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Abstract/Abstrakt

Circular RNAs (circRNAs) are believed to play an important role in cellular functions via
interactions with micro RNAs involved in regulation of gene expression. miRNA-circRNA
interactions are rarely experimentally validated, so researchers rely on their predictions.
The commonly used prediction tools have been developed for and mostly tailored to the
much better understood and researched miRNA-mRNA interactions. The aim of this
thesis was to design a novel approach to the analysis of available data to improve the
identification of miRNA-circRNA interaction sites specifically. The focus was on the use
of the secondary structure of circRNA as a novel parameter in prediction using machine
learning. Several classifiers were rigorously tested to select the best representation and
classifier combination. A novel approach to pairing prediction was also taken. Based on 15
nt of the primary sequence of circRNA, secondary structure-based classifiers and a simple
neural network, the interactions were predicted with a perfect recall. Finally, to improve
the low precision of the proposed method, an ensemble of existing tools was proposed,
improving the prediction and recall of the combined ensemble beyond the capabilities of
each individual tool.

Keywords: circRNA, miRNA, miRNA-circRNA interactions, seed sites, circRNA sec-
ondary structure, software, bioinformatics

Cirkulární RNA (cirkRNA) hrají podle dosavadních výzkumů důležitou roli v buňce
skrze interakce s miRNA. Interakce miRNA-cirkRNA jsou zřídka experimentálně ověřené,
takže se vědci spoléhají na jejich predikce. Běžně používané predikční nástroje byly
vyvinuty a většinou přizpůsobeny pro mnohem lépe pochopené a prozkoumané interakce
miRNA-mRNA. Cílem této práce bylo vytvořit nový přístup k dostupným datům, který
by zlepšil identifikaci míst interakce konkrétně mezi miRNA a cirkRNA. Důraz byl kladen
na použití sekundární struktury cirkRNA jako nového parametru v predikci pomocí stro-
jového učení. Několik klasifikátorů bylo testováno, za účelem vybrání nejlepší kombinace
reprezentace a klasifikátoru. Byl také použit nový přístup k predikci párování. Na zák-
ladě 15ti nuklotidů primární sekvence cirkRNA, klasifikátorů založených na sekundární
struktuře a pomocí jednoduché neurální sítě byly předpovězeny interakce s dokonalou
výtěžností. Nakonec, aby se zlepšila nízká přesnost navrhované metody, byla navržena
kombinace navrhované metody se existujícími nástroji, která zlepšila predikci a výtěžnost
konečného kombinace metod nad možnosti metod braných jednotlivě.

Klíčová slova: cirkRNA, miRNA, miRNA-cirkRNA interakce, seed oblasti, sekundarní
struktura circRNA, software, bioinformatika
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Chapter 1

Introduction

CircRNAs have been known to biologists since the 1990s. Even though it has been around
30 years since their discovery, little is known about these molecules. The most interest has
been focused on their role within cellular pathways, especially on the interactions with
miRNA molecules. Having often the same primary structure as mRNAs, these molecules
are believed to compete with mRNAs by sponging miRNAs, affecting the downstream
pathways of mRNAs, including gene expression regulation. mRNAs are transcripts for
protein synthesis. miRNAs are short RNA sequences that regulate activity of other RNAs
such as mRNAs or circRNAs. Furthermore, circRNAs are often expressed in specific
tissues, cell types or cancer, suggesting they have a significant function.

The traditional methods for studying RNA make it difficult to study circRNAs due
to their similarity with mRNAs. Several independent attempts have been made to build
a database, such as CircInteractome, of known circRNAs and their properties, leading
to many potential sources with limited compatibility between them. In comparison, the
tools for miRNA-circRNA specific interactions are scarce, so the tools designed for mRNA-
miRNA interactions are usually used.

Although mRNA and circRNA have the same or very similar primary structure, two
main differences should be considered when using miRNA-mRNA interaction predictors.
First, mRNA is a linear molecule while circRNA is circular, suggesting that they form dif-
ferent secondary structures, which in turn defines their possible interactions with miRNA
target subsequences. Second, tools for analysing miRNA-mRNA interactions tend to
focus on the 3’ untranslated region (3’UTR) of mRNA, whereas the miRNA-circRNA in-
teractions have not been shown to have any strong preference in terms of specific binding
regions.

Since no tools specific for the prediction of miRNA-circRNA interactions have been
designed to date, new circRNA-tailored methods are needed. This thesis considers the
secondary structure of circRNA. The secondary structure of mRNA has previously been

1
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found to play a significant role in miRNA-mRNA interactions and has been utilised by
TargetScan. The circRNA secondary structures are not experimentally known, which
is the primary reason for them not being used in predictions. However, the secondary
structures of circRNAs are expected to be different from the structures of miRNAs due
to their circular form. A computational tool, such as RNAfold, can be used to predict the
circular secondary structure, which has not been previously used to predict the miRNA-
circRNA interactions.

Furthermore, no tool currently used for miRNA-circRNA interaction prediction uses
machine learning or neural networks. Currently, the tools used (TargetScan Section 4.1,
RNAhybrid Section 4.3) are based on series of assumptions made by observation of known
interactions, especially of miRNA-mRNA. As a result, the proposed solution tries to
teach machine learning classifiers the difference between interacting and non-interacting
sequences while considering the secondary structure of given subsequences.

1.1 Proposed Solution

This thesis aims to implement and evaluate the use of secondary structure of circRNA in
miRNA-circRNA interactions predictions. The task is split into four sections:

• data extraction and analysis Section 6.1,

• classification based on secondary structures,

• classification and prediction of interactions,

• evaluation and comparison with currently available tools.

In Section 6.1, available data will be extracted from various sources, and several
datasets of different properties will be formed. The positive and negative class will be
defined, and the samples will be split accordingly. The datasets will be formed by subse-
quences of the secondary structures of circRNAs. They will be further analysed for their
potential to distinguish between positive and negative class using ICA and PCA.

In Section 6.2, all datasets with potential to be used in classification will be used
with machine learning classifiers. The task will be to determine which datasets and which
classifiers are most suitable for the prediction of the availability for complementary pairing
with miRNA using the secondary structure information. The output of this section will
be the best three combinations of classifiers and datasets.

In Section 6.3, a neural network will be created to evaluate the likelihood of a sub-
sequence interacting with a miRNA. The input will include binary representations of
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pairings between subsequences of individual circRNAs and selected miRNAs. Here only
one dataset will be used to train the neural network consisting of all known combinations
of circRNAs and miRNAs in humans. The outputs of classifiers from the previous section
and the pairing data will extend the input to the neural network.

Last but not least, in Section 6.4, the results of previous experiments will be evaluated
and compared to results of other predictive tools for miRNA-circRNA interactions. An
ensemble combining the proposed method and two reference tools is also proposed (see
Section 7.4.1).

1.2 Thesis Structure

This chapter introduces the overall topic and outlines the concept of the proposed solu-
tion. In Chapter 2, the biological concepts along with the importance of the issues are
defined, while offering a deeper insight into the options that are currently available for
new potential methods. Chapters 3 and 4 describe the current state of the art databases
and prediction tools, respectively.

Next, Chapter 5, describes the algorithms, tools and methods that have been used for
the implementation of the proposed solution. The implementation itself is described in
Chapter 6 with the results discussed in Chapter 7. Both Chapter 6 and 7 follow the split
of tasks outlined in Section 1.1.

Chapter 8, contains the evaluation and discussion of the results obtained, while the last
Chapter 9 concludes the thesis and suggests possible improvements and further research.



Chapter 2

Biological Background

2.1 Pre-mRNA and mRNA

DNA is known to encode information required for protein synthesis and protein synthesis
regulation. This information is relayed through transcription into various types of RNA.
One such type is the precursor messenger RNA (pre-mRNA) which is a raw RNA tran-
script of a gene encoded by the DNA. As the name suggests, the pre-mRNA is a precursor
of mRNA. The pre-mRNA consists of protein-coding and non-coding parts of a gene called
exons and introns, respectively. To form messenger RNA (mRNA), the pre-mRNA can
be spliced by a spliceosome, a large ribonucleoprotein complex. During this process the
introns are removed and the exons are fused together to form mature mRNA, the final
template for protein synthesis via translation.

2.2 miRNA

MiRNAs are a group of non-coding functional RNA molecules. Human cells are estimated
to contain around 2500 different human miRNAs, and more have been identified in other
mammals [8]. These 20-25 nucleotides long sequences [9], processed from a longer mRNA
precursor are responsible for the regulation of up to 90% of human genes involved in prolif-
eration, cell growth, cellular signalling, embryonic development, tissue differentiation and
apoptosis. Varying expression patterns of miRNAs can be observed in different tissues
at different times, such as during development, disease or in response to treatment [10].
MiRNA molecules are incorporated into a miRNA-induced silencing complex (RISC, de-
tails in Section 2.6) which then specifically targets mRNA molecules via complementary
base-pairing to 5-7 nucleotides (a seed region), preventing translational machinery from
translating the mRNA sequence into proteins, and/or marking the mRNA for degrada-
tion, resulting in efficient down-regulation of gene expression. Aberrant expressions of
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miRNAs have been linked to various diseases and documented in the Human microRNA
Disease Database (HMDD) [11].

2.3 circRNA structure

CircRNA is a continuous loop of single-stranded RNA. It is produced by back splice
junction (back-splicing) of pre-mRNA (Figure 2.1) [4, 6] where the 5’ and 3’ ends of
the linear transcript are covalently fused together, by the same spliceosome machinery
that generates mRNA, to form a circular structure containing one or more exons [12].
CircRNAs, unlike linear mRNAs, lack terminal structures (5’ caps and poly(A) tails) and
are therefore resistant to exonucleases such as RNase R [13]. RNase R degrades mRNA
and other linear RNAs, purifying circular RNA (circRNA) for subsequent sequencing.
Because circRNAs lack the terminal structures, they are more stable in vivo than their
linear counterparts. Furthermore, the levels of circRNA in different tissues in a single
organism can vary, suggesting that circRNA may have tissue-specific functionality. The
two properties make circRNAs interesting candidates for biomarkers for diseases such as
cancer [14].

Figure 2.1: Back-splicing (reprint from [4])

2.4 circRNA functions

Although the exact function of most circRNAs is unknown, the structure of the few that
are known can be used to predict the functions of the rest. About 40% of circRNAs
contain the AUG start codon, a sequence marking an initiation point of synthesis of small
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proteins. At least one such natural protein is synthesised this way [15]. Also, it has been
shown that artificial circRNAs can interact with ribosomes, cell organelles that facilitate
protein synthesis [16].

However, studies have shown that most circRNAs do not serve as a template for pro-
tein synthesis. Instead, the scientific focus has been aimed at their interaction with other
RNAs and their role in the regulation of gene expression. Recent studies suggest that
long non-coding RNAs are regulating each other and also regulating the amount of cod-
ing transcripts present in the cell via miRNAs [17]. A coding sequence, such as circRNA
and mRNA, can have multiple miRNA binding sites and thus can be regulated by mul-
tiple different miRNAs. CircRNAs carry miRNA-response elements (MREs), sequences
complementary to target miRNA, that allow circRNA to bind miRNA molecules and
thereby reduce the availability of the target miRNA to bind and down-regulate protein-
coding mRNA. This phenomenon (Figure 2.2) [18], called miRNA sponging, can also be
observed with some other RNAs (Figure 2.3) [4]. The sponge effect is, however, only
effective if there is a large amount of circRNA competing for the miRNA with mRNA
template.

Figure 2.2: miRNA Sponging. Presence of sponge (circRNA) in (B) show a reduced
amount of miRNA (red) available for binding with mRNA compared to binding in (A)
(reprint from [18])

Some circRNAs also have binding sites for RNA-binding proteins (RBPs) and can
therefore exert the same sponge effect on them. Recent cancer studies report that circR-
NAs play a role in epigenetic regulation via controlling the RNA splicing or transcription
[15, 19, 20]. However, these other functions have not been studied as well as miRNA
sponging. Reviews by Su et al. (2019) [21] and Zhao et al. (2019) [22] elaborate on this
topic further.

As a circRNA can have multiple binding sites for various miRNAs, so can coding
mRNAs. This fact creates a complex network of interactions too extensive for us to fully
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Figure 2.3: miRNA interactions. miRNAs can interact with various molecules. CircRNA,
lncRNA and pseudogenes inhibit the miRNAs while miRNAs inhibit the protein-coding
genes. When miRNAs are inhibited they cannot repress the protein coding genes (reprint
from [4])

understand yet, however, using various computational tools for circRNA analysis may
offer a starting point for navigating it.

2.5 Secondary structures of RNA molecules

The mRNA and circRNA forms a local secondary structure through binding of comple-
mentary parts of its sequence via Watson-Crick pairing. This secondary structure consists
of various loops, bulges and stems and affects the ability of certain parts of the RNA to
bind to other molecules by rendering the necessary bases inaccessible for binding. The
main difference in secondary structure between mRNA and circRNA is that mRNA is lin-
ear and so has two “free” ends, whereas circRNA is circular. This is a significant difference,
especially when trying to predict secondary structure computationally.

The inaccessibility of the binding site can also be caused by pseudoknots. The sites are
primarily inaccessible because the energy required to break the existing bonds would be
insufficiently compensated by new potential bonds with miRNA [23]. Thus, unstructured
regions of RNA, accessible for binding, are favoured and efficiently regulated by miRNA.

Similar to mRNAs and circRNAs, the miRNAs form secondary structures. By adopt-
ing homo-duplex and/or hairpin structures [24]. Hairpin structure consists of a self-
complementary stem and loop of free nucleotides and possibly free 3’ and/or 5’ ends.
Homo-duplex refers to the Watson-Crick pairing with G:U wobble pairs between parts of
two copies of miRNA (Figure 2.4). The transition between the two secondary structures
is linked to the cellular environment, namely the concentration of miRNA in the cell and
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the ionic conditions. When the concentration of miRNA is high, more homo-duplexes
are observed. In low concentrations of miRNA the prevailing structure is hairpin [24, 5].
Depending on the secondary structure, the function of miRNA can be affected if the
‘seed’ region, important in miRNA-target interactions, is inaccessible in either of the two
formations.

Figure 2.4: miRNA secondary structures (reprint from [5])

2.6 mRNA-miRNA-circRNA binding

In the majority of cases, the miRNAs are incorporated in the miRNA-induced silencing
complex (RISC). This complex also includes a type of Argonaut protein, which exposes
the ‘seed’ region of the miRNA that is thought to be essential in most miRNA-target
interactions [25]. The ‘seed’ region refers to nucleotides at positions 2-8 in the 3’UTR of
miRNA. Several classes of target sites have been identified based on conserved miRNA-
pairing motifs [6] (also depicted in Figure 2.5):

• 8mer – complementary pairing with positions 2-8 of miRNA and with an A opposite
the position 1

• 7mer-m8 – complementary pairing with positions 2-8 of miRNA

• 7mer-A1 – complementary pairing with positions 2-7 of miRNA and with an A
opposite the position 1

• 6mer – complementary pairing with positions 2-7 of miRNA

• offset-6mer – position 3-8 match

A smaller number of 6 matching pairs in seed region can be compensated by supple-
mentary base pairing with the remaining part of the miRNA but the evidence is observed
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Figure 2.5: miRNA pairing motifs (reprint from [6])

in only 5% of the cases of mentioned pairing motifs [7]. A very extensive paring with the
3’ region of the miRNA sequence can completely substitute a lack of paring in the seed
region. However, it is sporadic to observe preferentially conserved paring sites in the 3’
region.

Additional Watson-Crick pairing at positions 12-17, especially nucleotides 13-16, fur-
ther enhances targeting by miRNAs. Similar to the seed region, uninterrupted pairing at
these positions by wobbles, bulges or other mismatches is preferred. These positions are
the best conserved positions outside of the seed region.

The preferred nucleotides in the immediate vicinity of functional sites are A and U,
even more for conserved sites. The experiments that lead to these findings were performed
on the 3’ UTR of mRNA because it was believed that the miRNA bound mRNA in this
region only [6]. However, more recent findings have confirmed that miRNAs also bind in
the 5’UTR and the open reading frames (ORFs) [26].

Although miRNAs are able to bind in other places than 3’ UTRs, the sites in 3’UTR
are more often effective at repressing mRNA than the rest of the options. Furthermore,
having a high local A-U content and being further away from centres of long UTRs makes
a site more likely to be effective [23]. The efficacy is also influenced by the distance to
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neighbouring miRNA-binding sites and protein sites. Sites nearby (8 to 40 nucleotides)
are cooperative, meaning the repression exerted is greater than the summation of two
independent locations. The distance between could be greater, but the preference is up
to 40 nucleotides. When two locations are less than eight nucleotides apart, they are
competitive [6].

Articles by Grimson et al. (2007) [6] and Agarwal et al. (2015) [7] offer further insights
into the topic.
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Existing Tools - Databases

CircRNA research generates large quantities of data because circRNA is a relatively new
concept that fits in with many previously researched concepts. For this reason, there are
several databases that store related data, including not only circRNA properties but also
interactions with mRNA, miRNA or RBP. Different databases consider the relationships
between circRNA expression and disease or other traits. Major drawback of large number
of databases for circRNA is used of various genome assemblies, multiple naming systems
and different approaches to numbering positions in miRNA-circRNA interactions.

Databases such as circNet and circ2Traits are mentioned in various articles and books
[27] but are not available anymore. Most existing databases such as circBase (Section
3.2) or circRNADb (Section 3.1) are available but not recently updated, possibly because
there were no more studies into circRNA that would be relevant for them. To fully explore
data that are available for circRNA analysis, a database with information about miRNAs
is needed. The best database for miRNAs is the miRBase (http://www.mirbase.org/).
Further information about miRBase can be found in the most recent article by Kozomara
et al. (2018)[28].

3.1 circRNADb

circRNADb (http://reprod.njmu.edu.cn/circrnadb)[29] is a database of circular RNAs
identified in humans. As of May 2021, the database contains 32,914 annotated exonic
circRNAs from large-scale studies attempting to identify human circRNAs [30, 31, 32, 33].
The database allows scrolling through all entries, browsing by Gene Symbol, Cell Type,
PubMedID or Protein-coding potential, and searching by more advanced criteria including
chromosome number or chromosome strand. The database also provides a downloadable
version of the whole dataset. Although it does not seem to have been updated since 2016,
the database includes the best transcript, other possible transcripts and information about

11
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protein-coding potential of an explored circRNA.

3.2 circBase

CircBase (http://www.circbase.org/) is another circRNA database and, like circRNADb
(Section 3.1), it has also not been updated since 2015. It is based on the same large-scale
studies [32, 30, 31, 33] as circRNADb but provides different search options. CircBase also
offers FASTA format exportation option for a given search result. To show individual
sequences, the database redirects to a corresponding PubMed record. The database entries
cannot be extracted all at once as the site only shows results of a narrowed-down search.

3.3 ENCORI: StarBase

The Encyclopedia of RNA Interactomes (ENCORI) also known as StarBase
(starbase.sysu.edu.cn/)[34, 35] is a database of miRNA interactions including miRNA-
circRNA and miRNA-mRNA. All entries in this database were subject to passing two
constraints. First, the interaction between two miRNA and mRNA had to be predicted
by at least 3 out of 5 computational tools (TargetScan[36, 6], miRanda[2], Pictar2 [37],
PITA [38], and RNA22 [39]). The miRNA-circRNA interactions were only predicted
using miRanda (Section 4.2). miRanda is the most general algorithm for identifying
miRNA-mRNA and can therefore be easily used for identification of miRNA-circRNA
interactions. Other tools are designed purely for miRNA-mRNA. Second, the interaction
had to be at least once identified experimentally by sequencing of cross-linked immunopre-
cipitated RNA (CLIP-seqs) with Argonaute or other RBP protein, ensuring the findings
are biologically relevant [40].

ENCORI database currently contains 149 miRNA-circRNA interactions for the human
genome and 15 for the mouse genome. 11 circRNA-RBP interactions for mammals and
1 for the nematode. ENCORI has so far used over 700 CLIP-seq datasets. The database
is connected to Genome Browser (http://genome.ucsc.edu/) and circBase (Section 3.2).
Unfortunately, the database belonging to Sun Yat-sen University can be accessed by the
public only in restricted hours.

3.4 CircInteractome

CircInteractome (circinteractome.nia.nih.gov/) is a database of predicted circRNA inter-
actions with RBP and circRNA [41]. The database also stores information about individ-
ual circRNAs; however, circRNA entries can only be searched by name, gene symbol or
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cell-line/tissue. Further, the information can only be extracted for each entry separately.
The interactions between miRNA and circRNA can be explored by entering miRNA

or circRNA, or both. The results show the number of pairing sites that are shared
between a particular pair of circRNA and miRNA. For each site, the expected pairing is
shown alongside scores used to predict the site of interest. The scoring system devised by
Grimson et al. [6] and generated by TargetScan is described in Section 4.1.

3.5 CircFunBase

CircFunBase (http://bis.zju.edu.cn/CircFunBase/) is a database for functional circular
RNAs. This database contains 7000 circRNAs from various species including 3799 entries
for human circRNAs. It essentially extracts or links information from other databases to
allow users to access all information available on each circRNA from one database.

The database can be browsed by species or lineage, or searched by circRNA name,
location, gene symbol or keyword. A detailed description of circRNA includes function,
expression profile, sequence and most importantly predicted and experimentally validated
interactions. The database adds links to miRBase and circBase to give further information
on specific miRNA or circRNA, respectively.

3.6 CSCD - Cancer-Specific CircRNA Database

CSCD (https://gb.whu.edu.cn/CSCD/) [42] contains 272,152 cancer-specific circRNAs.
The database contains annotations including predicted binding sites for miRNA (predicted
using TargetScan [Section 4.1]).

3.7 CIRCpedia

CIRCpedia (https://www.picb.ac.cn/rnomics/circpedia/) [43] is a database containing
262,782 circRNA entries out of which 183,943 are human. The database provides general
information about each circRNA, including information about conservation in human and
mouse genomes.
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Existing Tools - Computational Tools

Due to their structure and similarity to mRNAs, circRNAs are very difficult to distinguish
from mRNAs and therefore, it is also problematic to study circRNA experimentally. As
a result, various computational tools emerged to help process available data and predict
functional characteristics of individual circRNAs such as miRNA interactions, protein
interactions, and the relation to diseases.

Currently, the only mediator of circRNA interactions with miRNA is the CircInter-
actome (Section 3.4), which uses TargetScan algorithm to identify potential interactions.
TargetScan (Section 4.1) was initially created to identify miRNA-mRNA interactions, but
its implementations worked on principles that were general enough to work with circRNA
as well.

In comparison to miRNA-circRNA, there are more than 38 tools designed for the
prediction of miRNA-mRNA interactions [44]. These tools can be split into two groups:
heuristic and empirical. TargetScan, miRanda (Section 4.2) and RNAhybrid (Section 4.3)
are all based on heuristic models. Empirical models generally use a machine learning-based
approach, including the use of SVMs, decision trees, and artificial neural networks.

4.1 TargetScan

TargetScan (http://www.targetscan.org/) is one of the most common tools used for pre-
dicting miRNA-circRNA interactions. Since 2003 this tool has undergone many changes
that eventually led to TargetScan v7.2 being currently the best tool for predicting
target mRNA for miRNAs. However, as this tool has evolved, it focused more and
more on mRNA-miRNA interactions, and the current version is no longer relevant to
miRNA-circRNA predictions as these are treated as background noise.

Earlier versions of TargetScan focused on conserved seed-matches to the miRNA based
on five genomes - human, mouse, rat, dog and chicken. The sites were scored based on

14
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their context that included:

• type of seed-match,

• complementarity outside of the seed region,

• local A-U contribution,

• position contribution (distance to nearest UTR end of target);

and degree of conservation:

• highly conserved (across human, mouse, rat, dog, chicken),

• conserved (across human, mouse, rat, dog),

• poorly conserved (any other combination of species).

The initial assumption was that miRNA-target interactions with imperfect seed pairing
require extensive paring outside the seed, and therefore, would rarely occur because they
would be challenging to conserve throughout evolution [36, 6].

Later, the probability of preferentially conserved targeting improved conservation scor-
ing, increasing the number of miRNA target binding sites to >45,000 in human 3’UTRs
[45]. The number of species was raised from 5 to 22. The differential ability of miRNA
to repress mRNA was found to be linked to seed-pairing stability and high target-site
abundance. TargetScan considers these two properties in its context-score model since
2011 [46].

The newest version implements many features specific to mRNAs but, with small
adjustments, these could be applied to circRNAs. A list of the features selected, including
a list of features considered, is summarized in Figure 4.1 [7].

Concerning mRNA-miRNA interactions, the most relevant improved feature is the
predicted structural accessibility of the site. Previous versions only considered the acces-
sibility of the binding site. When a score for probability of a region (14 nucleotides long
centred on miRNA nucleotides 7 and 8) being unpaired was also considered, the results
significantly improved.

When compared with 17 other miRNA target prediction tools and previous versions,
TargetScan v7 performs the best in identifying miRNA-mRNA interaction sites. The
newest version, however, is not tailored for prediction of miRNA-circRNA interaction
sites. Although the code can be used to examine circRNA, the same quality of results
cannot be expected.
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Figure 4.1: 26 considered features, 14 highlighted selected features (reprint from [7])

4.2 miRanda

Probably the first tool for predicting miRNA-mRNA interactions is the miRanda. Al-
though the website with the algorithm from 2003 [2] is not accessible anymore, miRanda
remains one of the most mentioned algorithms in articles concerning miRNA-circRNA
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interactions and is the only tool used in the ENCORI database.
The algorithm works in two parts. The first is similar to Smith-Waterman algorithm

[47]; the dynamic programming is used to identify best possible non-overlapping hybridi-
sation alignments. The scores used for different pairs and affine gap penalties are given
in Table 4.1.

A-U C-G G-U Other pairing Gap-opening Gap-extension
Score +5 +5 +2 -3 -8 -2

Table 4.1: Table showing scores for parameters of the first part of miRanda algorithm.
First 4 columns are pairs formed between miRNA and target RNA, last two columns are
scores for affine gap penalty.

The scores for the first eleven positions (counted from the 5’ end of miRNA) are
multiplied by a scaling factor of 2 to reflect the asymmetry of preferential binding in the
seed region. In addition, there are four rules as described by Enright et al. (2003) [2]:

• mismatches at positions 2 to 4 are forbidden;

• less than five mismatches between positions 2 and 12 are allowed;

• at least one mismatch between position 9 to L-5 (where L is the total alignment
length) is required;

• only fewer than two mismatches in the last five positions of the alignment are al-
lowed.

The results from the first part of the algorithm are used to estimate the thermodynamic
properties of predicted hybridisations. RNAlib (a folding prediction algorithm from the
ViennaRNA package [48]) along with extended thermodynamic parameters from Mathews
et al. (1999) [49] allow scoring of potential hybridisation sites by their folding energies. To
calculate the minimum energy of the structure, a template RNAmust be formed. miRanda
joins miRNA with part of the complementary target RNA (the output of hybridisation in
the first part of the algorithm) by a linker containing 8 artificial bases that cannot form
base pairs.

4.3 RNAhybrid

RNAhybrid is another well-known tool for miRNA-mRNA prediction. Although this tool
has not been upgraded since 2006, its unique method of searching for miRNA targets
keeps it among the frequently used tools along with TargetScan.
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To identify possible miRNA targets, RNAhybrid calculates the most energetically
favourable hybridisation sites of miRNA in long RNAs such as mRNA or circRNA. In-
tramolecular hybridisations, the formation of complementary pairs between two parts of
the same RNA, and overlapping hits are not allowed. The algorithms’ time consumption
is linear with respect to the length of the target RNA (circRNA, mRNA).

The algorithm is an extension of a general algorithm for prediction of RNA secondary
structure [50] and uses energy parameters from Mathews et al. (1999) [49]. The algorithm
uses Dynamic Programming to find all possible start positions in both RNAs to find the
best hybridisation with minimum free energy (MFE) between binding pairs of the two
RNAs. The algorithm is designed explicitly for RNA hybridisation and not RNA folding
or pairwise sequence alignment.

The number and location of output sites are defined by constraints imposed by pre-
defined or user-defined settings. The number of predicted sites can be limited by user-
defined:

• number of optimal and additional suboptimal hits,

• free energy thresholds,

• or p-value thresholds.

Other options include:

• forcing hybridisations to contain only perfect helices in the seed region of miRNA
(nucleotides 2 to 7),

• disallowing G:U base pairs in the seed region,

• or restricting maximum length of bulge loops (sequence of unpaired nucleotides in
both strands) and internal loops (sequence of unpaired nucleotides in one strand).

Initially, the tool could be used only using the command line, however, since 2006 a
web service is also available [51, 52].

4.4 Ensemble of TargetScan, RNAhybrid and miRanda

An ensemble has been proposed by Dori (2019) [53] for reduction of false positives iden-
tified by individual existing tools including TargetScan, RNAhybrid and miRanda. This
is a "manual" method that has been so far performed on 100 randomly chosen mouse
circRNAs.
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The first step uses the three mentioned algorithms to predict miRNA-circRNA inter-
action sites. In the second step, all interactions predicted by only one algorithm were
eliminated. Next, complementary experimental data was used. To pass the last step,
the sites had to overlap with the binding sites of Argonaut proteins that are required for
functional interactions.

So far the ensemble proposed was only performed on the mouse circRNA and has not
been rigorously tested and evaluated.



Chapter 5

Technical Background

This chapter defines the existing algorithms, tools and methods that have been used
during the implementation of the proposed solution.

5.1 RNAfold

RNAfold is a program from ViennaRNA package [54]. It is one of the few tools able to
calculate secondary structure specific for circular RNA based on minimal free energy. The
program can also compute a partition function, base pairing probabilities and generate a
representation of probabilities of pairs in pseudo bracket notation.

Based on the command-line arguments, the program accepts either a file with primary
sequences in text format (where one line consists of one sequence), a FASTA file, or a
single sequence from stdin. -c option must be given to run this program specifically for
circRNA sequences. To obtain pairing probabilities for each position of the sequence,
option -p must also be used.

RNAfold generates three types of secondary structures and their free energy. The first
structure is the minimum free energy (MFE) structure in dot-bracket notation (explained
in Section 5.1.1). The second is a pairing probability denoted using pseudo-bracket no-
tation (also in Section 5.1.1). The last is a centroid structure [55] which is the structure
with "the smallest average base pair distance to all other structures in the ensemble" [54].

The asymptotic complexity of RNAfold is O(n3) [54] where n is the length of the
sequence. The complexity is not a problem because only sequences of a maximum length
of 2000 nucleotides (nt) are used in this thesis.

For further information on available options, the reader is advised to visit the package
manual at https://www.tbi.univie.ac.at/RNA/RNAfold.1.html.

20
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5.1.1 Dot-Bracket and Pseudo-Bracket Notations

Both dot-bracket and pseudo-bracket notations are used to describe the secondary struc-
ture of a sequence. In dot-bracket notation, the dot represents a position in a given
sequence that does not form a pair. Left and right brackets are used to indicate pair-
ing between two positions. Left and right brackets that are separated only by dots and
already paired brackets are paired together.

Pseudo-bracket notation is less widely used. This notation works on the same princi-
ples as dot-bracket notation but uses additional symbols to distinguish different pairing
strengths (see Table 5.1).

dot "." unpaired
comma "," weakly paired without preference
vertical line "|" strongly paired without preference
curly brackets "{}" weak up-/down- stream pairing
brackets "()" string up-/down- stream pairing

Table 5.1: Pseudo bracket notation symbols explained.[1]

5.1.1.1 RNAfold output example

ACGAGGGCGCUAGAAGCUUGACGUAGCUACGUACCGACGC
.((.(((((.(((..((.....))..)))))).))..)).
minimum free energy = -7.80 kcal/mol
.((.,((,(,{{(.,((,....}}„))}})).))..)).
free energy of ensemble = -8.78 kcal/mol
.((..((...(((..((.....))..)))....))..)). -4.70 d=8.66
frequency of mfe structure in ensemble 0.205337; ensemble diversity 10.94

5.2 Alignment (Biopython)

Align package from Biopython library [56] contains class PairwiseAlignment that allows
computation of pairwise alignment between two sequences. This class is generally used
for the alignment of homologous sequences. However, given substitution matrix (Table
5.2 shown in Section 5.2.1), it can be used for calculation of the most probable pairing
between two sequences such as circRNA and miRNA subsequences.



CHAPTER 5. TECHNICAL BACKGROUND 22

5.2.1 Substitution matrix

A substitution matrix is used to evaluate the similarity between two nucleotide bases or
amino acids. In our case, the matrix scores the log-likelihood of pairing between two
nucleotides.

A U C G
A -3 5 -3 -3
U 5 -3 -3 2
C -3 -3 -3 5
G -3 2 5 -3

Table 5.2: Substitution matrix for Watson-Crick pairing including G:U wobble pairs.[2]

5.3 Classifiers Used with Secondary Structures

In order to evaluate the information contained within different datasets of the secondary
structure subsequences, various classifiers have been used. This section describes all
classifiers tested for their ability to separate data into two classes as indicated by their
labels. All classifiers used for this thesis and presented here are implemented in scikit-learn
library [57].

5.3.1 k-Nearest Neighbours Classifier

The k-Nearest Neighnours (k-NN) splits data based on the majority voting of nearest
neighbours to the queried sample. A point is classified as belonging to the class with the
majority among k points. The value of k is specified by the user based on the data that
are to be evaluated. Increasing k often leads to reduction of noise in the data, but the
boundaries between categories become less distinct. By default, the votes have uniform
weights. In some cases, it is better to use weights based on distance from the point
queried.

5.3.2 Decision Tree Classifier

Decision Tree Classifier (DT) is a supervised non-parametric learning method [58, 59]. A
model is built based on series of boolean decisions that can be inferred from the dataset.
The performance of DT is affected by the maximum depth parameter set by the user. A
high value might lead to overfitting on the training data, leading to poor generalisation
with testing data.
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5.3.3 Random Forest

Random Forest (RF) [60] uses a set of decision tree classifiers and their averaging to learn
a model that would increase the accuracy of predictions and prevent overfitting. The main
parameters that the user can set include the number of estimators (decision trees) and
the maximum depth of the trees. If the bootstrap parameter is True, then each decision
tree is trained on a subset of the dataset.

5.3.4 AdaBoost

AdaBoost [61, 62] is a meta-estimator, i.e., it is an ensemble formed by a set of many
unreliable classifiers ("weak classifiers"). An example of a weak classifier is the Decision
Tree Classifier. Multiple copies of the estimator are used to mitigate mistakes made by
the original classifier by adjusting weights for incorrectly classified samples. As a result,
AdaBoost is less susceptible to over-fitting. AdaBoost has been proven to converge into
a strong classifier provided that all its weak classifiers are better than random guessing.

5.3.5 SVC

C-Support Vector Classifier (SVC) [63, 64] is a scikit-learn implementation of a support
vector machine tailored to classification purposes. It uses points that are closest to the
margin between two classes to decide the best splitting line. These points are called
support vectors. The classifier tries to maximise the margin from splitting line to closest
support vectors. For non-linear functions, this classifier can use a kernel function that
takes training data and projects them into a higher dimension where the data are easier
to separate with a plane. Most common kernel functions include radial basis function
(rbf) kernel, polynomial kernel and sigmoid kernel. The classifier is effective even in high
dimensional spaces.

Other parameters that the user can specify for an SVC include parameter C, degree
(for polynomial kernel), kernel coefficient gamma or class-weight in case of unbalanced
classes. Parameter C is a regularisation parameter responsible for a trade-off between
correct classification and margin maximisation. The strength of regularisation is inversely
proportional to the size of C. Parameter gamma is a kernel coefficient that defines the
reach of the influence of a single training sample. The larger the gamma, the smaller the
reach and the smaller the value, the larger the reach.
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5.3.6 Complement Naive Bayes

Complement Naive Bayes (CNB) [65] is a modification of Naive Bayes adapting the clas-
sifier to work well with imbalanced datasets. Naive Bayes classifier applies the Bayes
Theorem with assumption that for all pairs of features given the class conditional inde-
pendence applies. From that we can infer following equation for classification:

ŷ = argmax
y

P (y)
n∏

i=1

P (xi|y)

This can be used to model conditional probabilities that can be further used for clas-
sification of data.

5.4 Analysis Tools

This section describes various tools used to visualise different datasets and to identify
the most suitable datasets for classification and the most successful classifiers based on
secondary structure. These tools have also been implemented in the scikit-learn library.

5.4.1 PCA and ICA

Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are
statistical transformations of the secondary order and the higher order, respectively, with
the main task to reduce dimensions. This property makes them especially valuable when
attempting to visualise high dimensional data in two-dimensional graphs. The first two
components of the two transformations allow visualisation of the highest variance in data
when plotted. They are both class independent, meaning they do not attempt to separate
the two classes but take the dataset as a single class.

PCA finds principal components (eigenvectors of the covariance matrix) of the dataset,
meaning it finds a direction that explains the most variance. It removes correlations but
not higher order dependence. The identified vectors are orthogonal, and the importance
of found vectors can vary.

On the other hand, ICA is not orthogonal, all vectors have the same importance, and
it can remove both correlation and higher order dependence. Unlike PCA, it works with
non-Gaussian data. ICA tries to decompose independent components and assumes these
are statistically independent.
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5.4.2 GridSearch

GridSearch implementation from scikit-learn performs an exhaustive search over given
parameter values to find the most suitable combination for given data and estimator.

5.5 MLP Classifier for prediction of interactions

Neural networks (NNs) [66, 67] (example shown in Figure 5.1) consist of nodes called
neurons that pass on information to other connected neurons. One neuron has precisely
one output that it can pass on to multiple other neurons. A neural network generally
consists of an input layer, an arbitrary number of hidden layers and an output layer. The
sizes of layers may vary, and consecutive layers are connected through the connections
between neurons. Each connection is assigned a weight among other connections, and a
weighted sum is computed by a propagation function. The hidden layers usually consist
of linear functions interspersed by activation functions.

Figure 5.1: A neural network consisting of a single hidden layer formed of one linear and
one active layer

For the prediction of interactions between circRNA and miRNA, a neural network
model in the form of Multi-Layered Perceptron implementation from scikit-learn library
has been selected. This model optimises the log-loss function, also known as Binary Cross-
Entropy (see Equation 5.1 where yi represents the actual class, and P () is the probability
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of that class)

− 1

N

N∑
i=1

yi ∗ log(P (yi)) + (1− yi) ∗ log(1− P (yi)) (5.1)

Weight optimiser options include LBFGS or stochastic gradient descent. LBFGS per-
forms better with smaller datasets. For large datasets such as the ones used in this thesis,
’adam’, the stochastic gradient-based optimiser is the most suitable, being superior in
training time and resulting validation score.

MLP Classifier allows a user to specify, among other things, the number of hidden
layers, penalty parameter alpha and most importantly, a selection of activation functions
for hidden layers shown in Table 5.3.

Activation functions
Identity function f(x) = x
Logistic Sigmoid function f(x) = 1/(1 + exp(−x))
Hyperbolic Tan function f(x) = tanh(x)
Rectified Linear Unit function (ReLU) f(x) = max(0, x)

Table 5.3: Activation functions available for MLP Classifier by scikit-learn [3].

5.6 Evaluation

5.6.1 TP,TN, FP,FN and confusion matrix

To evaluate how well a classifier performs on a dataset, a confusion matrix might be
constructed. The confusion matrix for binary classification consists of 4 values: true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). These
four values can be used to evaluate the predictions. Examples follow in Section 5.6.2 and
Section 5.6.3.

5.6.2 SE, SP, gmean

Sensitivity (SE), Specificity (SP) and Geometric mean (Gm)) are all used to evaluate
classifiers. Their computation is shown in the following equations:

SE = TP/(TP + FN)

SP = TN/(TN + FP )

Gm =
√
SE ∗ SP
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When assessing the performance of a model using accuracy, the best model is the
one with the highest number of correctly identified samples. However, this approach in
imbalanced datasets may lead to all samples being classified into negative class. For the
classification of imbalanced datasets (such as datasets used in this thesis) where only a
small proportion of the dataset belongs to the positive class and the majority belongs to
the negative class, it is important to look for high SE in order to be able to identify novel
positive samples. SP should also be as high as possible to make sure the number of false
positives is minimised.

Gm evaluates the model considering both SE and SP. It is a good metric for assessing
the performance of a model. However, even this metric can lead to suboptimal models as
multiple models with varying SE and SP can lead to the same Gm.

The reader is advised to read [68] for more information on the evaluation of models
with imbalanced data in bioinformatics and why standard methods (such as accuracy or
ROC curve) are not suitable for representing the performance of machine learning models
with imbalanced datasets.

5.6.3 Precision, Recall and F1-score

Precision says how many samples are positive from samples classified to that class. Recall
reflects how many samples that should have been classified to a class have been classified
correctly. F1-score represents the balance between precision and recall. Their computa-
tion is shown in the following equations.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score = 2 ∗ precision ∗ recall
precision+ recall
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Implementation

As previously described in Section 1.1, the task was split into four sections: data extraction
and analysis, classification based on secondary structures, classification and prediction of
interactions, and evaluation and comparison with existing tools. In this section, the reader
can find a detailed description of the implementation of these four tasks, including why
specific decisions have been made. A diagram showing the processes and relationships
between the first 3 sections is shown in Figure 6.1

6.1 Data Extraction and Analysis

6.1.1 Obtaining Data

First of all, general information about human circRNAs was downloaded from circBase
database. The scope was limited to human circRNA as the central database with predicted
miRNA-circRNA interactions (CircInteractome Section 3.4) is limited to it. The general
information included genomic location (start, end, chromosome, strand), circRNA ID,
genomic sequence length, mature sequence length and other less essential information.

Further, all experimentally validated human miRNA-circRNA interactions have been
downloaded from ENCORI database. These later served as a basis for sample labelling
in Section 6.1.2.2. The data downloaded also included a validated alignment between the
two RNAs and miRNA sequence.

The dataset was limited by the intersection between circBase, CircInteractome and
ENCORI downloads. The only circRNAs that were present in all three downloaded sets
could be used from this point forward. Another restriction on the datasets was cast by
the asymptotic complexity of RNAfold (Section 5.1). The mature sequences used a range
of lengths between 100 and 2000 nt. Shorter sequences are unlikely to contain biologically
relevant interactions, and longer sequences are less likely to be predicted by RNAfold in

28
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   First section
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(validated sequences)
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Figure 6.1: Diagram showing the processes and relationships between the main 3 sections
leading to predictions by proposed method: data extraction, classification using secondary
structures and classification and prediction of interactions.
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a reasonable time. As a result of all these restrictions, the final dataset contains 1136
circRNAs.

Mature circRNA sequences that were later used as the basis for dataset creations were
obtained from CircInteractome using a custom R script. CircInteractome is the only site
containing transcripts of mature and genomic circRNA sequences on top of the genomic
locations and sequence lengths. However, the transcripts are not available for download.
A regex extraction

{ier” > [A|T |C|G]+ < /}

was used to isolate the sequences from HTML script (Figure 6.2). The extra characters
were included and later removed to make sure only DNA sequences were captured from
the website and that letters from other words of HTML were not included.

(a)

(b)

Figure 6.2: CircInteractome website example. a) An example circInteractome site with a
mature sequence for hsa_circ_0014464, b) part of HTML of the same site as a) showing
parts of sequences for extraction
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In the future, additional circRNAs can be obtained for testing by downloading ge-
nomic sequences from ENSEMBL. The corresponding mature sequences can be ob-
tained by splicing exons from their genomic counterparts using big bed files contain-
ing locations of splice-sites for each circRNA. Big bed files can be downloaded from
https://genome.mdc-berlin.de/ and converted using bigBedtoBed program [available at
http : //hgdownload.soe.ucsc.edu/admin/exe/macOSX.x86_64/bigBedToBed] to .bed
format.

6.1.2 Creating datasets from secondary structure sequences

The data obtained was pre-processed into several datasets to find a representation of
the secondary structure that best describes the data for classification and prediction.
First, isolated mature circRNA sequences were used to obtain secondary structures using
RNAfold (see Section 5.1). For each dataset, one of the 3 RNAfold outputs was selected
(MFE, Pairing probability, Centroids) as a basis. From the selected output sequence, all
possible subsequences of length 15 nt or 24 nt were produced. 15 nt was selected based
on previous findings that show that the first 15 nt of the secondary structure of mRNA
have the most significant influence on miRNA-mRNA interactions [7]. On the other hand,
24 nt long subsequences were selected to consider the full length of miRNAs. However,
because the miRNAs vary in length, an average length of miRNA was selected.

The produced subsequences were then encoded based on the size of categories consid-
ered for the given dataset. The datasets used are described in Table 6.1. For 2 categories,
the original subsequences were encoded as binary sequences. For 3 and 5 categories, one
hot encoding was used (each category was represented as numerical array of ones). Due
to the pseudo-bracket notation of probability pairings (Section 5.1.1) having inherently
3 categories (unpaired, weakly paired and strongly paired) when limited to only 2 cate-
gories (unpaired, paired), two new datasets were formed. The first considers weak pairs as
unpaired, and the second considers weak pairs as paired. The sizes of the datasets range
between 17,000 to 300,000 unique subsequences based on the complexity of the encoding.

6.1.2.1 Create dataset from alignments

The mature sequences were used again to create the pairing dataset. For simplicity, the
length of all subsequences created from the primary sequence was equal to 15 nt. For each
subsequence and each selected miRNA, the best alignment between the two sequences
was selected. The alignment was established using PairwiseAligner (Section 5.2) from
Biopython library. To be able to use the alignment of positive samples from ENCORI
(Section 3.3), the same method for alignment was used. However, ENCORI alignment
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Dataset RNAfold Length # Categories Encoding Training set size

2Categ15MFE MFE 15 2 (".") = 0
("( )") = 1 12,135

2Categ15Centroids Centroids 15 2 (".") = 0
("( )") = 1 10,924

2Categ15Less Probability 15 2 (". , { }") = 0
("| ( )") = 1 19,652

2Categ15More Probability 15 2 (". ") = 0
(", { } | ( )") = 1 13,418

3Categs15 Probability 15 3 OHE* (". , |") 122,888
3Categs24 Probability 24 3 OHE* (". , |") 248,536
5Categs15 Probability 15 5 OHE* (". , | ( {") 143,753
5Categs24 Probability 24 5 OHE* (". , | ( {") 267,040

Table 6.1: Datasets for classification based on secondary structures and their properties.
The training set size excludes duplicated values. (*One Hot Encoder)

was found by miRanda software that is not available anymore, so the miRanda methods
had to be replicated. The alignment was performed with the following scores:

• the substitution matrix from Section 5.2.1 was to score alignment

• -8 for opening a new gap in miRNA

• -2 for extending a gap in miRNA

• -100 for opening an internal gap in circRNA

• -100 for extending an internal gap in circRNA

• 0 for end gap in circRNA

In the end, the predicted alignment was converted to binary notation, encoding whether
a position of original subsequence is paired or not.

Unlike in datasets for secondary structure based classification where only one set of
subsequences from circRNA is necessary for all miRNAs, the pairing dataset includes
aligned subsequences for each combination of circRNA and miRNA. The set, including
all duplicates, was the size of 12,683,898 samples.

6.1.2.2 Labelling

Previously created prediction tools are based on observations from mRNA-miRNA inter-
actions and predict sequences based on patterns such as seed pairing. As these interactions
are predicted, it is not an ideal source for data labelling. Classifiers generally require sam-
ples from both positive and negative classes to learn to distinguish between them. For
the positive samples, the experimentally validated interactions were selected and down-
loaded from ENCORI/StarBase database Section 3.3. The selection of negative samples
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was more challenging as none have been previously generated. Two different approaches
were selected.

The first approach is relevant to circRNA pairings. In this approach, all pairing
structures that have not been labelled as positive were labelled as negative, assuming the
following:

• If a sample has identical pairing as a positive sample, it should be labelled as a
positive sample.

• For each miRNA-circRNA combination listed in ENCORI, all relevant and stable
interactions have already been found and are contained in the database.

• Potential interactions not listed in ENCORI are insignificant (interact rarely or not
at all).

The second approach is relevant to availability for interactions by secondary structure.
Firstly, all positive samples were merged for each circRNA, making the sets of positive and
negative samples independent of miRNAs. Secondly, the following additional assumptions
to the assumptions made in the first approach were made:

• The secondary structure of positive samples allows them to interact with miRNAs
more readily.

• If an unlabelled sample has identical properties as a positive sample, it should be
labelled as a positive sample.

• If a positive sample is considered available for binding, we can assume the neigh-
bouring samples (up to the width of subsequence) will not strictly be negative (these
should be excluded from the dataset).

• Samples that do not fall under any of the previous categories are considered to be
negative samples.

The process of labelling for secondary structures is also shown in Figure 6.3.
It is clear that just because a sample does not contain an interaction does not mean it

is a negative sample. However, without any assumption about negative samples, it would
be impossible to obtain a set of negative samples on which the classifier can train.

It is noteworthy that a sample from one dataset labelled as positive or negative does
not necessarily have to have the same label in the other datasets. This is also true for
the pairing dataset. Just because a sequence is available for pairing does not necessarily
mean that the sequence would pair with every miRNA.
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Figure 6.3: Process of labelling secondary structure subsequences.

6.2 Classification Based on Secondary Structures

The circRNA sequences were first separated into two sets: training (80%) and testing
(20%). To ensure the results for classifiers were comparable, the training and the testing
sets remained the same from this point forward.

With datasets showing promising signs, the secondary structure subsequences were
ready for classification. A number of machine learning classifiers including k-NN (Section
5.3.1), DT (Section 5.3.2), RF (Section 5.3.3), Adaboost (Section 5.3.4, SVC (Section
5.3.5) and CNB (Section 5.3.6), were tested for their ability to learn to classify each
dataset.

All classifiers were trained with the training set of circRNAs. The testing was done
using some default and some randomly selected parameters. Furthermore, the tests were
performed on both the training and testing sets. An example output is shown in Table
6.2.
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Based on results of initial experiments, GridSearch with 5-fold cross-validation was
used twice, first with random values of parameters. In the second round, the best ran-
dom values were selected, and their neighbouring values were tested for improvements.
The classifiers were evaluated using SE and Gm (Section 5.6.2) separately, and for each
evaluation function, the best parameters were returned. SP was not used because it can
be estimated given SE and Gm. An example outcome is shown in Table 6.3. The best
parameters for each classifier were selected using the following method:

Algorithm 1: Selection of the optimal parameters for the classifiers
Input : best SE and best Gm
Output: the best parameter setting
if parameters for best SE and best Gm are the same then

return parameters for best SE;
else

SE_mean = [];
Gm_mean =[];
for set of parameters in [best SE and best Gm] do

get mean test score of parameters in SE and save it to SE_mean;
get mean test score of parameters in Gm and save it to Gm_mean;

end
if difference between values in SE_mean > difference between values in
Gm_mean then

return parameters for best SE;
else

return parameters for best Gm;
end

end

Finally, four classifiers were selected along with three datasets. The combinations
selected are shown in Table 6.4.

6.3 Classification and Prediction of Interactions

Three experiments were performed with sets of selected classifiers. The selected classifiers
for each experiment are defined in Table 6.5. Subsequently, the classifiers were used to
obtain labels for all of the circRNAs. The pairing dataset was combined with correspond-
ing labels obtained from the classifiers, and the dataset was used for training of the MLP
classifier. Because of the size of the training set, for training purposes duplicates were
removed. Parameters of used MLP are shown in Table 6.6.

The experiments were tested on prepared testing data which, unlike the training data,
included all subsequences from given circRNAs including duplicates. The confusion ma-
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Dataset: 2Categs15Centroids

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 2507 826 373 659 1199 0.27 0.09 0.64 0.75 0.69
k-NN 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Random Forest 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Adaboost 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 1781 1552 478 554 2030 0.47 0.11 0.54 0.53 0.54

Testing data
SVM 1359 897 143 287 1040 0.39 0.03 0.67 0.60 0.63
k-NN 1616 640 185 245 825 0.31 0.04 0.57 0.72 0.64
Decision Tree 1568 688 192 238 880 0.33 0.04 0.55 0.70 0.62
Random Forest 1901 355 233 197 588 0.22 0.05 0.46 0.84 0.62
Adaboost 1575 681 196 234 877 0.33 0.04 0.54 0.70 0.62
Bayes Predictor 1138 1118 221 209 1339 0.50 0.05 0.49 0.50 0.50

Table 6.2: [
Initial classifier testing with mostly random parameter settings on 2Categs15Centroids

dataset]Initial classifier testing with mostly random parameter settings on
2Categs15Centroids dataset. The first part shows the prediction results of training data.
The second part shows the results for testing data. k-NN, DT, RF and Adaboost have
very similar results, and with this setting, they all over-fit on training data. CNB in

both instances can predict only slightly more than half of the data correctly, suggesting
the data violate the main assumption of conditional independence. SVC ran with

balanced classes (all positive samples and randomly selected negative samples of the
same size). *AB = Adaboost

trices along with precision, recall and F1-scores, obtained for each MLPClassifier, were
saved for later evaluation.

6.4 Comparison with Reference Tools

The proposed prediction method was compared with two reference tools - TargetScan
and RNAhybrid. The same sets of pairs of miRNA and circRNA sequences were used to
predict the miRNA-circRNA interactions. All predictions were recorded and compared
with established ground truth labels. The RNAhybrid was used twice - first without any
restrictions, second time forcing seed formation at positions 2-7. The tools were compared
based on confusion matrices (further note in Section 7.4). The confusion matrices were
formed by joining together all positive samples from all tools, including positive labels
from ENCORI, hence the confusion matrices only contain samples that were classified as
positive by at least one tool or ENCORI. The samples labelled as negative by all tools
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SVC classifier

Parameters 5-fold cross-validation Score

C gamma kernel split0 split1 split2 split3 split4 mean std

SE
4 0.750 rbf 0.654 0.762 0.786 0.706 0.660 0.714 0.053
4 0.100 rbf 0.692 0.797 0.820 0.798 0.719 0.765 0.050
4 0.125 rbf 0.683 0.791 0.824 0.791 0.707 0.759 0.054
4 0.150 rbf 0.671 0.788 0.816 0.781 0.704 0.752 0.055
4 0.200 rbf 0.667 0.789 0.815 0.750 0.697 0.747 0.056

Gm
4 0.750 rbf 0.685 0.734 0.745 0.751 0.699 0.723 0.026
4 0.100 rbf 0.736 0.791 0.806 0.792 0.754 0.776 0.026
4 0.125 rbf 0.734 0.789 0.806 0.791 0.752 0.774 0.027
4 0.150 rbf 0.734 0.787 0.806 0.788 0.755 0.774 0.026
4 0.200 rbf 0.729 0.785 0.801 0.782 0.741 0.767 0.028

Table 6.3: A part of final SVC GridSearch results for 2Categs15More dataset. In this
case, only the gamma values were tested. For each gamma value, 5-fold cross-validation
(CV) was used, and results of each fold can be seen in columns "split". Based on mean
and standard deviation, the performance with different gamma scores was ranked. In the
first part of the table, the SE function was used to evaluate the folds, whereas, in the
second part, the Gm function was used. The best score and corresponding parameters
are highlighted.

Classifier Parameters Dataset SE Gm

SVC C=10, class_weight=1: 2.930, gamma=0.1 2Categs15MFE 0.765 0.771
SVC C=10, class_weight=1: 4.053, gamma=0.1 2Categs15Less 0.761 0.768
SVC C=8, class_weight=1: 3.239, gamma=0.1 2Categs15Centroids 0.755 0.766
Adaboost DT(max_depth=7), n_estimators=15 2Categs15MFE 0.563 0.706

Table 6.4: Four best performing classifiers, their parameter setting and dataset used to
obtain the SE and Gm.

Experiment Rows in Table 6.4

Experiment 1 1,2,3
Experiment 2 1,2,4
Experiment 3 1,3,4
Experiment 4 1,2,3,4

Table 6.5: Experimental setup for training and testing with MLP Classifier based on
Table 6.4.
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MLP Classifier No of Layers No of Nodes per Layer No of iterations

MLP_1_1 1 1 1000
MLP_1_12 1 12 1000
MLP_3_12 3 12,12,12 1000
MLP_3_D 3 12,6,3 1000

Table 6.6: 8 sets of MLP parameters that were all used with all experimental setups from
Table 6.5

were eliminated. Therefore, the true negatives contained within these confusion matrices
consist only of samples that were considered as positive by one of the other tools. Apart
from comparing the confusion matrices, execution times were also recorded.



Chapter 7

Results

In this chapter, all results obtained in different sections will be described.

7.1 Data analysis

In order to learn what kind of datasets have been created, each dataset (Table 6.1) has
been visualised by plotting PCA and ICA (Section 5.4.1). Figure 7.1 and Figure 7.2 are
selected examples of datasets showing graphs that were obtained. The rest of the graphs
can be found in A.1.1

The graphs show us that the positive class forms a cluster within the dataset and it
is not randomly scattered and thoroughly mixed with the negative results.

Apart from graphic visualisation, the sizes of datasets were also compared as shown
in Table 6.1. The size of the dataset required to cover all possible subsequences can be
calculated as #Categorieslength+1. For the smaller sets (2 Categories and Length of 15),
between one-fifth to one-third of options were covered. For the larger sets, less than 1/350
were covered.

39
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(a) (b)

(c) (d)

Figure 7.1: This set of graphs show PCA and ICA results for unmodified and standardized
secondary strucutre-based 2Categs15Less dataset. In all graphs red samples represent the
positive class and blue represent the negative class. (a) and (b) contain each two graphs
showing the unmodified and standardised dataset after PCA. The difference between (a)
and (b) is caused by the order in which the two classes were added to the graph. The
same is true for (c) and (d) except here the graphs show the ICA.
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(a) (b)

(c) (d)

Figure 7.2: This set of graphs show PCA and ICA results for unmodified and standardized
3Categs15 dataset. In all graphs red samples represent the positive class and blue rep-
resent the negative class. As in Figure 7.1, (a) and (b) contain each two graphs showing
the unmodified and standardised dataset after PCA. The difference between the two is
caused by the order in which the two classes were added to the graph. The same is true
for (c) and (d) except here the graphs show the ICA.
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7.2 Secondary Structure-Based Classifiers

7.2.1 Initial Experiments

The initial experiments (example in Table 6.2) with smaller samples on secondary
structure-based classifiers show that classifiers such as k-NN, DT, RF and Adaboost tend
to over-fit on data. The comparison between the classification of training data and testing
data supports this statement. When the SE, SP and Gm value all equal to 1 in training
data, i.e. no mistakes were made, the SE, SP and Gm value variate around 0.72 for the
testing data.

From the initial experiments, it can also be observed that the positive samples make up
only around one-thousandth of the samples (including duplicates). Therefore, classifiers
such as SVC need to consider the difference between the sizes of the two classes. Otherwise,
these predictors prefer classifying all samples into one class (as seen in both training
data and testing data results for 2Categs15 in Table 7.1) because the average number
of mistakes is smaller than when the classifier is forced to classify at least some samples
to another class. Increasing the number of mistakes, in this case, is desirable because
the goal of the classification is to spot the rare cases of positive class at the cost of an
increased number of false positives.

Dataset: 3Categs24

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 39591 56157 1179 2444 57336 0.58 0.01 0.67 0.41 0.53
k-NN 95748 0 0 3623 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 95747 1 45 3578 46 0.00 0.00 0.99 1.00 0.99
Random Forest 95748 0 45 3578 45 0.00 0.00 0.99 1.00 0.99
Adaboost 95748 0 0 3623 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 42468 53280 1357 2266 54637 0.55 0.01 0.63 0.44 0.53

Testing data
SVM 9628 14926 313 559 15239 0.60 0.00 0.64 0.39 0.50
k-NN 24405 149 864 8 1013 0.04 0.01 0.01 0.99 0.10
Decision Tree 23070 1484 819 53 2303 0.09 0.01 0.06 0.94 0.24
Random Forest 24441 113 865 7 978 0.04 0.01 0.01 1.00 0.09
Adaboost 24320 234 858 14 1092 0.04 0.01 0.02 0.99 0.13
Bayes Predictor 10392 14162 325 547 14487 0.57 0.00 0.63 0.42 0.52

Table 7.1: Initial classifier testing with default parameter settings on secondary structure-
based 3Categs24 dataset. The first part shows the prediction results of training data.
The second part shows the results for testing data. Without some parameter setting, the
classifiers often learn to return only the class with higher probability of being correct.
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Table 6.2 is also an excellent example of why it is essential to look at SE, SP and
Gm rather than at the percentage of mistakes. Here the SVC has made more mistakes
than most other classifiers on both training and testing data. However, SVC is the most
successful classifier when it comes to the correct identification of new positive data. A
significantly lower SP value than most other classifiers suggests that the mistakes are
generated mainly by false positives.

The best results are obtained with datasets limited to tens of thousands of samples for
SVC or CNB. However, for 3Categs15 (the smallest large dataset), the Gm rarely exceeds
0.60 for testing data, and the maximum SE is 0.72. From the SE and Gm values, SP was
estimated to be below 0.50. The low value of SP leads to a set of false positives that is
ten times the size of true positives. The larger datasets perform even worse. A complete
set of tables with results can be found in A.2.1.

7.2.2 GridSearch

At this point the datasets 3Categs15, 3Categs24, 5Categs15 and 5Categs24 were elimi-
nated due to their size leading to time-consuming training of classifiers and low prediction
scores. CNB was also eliminated from further experiments as none of the previous at-
tempted experiments has shown SE or Gm higher than 0.60 making it unsuitable for the
prediction of these data. The remaining datasets and classifiers were used in GridSearch.
The results are reported in A.2.2.

The best results obtained for each classifier are summarised in Table 7.2. The
2Categs15MFE dataset showed to be the best for the majority of classifiers. The best
classifier is the SVC with the best results from both SE and Gm scores. The second best is
the Adaboost classifier which is also the only other classifier that overcame the threshold
of 0.6 for SE and 0.7 for Gm.

Classifier Parameters Dataset Score

2Categs15 SE SP Gm

SVC {’C’: 10, ’class_weight’: {1: 2.930}, ’gamma’: 0.1} MFE 0.777 0.782 0.775
k-NN {’n_neighbors’: 3, ’weights’: ’distance’} Centroids 0.585 0.716 0.645
DT {’max_depth’: 23} MFE 0.513 0.784 0.632
RF {’max_depth’: 14, ’n_estimators’: 3} MFE 0.441 0.835 0.604
Adaboost {’base_estimator’: DT(max_depth=7), ’n_estimators’: 15} MFE 0.616 0.876 0.732

Table 7.2: The best results obtained for each classifier.

It is also noteworthy that SVC performed better than the other classifiers on all
datasets. Suggesting a combination of SVC classifiers and different datasets may be
the best option for representing the availability of secondary structure in the final stage
of the proposed method. Based on the obtained results, k-NN, DT, and RF were not
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used from this point forward, having a low score for Gm and especially SE. However,
Adaboost will be tested along with various SVC to find the best combination of classifiers
for final prediction because it has a high SP and, therefore, could partake in reducing
false positives.

7.3 Classification of Interactions

The results for MLP Classifiers described in Table 6.6 can be found in A.3. The results
of MLPs with different parameters are very similar. The number of false positives and
number of false negatives is inversely proportional. The only difference between the
experiments is the MLP structure required for the MLP to learn to distinguish between
positive and negative class with minimal false negatives.

Experiment Classifier Confusion matrix Precision Recall F1-Support

TN FP FN TP 1 0 1 0 1 0

1 MLP_1_1 3015896 3265 5 3654 0.53 1.00 1.00 1.00 0.69 1.00
2 MLP_1_12 3015893 3266 3 3656 0.53 1.00 1.00 1.00 0.69 1.00
3 MLP_3_12 3015887 3272 0 3659 0.53 1.00 1.00 1.00 0.69 1.00
4 MLP_1_12 3015914 3245 17 3642 0.53 1.00 1.00 1.00 0.69 1.00

Table 7.3: The best MLP and its results for each experiment.

Table 7.3 shows the best MLP for each experiment. Only for Experiment 1 was one
node enough for the MLP to recognise the majority of positive samples correctly. The
least successful was Experiment 4 with the combination of all four classifiers. Due to the
size of the negative dataset, the precision and recall always equal 1.00; therefore, it is
more informative to look at the number of false positives compared to the true positives
directly. The precision and recall for all MLP that have managed to classify data into
two classes is the same, with values 0.53 and 1, respectively. As a result, the F1-score
is also always the same, with a value of 0.69. In cases where the MLP did not learn to
distinguish the two classes, precision and recall are 0.

Experiment Classifier Confusion matrix Precision Recall F1-Support

TN FP FN TP 1 0 1 0 1 0

Pairing only MLP_1_1 3019159 0 3659 0 0.00 1.00 0.00 1.00 0.00 1.00
Pairing only MLP_1_12 3015887 3272 0 3659 0.53 1.00 1.00 1.00 0.69 1.00
Pairing only MLP_3_12 3015887 3272 0 3659 0.53 1.00 1.00 1.00 0.69 1.00
Pairing only MLP_3_D 3019159 0 3659 0 0.00 1.00 0.00 1.00 0.00 1.00

Table 7.4: Results for MLPs based on pairing only.

Based on the similarity of the results for MLPs with different secondary structure-
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based classifiers, an MLP that did not consider the secondary structure was also con-
structed. This classifier only considered the primary structure-based pairing with miRNA.
The results of this MLP are shown in Table 7.4. The MLP based on only pairing either
learns to distinguish all true positives or does not distinguish positives at all, e.g. when
the MLP has only one layer. In comparison, the Experiment 1 performs the best with
one node and one layer. In addition, MLP with the secondary structure-based classifiers
only was also constructed. The when duplicates were eliminated such that occurrences
labelled as positive were kept, all samples were classified by neural network as positive.

7.4 Comparison with Reference Tools

The confusion matrices are shown in Table 7.5. It is important to point out that the
testing dataset was the same one as in MLP classification, but the confusion matrix was
created using only samples that were labelled as positive by at least one of the tools or
were labelled positive by ENCORI. Based on the ENCORI labelling, the proposed method
with the recall of 0.999 is able to capture more true positives than any other compared
tool. However, compared to TargetScan and RNAhybrid with seed with the precision of
0.667 and 0.637, respectively, the proposed method has a significantly lower precision of
0.528.

Tool TP FN FP TN Precision Recall

Proposed method 3655 4 3267 5496 0.528 0.999
TargetScan 2771 888 1383 7380 0.667 0.757
RNAhybrid w. seed 2211 1448 1256 7507 0.637 0.604
RNAhybrid wo. seed 29 3630 3442 5321 0.008 0.008

Table 7.5: Confusion matrices for compared tools. The confusion matrices were created
only with samples that were classified as positive by at least one tool or by ENCORI.
Precision and recall are stated for the positive class only.

Venn diagrams have been created to visualise the overlap between the proposed so-
lution and various combinations of tools and positive samples established by ENCORI
and can be found in Figure 7.3. Figure 7.3 (a) RNAhybrid without forced seed generates
sequences that are primarily without seed. The sequences that have seed are not always
found in ENCORI positive results. (b) Samples in the intersection between RNAhybrid
with forced seed region and proposed solution are mostly intersecting with ENCORI pos-
itive samples, therefore, correctly classified. Similarly, between the proposed method and
TargetScan in (c). (e) and (f) show that RNAhybrid without seed finds very different
results from the other tools. Taking into consideration (b) and (c), (d) suggests that the



CHAPTER 7. RESULTS 46

(a) (b)

(c) (d)

(e) (f)

Figure 7.3: Subsections (a), (b) and (c) show proposed solution, ENCORI positives and
one of the reference tools. (d), (e) and (f) show combinations of proposed method and
two reference tools.
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number of correctly classified positive samples could increase based on majority voting
between the proposed method, TargetScan and RNAhybrid with seed.
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7.4.1 Ensemble proposition

An ensemble of the three tools (Proposed method, TargetScan and RNAhybrid with seed)
was considered based on observations from Figure 7.3. A Venn diagram representing
these tools along with the ENCORI positive set can be found in Figure 7.4 (a). The
corresponding confusion matrix, precision and recall are in Table 7.4 (b). A sample was
classified to the positive class if predicted by at least two tools and to the negative class
otherwise. The results show the ensemble would be a better predictor than any tool
independently with the precision of 0.839 and the recall of 0.882.

(a)

Tool TP FN FP TN Precision Recall

Ensemble 2771 371 531 4815 0.839 0.882

(b)

Figure 7.4: Venn diagram for ensemble based on majority-voting of proposed method,
TargetScan and RNAhybrid with seed.
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Evaluation and Discussion

In this chapter, the results from the previous chapter will be evaluated, and their relevance
and importance will be discussed. The chapter will be concluded with remarks on any
future outlooks.

8.1 Data Analysis

Based on the PCA results in Section 7.1, it was assumed that the datasets (see Table 6.1)
contain information that has the potential to be used for the classification of interactions
between circRNA and miRNA. Generally, not much difference was observed between the
graphs generated for a set of datasets with the same number of categories. The patterns
observed in the datasets within the same category (2,3,5) show little variation, and it can
be thus predicted that the data will be split similarly by classifiers.

The larger datasets may perform better as the classes seem to be less intertwined.
However, the greater ratio between the positive class and the negative class suggests
otherwise. The imbalanced datasets may perform worse during classification.

8.2 Secondary Structure-Based Classifiers

The initial experiments have shown that only some of the datasets have suitable repre-
sentation for classification. As predicted during data analysis, the larger datasets based
on 3 and 5 Categories are strongly unsuitable for intended classification. The one-hot
encoding with the combination of a large number of sequence positions resulted in multi-
dimensional spaces that cannot be well described by the size of training data available
with the current state of research. In comparison, the 2Categs datasets have shown a
potential that has been further increased with better-selected classifier parameters during
GridSearch.

49
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Along with the datasets, the classifiers were also pruned to eliminate those not suitable
for classification. Low performance was detected in k-NN, DT, RF and CNB. CNB is
most likely unsuitable because the data in the datasets is not normally distributed. The
remaining classifiers are unsuitable because the data is not easily separable and cannot
be easily generalised.

The Adaboost, although performing on a similar principle as DT and RF, performs
much better. The success can be attributed to the ability to learn by combining several
classifiers with different weights, leading to less generalisation, which seems to be impor-
tant with this type of data. The general success of SVC is not surprising. It can adapt to
the varying proportions of classes allowing it to maintain the ratio during testing as well.
Further high parameter C pushes to avoid misclassification while low gamma prevents the
classifier from over-fitting.

Combining SVCs with 2Categs datasets and potentially Adaboost with 2CategsMFE
are the only classifier-dataset combinations suitable for further use in prediction. If the
limit was set lower, it would be less likely that the information obtained from these clas-
sifiers would be relevant. The problem has already been generalised to only 2Categories,
and 15 nt of circRNA sequence and lower SE and SP could further reduce the nuances
between negative and positive classes. If the nuances were maintained using the highest
possible SE and SP remained to be seen at this point.

8.3 Classification of Interactions

Seeing how similar the MLP results are, cross-validation for each dataset was not per-
formed because it would not bring any new information. The differences between MLPs
with different parameters are not significant, so any significant difference between MLPs
with the same parameters but varying data cannot be expected. The lack of differences
also suggests that the data are relatively simple.

Comparing the MLPs that include classifiers with MLP that do not include classifiers
suggests that at least one SVC adds extra information. The fact that the one-layer MLPs
without classifiers are not able to split the data into two classes suggests the SVCs are
adding the extra information to do this.

However, the extra information added by the SVC does not reduce the number of
false positives of miRNA-circRNA interactions. It only allows a simple MLP to find very
similar results to a more complex MLP without it. The experimental results suggest the
influence of seed is stronger than the influence of secondary structure-based classifiers,
so the desired reduction of false positives was not observed. The generalisation and
correlation to the size of the datasets and error rate may be too large to maintain the
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nuances between the positive and negative dataset. Furthermore, the classifiers are at
most 4, leaving 24 = 16 combinations of four binary outputs. As we have seen in the
results base don secondary structure-based classifiers only, none of the combinations fall
strictly into one class, decreasing the differences between the two classes.

8.4 Reference Tools Comparison and Ensemble Propo-

sition

The main differences observed between the three tools that all consider seed can be
attributed to their approach towards implementation of the seed constrain. TargetScan
takes on the input miRNAs with only seven positions of seed region, disregarding potential
binding of sequences out of the seed region. All identified sequences are then rated
by additional characteristics to rank the interactions by a score. However, none are
eliminated, so all are considered as positives in this thesis.

On the other hand, RNAhybrid considers the entire length of miRNA sequence in
establishing pairing with circRNAs. The scoring of sequences is based on the minimum free
energy of the miRNA-circRNA compound. Additionally, a threshold limits the number
of interactions on the output.

The proposed method in its approach considers only 15 nt of a circRNA with the entire
length of miRNA. The seed is not forced as with the other two tools, and all sequences
are considered equally. The seed can be observed in all positive results because ENCORI
data were used as a template for the datasets. If the experimentally validated miRNA-
circRNA interactions included non-canonical binding sites, the proposed method (unlike
the other tools) would potentially be able to pick up these sites as well.

Unlike the other tools, the proposed method can correctly detect all ENCORI positive
samples at the expense of an almost equal-sized number of false positives. Even though
the number of false positives for the other two methods is significantly lower, so is the
number of true positives. The decrease in the number of false positives is at the expense
of an increase in false negatives, which the proposed method does not have.

The opposing shortcomings of the tools can nicely complement each other leading to
an unexpected outcome. The proposed combination of tools significantly decreases the
numbers of both false negatives and false positives. A further improvement might be
achieved using logistic regression to give weights to the individual classifiers instead of
just applying majority voting.
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8.5 Discussion

The secondary structure-based classification comes relatively short of its expectations.
Some of the limitations are caused by the excessive generalisation that results from the
complexity of secondary structure and the lack of positive examples. This leads to poor de-
scription of the multi-dimensional space, which does not allow clear separation of positive
class from negative. The new samples cannot be easily approximated. The imbalanced
datasets (over 3 million negatives to 3,500 positives in the final testing set) ruled out
many evaluation methods along with machine learning classifiers that would otherwise be
able to split the data.

Furthermore, several assumptions had to be made to allow for data prediction using
machine learning classifiers. For once, the miRNA-circRNA interaction data has never
before been separated into two classes. The separation itself is based on many assump-
tions that do not necessarily have to be accurate, such that if a type of pairing is known
to be positive in one place, it may not necessarily have the same properties in another.
The pairing has also been generalised. Although G:U wobble pairs were considered by
PairwiseAligner, for simplicity, the subsequent evaluation treated G:U wobble pairs as
unpaired sequences. The secondary structure adds another assumption as it is not ex-
perimentally validated but only predicted. Such assumptions align with the biological
knowledge we currently have, but the generalisation of the problem for computational
purposes is far too great for the secondary structure to significantly impact the predic-
tion.

The final results are nonetheless relevant. Although unforeseen, the findings regarding
the MLP classifier and the possibility of an ensemble with existing tools have the potential
to improve the current state of miRNA-circRNA interactions prediction.

8.5.1 Possible Improvements and Future Work

Several options could be further developed to find out whether the secondary structure
could be used in a different form. If the 2Categs datasets were too generalised and the
3Categs and 5Categs were too large to cover all possible combinations with the amount of
data available, then 3Categs or 5Categs with only length of the seed could be a sufficient
solution.

Another potential approach towards the problem would be to use the MLP with pri-
mary sequence only and test the secondary structure of the positively labelled samples.
TP and FP of the MLP would be used as the positive and the negative class, respectively.
Because the Precision of MLP is 0.53, two classes would be almost balanced out, remov-
ing many of the obstacles overcome during experiments considered in this thesis. The
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secondary structure could be used to eliminate some of the false positives using the estab-
lished classifiers with decisions based on majority voting, or the secondary structure-based
classifiers could be trained directly on this data.

A different approach towards the problem would be through free energy. Knowing
the secondary structure of circRNA, the free energy of subsequences could be calculated
as well as the free energy of a potential complex with miRNA. The likelihood of the
interaction would be established based on a difference between the two complexes. Such
approach could be an extension to our proposed method or work as a stand-alone method.

Last but not least, the datasets are represented as binary strings or one-hot encoding
and both only work with 0s and 1s. As such, the space considered is a hypercube and
could be potentially described by logical formulas. For example, we could describe the
interactions as sequences with a match at positions 2-7, while positions 9-10 would be
forbidden to bind. Apart from the knowledge we already have about the miRNA-circRNA
interacting sequences, we could form more logical formulas and conditions based on the
available data. A machine-learning algorithm could then be used to check whether these
conditions apply. This approach would affirm and extend the works of Agarwal et al.
(2015) [7] on miRNA-mRNA interactions for TargetScan. Other methods that could
take advantage of this representation or even of the original Pseudo-Bracket Notation
would be Markov Logic Networks, which applies the Markov Network to probabilistic
first-order logic, or Logical Neural Networks which connect the traits of neural networks
and symbolical logic.
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Conclusion

This thesis aimed to identify a new method for the prediction of miRNA-circRNA interac-
tions. Based on research experiments conducted with secondary structure-based classifiers
and a simple neural network, it can be concluded that the predicted secondary structure
of circRNAs is not a significant factor in the prediction of miRNA-circRNA interactions.
However, the proposed method is an important factor in ensemble with TargetScan and
RNAhybrid. The results indicate that the ensemble of the three methods performs better
than any of the methods individually in both, precision and recall.

This study clearly illustrates that neural networks based on 15 nt subsequences can,
with low precision, detect all known interactions from the ENCORI database. This raises
the question of whether this method has the potential to unravel the non-canonical sites
as well. Further research in this area is still required.

The secondary structure-based classifiers have not shown strong influence in the final
neural network. The experiments show that the secondary structure is very complex.
Without methods that would allow for less generalisation, the nuances between binding
and non-binding sites are mostly lost.

The findings challenge the proposed ensemble described in Section 4.4. However, to
make the two methods comparable, this ensemble would have to be tested on the mouse
genome as the experiments in this thesis are limited to the human genome only. With
the growing size of known miRNA-circRNA interactions, the proposed method can be
further improved and make an important addition to the analysis of miRNA-circRNA
interactions.
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Appendix A

A.1 Data Analysis

A.1.1 PCA and ICA

(a) (b)

(c) (d)

Figure A.1: This set of graphs show PCA and ICA results for unmodified and standardized
2Categs15Centroids dataset. In all graphs red samples represent the positive class and
blue represent the negative class. As in Figure 7.1, (a) and (b) contain each two graphs
showing the unmodified and standardised dataset after PCA. The difference between the
two is caused by the orded in which the two classes were added to the graph. The same
is true for (c) and (d) except here the graphs show the ICA.
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(a) (b)

(c) (d)

Figure A.2: This set of graphs show PCA and ICA results for unmodified and standardized
2Categs15Less dataset. In all graphs red samples represent the positive class and blue
represent the negative class. As in Figure 7.1, (a) and (b) contain each two graphs showing
the unmodified and standardised dataset after PCA. The difference between the two is
caused by the orded in which the two classes were added to the graph. The same is true
for (c) and (d) except here the graphs show the ICA.
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(a) (b)

(c) (d)

Figure A.3: This set of graphs show PCA and ICA results for unmodified and standardized
2Categs15MFE dataset. In all graphs red samples represent the positive class and blue
represent the negative class. As in Figure 7.1, (a) and (b) contain each two graphs showing
the unmodified and standardised dataset after PCA. The difference between the two is
caused by the orded in which the two classes were added to the graph. The same is true
for (c) and (d) except here the graphs show the ICA.
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(a) (b)

(c) (d)

Figure A.4: This set of graphs show PCA and ICA results for unmodified and standardized
2Categs15More dataset. In all graphs red samples represent the positive class and blue
represent the negative class. As in Figure 7.1, (a) and (b) contain each two graphs showing
the unmodified and standardised dataset after PCA. The difference between the two is
caused by the orded in which the two classes were added to the graph. The same is true
for (c) and (d) except here the graphs show the ICA.
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(a) (b)

(c) (d)

Figure A.5: This set of graphs show PCA and ICA results for unmodified and standard-
ized 3Categs15 dataset. In all graphs red samples represent the positive class and blue
represent the negative class. As in Figure 7.1, (a) and (b) contain each two graphs show-
ing the unmodified and standardised dataset after PCA. The difference between the two
is caused by the orded in which the two classes were added to the graph. The same is
true for (c) and (d) except here the graphs show the ICA.
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(a) (b)

(c) (d)

Figure A.6: This set of graphs show PCA and ICA results for unmodified and standard-
ized 3Categs24 dataset. In all graphs red samples represent the positive class and blue
represent the negative class. As in Figure 7.1, (a) and (b) contain each two graphs show-
ing the unmodified and standardised dataset after PCA. The difference between the two
is caused by the orded in which the two classes were added to the graph. The same is
true for (c) and (d) except here the graphs show the ICA.
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(a) (b)

(c) (d)

Figure A.7: This set of graphs show PCA and ICA results for unmodified and standard-
ized 5Categs15 dataset. In all graphs red samples represent the positive class and blue
represent the negative class. As in Figure 7.1, (a) and (b) contain each two graphs show-
ing the unmodified and standardised dataset after PCA. The difference between the two
is caused by the orded in which the two classes were added to the graph. The same is
true for (c) and (d) except here the graphs show the ICA.
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(a) (b)

(c) (d)

Figure A.8: This set of graphs show PCA and ICA results for unmodified and standard-
ized 5Categs24 dataset. In all graphs red samples represent the positive class and blue
represent the negative class. As in Figure 7.1, (a) and (b) contain each two graphs show-
ing the unmodified and standardised dataset after PCA. The difference between the two
is caused by the orded in which the two classes were added to the graph. The same is
true for (c) and (d) except here the graphs show the ICA.
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A.2 Secondary Structure Based Classifiers

A.2.1 Initial experiments

All tables in this section follow the same concept. The tables are split in two parts. First
part shows the results of classifiers for data that were used to train them. The second
part is than set of new data that has never been seen by the classifier. All results contain
confusion matrix and SE, SP and Gm scores. Another column called Misclassifications
is also included. The sub-column Count is the sum of FP and FN. The sub-column "%"
shows the percentage the number of counts make up from the full tested set. The %FN
shows the percentage the FN makes up from the fill tested set.

Dataset: 2Categs15Centroids

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 2414 919 336 696 1255 0.29 0.08 0.67 0.72 0.70
k-NN 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 3250 83 907 125 990 0.23 0.21 0.12 0.98 0.34
Random Forest 3333 0 1031 1 1031 0.24 0.24 0.00 1.00 0.03
Adaboost 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 1781 1552 478 554 2030 0.47 0.11 0.54 0.53 0.54

Testing data
SVM 1284 972 120 310 1092 0.41 0.03 0.72 0.57 0.64
k-NN 1762 494 230 200 724 0.27 0.05 0.47 0.78 0.60
Decision Tree 2140 116 374 56 490 0.18 0.09 0.13 0.95 0.35
Random Forest 2256 0 430 0 430 0.16 0.10 0.00 1.00 0.00
Adaboost 1657 599 171 259 770 0.29 0.04 0.60 0.73 0.67
Bayes Predictor 1138 1118 221 209 1339 0.50 0.05 0.49 0.50 0.50

Table A.1: Initial Experiment 1 - 2Categs15Centroids. Parameters:
kNN(n_neighbours=2), DT(max_depth=7), RT(max_depth=7), Ad-
aboost(max_depth=7). Further description can be found at the beginning of A.2.1
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Dataset: 2Categs15Centroids

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 2507 826 373 659 1199 0.27 0.09 0.64 0.75 0.69
k-NN 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Random Forest 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Adaboost 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 1781 1552 478 554 2030 0.47 0.11 0.54 0.53 0.54

Testing data
SVM 1359 897 143 287 1040 0.39 0.03 0.67 0.60 0.63
k-NN 1616 640 185 245 825 0.31 0.04 0.57 0.72 0.64
Decision Tree 1568 688 192 238 880 0.33 0.04 0.55 0.70 0.62
Random Forest 1901 355 233 197 588 0.22 0.05 0.46 0.84 0.62
Adaboost 1575 681 196 234 877 0.33 0.04 0.54 0.70 0.62
Bayes Predictor 1138 1118 221 209 1339 0.50 0.05 0.49 0.50 0.50

Table A.2: Initial Experiment 2 - 2Categs15Centroids. Parameters:
kNN(n_neighbours=3), DT(max_depth=15), RF(max_depth=15), Ad-
aboost(max_depth=15). Further description can be found at the beginning of
A.2.1

Dataset: 2Categs15Centroids

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 2417 916 340 692 1256 0.29 0.08 0.67 0.73 0.70
k-NN 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Random Forest 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Adaboost 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 1781 1552 478 554 2030 0.47 0.11 0.54 0.53 0.54

Testing data
SVM 1297 959 130 300 1089 0.41 0.03 0.70 0.57 0.63
k-NN 1698 558 188 242 746 0.28 0.04 0.56 0.75 0.65
Decision Tree 1574 682 199 231 881 0.33 0.05 0.54 0.70 0.61
Random Forest 1901 355 233 197 588 0.22 0.05 0.46 0.84 0.62
Adaboost 1575 681 196 234 877 0.33 0.04 0.54 0.70 0.62
Bayes Predictor 1138 1118 221 209 1339 0.50 0.05 0.49 0.50 0.50

Table A.3: Initial Experiment 3 - 2Categs15Centroids. Parameters:
kNN(n_neighbours=5), DT(max_depth=50), RF(max_depth=50), Ad-
aboost(max_depth=50). Further description can be found at the beginning of
A.2.1
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Dataset: 2Categs15Centroids

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 2423 910 343 689 1253 0.29 0.08 0.67 0.73 0.70
k-NN 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Random Forest 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Adaboost 3333 0 0 1032 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 1781 1552 478 554 2030 0.47 0.11 0.54 0.53 0.54

Testing data
SVM 1300 956 121 309 1077 0.40 0.03 0.72 0.58 0.64
k-NN 1812 444 221 209 665 0.25 0.05 0.49 0.80 0.62
Decision Tree 1573 683 194 236 877 0.33 0.04 0.55 0.70 0.62
Random Forest 1901 355 233 197 588 0.22 0.05 0.46 0.84 0.62
Adaboost 1575 681 196 234 877 0.33 0.04 0.54 0.70 0.62
Bayes Predictor 1138 1118 221 209 1339 0.50 0.05 0.49 0.50 0.50

Table A.4: Initial Experiment 4 - 2Categs15Centroids. Parameters:
kNN(n_neighbours=15), DT(max_depth=100), RF(max_depth=100), Ad-
aboost(max_depth=100). Further description can be found at the beginning of
A.2.1

Dataset: 2Categs15Less

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 4935 1312 388 1118 1700 0.22 0.05 0.74 0.79 0.77
k-NN 6247 0 0 1506 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 6162 85 1377 129 1462 0.19 0.18 0.09 0.99 0.29
Random Forest 6247 0 1506 0 1506 0.19 0.19 0.00 1.00 0.00
Adaboost 6247 0 0 1506 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 3325 2922 701 805 3623 0.47 0.09 0.53 0.53 0.53

Testing data
SVM 2390 1727 130 482 1857 0.39 0.02 0.79 0.58 0.68
k-NN 3338 779 345 267 1124 0.24 0.04 0.44 0.81 0.59
Decision Tree 4000 117 561 51 678 0.14 0.07 0.08 0.97 0.28
Random Forest 4117 0 612 0 612 0.13 0.08 0.00 1.00 0.00
Adaboost 3167 950 240 372 1190 0.25 0.03 0.61 0.77 0.68
Bayes Predictor 2118 1999 306 306 2305 0.49 0.04 0.50 0.51 0.51

Table A.5: Initial Experiment 5 - 2Categs15Less. Parameters: kNN(n_neighbours=2),
DT(max_depth=7), RT(max_depth=7), Adaboost(max_depth=7). Further description
can be found at the beginning of A.2.1
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Dataset: 2Categs15Less

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 4832 1415 372 1134 1787 0.23 0.05 0.75 0.77 0.76
k-NN 6247 0 0 1506 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 6247 0 0 1506 0 0.00 0.00 1.00 1.00 1.00
Random Forest 6247 0 1 1505 1 0.00 0.00 1.00 1.00 1.00
Adaboost 6247 0 0 1506 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 3325 2922 701 805 3623 0.47 0.09 0.53 0.53 0.53

Testing data
SVM 2326 1791 127 485 1918 0.41 0.02 0.79 0.56 0.67
k-NN 3122 995 285 327 1280 0.27 0.04 0.53 0.76 0.64
Decision Tree 3069 1048 275 337 1323 0.28 0.04 0.55 0.75 0.64
Random Forest 3558 559 356 256 915 0.19 0.05 0.42 0.86 0.60
Adaboost 3076 1041 284 328 1325 0.28 0.04 0.54 0.75 0.63
Bayes Predictor 2118 1999 306 306 2305 0.49 0.04 0.50 0.51 0.51

Table A.6: Initial Experiment 6 - 2Categs15Less. Parameters: kNN(n_neighbours=3),
DT(max_depth=15), RF(max_depth=15), Adaboost(max_depth=15). Further de-
scription can be found at the beginning of A.2.1

Dataset: 2Categs15Less

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 4872 1375 378 1128 1753 0.23 0.05 0.75 0.78 0.76
k-NN 6247 0 0 1506 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 6247 0 0 1506 0 0.00 0.00 1.00 1.00 1.00
Random Forest 6247 0 1 1505 1 0.00 0.00 1.00 1.00 1.00
Adaboost 6247 0 0 1506 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 3325 2922 701 805 3623 0.47 0.09 0.53 0.53 0.53

Testing data
SVM 2349 1768 123 489 1891 0.40 0.02 0.80 0.57 0.68
k-NN 3259 858 307 305 1165 0.25 0.04 0.50 0.79 0.63
Decision Tree 3086 1031 280 332 1311 0.28 0.04 0.54 0.75 0.64
Random Forest 3558 559 356 256 915 0.19 0.05 0.42 0.86 0.60
Adaboost 3076 1041 284 328 1325 0.28 0.04 0.54 0.75 0.63
Bayes Predictor 2118 1999 306 306 2305 0.49 0.04 0.50 0.51 0.51

Table A.7: Initial Experiment 7 - 2Categs15Less. Parameters: kNN(n_neighbours=5),
DT(max_depth=50), RF(max_depth=50), Adaboost(max_depth=50). Further de-
scription can be found at the beginning of A.2.1
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Dataset: 2Categs15Less

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 4906 1341 379 1127 1720 0.22 0.05 0.75 0.79 0.77
k-NN 6247 0 0 1506 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 6247 0 0 1506 0 0.00 0.00 1.00 1.00 1.00
Random Forest 6247 0 1 1505 1 0.00 0.00 1.00 1.00 1.00
Adaboost 6247 0 0 1506 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 3325 2922 701 805 3623 0.47 0.09 0.53 0.53 0.53

Testing data
SVM 2349 1768 130 482 1898 0.40 0.02 0.79 0.57 0.67
k-NN 3409 708 326 286 1034 0.22 0.04 0.47 0.83 0.62
Decision Tree 3071 1046 282 330 1328 0.28 0.04 0.54 0.75 0.63
Random Forest 3558 559 356 256 915 0.19 0.05 0.42 0.86 0.60
Adaboost 3076 1041 284 328 1325 0.28 0.04 0.54 0.75 0.63
Bayes Predictor 2118 1999 306 306 2305 0.49 0.04 0.50 0.51 0.51

Table A.8: Initial Experiment 8 - 2Categs15Less. Parameters: kNN(n_neighbours=15),
DT(max_depth=100), RF(max_depth=100), Adaboost(max_depth=100). Further de-
scription can be found at the beginning of A.2.1

Dataset: 2Categs15MFE

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 2729 815 366 918 1181 0.24 0.08 0.71 0.77 0.74
k-NN 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 3266 278 932 352 1210 0.25 0.19 0.27 0.92 0.50
Random Forest 3544 0 1267 17 1267 0.26 0.26 0.01 1.00 0.12
Adaboost 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 1864 1680 612 672 2292 0.47 0.13 0.52 0.53 0.52

Testing data
SVM 1471 1085 129 404 1214 0.39 0.03 0.76 0.58 0.66
k-NN 1972 584 237 296 821 0.27 0.05 0.56 0.77 0.65
Decision Tree 2204 352 396 137 748 0.24 0.08 0.26 0.86 0.47
Random Forest 2556 0 519 14 519 0.17 0.11 0.03 1.00 0.16
Adaboost 1846 710 160 373 870 0.28 0.03 0.70 0.72 0.71
Bayes Predictor 1300 1256 269 264 1525 0.49 0.06 0.50 0.51 0.50

Table A.9: Initial Experiment 9 - 2Categs15MFE. Parameters: kNN(n_neighbours=2),
DT(max_depth=7), RT(max_depth=7), Adaboost(max_depth=7). Further description
can be found at the beginning of A.2.1
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Dataset: 2Categs15MFE

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 2761 783 389 895 1172 0.24 0.08 0.70 0.78 0.74
k-NN 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Random Forest 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Adaboost 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 1864 1680 612 672 2292 0.47 0.13 0.52 0.53 0.52

Testing data
SVM 1507 1049 138 395 1187 0.38 0.03 0.74 0.59 0.66
k-NN 1756 800 176 357 976 0.32 0.04 0.67 0.69 0.68
Decision Tree 1802 754 180 353 934 0.30 0.04 0.66 0.71 0.68
Random Forest 2081 475 222 311 697 0.23 0.05 0.58 0.81 0.69
Adaboost 1780 776 176 357 952 0.31 0.04 0.67 0.70 0.68
Bayes Predictor 1300 1256 269 264 1525 0.49 0.06 0.50 0.51 0.50

Table A.10: Initial Experiment 10 - 2Categs15MFE. Parameters: kNN(n_neighbours=3),
DT(max_depth=15), RF(max_depth=15), Adaboost(max_depth=15). Further de-
scription can be found at the beginning of A.2.1

Dataset: 2Categs15MFE

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 2721 823 364 920 1187 0.25 0.08 0.72 0.77 0.74
k-NN 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Random Forest 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Adaboost 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 1864 1680 612 672 2292 0.47 0.13 0.52 0.53 0.52

Testing data
SVM 1448 1108 136 397 1244 0.40 0.03 0.74 0.57 0.65
k-NN 1822 734 186 347 920 0.30 0.04 0.65 0.71 0.68
Decision Tree 1786 770 172 361 942 0.30 0.04 0.68 0.70 0.69
Random Forest 2081 475 222 311 697 0.23 0.05 0.58 0.81 0.69
Adaboost 1780 776 176 357 952 0.31 0.04 0.67 0.70 0.68
Bayes Predictor 1300 1256 269 264 1525 0.49 0.06 0.50 0.51 0.50

Table A.11: Initial Experiment 11 - 2Categs15MFE. Parameters: kNN(n_neighbours=5),
DT(max_depth=50), RF(max_depth=50), Adaboost(max_depth=50). Further de-
scription can be found at the beginning of A.2.1
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Dataset: 2Categs15MFE

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 2773 771 393 891 1164 0.24 0.08 0.69 0.78 0.74
k-NN 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Random Forest 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Adaboost 3544 0 0 1284 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 1864 1680 612 672 2292 0.47 0.13 0.52 0.53 0.52

Testing data
SVM 1515 1041 137 396 1178 0.38 0.03 0.74 0.59 0.66
k-NN 1947 609 214 319 823 0.27 0.04 0.60 0.76 0.68
Decision Tree 1785 771 183 350 954 0.31 0.04 0.66 0.70 0.68
Random Forest 2081 475 222 311 697 0.23 0.05 0.58 0.81 0.69
Adaboost 1780 776 176 357 952 0.31 0.04 0.67 0.70 0.68
Bayes Predictor 1300 1256 269 264 1525 0.49 0.06 0.50 0.51 0.50

Table A.12: Initial Experiment 12 - 2Categs15MFE. Parameters:
kNN(n_neighbours=15), DT(max_depth=100), RF(max_depth=100), Ad-
aboost(max_depth=100). Further description can be found at the beginning of
A.2.1

Dataset: 2Categs15More

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 3245 924 369 812 1293 0.24 0.07 0.69 0.78 0.73
k-NN 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 4064 105 1010 171 1115 0.21 0.19 0.14 0.97 0.38
Random Forest 4169 0 1163 18 1163 0.22 0.22 0.02 1.00 0.12
Adaboost 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 2182 1987 536 645 2523 0.47 0.10 0.55 0.52 0.53

Testing data
SVM 1724 1108 97 395 1205 0.36 0.02 0.80 0.61 0.70
k-NN 2350 482 254 238 736 0.22 0.05 0.48 0.83 0.63
Decision Tree 2675 157 407 85 564 0.17 0.08 0.17 0.94 0.40
Random Forest 2832 0 483 9 483 0.15 0.09 0.02 1.00 0.14
Adaboost 2169 663 176 316 839 0.25 0.03 0.64 0.77 0.70
Bayes Predictor 1418 1414 243 249 1657 0.50 0.05 0.51 0.50 0.50

Table A.13: Initial Experiment 13 - 2Categs15More. Parameters: kNN(n_neighbours=2),
DT(max_depth=7), RT(max_depth=7), Adaboost(max_depth=7). Further description
can be found at the beginning of A.2.1
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Dataset: 2Categs15More

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 3191 978 365 816 1343 0.25 0.07 0.69 0.77 0.73
k-NN 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Random Forest 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Adaboost 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 2182 1987 536 645 2523 0.47 0.10 0.55 0.52 0.53

Testing data
SVM 1674 1158 98 394 1256 0.38 0.02 0.80 0.59 0.69
k-NN 2163 669 203 289 872 0.26 0.04 0.59 0.76 0.67
Decision Tree 2103 729 188 304 917 0.28 0.04 0.62 0.74 0.68
Random Forest 2445 387 231 261 618 0.19 0.04 0.53 0.86 0.68
Adaboost 2108 724 192 300 916 0.28 0.04 0.61 0.74 0.67
Bayes Predictor 1418 1414 243 249 1657 0.50 0.05 0.51 0.50 0.50

Table A.14: Initial Experiment 14 - 2Categs15More. Parameters: kNN(n_neighbours=3),
DT(max_depth=15), RF(max_depth=15), Adaboost(max_depth=15). Further de-
scription can be found at the beginning of A.2.1

Dataset: 2Categs15More

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 3267 902 369 812 1271 0.24 0.07 0.69 0.78 0.73
k-NN 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Random Forest 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Adaboost 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 2182 1987 536 645 2523 0.47 0.10 0.55 0.52 0.53

Testing data
SVM 1755 1077 103 389 1180 0.35 0.02 0.79 0.62 0.70
k-NN 2247 585 208 284 793 0.24 0.04 0.58 0.79 0.68
Decision Tree 2110 722 185 307 907 0.27 0.03 0.62 0.75 0.68
Random Forest 2445 387 231 261 618 0.19 0.04 0.53 0.86 0.68
Adaboost 2108 724 192 300 916 0.28 0.04 0.61 0.74 0.67
Bayes Predictor 1418 1414 243 249 1657 0.50 0.05 0.51 0.50 0.50

Table A.15: Initial Experiment 15 - 2Categs15More. Parameters: kNN(n_neighbours=5),
DT(max_depth=50), RF(max_depth=50), Adaboost(max_depth=50). Further de-
scription can be found at the beginning of A.2.1
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Dataset: 2Categs15More

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 3230 939 361 820 1300 0.24 0.07 0.69 0.77 0.73
k-NN 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Random Forest 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Adaboost 4169 0 0 1181 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 2182 1987 536 645 2523 0.47 0.10 0.55 0.52 0.53

Testing data
SVM 1696 1136 100 392 1236 0.37 0.02 0.80 0.60 0.69
k-NN 2392 440 223 269 663 0.20 0.04 0.55 0.84 0.68
Decision Tree 2117 715 197 295 912 0.27 0.04 0.60 0.75 0.67
Random Forest 2445 387 231 261 618 0.19 0.04 0.53 0.86 0.68
Adaboost 2108 724 192 300 916 0.28 0.04 0.61 0.74 0.67
Bayes Predictor 1418 1414 243 249 1657 0.50 0.05 0.51 0.50 0.50

Table A.16: Initial Experiment 16 - 2Categs15More. Parameters:
kNN(n_neighbours=15), DT(max_depth=100), RF(max_depth=100), Ad-
aboost(max_depth=100). Further description can be found at the beginning of
A.2.1

Dataset: 3Categs15

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 25810 20941 775 1921 21716 0.44 0.02 0.71 0.55 0.63
k-NN 46751 0 0 2696 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 46750 1 2687 9 2688 0.05 0.05 0.00 1.00 0.06
Random Forest 46751 0 2696 0 2696 0.05 0.05 0.00 1.00 0.00
Adaboost 46621 130 954 1742 1084 0.02 0.02 0.65 1.00 0.80
Bayes Predictor 25076 21675 839 1857 22514 0.46 0.02 0.69 0.54 0.61

Testing data
SVM 6372 7757 242 543 7999 0.54 0.00 0.69 0.45 0.56
k-NN 13207 922 686 99 1608 0.11 0.01 0.13 0.93 0.34
Decision Tree 14119 10 785 0 795 0.05 0.02 0.00 1.00 0.00
Random Forest 14129 0 785 0 785 0.05 0.02 0.00 1.00 0.00
Adaboost 13620 509 685 100 1194 0.08 0.01 0.13 0.96 0.35
Bayes Predictor 6459 7670 261 524 7931 0.53 0.01 0.67 0.46 0.55

Table A.17: Initial Experiment 17 - 3Categs15. Parameters: kNN(n_neighbours=2),
DT(max_depth=7), RT(max_depth=7), Adaboost(max_depth=7). Further description
can be found at the beginning of A.2.1
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Dataset: 3Categs15

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 25867 20884 798 1898 21682 0.44 0.02 0.70 0.55 0.62
k-NN 46751 0 0 2696 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 46736 15 2162 534 2177 0.04 0.04 0.20 1.00 0.44
Random Forest 46751 0 2587 109 2587 0.05 0.05 0.04 1.00 0.20
Adaboost 46751 0 0 2696 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 25076 21675 839 1857 22514 0.46 0.02 0.69 0.54 0.61

Testing data
SVM 6414 7715 245 540 7960 0.53 0.00 0.69 0.45 0.56
k-NN 13089 1040 665 120 1705 0.11 0.01 0.15 0.93 0.38
Decision Tree 13892 237 781 4 1018 0.07 0.02 0.01 0.98 0.07
Random Forest 14129 0 785 0 785 0.05 0.02 0.00 1.00 0.00
Adaboost 13939 190 755 30 945 0.06 0.02 0.04 0.99 0.19
Bayes Predictor 6459 7670 261 524 7931 0.53 0.01 0.67 0.46 0.55

Table A.18: Initial Experiment 18 - 3Categs15. Parameters: kNN(n_neighbours=3),
DT(max_depth=15), RF(max_depth=15), Adaboost(max_depth=15). Further de-
scription can be found at the beginning of A.2.1

Dataset: 3Categs15

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 25604 21147 782 1914 21929 0.44 0.02 0.71 0.55 0.62
k-NN 46751 0 0 2696 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 46750 1 1 2695 2 0.00 0.00 1.00 1.00 1.00
Random Forest 46751 0 0 2696 0 0.00 0.00 1.00 1.00 1.00
Adaboost 46751 0 0 2696 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 25076 21675 839 1857 22514 0.46 0.02 0.69 0.54 0.61

Testing data
SVM 6277 7852 240 545 8092 0.54 0.00 0.69 0.44 0.56
k-NN 13513 616 715 70 1331 0.09 0.01 0.09 0.96 0.29
Decision Tree 12865 1264 649 136 1913 0.13 0.01 0.17 0.91 0.40
Random Forest 14111 18 778 7 796 0.05 0.02 0.01 1.00 0.09
Adaboost 13881 248 742 43 990 0.07 0.02 0.05 0.98 0.23
Bayes Predictor 6459 7670 261 524 7931 0.53 0.01 0.67 0.46 0.55

Table A.19: Initial Experiment 19 - 3Categs15. Parameters: kNN(n_neighbours=5),
DT(max_depth=50), RF(max_depth=50), Adaboost(max_depth=50). Further de-
scription can be found at the beginning of A.2.1



APPENDIX A. 73

Dataset: 3Categs15

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 25029 21722 767 1929 22489 0.45 0.02 0.72 0.54 0.62
k-NN 46751 0 0 2696 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 46751 0 0 2696 0 0.00 0.00 1.00 1.00 1.00
Random Forest 46751 0 2 2694 2 0.00 0.00 1.00 1.00 1.00
Adaboost 46751 0 0 2696 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 25076 21675 839 1857 22514 0.46 0.02 0.69 0.54 0.61

Testing data
SVM 6143 7986 230 555 8216 0.55 0.00 0.71 0.43 0.55
k-NN 14081 48 777 8 825 0.06 0.02 0.01 1.00 0.10
Decision Tree 12809 1320 658 127 1978 0.13 0.01 0.16 0.91 0.38
Random Forest 14116 13 778 7 791 0.05 0.02 0.01 1.00 0.09
Adaboost 12822 1307 659 126 1966 0.13 0.01 0.16 0.91 0.38
Bayes Predictor 6459 7670 261 524 7931 0.53 0.01 0.67 0.46 0.55

Table A.20: Initial Experiment 20 - 3Categs15. Parameters: kNN(n_neighbours=15),
DT(max_depth=100), RF(max_depth=100), Adaboost(max_depth=100). Further de-
scription can be found at the beginning of A.2.1

Dataset: 5Categs15

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 31798 22908 1178 1885 24086 0.42 0.02 0.62 0.58 0.60
k-NN 54706 0 0 3063 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 54706 0 3063 0 3063 0.05 0.05 0.00 1.00 0.00
Random Forest 54706 0 3063 0 3063 0.05 0.05 0.00 1.00 0.00
Adaboost 54640 66 519 2544 585 0.01 0.01 0.83 1.00 0.91
Bayes Predictor 29846 24860 1164 1899 26024 0.45 0.02 0.62 0.55 0.58

Testing data
SVM 8773 8407 298 522 8705 0.48 0.01 0.64 0.51 0.57
k-NN 16418 762 762 58 1524 0.08 0.01 0.07 0.96 0.26
Decision Tree 17180 0 820 0 820 0.05 0.01 0.00 1.00 0.00
Random Forest 17180 0 820 0 820 0.05 0.01 0.00 1.00 0.00
Adaboost 16625 555 750 70 1305 0.07 0.01 0.09 0.97 0.29
Bayes Predictor 8269 8911 278 542 9189 0.51 0.00 0.66 0.48 0.56

Table A.21: Initial Experiment 21 - 5Categs15. Parameters: kNN(n_neighbours=2),
DT(max_depth=7), RT(max_depth=7), Adaboost(max_depth=7). Further description
can be found at the beginning of A.2.1
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Dataset: 5Categs15

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 31800 22906 1179 1884 24085 0.42 0.02 0.62 0.58 0.60
k-NN 54706 0 0 3063 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 54656 50 1627 1436 1677 0.03 0.03 0.47 1.00 0.68
Random Forest 54706 0 2694 369 2694 0.05 0.05 0.12 1.00 0.35
Adaboost 54706 0 0 3063 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 29846 24860 1164 1899 26024 0.45 0.02 0.62 0.55 0.58

Testing data
SVM 8764 8416 294 526 8710 0.48 0.01 0.64 0.51 0.57
k-NN 16508 672 750 70 1422 0.08 0.01 0.09 0.96 0.29
Decision Tree 16543 637 795 25 1432 0.08 0.01 0.03 0.96 0.17
Random Forest 17180 0 819 1 819 0.05 0.01 0.00 1.00 0.03
Adaboost 17117 63 811 9 874 0.05 0.01 0.01 1.00 0.10
Bayes Predictor 8269 8911 278 542 9189 0.51 0.00 0.66 0.48 0.56

Table A.22: Initial Experiment 22 - 5Categs15. Parameters: kNN(n_neighbours=3),
DT(max_depth=15), RF(max_depth=15), Adaboost(max_depth=15). Further de-
scription can be found at the beginning of A.2.1

Dataset: 5Categs15

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 31838 22868 1193 1870 24061 0.42 0.02 0.61 0.58 0.60
k-NN 54706 0 0 3063 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 54706 0 0 3063 0 0.00 0.00 1.00 1.00 1.00
Random Forest 54706 0 2 3061 2 0.00 0.00 1.00 1.00 1.00
Adaboost 54706 0 0 3063 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 29846 24860 1164 1899 26024 0.45 0.02 0.62 0.55 0.58

Testing data
SVM 8783 8397 303 517 8700 0.48 0.01 0.63 0.51 0.57
k-NN 16889 291 782 38 1073 0.06 0.01 0.05 0.98 0.21
Decision Tree 15730 1450 732 88 2182 0.12 0.01 0.11 0.92 0.31
Random Forest 17174 6 817 3 823 0.05 0.01 0.00 1.00 0.06
Adaboost 15706 1474 723 97 2197 0.12 0.01 0.12 0.91 0.33
Bayes Predictor 8269 8911 278 542 9189 0.51 0.00 0.66 0.48 0.56

Table A.23: Initial Experiment 23 - 5Categs15. Parameters: kNN(n_neighbours=5),
DT(max_depth=50), RF(max_depth=50), Adaboost(max_depth=50). Further de-
scription can be found at the beginning of A.2.1
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Dataset: 5Categs15

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 30919 23787 1154 1909 24941 0.43 0.02 0.62 0.57 0.59
k-NN 54706 0 0 3063 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 54706 0 0 3063 0 0.00 0.00 1.00 1.00 1.00
Random Forest 54706 0 2 3061 2 0.00 0.00 1.00 1.00 1.00
Adaboost 54706 0 0 3063 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 29846 24860 1164 1899 26024 0.45 0.02 0.62 0.55 0.58

Testing data
SVM 8544 8636 294 526 8930 0.50 0.01 0.64 0.50 0.56
k-NN 17166 14 816 4 830 0.05 0.01 0.00 1.00 0.07
Decision Tree 15749 1431 724 96 2155 0.12 0.01 0.12 0.92 0.33
Random Forest 17174 6 817 3 823 0.05 0.01 0.00 1.00 0.06
Adaboost 15706 1474 723 97 2197 0.12 0.01 0.12 0.91 0.33
Bayes Predictor 8269 8911 278 542 9189 0.51 0.00 0.66 0.48 0.56

Table A.24: Initial Experiment 24 - 5Categs15. Parameters: kNN(n_neighbours=15),
DT(max_depth=100), RF(max_depth=100), Adaboost(max_depth=100). Further de-
scription can be found at the beginning of A.2.1

Dataset: 3Categs24

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 39886 55862 1195 2428 57057 0.57 0.01 0.67 0.42 0.53
k-NN 95748 0 0 3623 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 95744 4 3603 20 3607 0.04 0.04 0.01 1.00 0.07
Random Forest 95748 0 3623 0 3623 0.04 0.04 0.00 1.00 0.00
Adaboost 95693 55 2443 1180 2498 0.03 0.02 0.33 1.00 0.57
Bayes Predictor 42468 53280 1357 2266 54637 0.55 0.01 0.63 0.44 0.53

Testing data
SVM 9731 14823 310 562 15133 0.60 0.00 0.64 0.40 0.51
k-NN 23730 824 832 40 1656 0.07 0.01 0.05 0.97 0.21
Decision Tree 24543 11 872 0 883 0.03 0.01 0.00 1.00 0.00
Random Forest 24554 0 872 0 872 0.03 0.01 0.00 1.00 0.00
Adaboost 24371 183 865 7 1048 0.04 0.01 0.01 0.99 0.09
Bayes Predictor 10392 14162 325 547 14487 0.57 0.00 0.63 0.42 0.52

Table A.25: Initial Experiment 25 - 3Categs24. Parameters: kNN(n_neighbours=2),
DT(max_depth=7), RT(max_depth=7), Adaboost(max_depth=7). Further description
can be found at the beginning of A.2.1
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Dataset: 3Categs24

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 42600 53148 1245 2378 54393 0.55 0.01 0.66 0.44 0.54
k-NN 95748 0 0 3623 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 95731 17 2843 780 2860 0.03 0.03 0.22 1.00 0.46
Random Forest 95748 0 3539 84 3539 0.04 0.04 0.02 1.00 0.15
Adaboost 95748 0 0 3623 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 42468 53280 1357 2266 54637 0.55 0.01 0.63 0.44 0.53

Testing data
SVM 10524 14030 328 544 14358 0.56 0.00 0.62 0.43 0.52
k-NN 23318 1236 820 52 2056 0.08 0.01 0.06 0.95 0.24
Decision Tree 24302 252 864 8 1116 0.04 0.01 0.01 0.99 0.10
Random Forest 24554 0 872 0 872 0.03 0.01 0.00 1.00 0.00
Adaboost 24176 378 849 23 1227 0.05 0.01 0.03 0.98 0.16
Bayes Predictor 10392 14162 325 547 14487 0.57 0.00 0.63 0.42 0.52

Table A.26: Initial Experiment 26 - 3Categs24. Parameters: kNN(n_neighbours=3),
DT(max_depth=15), RF(max_depth=15), Adaboost(max_depth=15)Further descrip-
tion can be found at the beginning of A.2.1

Dataset: 3Categs24

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 39591 56157 1179 2444 57336 0.58 0.01 0.67 0.41 0.53
k-NN 95748 0 0 3623 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 95747 1 45 3578 46 0.00 0.00 0.99 1.00 0.99
Random Forest 95748 0 45 3578 45 0.00 0.00 0.99 1.00 0.99
Adaboost 95748 0 0 3623 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 42468 53280 1357 2266 54637 0.55 0.01 0.63 0.44 0.53

Testing data
SVM 9628 14926 313 559 15239 0.60 0.00 0.64 0.39 0.50
k-NN 24405 149 864 8 1013 0.04 0.01 0.01 0.99 0.10
Decision Tree 23070 1484 819 53 2303 0.09 0.01 0.06 0.94 0.24
Random Forest 24441 113 865 7 978 0.04 0.01 0.01 1.00 0.09
Adaboost 24320 234 858 14 1092 0.04 0.01 0.02 0.99 0.13
Bayes Predictor 10392 14162 325 547 14487 0.57 0.00 0.63 0.42 0.52

Table A.27: Initial Experiment 27 - 3Categs24. Parameters: kNN(n_neighbours=5),
DT(max_depth=50), RF(max_depth=50), Adaboost(max_depth=50). Further de-
scription can be found at the beginning of A.2.1
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Dataset: 3Categs24

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 40108 55640 1194 2429 56834 0.57 0.01 0.67 0.42 0.53
k-NN 95748 0 0 3623 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 95748 0 0 3623 0 0.00 0.00 1.00 1.00 1.00
Random Forest 95748 0 7 3616 7 0.00 0.00 1.00 1.00 1.00
Adaboost 95748 0 0 3623 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 42468 53280 1357 2266 54637 0.55 0.01 0.63 0.44 0.53

Testing data
SVM 9851 14703 308 564 15011 0.59 0.00 0.65 0.40 0.51
k-NN 24434 120 864 8 984 0.04 0.01 0.01 1.00 0.10
Decision Tree 23036 1518 811 61 2329 0.09 0.01 0.07 0.94 0.26
Random Forest 24432 122 863 9 985 0.04 0.01 0.01 1.00 0.10
Adaboost 23042 1512 819 53 2331 0.09 0.01 0.06 0.94 0.24
Bayes Predictor 10392 14162 325 547 14487 0.57 0.00 0.63 0.42 0.52

Table A.28: Initial Experiment 28 - 3Categs24. Parameters: kNN(n_neighbours=15),
DT(max_depth=100), RF(max_depth=100), Adaboost(max_depth=100). Further de-
scription can be found at the beginning of A.2.1

Dataset: 5Categs24

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 53306 50130 1576 1976 51706 0.48 0.01 0.56 0.52 0.54
k-NN 103436 0 0 3552 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 103436 0 3552 0 3552 0.03 0.03 0.00 1.00 0.00
Random Forest 103436 0 3552 0 3552 0.03 0.03 0.00 1.00 0.00
Adaboost 103344 92 1989 1563 2081 0.02 0.02 0.44 1.00 0.66
Bayes Predictor 53720 49716 1630 1922 51346 0.48 0.02 0.54 0.52 0.53

Testing data
SVM 13054 12588 448 456 13036 0.49 0.00 0.50 0.51 0.51
k-NN 25041 601 875 29 1476 0.06 0.01 0.03 0.98 0.18
Decision Tree 25642 0 904 0 904 0.03 0.01 0.00 1.00 0.00
Random Forest 25642 0 904 0 904 0.03 0.01 0.00 1.00 0.00
Adaboost 25433 209 895 9 1104 0.04 0.01 0.01 0.99 0.10
Bayes Predictor 13135 12507 460 444 12967 0.49 0.00 0.49 0.51 0.50

Table A.29: Initial Experiment 29 - 5Categs24. Parameters: kNN(n_neighbours=2),
DT(max_depth=7), RT(max_depth=7), Adaboost(max_depth=7). Further description
can be found at the beginning of A.2.1
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Dataset: 5Categs24

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 47024 56412 1349 2203 57761 0.54 0.01 0.62 0.45 0.53
k-NN 103436 0 0 3552 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 103382 54 2011 1541 2065 0.02 0.02 0.43 1.00 0.66
Random Forest 103436 0 3374 178 3374 0.03 0.03 0.05 1.00 0.22
Adaboost 103436 0 0 3552 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 53720 49716 1630 1922 51346 0.48 0.02 0.54 0.52 0.53

Testing data
SVM 11461 14181 402 502 14583 0.55 0.00 0.56 0.45 0.50
k-NN 24864 778 863 41 1641 0.06 0.01 0.05 0.97 0.21
Decision Tree 25031 611 875 29 1486 0.06 0.01 0.03 0.98 0.18
Random Forest 25642 0 904 0 904 0.03 0.01 0.00 1.00 0.00
Adaboost 25499 143 897 7 1040 0.04 0.01 0.01 0.99 0.09
Bayes Predictor 13135 12507 460 444 12967 0.49 0.00 0.49 0.51 0.50

Table A.30: Initial Experiment 30 - 5Categs24. Parameters: kNN(n_neighbours=3),
DT(max_depth=15), RF(max_depth=15), Adaboost(max_depth=15). Further de-
scription can be found at the beginning of A.2.1

Dataset: 5Categs24

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 53439 49997 1534 2018 51531 0.48 0.01 0.57 0.52 0.54
k-NN 103436 0 0 3552 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 103436 0 0 3552 0 0.00 0.00 1.00 1.00 1.00
Random Forest 103436 0 9 3543 9 0.00 0.00 1.00 1.00 1.00
Adaboost 103436 0 0 3552 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 53720 49716 1630 1922 51346 0.48 0.02 0.54 0.52 0.53

Testing data
SVM 13081 12561 459 445 13020 0.49 0.00 0.49 0.51 0.50
k-NN 25591 51 901 3 952 0.04 0.01 0.00 1.00 0.06
Decision Tree 24252 1390 849 55 2239 0.08 0.01 0.06 0.95 0.24
Random Forest 25597 45 902 2 947 0.04 0.01 0.00 1.00 0.05
Adaboost 24244 1398 850 54 2248 0.08 0.01 0.06 0.95 0.24
Bayes Predictor 13135 12507 460 444 12967 0.49 0.00 0.49 0.51 0.50

Table A.31: Initial Experiment 31 - 5Categs24. Parameters: kNN(n_neighbours=5),
DT(max_depth=50), RF(max_depth=50), Adaboost(max_depth=50). Further de-
scription can be found at the beginning of A.2.1
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Dataset: 5Categs24

Classifier Confusion matrix Misclassifications Scores

TN FP FN TP Count % %FN SE SP Gm

Training data
SVM 57382 46054 1717 1835 47771 0.45 0.02 0.52 0.55 0.54
k-NN 103436 0 0 3552 0 0.00 0.00 1.00 1.00 1.00
Decision Tree 103436 0 0 3552 0 0.00 0.00 1.00 1.00 1.00
Random Forest 103436 0 9 3543 9 0.00 0.00 1.00 1.00 1.00
Adaboost 103436 0 0 3552 0 0.00 0.00 1.00 1.00 1.00
Bayes Predictor 53720 49716 1630 1922 51346 0.48 0.02 0.54 0.52 0.53

Testing data
SVM 14352 11290 505 399 11795 0.44 0.00 0.44 0.56 0.50
k-NN 25599 43 902 2 945 0.04 0.01 0.00 1.00 0.05
Decision Tree 24283 1359 850 54 2209 0.08 0.01 0.06 0.95 0.24
Random Forest 25597 45 902 2 947 0.04 0.01 0.00 1.00 0.05
Adaboost 24244 1398 850 54 2248 0.08 0.01 0.06 0.95 0.24
Bayes Predictor 13135 12507 460 444 12967 0.49 0.00 0.49 0.51 0.50

Table A.32: Initial Experiment 32 - 5Categs24. Parameters: kNN(n_neighbours=15),
DT(max_depth=100), RF(max_depth=100), Adaboost(max_depth=100). Further de-
scription can be found at the beginning of A.2.1
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A.2.2 GridSearch

Modified tables from GridSearch show performance of classifiers with given parameters
measured by 3 scoring functions SE, SP and Gm. The best scores for each scoring function
are highlighted to make it easier to pick the best parameters. There is a table for each
classifier combined with each dataset that have passed the initial experiments .

weightedSVC 2Categs15Centroids

Parameters SE SP Gm

C class_weight gamma kernel mean std mean std mean std

4 3.239 0.750 rbf 0.596 0.096 0.848 0.073 0.706 0.038
4 3.239 0.100 rbf 0.766 0.064 0.771 0.128 0.764 0.045
4 3.239 0.125 rbf 0.766 0.060 0.775 0.127 0.765 0.047
6 3.239 0.750 rbf 0.584 0.096 0.852 0.069 0.701 0.039
6 3.239 0.100 rbf 0.765 0.061 0.775 0.127 0.765 0.046
6 3.239 0.125 rbf 0.764 0.059 0.776 0.123 0.765 0.046
8 3.239 0.750 rbf 0.579 0.091 0.851 0.068 0.698 0.036
8 3.239 0.100 rbf 0.768 0.056 0.775 0.125 0.767 0.047
8 3.239 0.125 rbf 0.760 0.062 0.778 0.121 0.764 0.043
10 3.239 0.750 rbf 0.577 0.089 0.850 0.067 0.696 0.035
10 3.239 0.100 rbf 0.765 0.058 0.776 0.124 0.766 0.047
10 3.239 0.125 rbf 0.756 0.062 0.777 0.119 0.762 0.042

Table A.33: GridSearch: SVC 2Categs15Centroids. Selected parameters are: C=8 and
gamma=0.1. Further description can be found at the beginning of A.2.2

weightedSVC 2Categs15Less

Parameters SE SP Gm

C class_weight gamma kernel mean std mean std mean std

4 4.053 0.750 rbf 0.572 0.081 0.857 0.072 0.696 0.038
4 4.053 0.100 rbf 0.769 0.055 0.787 0.137 0.773 0.056
4 4.053 0.125 rbf 0.769 0.058 0.788 0.137 0.774 0.056
6 4.053 0.750 rbf 0.553 0.077 0.864 0.068 0.687 0.036
6 4.053 0.100 rbf 0.766 0.058 0.787 0.138 0.771 0.056
6 4.053 0.125 rbf 0.767 0.059 0.786 0.138 0.771 0.054
8 4.053 0.750 rbf 0.538 0.077 0.864 0.066 0.678 0.034
8 4.053 0.100 rbf 0.769 0.060 0.788 0.138 0.773 0.055
8 4.053 0.125 rbf 0.764 0.061 0.784 0.137 0.769 0.054
10 4.053 0.750 rbf 0.535 0.081 0.864 0.065 0.676 0.037
10 4.053 0.100 rbf 0.769 0.060 0.786 0.139 0.772 0.056
10 4.053 0.125 rbf 0.763 0.062 0.783 0.136 0.767 0.053

Table A.34: GridSearch: SVC 2Categs15Less. Selected parameters are: C=4 and
gamma=0.125. Further description can be found at the beginning of A.2.2
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weightedSVC 2Categs15MFE

Parameters SE SP Gm

C class_weight gamma kernel mean std mean std mean std

4 2.930 0.750 rbf 0.626 0.075 0.845 0.073 0.724 0.028
4 2.930 0.100 rbf 0.778 0.048 0.777 0.131 0.773 0.049
4 2.930 0.125 rbf 0.776 0.050 0.781 0.131 0.774 0.050
6 2.930 0.750 rbf 0.608 0.081 0.851 0.069 0.715 0.032
6 2.930 0.100 rbf 0.777 0.050 0.780 0.131 0.774 0.050
6 2.930 0.125 rbf 0.775 0.051 0.783 0.132 0.774 0.049
8 2.930 0.750 rbf 0.601 0.082 0.851 0.068 0.711 0.033
8 2.930 0.100 rbf 0.775 0.049 0.781 0.133 0.774 0.051
8 2.930 0.125 rbf 0.773 0.051 0.784 0.131 0.774 0.048
10 2.930 0.750 rbf 0.594 0.085 0.850 0.068 0.706 0.036
10 2.930 0.100 rbf 0.777 0.050 0.782 0.132 0.775 0.049
10 2.930 0.125 rbf 0.773 0.050 0.784 0.131 0.774 0.048

Table A.35: GridSearch: SVC 2Categs15MFE. Selected parameters are: C=10 and
gamma=0.1. Further description can be found at the beginning of A.2.2

weightedSVC 2Categs15More

Parameters SE SP Gm

C class_weight gamma kernel mean std mean std mean std

4 3.516 0.750 rbf 0.570 0.105 0.851 0.074 0.690 0.045
4 3.516 0.100 rbf 0.755 0.079 0.783 0.147 0.762 0.057
4 3.516 0.125 rbf 0.752 0.082 0.786 0.141 0.762 0.054
6 3.516 0.750 rbf 0.552 0.106 0.853 0.071 0.680 0.047
6 3.516 0.100 rbf 0.753 0.081 0.784 0.145 0.762 0.057
6 3.516 0.125 rbf 0.747 0.079 0.787 0.139 0.760 0.053
8 3.516 0.750 rbf 0.543 0.113 0.854 0.068 0.674 0.053
8 3.516 0.100 rbf 0.752 0.082 0.786 0.142 0.762 0.054
8 3.516 0.125 rbf 0.746 0.077 0.785 0.135 0.759 0.050
10 3.516 0.750 rbf 0.543 0.112 0.853 0.068 0.674 0.052
10 3.516 0.100 rbf 0.749 0.078 0.786 0.139 0.761 0.052
10 3.516 0.125 rbf 0.741 0.078 0.783 0.135 0.756 0.049

Table A.36: GridSearch: SVC 2Categs15More. Selected parameters are: C=10 and
gamma=0.1. Further description can be found at the beginning of A.2.2
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AdaBoost(DT) 2Categs15Centroids

Parameters SE SP Gm

max_depth n_estimators mean std mean std mean std

None 5 0.454 0.069 0.767 0.038 0.587 0.037
None 7 0.454 0.069 0.767 0.038 0.587 0.037
None 9 0.454 0.069 0.767 0.038 0.587 0.037
None 11 0.454 0.069 0.767 0.038 0.587 0.037
None 13 0.454 0.069 0.767 0.038 0.587 0.037
None 15 0.454 0.069 0.767 0.038 0.587 0.037
5 5 0.435 0.102 0.942 0.042 0.634 0.067
5 7 0.503 0.110 0.932 0.053 0.679 0.061
5 9 0.531 0.103 0.924 0.056 0.695 0.054
5 11 0.554 0.110 0.922 0.064 0.709 0.056
5 13 0.565 0.108 0.915 0.070 0.713 0.052
5 15 0.568 0.110 0.912 0.070 0.714 0.052
7 5 0.522 0.105 0.898 0.053 0.679 0.053
7 7 0.548 0.102 0.888 0.061 0.692 0.045
7 9 0.560 0.099 0.882 0.062 0.698 0.045
7 11 0.567 0.096 0.883 0.062 0.703 0.040
7 13 0.570 0.097 0.883 0.064 0.705 0.045
7 15 0.564 0.087 0.880 0.060 0.700 0.036
9 5 0.556 0.091 0.844 0.059 0.680 0.034
9 7 0.556 0.096 0.844 0.063 0.680 0.037
9 9 0.550 0.093 0.845 0.060 0.677 0.039
9 11 0.523 0.092 0.847 0.061 0.661 0.038
9 13 0.520 0.095 0.850 0.057 0.660 0.042
9 15 0.516 0.087 0.854 0.054 0.659 0.038
11 5 0.478 0.064 0.838 0.048 0.630 0.031
11 7 0.475 0.069 0.840 0.045 0.629 0.032
11 9 0.482 0.065 0.841 0.047 0.634 0.028
11 11 0.496 0.067 0.841 0.048 0.643 0.030
11 13 0.503 0.068 0.841 0.048 0.648 0.028
11 15 0.507 0.076 0.841 0.050 0.649 0.032

Table A.37: GridSearch: Adaboost(DT) 2Categs15Centroids. Selected parameters are:
max_depth=5 and n_estimators=15. Further description can be found at the beginning
of A.2.2
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AdaBoost(DT) 2Categs15Less

Parameters SE SP Gm

max_depth n_estimators mean std mean std mean std

None 5 0.431 0.056 0.803 0.042 0.586 0.026
None 7 0.431 0.056 0.803 0.042 0.586 0.026
None 9 0.431 0.056 0.803 0.042 0.586 0.026
None 11 0.431 0.056 0.803 0.042 0.586 0.026
None 13 0.431 0.056 0.803 0.042 0.586 0.026
None 15 0.431 0.056 0.803 0.042 0.586 0.026
5 5 0.378 0.094 0.957 0.039 0.596 0.068
5 7 0.434 0.098 0.950 0.050 0.637 0.066
5 9 0.474 0.094 0.945 0.054 0.665 0.060
5 11 0.482 0.088 0.938 0.060 0.668 0.053
5 13 0.496 0.085 0.937 0.061 0.677 0.051
5 15 0.499 0.084 0.934 0.062 0.679 0.050
7 5 0.486 0.097 0.929 0.056 0.667 0.061
7 7 0.510 0.086 0.919 0.062 0.681 0.050
7 9 0.520 0.083 0.913 0.065 0.685 0.047
7 11 0.520 0.083 0.912 0.066 0.685 0.048
7 13 0.532 0.086 0.911 0.067 0.693 0.050
7 15 0.532 0.083 0.909 0.068 0.692 0.048
9 5 0.498 0.074 0.884 0.060 0.660 0.042
9 7 0.503 0.082 0.880 0.060 0.662 0.048
9 9 0.508 0.081 0.877 0.060 0.664 0.047
9 11 0.511 0.083 0.873 0.058 0.664 0.046
9 13 0.508 0.087 0.873 0.057 0.662 0.049
9 15 0.504 0.079 0.870 0.054 0.659 0.044
11 5 0.438 0.066 0.870 0.049 0.615 0.039
11 7 0.436 0.075 0.875 0.046 0.615 0.046
11 9 0.440 0.072 0.878 0.048 0.618 0.040
11 11 0.454 0.074 0.877 0.051 0.627 0.041
11 13 0.460 0.075 0.877 0.051 0.632 0.042
11 15 0.462 0.076 0.876 0.051 0.632 0.042

Table A.38: GridSearch: Adaboost(DT) 2Categs15Less. Selected parameters are:
max_depth=7 and n_estimators=13. Further description can be found at the begin-
ning of A.2.2
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AdaBoost(DT) 2Categs15MFE

Parameters SE SP Gm

max_depth n_estimators mean std mean std mean std

None 5 0.509 0.054 0.785 0.048 0.630 0.022
None 7 0.509 0.054 0.785 0.048 0.630 0.022
None 9 0.509 0.054 0.785 0.048 0.630 0.022
None 11 0.509 0.054 0.785 0.048 0.630 0.022
None 13 0.509 0.054 0.785 0.048 0.630 0.022
None 15 0.509 0.054 0.785 0.048 0.630 0.022
5 5 0.516 0.097 0.934 0.051 0.690 0.056
5 7 0.561 0.090 0.925 0.059 0.716 0.047
5 9 0.585 0.085 0.919 0.069 0.730 0.044
5 11 0.595 0.084 0.915 0.069 0.734 0.040
5 13 0.602 0.087 0.912 0.070 0.737 0.040
5 15 0.605 0.090 0.910 0.070 0.737 0.040
7 5 0.579 0.077 0.889 0.067 0.714 0.033
7 7 0.603 0.077 0.885 0.073 0.727 0.033
7 9 0.605 0.071 0.881 0.074 0.727 0.029
7 11 0.610 0.076 0.877 0.078 0.728 0.031
7 13 0.612 0.069 0.872 0.077 0.727 0.029
7 15 0.616 0.066 0.876 0.074 0.732 0.029
9 5 0.597 0.065 0.840 0.065 0.705 0.026
9 7 0.590 0.072 0.841 0.067 0.701 0.031
9 9 0.582 0.069 0.839 0.065 0.696 0.026
9 11 0.576 0.070 0.841 0.066 0.693 0.028
9 13 0.562 0.072 0.846 0.068 0.686 0.030
9 15 0.556 0.076 0.846 0.070 0.682 0.030
11 5 0.513 0.071 0.830 0.054 0.650 0.032
11 7 0.513 0.065 0.831 0.056 0.650 0.027
11 9 0.520 0.068 0.836 0.051 0.656 0.030
11 11 0.535 0.077 0.831 0.055 0.664 0.035
11 13 0.537 0.077 0.836 0.055 0.667 0.036
11 15 0.537 0.071 0.832 0.055 0.666 0.032

Table A.39: GridSearch: Adaboost(DT) 2Categs15MFE. Selected parameters are:
max_depth=7 and n_estimators=15. Further description can be found at the begin-
ning of A.2.2
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AdaBoost(DT) 2Categs15More

Parameters SE SP Gm

max_depth n_estimators mean std mean std mean std

None 5 0.468 0.073 0.798 0.045 0.608 0.031
None 7 0.468 0.073 0.798 0.045 0.608 0.031
None 9 0.468 0.073 0.798 0.045 0.608 0.031
None 11 0.468 0.073 0.798 0.045 0.608 0.031
None 13 0.468 0.073 0.798 0.045 0.608 0.031
None 15 0.468 0.073 0.798 0.045 0.608 0.031
5 5 0.409 0.116 0.950 0.040 0.616 0.080
5 7 0.463 0.118 0.940 0.053 0.653 0.075
5 9 0.502 0.108 0.931 0.058 0.678 0.064
5 11 0.510 0.112 0.928 0.059 0.682 0.066
5 13 0.520 0.116 0.925 0.063 0.687 0.070
5 15 0.524 0.114 0.920 0.067 0.688 0.065
7 5 0.489 0.110 0.911 0.057 0.661 0.061
7 7 0.516 0.102 0.907 0.062 0.679 0.054
7 9 0.531 0.099 0.901 0.067 0.687 0.051
7 11 0.544 0.097 0.897 0.067 0.694 0.050
7 13 0.550 0.106 0.893 0.069 0.695 0.054
7 15 0.546 0.106 0.891 0.067 0.692 0.054
9 5 0.509 0.101 0.859 0.060 0.656 0.047
9 7 0.513 0.101 0.857 0.059 0.658 0.047
9 9 0.507 0.102 0.861 0.055 0.655 0.050
9 11 0.500 0.097 0.860 0.055 0.650 0.047
9 13 0.502 0.104 0.858 0.057 0.651 0.053
9 15 0.503 0.095 0.857 0.054 0.652 0.047
11 5 0.444 0.094 0.859 0.042 0.613 0.053
11 7 0.444 0.102 0.859 0.043 0.612 0.057
11 9 0.449 0.100 0.853 0.049 0.613 0.054
11 11 0.464 0.094 0.859 0.048 0.626 0.051
11 13 0.467 0.094 0.857 0.048 0.628 0.048
11 15 0.467 0.097 0.857 0.052 0.628 0.050

Table A.40: GridSearch: Adaboost(DT) 2Categs15More. Selected parameters are:
max_depth=7 and n_estimators=13. Further description can be found at the begin-
ning of A.2.2
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DT 2Categs15Centroids

Parameters SE SP Gm

max_depth mean std mean std mean std

13 0.397 0.057 0.798 0.032 0.563 0.026
15 0.461 0.053 0.766 0.040 0.593 0.028
17 0.459 0.060 0.769 0.035 0.596 0.029
19 0.463 0.063 0.765 0.040 0.589 0.032
21 0.464 0.062 0.764 0.041 0.591 0.035
23 0.461 0.058 0.763 0.041 0.593 0.036
25 0.457 0.062 0.769 0.040 0.591 0.028
27 0.461 0.060 0.768 0.038 0.595 0.032
29 0.455 0.068 0.764 0.038 0.591 0.032

Table A.41: GridSearch: Decision Tree 2Categs15Centroids. Selected parameters are:
max_depth=21. Further description can be found at the beginning of A.2.2

DT 2Categs15Less

Parameters SE SP Gm

max_depth mean std mean std mean std

13 0.357 0.055 0.842 0.038 0.551 0.035
15 0.439 0.063 0.801 0.044 0.587 0.025
17 0.435 0.064 0.803 0.045 0.592 0.028
19 0.431 0.059 0.805 0.042 0.590 0.030
21 0.436 0.059 0.803 0.044 0.588 0.026
23 0.437 0.059 0.804 0.043 0.588 0.027
25 0.437 0.055 0.803 0.044 0.589 0.029
27 0.440 0.064 0.802 0.044 0.589 0.025
29 0.434 0.056 0.803 0.042 0.588 0.028

Table A.42: GridSearch: Decision Tree 2Categs15Less. Selected parameters are:
max_depth=27. Further description can be found at the beginning of A.2.2
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DT 2Categs15MFE

Parameters SE SP Gm

max_depth mean std mean std mean std

13 0.452 0.048 0.816 0.036 0.601 0.025
15 0.513 0.052 0.781 0.045 0.634 0.020
17 0.509 0.055 0.786 0.045 0.628 0.018
19 0.515 0.051 0.782 0.047 0.633 0.021
21 0.516 0.045 0.787 0.045 0.635 0.023
23 0.508 0.042 0.782 0.047 0.632 0.024
25 0.511 0.052 0.783 0.046 0.629 0.022
27 0.514 0.052 0.788 0.044 0.633 0.021
29 0.517 0.047 0.785 0.050 0.632 0.020

Table A.43: GridSearch: Decision Tree 2Categs15MFE. Selected parameters are:
max_depth=21. Further description can be found at the beginning of A.2.2

DT 2Categs15More

Parameters SE SP Gm

max_depth mean std mean std mean std

13 0.412 0.073 0.833 0.036 0.583 0.043
15 0.469 0.079 0.800 0.045 0.611 0.030
17 0.475 0.076 0.798 0.045 0.612 0.034
19 0.471 0.086 0.797 0.046 0.610 0.034
21 0.472 0.074 0.797 0.046 0.611 0.031
23 0.470 0.075 0.797 0.044 0.610 0.031
25 0.469 0.073 0.798 0.045 0.610 0.030
27 0.472 0.075 0.797 0.046 0.609 0.026
29 0.470 0.074 0.800 0.045 0.612 0.030

Table A.44: GridSearch: Decision Tree 2Categs15More. Selected parameters are:
max_depth=17. Further description can be found at the beginning of A.2.2

k-NN 2Categs15Centroids

Parameters SE SP Gm

n_neighbors weights mean std mean std mean std

2 distance 0.414 0.052 0.820 0.038 0.581 0.025
3 distance 0.585 0.062 0.716 0.055 0.645 0.024
4 distance 0.404 0.054 0.882 0.036 0.595 0.027
5 distance 0.509 0.060 0.829 0.047 0.647 0.025

Table A.45: GridSearch: k-NN 2Categs15Centroids. Selected parameters are:
n_neighbors=3. Further description can be found at the beginning of A.2.2
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k-NN 2Categs15Less

Parameters SE SP Gm

n_neighbors weights mean std mean std mean std

2 distance 0.377 0.050 0.860 0.039 0.568 0.027
3 distance 0.531 0.052 0.779 0.057 0.641 0.017
4 distance 0.390 0.058 0.897 0.042 0.589 0.035
5 distance 0.486 0.055 0.863 0.057 0.646 0.024

Table A.46: GridSearch: k-NN 2Categs15Less. Selected parameters are: n_neighbors=3.
Further description can be found at the beginning of A.2.2

k-NN 2Categs15MFE

Parameters SE SP Gm

n_neighbors weights mean std mean std mean std

2 distance 0.382 0.038 0.837 0.037 0.564 0.022
3 distance 0.575 0.048 0.720 0.058 0.641 0.013
4 distance 0.412 0.055 0.880 0.039 0.600 0.030
5 distance 0.524 0.049 0.820 0.059 0.654 0.016

Table A.47: GridSearch: k-NN 2Categs15MFE. Selected parameters are: n_neighbors=3.
Further description can be found at the beginning of A.2.2

k-NN 2Categs15More

Parameters SE SP Gm

n_neighbors weights mean std mean std mean std

2 distance 0.347 0.055 0.875 0.030 0.549 0.036
3 distance 0.517 0.058 0.778 0.047 0.632 0.024
4 distance 0.330 0.059 0.909 0.032 0.545 0.039
5 distance 0.439 0.071 0.862 0.048 0.612 0.035

Table A.48: GridSearch: k-NN 2Categs15More. Selected parameters are: n_neighbors=3.
Further description can be found at the beginning of A.2.2
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RandomForest 2Categs15Centroids

Parameters SE SP Gm

max_depth n_estimators mean std mean std mean std

10 1 0.246 0.037 0.874 0.024 0.461 0.029
10 3 0.183 0.053 0.947 0.016 0.410 0.062
10 5 0.147 0.049 0.972 0.009 0.373 0.062
10 7 0.128 0.040 0.981 0.009 0.350 0.056
12 1 0.341 0.045 0.809 0.034 0.524 0.028
12 3 0.322 0.058 0.879 0.029 0.529 0.040
12 5 0.307 0.066 0.909 0.027 0.524 0.048
12 7 0.292 0.067 0.929 0.023 0.516 0.056
14 1 0.413 0.045 0.776 0.033 0.565 0.019
14 3 0.406 0.051 0.842 0.032 0.583 0.027
14 5 0.397 0.062 0.875 0.036 0.586 0.034
14 7 0.385 0.065 0.896 0.036 0.584 0.039
16 1 0.431 0.045 0.774 0.029 0.576 0.020
16 3 0.413 0.068 0.836 0.038 0.584 0.037
16 5 0.396 0.065 0.873 0.036 0.585 0.038
16 7 0.394 0.069 0.891 0.033 0.589 0.042
18 1 0.431 0.045 0.774 0.029 0.576 0.020
18 3 0.413 0.068 0.836 0.038 0.584 0.037
18 5 0.396 0.065 0.873 0.036 0.585 0.038
18 7 0.394 0.069 0.891 0.033 0.589 0.042

Table A.49: GridSearch: Random Forest 2Categs15Centroids. Selected parameters are:
max_depth=16 and n_estimators=1. Further description can be found at the beginning
of A.2.2
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RandomForest 2Categs15Less

Parameters SE SP Gm

max_depth n_estimators mean std mean std mean std

10 1 0.235 0.045 0.916 0.030 0.461 0.042
10 3 0.142 0.053 0.977 0.017 0.366 0.064
10 5 0.126 0.057 0.988 0.011 0.344 0.076
10 7 0.108 0.048 0.992 0.008 0.318 0.075
12 1 0.306 0.067 0.864 0.036 0.510 0.053
12 3 0.276 0.065 0.931 0.030 0.503 0.055
12 5 0.266 0.072 0.951 0.028 0.497 0.063
12 7 0.253 0.080 0.966 0.022 0.487 0.075
14 1 0.397 0.040 0.824 0.037 0.570 0.021
14 3 0.368 0.052 0.886 0.041 0.569 0.033
14 5 0.357 0.065 0.911 0.042 0.567 0.046
14 7 0.344 0.071 0.927 0.038 0.561 0.051
16 1 0.405 0.052 0.818 0.039 0.573 0.029
16 3 0.379 0.062 0.882 0.039 0.576 0.038
16 5 0.352 0.074 0.907 0.036 0.561 0.054
16 7 0.351 0.076 0.924 0.036 0.565 0.057
18 1 0.405 0.052 0.818 0.039 0.573 0.029
18 3 0.379 0.062 0.882 0.039 0.576 0.038
18 5 0.352 0.074 0.907 0.036 0.561 0.054
18 7 0.351 0.076 0.924 0.036 0.565 0.057

Table A.50: GridSearch: Random Forest 2Categs15Less. Selected parameters are:
max_depth=16 and n_estimators=1. Further description can be found at the begin-
ning of A.2.2
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RandomForest 2Categs15MFE

Parameters SE SP Gm

max_depth n_estimators mean std mean std mean std

10 1 0.292 0.024 0.861 0.024 0.501 0.021
10 3 0.221 0.039 0.951 0.015 0.456 0.037
10 5 0.185 0.050 0.972 0.014 0.420 0.054
10 7 0.173 0.051 0.983 0.009 0.408 0.059
12 1 0.377 0.034 0.799 0.027 0.548 0.019
12 3 0.370 0.046 0.874 0.030 0.567 0.028
12 5 0.358 0.065 0.907 0.027 0.567 0.045
12 7 0.358 0.071 0.923 0.025 0.571 0.050
14 1 0.444 0.032 0.758 0.046 0.579 0.011
14 3 0.441 0.069 0.835 0.046 0.604 0.035
14 5 0.434 0.067 0.864 0.044 0.609 0.037
14 7 0.423 0.062 0.884 0.043 0.609 0.033
16 1 0.456 0.029 0.764 0.038 0.590 0.013
16 3 0.441 0.045 0.828 0.033 0.603 0.022
16 5 0.428 0.057 0.867 0.034 0.607 0.033
16 7 0.417 0.064 0.890 0.034 0.607 0.039
18 1 0.456 0.029 0.764 0.038 0.590 0.013
18 3 0.441 0.045 0.828 0.033 0.603 0.022
18 5 0.428 0.057 0.867 0.034 0.607 0.033
18 7 0.417 0.064 0.890 0.034 0.607 0.039

Table A.51: GridSearch: Random Forest 2Categs15MFE. Selected parameters are:
max_depth=14 and n_estimators=5. Further description can be found at the begin-
ning of A.2.2
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RandomForest 2Categs15More

Parameters SE SP Gm

max_depth n_estimators mean std mean std mean std

10 1 0.264 0.050 0.897 0.020 0.484 0.042
10 3 0.204 0.076 0.966 0.015 0.436 0.080
10 5 0.183 0.070 0.980 0.012 0.415 0.079
10 7 0.166 0.075 0.988 0.009 0.394 0.089
12 1 0.345 0.060 0.830 0.030 0.533 0.037
12 3 0.315 0.074 0.904 0.029 0.529 0.054
12 5 0.302 0.094 0.930 0.028 0.522 0.074
12 7 0.282 0.094 0.947 0.026 0.509 0.079
14 1 0.437 0.064 0.793 0.035 0.586 0.033
14 3 0.403 0.073 0.864 0.038 0.587 0.042
14 5 0.382 0.081 0.893 0.040 0.580 0.051
14 7 0.381 0.083 0.909 0.040 0.584 0.053
16 1 0.416 0.068 0.795 0.032 0.572 0.037
16 3 0.386 0.084 0.862 0.040 0.572 0.049
16 5 0.371 0.089 0.888 0.038 0.568 0.055
16 7 0.368 0.091 0.909 0.031 0.573 0.060
18 1 0.416 0.068 0.795 0.032 0.572 0.037
18 3 0.386 0.084 0.862 0.040 0.572 0.049
18 5 0.371 0.089 0.888 0.038 0.568 0.055
18 7 0.368 0.091 0.909 0.031 0.573 0.060

Table A.52: GridSearch: Random Forest 2Categs15More. Selected parameters are:
max_depth=14 and n_estimators=1. Further description can be found at the begin-
ning of A.2.2
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A.3 Results for MLPClassifiers

Experiment: 1

Classifier Confusion matrix Precision Recall F1-Support

TN FP FN TP 1 0 1 0 1 0

MLP_1_1 3015894 3265 5 3654 0.53 1.00 1.00 1.00 0.69 1.00
MLP_1_12 3015916 3243 24 3635 0.53 1.00 0.99 1.00 0.69 1.00
MLP_3_12 3015897 3262 10 3649 0.53 1.00 1.00 1.00 0.69 1.00
MLP_3_D 3015921 3238 17 3642 0.53 1.00 1.00 1.00 0.69 1.00

Table A.53: Results of MLPs for Experiment 1. Further description can be found at the
beginning of Section A.3

Experiment: 2

Classifier Confusion matrix Precision Recall F1-Support

TN FP FN TP 1 0 1 0 1 0

MLP_1_1 3019159 0 3659 0 0.00 1.00 0.00 1.00 0.00 1.00
MLP_1_12 3015893 3266 3 3656 0.53 1.00 1.00 1.00 0.69 1.00
MLP_3_12 3015887 3272 0 3659 0.53 1.00 1.00 1.00 0.69 1.00
MLP_3_D 3015902 3257 9 3650 0.53 1.00 1.00 1.00 0.69 1.00

Table A.54: Results of MLPs for Experiment 2. Further description can be found at the
beginning of Section A.3

Experiment: 3

Classifier Confusion matrix Precision Recall F1-Support

TN FP FN TP 1 0 1 0 1 0

MLP_1_1 3019159 0 3659 0 0.00 1.00 0.00 1.00 0.00 1.00
MLP_1_12 3015897 3262 9 3650 0.53 1.00 1.00 1.00 0.69 1.00
MLP_3_12 3015887 3272 0 3659 0.53 1.00 1.00 1.00 0.69 1.00
MLP_3_D 3015896 3263 9 3650 0.53 1.00 1.00 1.00 0.69 1.00

Table A.55: Results of MLPs for Experiment 3. Further description can be found at the
beginning of Section A.3
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Experiment: 4

Classifier Confusion matrix Precision Recall F1-Support

TN FP FN TP 1 0 1 0 1 0

MLP_1_1 3019159 0 3659 0 0.00 1.00 0.00 1.00 0.00 1.00
MLP_1_12 3015914 3245 17 3642 0.53 1.00 1.00 1.00 0.69 1.00
MLP_3_12 3015921 3238 23 3636 0.53 1.00 0.99 1.00 0.69 1.00
MLP_3_D 3015935 3224 29 3630 0.53 1.00 0.99 1.00 0.69 1.00

Table A.56: Results of MLPs for Experiment 4. Further description can be found at the
beginning of Section A.3



Appendix B

B.1 CD contents
circrna-squence-homology ...................Source codes of the implementation

README ....................................Project contents described in detail
graph_tables ................Directory containing generated graphs and tables
example.sh ....................Example script for running the implementation

Sequential_homology_of_circular_RNA.pdf ........Master Thesis in pdf format

B.2 Used Graphical Programs

• Draw_io [69]

• InkScape [70]

• Notability [71]

• Matplotlib_venn [72]

• Matplotlib.pyplot [72]
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