of computer vision. The network has a similar architecture as
LeNet, but has a deeper and larger convolution part (one CONV layer is
immediately followed by a POOL layer). [12]. GoogLeNet - a network from 2014. They dramatically reduced the number
of parameters (to 4 million, compared to 60 miles from AlexNet). [13]

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Convolution

. VGGNet - have shown that network depth has critical parameters for good
performance. It always uses the same convolution mask. 3x3 and a 2x2
mask for grouping. [14]. ResNet - contains a special skip connection. It does not have a fully inter-
connected output layer. [15]

2.5.4 Underfitting and Overfitting
Not only when using Neural Networks, but when training any model with
machine learning methods, it is important to make sure that the resulting
model is not underfit or overfit to the data.

. Variance - refers to how much a model changes in response to the training
data.. Bias - refers to how much a model ignore the data.

Figure 2.4. Underfitting (left), Good fit (middle), Overfitting (right). Source:
[16]

Finding a good balance of bias vs variance is a critical concept in any Ma-
chine Learning modeling. Underfitted model has low variance and high bias,
and thus the model is generalizing too much and fails to learn the underlying
relationship between inputs and outputs.

In case of overfitting, model having high variance and low bias, results the
model is too much relying on the training data and may therefore fail to fit
additional data or predict future observations reliably.

Typically the dataset is being split into three parts:

. Training set.. Validation set.. Testing set.

When training the Neural Network, or any other Machine Learning model,
we feed the model with data from training set, to update the parameters
(weights in case of NN) and preform a cross-validation1 with data from vali-
dation set to compare the performances of the prediction what were created
on the training set. After we finish training we perform a prediction on our
test set in order to see the accuracy on unseen data. Both overfitting and
underfitting cause poor generalization on the test set. [17]
1 https://www.cs.cmu.edu/˜schneide/tut5/node42.html
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2.5.5 Normalization

Normalization, known as feature scaling can be an important preprocessing
step for many machine learning algorithms. By normalizing our data we put
them on the same scale, which can significantly improve the ability for model
to learn if the scales for different features are very different.

2.5.6 Standardization
An effective normalization technique is standardization, involving scaling the
values of each feature in the data to have zero-mean and unit-variance:

x′ = x− x̄
σ

(2)

where x is the original feature vector, x̄ is the mean of that feature vector,
and σ is its standard deviation.

2.6 Computer Vision Tasks
In computer vision problem solving we typically deal with the following cases:

. Classification. Detection. Semantic Segmentation. Instance Segmentation

When trying to solve any computer vision related tasks, we must first de-
fine what exactly we try to achieve, for choosing or implementing a suitable
algorithm. Do we need just to classify a single object within the image? Do
we need a semantic segmentation or instance segmentation? To better under-
stand differences between these approaches let us look at figure 2.5.

Figure 2.5. Computer Vision Tasks. Source: cs231n.stanford.edu1.

2.7 Segmentation
Image segmentation is the process of dividing parts of an image into individual
parts, which ideally form meaningful parts. The simplest case of segmentation
1 http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
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can be, for example, the separation of an object from the background. In the
case of portrait photography, we usually want to isolate a person’s face from
the background. This would be a two-class segmentation and its output would
be a binary image: the face area white, the background area black. In the
case of histological scans of the pancreas, we may want to distinguish where
the acinus, fat cells, blood vessels and the islets of Langerhans are located. In
this case, we are talking about multi-class segmentation. This can result in a
multi-color image, where each color represents just one of the selected classes.
[18]

2.7.1 Thresholding

Thresholding is one of the oldest and simplest segmentation method. Despite
the restricted usability it is a widely used and popular method. It can be used
both alone and as part of other more sophisticated methods. The popularity
of the thresholding lies in its simplicity, which results in easy implementation
and very low computational requirements. Thresholding is based on the idea
that objects and backgrounds have different intensity level. Thresholding
will split the image into two regions based on pixel intensity values by the
threshold value T . Pixels with value intensities higher than this threshold,
will be marked as the pixels of the object and all other pixels are considered
as the background pixels. Let us say, we define we have an image represented
as a 2D matrix, then function g(x, y) returns the intensity at the given position
and f(x, y) represent the background or object mapping as following:

f(x, y) =
{

1 if g(x, y) > T

0 if g(x, y) ≤ T
(3)

By applying function f(x, y) over whole image, we will get a new 2D matrix
with pixel values 1 representing the object and 0 the background.

If the threshold T is of the same value for the whole image we call the
algorithm as global thresholding. Otherwise we call it a local thresholding.

2.7.2 Watershed segmentation

Watershed transformation can be included among region-based segmentation
approaches. This morphological method of segmentation is based on an idea
derived from geography. The image is understood as a terrain or topographic
relief that is gradually flooded with water.

The basins are filled with water from the starting points (local minima of
the image). In places where water from two different river basins could merge,
so-called dams are created. The process of gradual flooding is stopped when
we reach the highest point of the terrain (image maxima). The result is a
picture divided into regions, individual river basins separated by dams - these
are simply called watersheds. [19]
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Figure 2.6. Watershred Algorithm. Source: scikit-image.org1.

2.8 Semantic Segmentation
Semantic image segmentation is the understanding of an image at the pixel
level, i.e. we want to assign a class of objects to each pixel. Semantic seg-
mentation is used in many areas from multimodal medical image analysis to
segmentation of multispectral satellite images.

It was not until 2014 that the CNN architecture for dense predictions with-
out any fully interconnected layers was popularized. This made it possible
to create segmentation maps for large-sized images. In addition to fully con-
nected layers (FCN), one of the main problems when using CNN to segment
layer is discarding point position information in the pooling process. How-
ever, semantic segmentation requires accurate alignment of sort maps, and
therefore needs to preserve position information. This problem is solved by
the architecture of the decoder - encoder. The encoder gradually reduces the
spatial dimension by joining the layers, and the decoder gradually restores
the object details and spatial dimensions. In this section I show two popular
architectures PSPNet and UNet, which use the basic decoder - encoder idea,
and further extend it with other features. [20]

2.8.1 PSPNet
Pyramid Scene Parsing Network (PSPNet) modifies the basic ResNet archi-
tecture by adding a dilation convolution and functions after the initialization
association layer. The network of PSPNet uses the ability to globally connect
information from differently sized regions. That is why it is called a pyramid
scene - it advances from large parts of the image to smaller ones, where the
details are only fine-tuned. Illustration of this architecture can be seen in
Figure 2.7 [21–22]

Figure 2.7. PSPNet Architecture. Source: [21].
1 https: / / scikit-image . org / docs / stable / auto_examples / segmentation /

plot_watershed.html

10

https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_watershed.html
https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_watershed.html


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9 Evaluation Methods

2.8.2 UNet
The U-Net architecture consists of a context input path and a symmetric
extension path that allows for accurate pixel localization. This network only
needs fewer images to learn than previous networks. It is also very fast,
segmenting an image of 512x512 pixels takes less than one second on a powerful
GPU. U-Net simply concatenates the encoder mapping elements with the
decoder mapping properties at each stage, creating a ladder-like structure, see
Figure 2.8. The architecture allows shortcuts in each learning phase to obtain
the relative properties that are lost in the associative layer in the encoder.
[23–24]

There are multiple other architectures extending the basic idea of UNet,
to name a few: Attention U-Net [25], Unet++ [26], and many others. The
aim of this thesis is not to compare all possible architectures, which could
possibly increase the accuracy by a few percent, but choose tried and tested
well-behaving architecture train a model, and focus on data preparation and
result presentation.

Figure 2.8. Example of Unet Architecture. Blue boxes represent multi-channel
feature maps and white boxes copied feature maps. The arrows denote the

different operations as shown in the legend bottom right. Source: [24].

2.9 Evaluation Methods
When evaluating a standard machine learning model, we usually classify our
predictions into four categories: true positives, false positives, true negatives,
and false negatives. From these categories we can calculate accuracy and other
scores, which will be described in detail in the following section. However, for
the segmentation tasks it is not always clear what is true positive, etc., because
we do not have a single object to classify. Moreover, we may have multiple
classes, which could cause class inbalance and accuracy score could became
a misleading metric. For this reason it is suitable define different metrics,
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which better describe the performance of our trained model when predicting
segmentation masks. [27]

2.10 Metrics
The area of overlap between human annotator and a segmentation output of
the algorithm is a region where the algorithm output pixels exactly match
the annotated ground truth segmentation. These pixels are known as true
positives (TP). The pixels which were erroneously segmented by the AI algo-
rithm in comparison with the human annotated ground truth are known as
false positives (FP). The pixels which were supposed to be segmented by the
AI algorithm but were missed are known as false negatives (FN). The area of
union combines the segmentation results of both human annotation and AI
algorithm output and then subtracts the true positives to prevent those pixels
from being double counted. [27–28]

. IoU Score (Jaccard Index)
IoU is a metric to calculate how accurate the predicted mask is with

the ground truth mask. It is calculated as an area of overlap (between
the predicted mask and the ground truth) and divided by the area of the
their union. If the area of overlap equals the area of union, we have perfect
segmentation and the IoU is equal to one. In that case, FP, TP and FN
are all equal to zero. [28]

IoU = areaofoverlap

areaofunion
= TP

(TP + FP + FN)

. Dice Coefficient
Dice Coefficient is another frequently used metric measure of overlap

between the prediction and the ground truth, when evaluating segmentation
results. It is calculated as the area of overlap (between the prediction
and the ground truth) multiplied by 2 and divided by the total area (of
both prediction and ground truth combined). Same as the IoU score, this
metric ranges between zero and one where a 1 denotes perfect and complete
overlap. [29]

Dice = 2× TP
2× TP + FP + FN. IoU and Dice relation By using algebraic operations between Dice and IoU

coefficient we can find this relation between these two metrics:

IoU = Dice

2−Dice

2.11 Existing programs and algorithms
Here I list various existing software and algorithm which were developed for
histology image inspection and cell classification or detection.
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2.11.1 QuPath
QuPath1 is an amazing tool for whole slide digital pathology image analysis, as
it is open source, up-to-date, highly customizable and powerful. Annotating
data using QuPath is fast and precise. The application also enables program-
mers to write custom scripts or plugins with Groovy scripting language.

Since QuPath is build in Java it is multiplatform and it can be run on
Windows, Linux or Mac OS. It can also be run from the command line in-
terface to perform a predefined task of a supplied script without the need to
use a graphical interface and manually importing project, loading images and
processing them. [30]

2.11.2 Pancreas++
Pancreas++2 is an algorithm and software developed in 2013, which can be
used for islet area investigation and α, β−cell quantification, as well as posi-
tion within the islet for either single or large batches of fluorescent images.
The algorithm uses active contour models to quantify images accurately and
quickly, resulting in an output of a spreadsheet format. The drawback of using
a Pancreas++ is, that it only support a single image as an input which has
to be exactly of resolution 256 × 256 pixels. Since it uses detection by color
heavily, the user must make sure the alpha cells are green, beta cells are red,
and all else neither green nor red. [31]

2.11.3 Cell Profiler
Cell Profiler3 is an open-source application designed for biologist which
enable fast and easy loading and automatic processing of microscopy images.
It also enables exporting result data into either spreadsheet or database. [32]

Cell Profiler publication was cited more than 10 000 times up until today.
Researchers in various medical fields used it to quickly identify cells and to
save time compared to manual labeling. For instance, a pipeline termed Mus-
cleAnalyzer pipeline for CellProfiler to automatically process immunofluores-
cence images of muscle cross-sections stained with laminin-α2 (to label muscle
fibers) and DAPI (to label cell nuclei). It showed that instead of analyzing 67
images tissue images by the manual approach for 3 hours by an experienced
investigator a server computer running the MuscleAnalyzer is able to process
the same amount of images in roughly 11 minutes with similar accuracy. [33]

1 https://qupath.github.io/
2 https://www.nia.nih.gov/research/labs/pancreas
3 https://cellprofiler.org/
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Chapter 3
Tools Used

3.0.1 Python
Python1 is an interpreted high-level programming language created by Guido
Van Rossum, first released in 1991. It is designed to be easily readable and
for general-purpose programming. Python has a huge set of libraries which
can be used for machine learning and artificial intelligence programming (e.g.
NumPy, SciPy, Scikit Learn, Tensorflow, Keras). Many of these libraries are
using C or Fortran as a backend to preform heavy computation tasks very
quickly.

3.0.2 Juypter
Project Jupyter2 is a tool which enable users to write their code into a so
called Notebook, providing an interactive computing thanks to running code
directly after executing a specified part of code (called Cell). Running a code
in a Cell displays the output directly after that Cell. This feature is very useful
for rapid prototyping applications, data science or reports as the Notebooks
can be easily exported into normal a Python code or a PDF document.

3.0.3 TensorFlow
TensorFlow3 is an open source framework for high performance numerical
computation. Its flexible architecture allows easy deployment of computa-
tion across a variety of platforms (GPU, CPU, TPU), and from desktops to
clusters of servers to mobile and edge devices. It was originally developed
by researchers and engineers from the Google Brain team within Google’s
AI organization. TensorFlow framework provides strong support for machine
learning and deep learning and the flexible numerical computation core is used
across many other scientific domains. TensorFlow is an excellent choice for
creating Deep Neural Networks with endless possibilities for fine-tuning each
individual component of the network. [34]

3.0.4 Keras
Keras, on the other hand, is a high-level Neural Networks API. It is also open
source. The main focus of this library is to bridge the gap between the low-
level TensorFlow’s computational functions and nice and easy user-friendly
experience, with still taking advantage of fast environment for experiments.
When prototyping or researching a Deep Neural Network it might be a tedious
work to write and debug Neural Networks in pure TensorFlow framework and
this is where exactly Keras could be a right choice. Keras backend can also
1 https://www.python.org/
2 http://jupyter.org/
3 https://www.tensorflow.org/
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be easily switched, and besides TensorFlow, CNTK1 or Theano2 can be also
used. Since TensorFlow, CNTK and Theano all support both GPU and CPU
training/predicting it is not a surprise that Keras supports them too. There
exists two types of APIs for defining Neural Networks models in Keras:

. Sequential. Functional

The Sequential model is a linear stack of layers and it is straightforward
when defining a model architecture. The Functional API was designed to
make it easier for defining more complex models, such as DAGs, models with
shared layers, or models with multiple inputs and/or outputs. [35–36]

3.0.5 OpenSlide
OpenSlide is a tool for reading whole-slide images, written in C, but also
provides binding for Python and Java. Openslide is widely used, because it
can be used to read various virtual scan formats, and unifies and simplifies
the process by providing a user to use only this tool and not to struggle with
many other, often proprietary, formats and their own software for displaying
whole-slide images.

OpenSlide can open following file formats:

. Aperio (.svs, .tif). Hamamatsu (.vms, .vmu, .ndpi). Leica (.scn). MIRAX (.mrxs). Philips (.tiff). Sakura (.svslide). Trestle (.tif). Ventana (.bif, .tif). Generic tiled TIFF (.tif)

The software package also includes an interface called Openslide Python
API which includes a tile generator and a simple web-based viewer based on
OpenSeadragon3 JavaScript library.

1 https://www.microsoft.com/en-us/cognitive-toolkit/
2 http://deeplearning.net/software/theano/
3 https://openseadragon.github.io/
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Chapter 4
Problem Analysis

In this chapter I describe the data and methods I used in this thesis project.
The programming language selection and tools are purely a subjective pref-
erence, and similar outcome could be of course achieved with any other pro-
gramming language or data.

4.1 Data acquisition
There are not many large public databases of open source histology images,
with easy access to download data, all the more so with the ability to filter
images by tissue type. Histopathology scan datasets can often be found as
accompanying files with various public challenges, such as Kaggle1, etc.

Another great place to find not only microscopy scan images is GTEX
Tissue Image Library [37]. I used this portal to find a suitable images for
this thesis project. The process of downloading them and pre-processing is
described in the following subsection.

4.1.1 GTEX Tissue Image Library
The GTEx Tissue Image Library contains detailed tissue histology images
collected from numerous different tissue types from nearly 1000 postmortem
donors. All tissues underwent stringent pathology review for tissue accept-
ability and each file contains details including the type of fixative, the degree
of autolysis, as well as age range and gender. Additionally, the high resolu-
tion of each image allows for detailed viewing including pan and zoom. The
scans can be downloaded as Aperio image files for further analysis. [37] As
already mentioned all scans used, for this thesis project were obtained from
this library.

1 https://www.kaggle.com/
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Chapter 5
Implementation

5.1 Data Preprocessing
My colleague who is a histology expert was given the GTEX scan data using
QuPath histology software inside a project where I randomly pre-generated
yellow boxes using the script Generate BBoxes.groovy and was asked to
make annotations inside these boxes across various scan images to prevent
overfitting on a single type of H&E scans.

Each box has a dimension of 1000 × 1000µm, which should correspond
to preview annotation tiles shared by the Seeker. Each yellow box containing
annotation(s) was exported at highest possible resolution - resulting in 2023×
2023 pixel images.

In total, 147 tiles were manually annotated across 13 scan images, which
altogether with their description (patient sex, age and pathology category),
can be seen in table 5.1.

Tissue Sample ID Sex Age Bracket Pathology Categories
GTEX-ZF3C-2026 female 50-59 atrophy, fibrosis
GTEX-ZG7Y-0326 male 50-59 fibrosis
GTEX-ZLFU-0726 male 40-49 atrophy, fibrosis
GTEX-ZPCL-0726 female 60-69
GTEX-ZPIC-0926 female 40-49
GTEX-ZPU1-0226 male 40-49 atrophy, fibrosis
GTEX-ZT9W-0926 male 50-59
GTEX-ZV7C-0726 male 50-59 fibrosis, pancreatitis
GTEX-ZVP2-0726 male 50-59 fibrosis
GTEX-ZVZP-0626 male 50-59
GTEX-ZYFG-0826 female 60-69
GTEX-ZYWO-1326 female 40-49
GTEX-ZZPU-0726 female 50-59 cyst

Table 5.1. Used scans from GTEx Portal. Table is exported from [37].

5.1.1 Manual Annotation, QuPath

We closely inspected multiple Aperio scan images and decided to annotate
the following classes, for future segmentation algorithm to distinguish:

. Islets. Fat. Vessels. Ducts. Tissue
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. Other (background and other unwanted objects). Acinar

Figure 5.1. Preview of randomly pre-generated yellow boxes for annotator. Ev-
ery annotation inside this box is then exported as a tile in maximal possible
resolution. By randomness of box position the annotated data covers various
objects on different locations of sample. This should prevent overfitting on a

single object or scan sample.

Figure 5.2. Manually annotated tile - inside a yellow pre-generated box. The
tissue around ducts belong to the new “Tissue” class. Notice the misclassified
Fat area - manual annotations may contain few errors, and the model still be

able to learn well.

Some of the annotations were drawn with overlaps for simplicity. Later in
the tile exporting step, I cut these overlaps based on class priority (as can be
seen in numbering above), so each pixel belongs to only one class.
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Annotating data using QuPath was fast and precise. The application also
enables us to write custom scripts with Groovy scripting language and I
have created multiple scripts to help us export/import and validate the data
throughout the challenge solving.

The scripts written for this thesis includes:

. Generating random yellow boxes for annotator to define annotation tiles. Exporting annotated areas as binary masks and image data. Obtaining full resolution tissue crops. Re-importing predicted segmentations for close inspection

5.1.2 Data Splitting
Multiple techniques and steps were used to correctly prepare my dataset for
training. First the annotated data were exported from QuPath in the form
of an image and binary mask for every scan and every tile (predefined yellow
boxes).

Since the tile dimensions were still large for efficient and fast training, I
decided to split this data to 4 sub-tiles of dimensions 512 × 512 pixels (with
a little overlap in the middle).

0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500

0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500

0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500
0 200 400

0

100

200

300

400

500

Figure 5.3. Preview of train data tiles.

Therefore I obtained 588 tiles in total. Data were then randomly split to
training, validation and test subset as following:

. Training set: 80% - 470 tiles. Validation set: 15% - 88 tiles. Testing set: 5% - 30 tiles

5.1.3 Data Augmentation
Later during training I used a random data augmentation for both training
and validation set in the form of randomly shifting, shearing, scaling, rotat-
ing, flipping the tiles as well as changing color slightly, blurring and shifting
contrast.
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Type of augmentation Apply chance Rate and Limit
Horizontal flip 0.5
Vertical flip 0.5
Random rotation by 90 degrees 0.75
Shift and scale 1.0 0.1
Additive Gaussian noise 0.2
CLAHE 0.2 clip limit 2
Random gamma 0.2
Random brightness and contrast 0.2
Sharpen 0.1
Blur 0.1 3
Motion blur 0.1 3
Hue and saturation adjust 0.3

Table 5.2. Used data augmentations.

Figure 5.4. Four different augmentations of one sample tile with their respective
mask adjusted by same transformation as the input image.

5.2 Model Training
For deep learning the model I used U-Net architecture, which is able to output
a segmentation of classes for each pixel in the input tile image. For the imple-
mentation in Python I used a library called Keras (deep learning framework
as mentioned in the Chapter 3) and I also used another excellent library called
Segmentation Models [38] which enables really fast prototyping and tuning of
deep neural segmentation models.

The input layer was of shape 512 × 512 × 3 (RGB channels), and the n-
dimensional array of shape 512 × 512 × 7 where each layer contained a pixel
probabilities of given pixel to belong to this class. I used a softmax function
layer on the output, so I could see a prediction/likelihood of pixels being in
the class to be able to set a custom threshold.

I used Resnet34 [15] as a backbone for the U-Net network. The model was
compiled with Adam optimizer [39] (LR 0.0005) and combined lossed function
of DiceLoss and BinaryFocalLoss, both with ratio of 0.5. Next, both an IOU
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Score and F-Score were monitored, which helped a lot the network not to
overfit on specific classes.

The training was run with EarlyStopping1 with patience 10 on IoU coef-
ficient validation score, ReduceLROnPlateau2 with planned 30 epochs, but
stopped due to the EarlyStopping rule after 20 epochs. As an activation func-
tion I used which preform well when training a model on multiclass data.
As a loss function, I used a combined loss function of Weighted Dice Loss
and Categorical Focal Loss [40] (the losses were just summed together). The
training progress and continuous validation on validation set can be seen in
Figure 5.5 and the training and validation loss in Figure 5.6.
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Figure 5.5. Model Training Score.
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Figure 5.6. Model Training Loss.

Many of first tries failed, because model was not paying attention to some
class (e.g. Islets). The issue was partially solved by computing class weights
by including a class weights to the model. The class weights were computed by
1 https://keras.io/api/callbacks/early_stopping/
2 https://keras.io/api/callbacks/reduce_lr_on_plateau/
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iterating over each training image and by counting pixels for each class. The
total ratio of counted pixels was used to generate fixed weights to help balance
the DiceLoss [41] while training. The resulting class weights distribution can
be see in a bar plot in Figure 5.7.
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Figure 5.7. Class distribution by total pixel rate

. Acinar: 57.83%. Other: 14.16%. Tissue: 9.51%. Ducts: 14.52%. Vessels: 2.01%. Fat: 1.07%. Islets: 0.90%

5.3 Hardware Requirements
The software was tested with the following hardware setup. The training
and all segmentation computing was performed with a computer of this
specification. Lower specifications may also work, but the processing can
be slower or RAM inefficiency may cause model not to be able to segment
some larger files. The deep neural network algorithm and used framework
can highly utilize graphics card acceleration and therefore a good graphics
card (GPU) is highly advised - the inference should also work only with use
of CPU, but the speed of segmentation will be approximately 10 times slower.

Testing configuration

. CPU: AMD Ryzen 5 3600 6-Core. RAM: 32 GB. Graphics card : NVIDIA GeForce RTX 2070 (8 GB VRAM)
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. OS : Windows 10 Pro, Ubuntu 20.04.1 LTS (Focal Fossa)

Recommended configuration

. CPU: Intel Core i9-9900K (8-Core) / AMD Ryzen 9 3900X (12-Core). RAM: 64 GB. Graphics card : NVIDIA GeForce RTX 2080 (8 GB VRAM). OS : Windows 10 Pro / Linux

5.3.1 Test Data Evaluation
After training finished, the best model weights were chosen, in terms of max-
imal IoU and F1 scores. Final model with imported weights achieves these
results on test dataset consisting of 30 tiles, which were excluded during train-
ing phase:

. Loss: 0.987. Mean IoU Score: 0.581. Mean F1 Score: 0.615

Predicted segmentation on test samples can be seen in Figure 5.8, and
compared with the Ground Truth annotations.
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Figure 5.8. Test data sementation output and comparasion with GT.

5.4 Whole-slide scan tiling and segmentation
Since the model only accepts images of dimensions 512× 512 pixels, all data
need to be tiled first in order to predict the segmentation, therefore every
sample of the desired set of scans to be segmented was fed to the trained model
tile by tile of size 512× 512 pixels. The samples were cropped automatically
from the scan using a tissue detection script inside QuPath and their image
data was fed to Python algorithm.

23



5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.1 Exporting masked samples from QuPath

Because the scan is usually very big and vast majority of the image is just
a background and not the tissue we are interested in, tiling and predicting
each position in the image would slow down the process significantly and
algorithm would also need more memory to save each tile. Therefore, I used
a function in QuPath called SimpleTissueDetection2 which use a simple
segmentation method of thresholding to detect only the tissue sample and
separate it from the background. We use this detection to make a boundary
and mark it as an annotation crop. Then we draw a bounding box around each
detection and we crop only this part of image to be then processed in Neural
Network segmentation. The Groovy code for this tissue sample detection and
annotation with parameters to match most of the samples correctly is shown
in the following listing:

// remove all existing annotations
removeObjects(getAnnotationObjects(), false)

detectParams = ’{"threshold": 239,’ +
’"requestedPixelSizeMicrons": 70.0, ’ +
’"minAreaMicrons": 600000.0,’ +
’"maxHoleAreaMicrons": 2000000.0,’ +
’"darkBackground": false, "smoothImage": true,’ +
’"medianCleanup": true, "dilateBoundaries": true,’ +
’"smoothCoordinates": true,’ +
’"excludeOnBoundary": false, "singleAnnotation": false}’

runPlugin(’qupath.imagej.detect.tissue.SimpleTissueDetection2’,
detectParams);

def cropClass = getPathClass(’crop’)
def annotations = getAnnotationObjects()
for (a in annotations) {

def roi = a.getROI()
def pathClass = a.getPathClass()
def classificationName = pathClass == null \

? ’None’ : pathClass.toString()
a.setPathClass(cropClass)

}

5.4.2 Overlapping method, merging and averaging

When predicting, because the neural network sometimes wrongly predicted
the class of pixels near the edge of tile, I also incorporated a tile overlap
when tiling the image. The overlap value can be adjusted. If we increase
the overlapping factor, we get more accurate results on tile boundaries, as
they are averaged from multiple tiles and therefore the prediction values are
softened.

In the following illustrations I show the method I use for splitting the source
image to tiles, predicting the segmentation on each separately and then the
process of merging them again into single matrix and averaging the result.

First step consists of tiling the image. Let us have an input image of
5 × 5 pixels as can be seen in Figure 5.9 in subplot a) on left. The red box
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of dimensions 3 × 3 pixels represents one tile currently being cut, and blue
dashed lines the areas of other tile cuts. In this case the overlapping factor is
1/3 - the cutting window of this size is therefore moved by 2 pixels on each
cut. We obtain 4 tiles and perform the segmentation on each. In subplot b) we
can see the segmented tiles, where each pixel value represents the likelihood
if this pixel to be a labeled of the given class.
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Figure 5.9. Example of tiling input image
After segmenting each tile separately, we create new matrix of the same

width and height as the source image before cutting. Each class is repre-
sented as one dimension in this matrix and all values are initially set to zero.
Next, we populate this matrix by placing the segmented tiles of predictions
to their respective original location, summing the current values pixel-wise,
as illustrated in Figure 5.10
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Figure 5.10. Example of summing the segmented tiles.

Finally after assembling the full matrix of probabilities, we need to nor-
malize the pixel values with overlays, by dividing these values with number of
occurrences of this field. Mathematically, we can create an extra occurrence
matrix, where we increment positions of overlapped values and use Hadamard
division, defined as

A� B = (aij ÷ bij) =

 a11 ÷ b11 · · · a1n ÷ b1n
... . . . ...

am1 ÷ bm1 · · · amn ÷ bmn

 , (1)

where A is the summed matrix of overlapped predictions and B is the oc-
currence matrix of same size. The matrix C = A � B, is the final resulting
matrix with normalized values element-wise. In our example we can see this
operation illustrated in Figure 5.11.
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Figure 5.11. Illustration of matrix element-wise division called Hadamard divi-
sion.

Because we have multiple classes, we populate each dimension of Result
matrix with one class. After every single tile prediction we then compute the
average class likelihood from merged predicted tiles and then the class with
highest probability is assigned to the pixel. This process is illustrated with 3
sample classes in Figure 5.12.
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Figure 5.12. Highest likelihood class selecting.
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5.4.3 Demonstration on histological data

Now, after illustrating the process of tiling image, predicting and merging
it back into a single predicted segmentation mask, I’ll show the process on
the real output from QuPath. In following Figure 5.13 we can see the input
cropped tissue sample to be tiled and (not precise) indication of how this one
image could be tiled in with a certain overlap.

a) b)

Figure 5.13. Illustration of the tiling function. Image a) on left shows the input
JPEG image, obtained from QuPath. Image b) illustrates the tiling with 30%
overlaps. Tiles in this illustration are not of dimension 512 × 512 pixels as it

would be while processing.

For example if the original whole-slide scan had a full resolution of 40000×
40000 pixels and we detected a tissue sample at position x = 5000 px and y =
5000 px and with height h = 16000 px and width w = 8000 px in the original
resolution, we can recalculate the position of the 2.0 times downscaled version
to be (x2.0 = 2500, y2.0 = 2500, w2.0 = 4000, h2.0 = 8000) px. We preform this
downscale, because we also used a downscaled tiles in the training process from
1024 to 512 px (downscale = 2.0). Now we obtained a single crop sample of
resolution 4000×8000 px. Therefore if we now use a tiling operation with 30%
overlap and tile size of 512 × 512 px, we will get b4000/512 · 1.30c = 10 tiles
in horizontal direction and b8000/512 · 1.30c = 20 tiles in vertical direction,
so in total 10 · 20 = 200 tiles to process with segmentation algorithm. If we
would not use the tissue sample detection and crop, we would have to process
all tiles, in this case b20000/512 · 1.30c · b20000/512 · 1.30c = 2500 tiles. This
could save a significant amount of time, when there is a lot of background
pixels and small area of tissue.

In the Figure 5.14 bellow we can see the heatmap segmentation output for
each class for the input image 5.13. The likelihood values ranges from 0 (less
likely the given pixel is of the given class) to 1 (more likely the given pixel is
of the given class).
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Figure 5.14. Preview of prediction masks for each class. From Top Left to Right:
Acinar, Other, Tissue, Vessels, Fat, Islets. (Ducts not shown here)
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Chapter 6
Inference

6.1 Inference Pipeline
The Interface process consists of the following steps:

(i) Selected scans are automatically loaded by QuPath software in the back-
ground, using the Export All.groovy script, which opens the scan, auto-
matically detects the tissues samples within the scan, using the QuPath’s
tissue detection plugin, and these regions are exported in high resolution
(downsampled by factor of 2.0) for future segmentation. The crops are made
to save time by not tiling and predicting the background areas, where there
is no tissue sample.

(ii) Next the UNet model is built with the same parameters as the best
model during the training stage. Afterwards its weights are loaded from
models/best-model.h5

(iii) The scan crops are tiled to 512 × 512 tiles with, by default, 30% overlap.
These tiles are then passed to model for segmentation prediction, and then
reassembled to their original position as before tiling, averaged (on the
overlapping areas) and merged into the same shape as the input crop.

(iv) Thanks to saving the location, sizes and downscale factor of each crop when
exporting from QuPath, we can re-position them to one big scan/image.
This is the final segmentation result of the given scan.

(v) For the purpose of loading the segmentations to a web application and to be
able to set opacity for each layer/class individually, the image is “exploded”
into 7 images, where each image only contains pixels from a single class.

(vi) Lastly a file called areas.json is generated and it contains the total count
of pixels for each of the class layers. From this area coverage ratios by
classes can be calculated, and this is shown in the pie graph in the web
application.

6.1.1 Areas JSON file structure
The generated areas.json file consist of keys with the same name as the
respective scan name. It holds an inner object of separate key for every seg-
mented layer referring to a number of total pixels in this scan image belonging
to the given class. Preview of the file is shown in the following listing:

{
"GTEX-1128S-1926": {

"acinar": 10315714,
"other": 68660945,
"tissue": 3503715,
"ducts": 3,
"vessels": 60388,
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"fat": 14349497,
"islets": 1786868

},
"GTEX-11LCK-0226": {

"acinar": 10292623,
"other": 58581740,
"tissue": 2149272,
"ducts": 2,
"vessels": 115841,
"fat": 9320912,
"islets": 303166

},
...

}

6.2 Web Application
I wanted this tool for segmentating histology image scans to be accessible
even for non computer experts. First, I thought about creating a desktop
application, but it is hard to distribute it, make it cross-platform and keep it
updated. Therefore I decide to incorporate all the functionality into a single
web application, which can be accessed on every PC, or even a mobile phone.

Figure 6.1. Web application screenshot.

The final web application consists of three separate pages.

. Home page. Scan page
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. Segment page

Home page is the root page displayed when a user visits the web. There is
an information about this project, instructions for using the application and
links for displaying processed scan images.

Figure 6.2. At the home page, the user can view all uploaded scans (scans in his
scan folder), see for which of the scans the segmentations were already generated,
and by using Drag-and-Drop on the right side panel, the user can upload new

scans to process very easily.

Scan page is a page consisting of tree main elements: viewer window, sliders
for changing opacity of individual segmentation layers and layer distribution
pie chart. The sliders and graph are placed in a right-side panel. All the
segmentation layers can be also hidden out with a single click of the Hide all
button - so the scan sample can be seen without any overlay, or the overlay
layers can be set to non-transparent mode with a button Show all, so user
can easily see the segmentation regions. There is also one more preset mode
called Islets, which is activated by clicking a button of the same name. This
mode will show all layers to pre-defined opacity values, except the Islets layer,
which is fully transparent. This will cause Langerhans islets to pop out and
be easily visible among other tissue sections.

The layer distribution graph displays the ratio of coverage by each segmen-
tation layer of the total scan area. By clicking on labels next to the pie graph,
user can hide this segment and the graph is automatically re-adjusted to only
include and quantify the non-hidden layers. The layer Other is initially hid-
den by default, as it mainly contains the background of the sample and thus
interfere with ratios of objects of interest within the sample.
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Figure 6.3. Source image without overlay. Each of the layers has its own slider
in the right side panel. By sliding it, the user can adjust the opacity of that
specific layer. Below the sliders there are 3 buttons: to hide all overlaid segmen-
tation completely, display them at 100%, and one custom preset, to highlight

the Langerhans Islets in the scan (as shown in this image).

Figure 6.4. Image with Islets mode overlay. After the segmentation overlays
are generated, an interactive pie graph is shown next to the viewer windows
showing the area occupancy by each class. By clicking on the label, this class

can be hidden and the ratios of the graph are recalculated accordingly.

Segment page is page to which user is automatically redirected when up-
loading a new scan for segmentation. On this page a list of not yet segmented
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scans is shown. And user can select one or more scans by checking respective
checkboxes of each scan. After clicking a confirmation segment button, au-
tomatic segmentation is started. This will call the function segment-scans
of the INFERENCE.py script is called in the background and user is informed
about the segmentation progress in the message log and with progress bar
updates.

Figure 6.5. In the segmentation tab, users can run new segmentation tasks for
selected scans with a single click of a button. The server will process the scans

in background and after it’s finished, scans can be displayed in the viewer.
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Chapter 7
Conclusion

7.1 Testing with domain expert
For the testing of the usability and accuracy I asked a pathology expert from
Second Faculty of Medicine, Charles University to test the web application
and review it, to better capture an unbiased opinion and results:

“This technology is used primarily to search for suitable donors of pancre-
atic transplantation (respectively its islets of Langerhans). In this procedure,
many sections (sometimes hundreds to thousands) of potential candidates are
presented to the pathology laboratory (hence the clinic) and the number and
quality of the islets of Langerhans are then evaluated manually. If we compare
the technology used here with the usual manual procedure, the web application
software was able to recognize almost all the islands of Langerhans in the at-
tached images, altogether with marking of their area with an inaccuracies of
a few percent. Regarding the marking of the edges of the islets, this is not
a serious problem because the main parameter used in medicine to evaluate
the condition of the endocrine component of the pancreas is primarily their
number. Even with today’s manual procedure, the size is determined only as a
guide without an accurate measurement, therefore the results of the area of the
Langerhans islets presented by the program correspond to medical standards.
Upon close examination of the images, we found that the program shows a
really small degree of false negativity (i.e. was able to identify virtually all
islets of Langerhans) and a small degree of false positivity, when in cases it
identified small vessels and pancreatic ducts such as Langerhans islets. The
rate of these false positives in the attached images was in the order of units,
and with the increase in the number of learning images, it can certainly be
minimized. The attached data show great potential for the future, when with
an increased number of learning data could serve as a pre-analysis, when a
pathologist would see the already marked Langerhans islets and more or less
just check the output of the program, which could lead in a very significant
simplification and efficiency of the current process.“

7.2 Future Improvements
There is certainly a lot of space for further improvements and extension of
this project. Even better segmenting accuracy could be obtained by providing
even more manually annotated data. I believe this was nearly the minimum of
data for model to be able to generalize across multiple various H&E histology
scans. The class balancing could also help a lot, because e.g. the Ducts were
almost completely ignored by the neural networks as there was a minority of
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this class in the training data for such a diverse tissue section. One could
also use the tools such a training pipeline and web server, and completely
switch the annotated data for any other tissue domain, such as Stomach or
Bone marrow, and still would be able to utilize almost all of the functionalities
(data preprocessing for training, whole scan segmentation by tiling, and web
server for viewing the scans and segmented overlays in web browser).

The users who tested the web application also mentioned, it would be great
if there would be a precise count of the instances detected (not just the per-
centage of area), and a ruler tool, so that an user could measure the sizes of
objects directly in the slide.

7.3 Summary
During the creation of this diploma thesis, I became acquainted with many
state-of-the-art techniques in the field of image processing, segmentation and
work with biomedical data, specifically histological hematoxylin and eosin
scans. I created a procedure for fully automatic segmentation of pancreatic
tissue and the search for Langerhans islets by training a deep neural network
model using data annotated by me and my colleague. I also created a web
application that allows anyone to easily segment a pancreatic tissue scan just
by grabbing and dragging it into the web application window, and after au-
tomatically processing it viewing that scan with overlays and other analytical
tools such as determining the area ratio of each layer.
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Appendix A
Abbreviations and symbols

A.1 Abbreviations
List of used abbreviations in this text.

RGB Red, green and blue color channels
NN Neural (or Neuron) Network

DNN Deep Neural Network
GPU Graphic Processing Unit
CPU Computer Processing Unit
TPU Tensor Processing Unit - special processor unit developed by

Google for hardware acceleration of deep neural networks learn-
ing

JPEG Commonly used method of lossy compression for digital images
LR Learning rate - step size at each iteration while moving toward a

minimum of a loss function
H&E Hematoxylin and eosin staining - one of the principal tissue stains

used in histology
GT Ground Truth - reference annotation created by a human

A.2 Symbols

px Picture element - smallest unit of a bitmap image
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Appendix B
List of attached files on CD

models Folder containing trained weights of the final
model for each epoch.

export Directory which contains all exported files dur-
ing inference, can be deleted)

scans Directory which contains exported crops and
full segmentations

overlays Contains generated masks and classes distri-
bution for web-app

pancreas-images Empty folder, default location for sav-
ing/loading .svs scan files

qupath-program Directory which contains binaries for Windows
and Linux version of QuPath program, which
is used in the segmentation pipeline

scripts Directory which contains useful Groovy scripts
for QuPath exporting, the script “Export
All.groovy” is used in the segmentation
pipeline, do not change it or its location

webserver Contains source-codes of web application)
static/overlays (new segmentations from
“/export/overlays” can be copied here to
be displayed. When a scan is segmented
through web-app, the new overlays are copied
automatically and the class distribution file is
updated.

data512 Directory which contains processed 512x512px
tiles - training data of images and annotations
from ”PREPROCESS-DATA.ipynb” notebook

INFERENCE.py Main Python script for segmentating new his-
tology scans, this file is also used as a module
for web server

webserver/pancreas-server.py Script to run and configure web server for web-
application. Change to “webserver” directory
before starting it.

PREPROCESS-DATA.ipynb Jupyter Notebook containing importing and
preprocessing tiles for training.

TRAIN.ipynb Jupyter Notebook containing training and
evaluation source code.

INFERENCE.ipynb Jupyter Notebook file for model configuration,
training and evaluating
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
requirements.txt Required pip packages to be installed

utils.py Python file containing various Python func-
tions, e.g. script for cutting the image to tiles

RUN-WEB.bat Web-app executable file for Windows
RUN-WEB.sh Web-app executable file for Linux

Note: if using Python environment, switch
to it first, or include it into the script

horak-thesis-en-2021.tex,
horak-thesis-en-2021.pdf This document in PDF and TEX formats.
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Appendix C
Prerequisites Installation

C.1 Windows

. Install git (for installing openslide-python from git repository). Install CUDA and cuDNN drivers (for GPU accelerated support in Tensor-
flow). Install OpenSlide - download windows binaries and extract to desired folder. Add OpenSlide bin and lib to PATH environment variable

C:\openslide-win64-20171122\bin
C:\openslide-win64-20171122\bin

. Install Python 3.6, 3.7 or 3.8, if not yet installed (Anaconda is recom-
mended). If using Anaconda, create new environment and activate it, by:

conda create -n pancreas python=3.7
conda activate pancreas

. Install Python packages from requirements.txt, using:

pip install -r requirements.txt

C.2 Linux (Ubuntu)

. Install git (for installing openslide-python from git repository)

sudo apt install git

. Install CUDA and cuDNN drivers (for GPU accelerated support in Tensor-
flow). Install OpenSlide using:

sudo apt install openslide-tools

. Install Python 3.6, 3.7 or 3.8, if not yet installed (Anaconda is recom-
mended). If using Anaconda, create new environment and activate it, by:

conda create -n pancreas python=3.7
conda activate pancreas
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.2 Linux (Ubuntu)

. Install Python packages from requirements.txt, using:

pip install -r requirements.txt

Notes When using Python of version 3.8 and higher you may get an er-
ror if installing tensorflow-gpu of version ≤ 2.0. Newer versions of ten-
sorflow should be compatible as well. Therefore you can replace the row
“tensorflow-gpu≤2.0” with just “tensorflow” in the file requirements.txt and
run pip install -r requirements.txt again
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