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Abstract

Predicting the outcome of a soccer match
is a well-established problem in the liter-
ature. But too little endeavor has been
devoted to forecasting associated events
related to scores, such as over/under X
goals scored or whether both teams score
in a match. There are models that can
predict such events by modeling a proba-
bility distribution over all possible scores.
These models mostly take only scores of
historical matches as input. In this thesis,
we have gathered more detailed data and
tested a hypothesis that such data can be
useful in predicting score-related events.
We have designed and implemented mul-
tiple models that are either estimating
a probability distribution over all possi-
ble scores using Poisson distribution or
predicting directly an occurrence of a spe-
cific event. To verify the hypothesis we
have created a simulation for predicting
and betting on the events in time. In the
end, we have provided an experimental
evaluation of all the models and a com-
parison of their performances from dif-
ferent perspectives. We have found out
that detailed match statistics can be very
useful in this problem and that using clas-
sification models is more suitable for this
task than Poisson-based models. Our clas-
sification model using detailed data has
achieved promising results.

Keywords: machine learning, predictive
modelling, soccer, neural networks
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Abstrakt

Predikovani vysledku fotbalovych zépast
je v literatufe dobfe zavedenym problé-
mem. Dosud vsak bylo ptilis méalo prace
vénovano predikovani jevi pridruzenych
témto vysledkum, jako napiiklad zda bude
celkovy pocet vstielenych gélu vyssi/nizsi
nez X, nebo skutecnost, zda oba tymy v zé-
pase skoéruji. Existuji modely, které mohou
tyto jevy predikovat vypocétem pravdépo-
dobnostnich rozdéleni pres vSechna mozna
vyslednd skore. Vétsina téchto modeld po-
uziva jako vstupni data pouze skore histo-
rickych zapast. V této praci jsme shroméz-
dili podrobnéjsi data a otestovali hypo-
tézu, ze takova data mohou byt uzitetna
pii predikcei jevi pridruzenych fotbalovym
vysledktim. Navrhli a naimplementovali
jsme nékolik modelti, které bud odhaduji
pravdépodobnostni rozdéleni pres vSechna
mozna skore s uzitim Poissonova rozdélent,
anebo predikuji primo vyskyt konkrétniho
jevu. K ovéfeni hypotézy jsme vytvorili
simulaci pro predikovani a sédzeni na jevy
v ¢ase. Nakonec jsme vyhodnotili vSechny
modely a srovnali jejich vykony z ruznych
perspektiv. Zjistili jsme, ze detailni statis-
tiky mohou byt velmi uzitecné pri reseni
tohoto problému, a ze klasifika¢ni modely
jsou pro tuto ulohu vhodnéjsi nez modely
zalozené na Poissonové rozdéleni. Nas kla-
sifika¢ni model pouzivajici detailni data
doséhl slibnych vysledki.

Klicova slova: strojové uceni,
prediktivni modelovani, fotbal, neuronové

sité

Preklad nazvu:
pridruzenych fotbalovym vysledktim

Predikovani jevi
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Chapter 1

Introduction

In recent years the interest in forecasting sports has been growing.
Predicting the outcome of a soccer match is already a well-established problem
in the literature. But yet too little work has been dedicated to predicting asso-
ciated events related to scores, such as over/under X goals scored or whether
both teams score (BTTS). Some models predict probability distribution over
all possible scores for a match. Such models are versatile and can be used for
predicting score-related events by deriving the estimated probabilities. Those
models mostly use only team IDs and resulting scores of historical matches
as learning features. Because of the insufficient coverage of forecasting these
events, we have decided to look into this problem more deeply.

In this thesis, we have collected detailed data from multiple sources.
That includes more comprehensive match statistics such as shots, possession,
passes, fouls, and many others. Besides this, we have been able to retrieve
player ratings from the famous video game FIFA developed by the company
Electronic Arts, which since the 1990s rates all the soccer players playing
in the most famous leagues. Due to collected data about starting lineups of
players for our dataset we could employ the ratings into our models.

After analyzing the obtained data, we have designed and implemented
multiple types of models that are either Poisson-based or classification models.
All of our models are based on neural network architecture. With these
models, we have tested a hypothesis that additional data can be useful
in predicting score-related events. For verification of the hypothesis, an
environment simulating predicting, and betting on the events in time had
to be developed. In this work, we have tested many various models with
numerous configurations that were using different amounts of input data for
making predictions.

For each fundamental type of model, we have chosen the best perform-
ing as a final model. During the concluding experiments, whose results we
present in this thesis, we have evaluated the final models on a test dataset
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that has not been used for evaluation of any of the models before. These
comparisons are realized from multiple different perspectives. We have con-
cluded whether more data for forecasting in this problem provides additional
value. Furthermore, we have compared the perspective of using Poisson-based
models against classification models for this problem. Since the models can
be used for trading on the sports betting market, we have evaluated the final
models on market odds in terms of profitability.



Chapter 2

Literature review

There has not been much research done on the “over/under” and “both
team to score” market in soccer which we focus on. The most relevant article
to our thesis is Wheatcroft 2020, where the author describes a model for
predicting this market. The paper introduces a set of “Generalised Attacking
Performance” ratings that are similar to the pi-ratings. The model is profitable
over the course of 12 seasons, but the profit is decreasing in later years, which
might be caused by eliminating inefficiencies of the market. The paper also
provides evidence that measuring attacking strength in ways other than by
scored goals, such as shots and corners, can be significantly more informative.

Articles devoted to models able to forecast probabilities of resulting
scores are relevant to this problem as well since probabilities of score-related
events can be derived from those. In Maher 1982, the author has introduced
a double Poisson model and bivariate Poisson model for modeling soccer
match scores. The double Poisson model assumes the scores of the teams to
be independent and that the scores follow a Poisson distribution in which its
parameter A determines the scoring rate. The bivariate Poisson model adds
some dependency between those distributions. According to a recent paper,
Ley, Wiele, and Eetvelde 2019, the models are still very competitive.

In order to exploit inefficiencies of the football market, in Dixon and
Coles 1997, the authors have modified the double Poisson model. They
provide evidence that the bivariate Poisson model is unable to represent
the dependency of goals of the teams for low-scoring games. Therefore they
have proposed an improvement of the double Poisson model by adding a
dependency of the two distributions that increases probabilities of low-scoring
draws. Also, an exponential time weighting for increasing the effect of recent
games was introduced in the article.

In the article Karlis and Ntzoufras [2003] the authors have pointed
out that the bivariate Poisson model underestimates the probabilities of
draws, and to eliminate the problem they have introduced a diagonal-inflated
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bivariate Poisson model.

Then, in Karlis and Ntzoufras 2009) the authors, instead of modeling
the number of goals scored by each team, have modeled the difference of the
number of goals between the teams. The main advantage of this approach
is eliminating the need to model the dependency between the goals of the
teams. They have used a Skellam distribution for modeling the difference.

Another model, a bivariate Weibull count model, predicting score
probabilities was introduced in Boshnakov, Kharrat, and McHale 2017. This
model is based on the Weibull distribution and uses Frank’s copula for
producing a bivariate distribution of the number of goals scored. The model
is claimed to outperform the Poisson-based models in predicting the match
winner.

In experimental review Hubéaéek, Sourek, and F. Zelezny [2019, the
authors investigate the top-performing methods in predicting score-based
match outcomes, such as Poisson-based models, ranking algorithm Elo, rating
system pi-ratings, and PageRank algorithm. Their findings are that the
double Poisson model is not only very competitive among other statistical
models, but also against more distinct approaches.

A comparison of the bivariate Poisson, Skellam, and ordered probit
models was provided in Koopman and Lit 2019, where the bivariate Poisson
model has achieved the best results.

Betting on the Asian handicap market has been examined in Constanti-
nou [2020. The author has introduced the first model specifically developed for
this market, which is based on hybrid Bayesian networks and rating systems.

In Eggels 2016, the author has developed a method for predicting a
winner of a soccer match based on detailed statistics. Detailed match events,
such as shots, passes, fouls, and more, tracking of players, and even player
ratings are included. The method predicts expected goals, which is used to
predict the expected match outcome.

In another study utilizing the concept of expected goals, Brechot and
Flepp [2018], the authors emphasize the underestimation of the randomness
of match score results by proposing a model for performance evaluation
whose predictions are not heavily dependent on recent outcomes. The article
claims that expected goals are much better input for predictions than match
outcomes. The authors also suggest that the proposed method might be used
by decision-makers of soccer clubs to avoid the fallacy of inferring the quality
of performance from match outcomes.



Chapter 3

Data

B 31 Data gathering

In this thesis, we examine the value of detailed data about matches
for predicting score-related events. We decided to use data including many
various statistics as well as data about individual players. There are plenty
of large soccer datasets, but mostly they contain only the resulting score or a
few statistics. Since the data necessary for this work are not widely available,
their gathering was a challenging task. Some websites are selling such data,
but it is rather expensive. Other websites provide various data about sports
matches, but they are intended mostly for sports fans to review the results
and are not easily downloadable, let alone in a functional form. The only
non-expensive way to retrieve such data was to design and implement web
crawlers.

B 3.1.1 Data sources

We were unsuccessful in finding a data source that contains all of
the information about matches we needed. Therefore we had to work with
multiple of them. The process of searching for the optimal data sources was
time-consuming. Many websites are providing extremely detailed statistics,
but mostly only for the main leagues and for the last few seasons. To make
use of wide data for reasonable predictions we need as many samples as
possible and one or two seasons are not enough.

As the main source, we chose https://www.footballcritic.com/
(CR). In addition to the basic information about matches it contains many
different statistics, such as shots on/off target, possession, passes, aerials
won, and others. Furthermore, the website provides line-ups with denoted
positions. For this website, we implemented two spiders for retrieving data
about matches, but also players data for later linking with another dataset.
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The second source is https://sofifa.com/| (SF). This website is
dedicated to the soccer game series FIFA developed by Electronic Arts. In
this game, all soccer players and teams have scores determining their quality.
Players have furthermore scores for many different skills, such as finishing,
dribbling, acceleration, jumping, and more. Those data might be useful for
evaluating the approximate attacking and defending strengths of individual
teams which could be used for predicting. For retrieving the data from all the
downloaded HTML files we implemented XML parsers. On those websites,
every day new data are occurring. The scripts for downloading and parsing
the data are designed so that they can be easily modified for re-downloading
all the data including the new content. The downloading and parsing process
takes tens of hours.

The last source is https://www.football-data.co.uk/| (FD). This
website collects and provides soccer data in an easy-to-use form, unfortu-
nately, they are not very detailed. From this website we only use odds for
the over/under market. All of the odds we use are from only a single book-
maker (Bet365), therefore the odds and their margin should be consistent in
comparison to using odds from various bookmakers.

N 32 Constructing the dataset

The approach of combining multiple data sources creates obstacles.
Each source uses different IDs for matches, teams, and players, but their
names differ frequently as well. In order to combine the datasets, we must
link the IDs of identical entities.

We had to link players from the CR dataset with those in the SF
dataset. The names of the players were very often different. For example,
one player is in one dataset by his short name “Pepe” and in the other by
his full name “Kléper Laveran de Lima Ferreira” in which “Pepe” is not even
a substring, which would be helpful. This was unfortunately too frequent.
Another problem is that there are too many names that are identical for
multiple players. For combining the players we used the names in combination
with dates of birth. Python library fuzzywuzzy proved to be helpful in this
task. Unfortunately, even after using many heuristics, there were too many
players not linked due to no similarities in names or missing and even erroneous
dates of birth. Therefore a few hundred players had to be labeled manually.

To match teams from the CR dataset with those in the FD dataset
we have used similarities in scores.
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3.3. Exploratory data analysis

N33 Exploratory data analysis

In this part of the thesis, we perform an exploratory data analysis.
Such analysis is an integral part of a data science project. The goal is to get
to know the dataset, explore it, find its main characteristics and other useful
pieces of knowledge. Below we provide findings important for this problem.

The data features correlated with targets, in our case total amount of
goals and BTTS metric, should be more probably useful in this task than
those uncorrelated. For instance, we can expect the numbers of yellow and
red cards not to be significantly correlated with the goals. Such features
should not be included in the input for the model since they provide no
additional value and on top of that, they make the model more complex,
which contributes to overfitting the data.

In order to find those features, we have picked the features most
directly related to the goals and the events we focus on in this work. We have
also included manually created features “BTTS” and “Over 2.5”. Namely

Home/Away team scored

Home/Away team scored in the first halftime

Total goals scored

BTTS

Over 2.5

For all of the other features we have computed their correlation with
the features chosen above and then the average over absolute values of all
correlations for each of the features. In the table 3.1 we present the eight
most and the eight least correlated features with those picked ones.

It should be pointed out that the fact that a feature A is less correlated
with targets than feature B as such does not necessarily mean that feature
A is less useful than feature B. A common issue in machine learning is that
although the input features are correlated with the target, they are also
correlated with each other and that causes problems for many models and
algorithms. Also, some features can be useless by themselves but can be useful
in combination with other features. Still, this approach is a great indicator
and in combination with common sense can be useful. There are other feature
selection methods, but due to the fact that we can only predict matches
taking place in the near future, those methods become computationally too
expensive.
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Most correlated Mean correlation Least correlated Mean correlation
A on target 0.28 H corners 0.03
H on target 0.28 H interceptions made 0.03
A total shots 0.14 A corners 0.03
H total shots 0.12 A interceptions made 0.02
H throw ins 0.11 A blocked shots 0.02
A clearances 0.11 H blocked shots 0.02
H crosses 0.10 H tackles 0.02
A aerials won 0.09 A second yellow cards 0.02

Table 3.1: The most and the least correlated features in the dataset

We have analyzed the features more deeply and decided not to include
those that seemed to be the least helpful.

In this work, we work with many different leagues. This might be an
important factor for making predictions. The question is whether the leagues
differ significantly or whether soccer is approximately the same in the top
leagues in the world. In the table 3.2 we present the prior probabilities of our
target events in individual leagues. We can clearly see that there are large,
maybe unexpectedly large, differences. For both “BTTS” and “Over 2.5”
events the priors go from around 40% up to 60%. This means we definitely
have to include at least some information about the league in the input
features given to the model.

In this work, we have been able to retrieve scores for individual players
in most of the matches. This might be hypothetically useful for making
predictions. During conducting the data analysis, we have tested whether
there is at least any interesting information contained in the data. For
example, the approach of computing the correlation of mean FIFA score of
the home team with the goals they have scored would not provide much
value. That is because for being able to make reasonable predictions about
the resulting match score we need to include information about both of the
teams. In simple terms, it is suboptimal to predict the number of goals a team
scores if we do not know who the team plays against. Still, we include the
correlation of mean of home team players in the table below for comparison.

For just a simple analysis we measure the correlation of a difference
SF — SFy, where SF; is the average over the FIFA scores of ¢ team’s players,
to the goals scored by the home team. Also, we include the correlation for a
difference SF'Q — SFP where O/D denote only offensive/defensive players.

In the table [3.3| we can see a relatively large correlation, therefore
there is likely useful information that might help to improve our models. The
great advantage of having these features is that they are directly providing

8



3.4. Preprocessing the input data

League BTTS (%) Over 2.5 (%) Total scored Matches
Allsvenskan 55.09 54.26 2.82 1198
Argentine PD 43.67 39.33 2.26 1429
Bundesliga 57.08 58.08 2.99 1701
Championship 51.06 47.17 2.55 1982
Danish Superliga 54.82 04.11 2.79 1266
Eliteserien 56.33 55.00 2.89 1200
Eredivisie 58.68 60.37 3.12 2299
Ligue 1 48.99 47.48 2.57 2774
Premier League 49.74 01.73 2.72 2865
Primeira Liga 47.29 46.49 2.55 1366
Primera Division 49.84 49.67 2.68 2865
RFPL 44.90 42.61 2.37 1833
Scottish PL 48.89 50.79 2.66 1262
Serie A 54.60 53.59 2.79 2857
Swiss SL 59.80 59.19 3.02 816
Turkish SL 54.95 52.83 2.78 1749

Table 3.2: The prior probabilities of target by leagues

Home team scored

SEy — SFy 0.328
SFQ — SFY 0.318
SFEy 0.174

Table 3.3: Correlation table for FIFA player scores

an estimate of strength for a specific lineup in a match. Whereas for utilizing
the statistics, we need to estimate the strength of a team from its historical
matches while the team’s strength might change significantly between matches,
e.g. due to an injury of an important player. Besides that, we can see that
the correlation of a mean of only one team is much less correlated with the
goals as expected.

N 34 Preprocessing the input data

Some parts of the data can be forwarded to the models in their current
form. The team and league IDs can be forwarded to an embedding layer. But
some parts of the data need preprocessing.

9
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B 3.4.1 FIFA player scores

Since the lineups are known always at least an hour or two before a
match starts, the FIFA player scores can be obtained by the model before
the match. Unfortunately, there are 11 scores for each team which can not be
simply given as a vector to a neural network because team formations differ
in individual matches.

Formation describes the way the players are approximately positioned
on the pitch. A typical formation 4-4-2 denotes a positioning such that there
are four defenders, four midfielders, and two forwards. Another common
formation is for instance 3-4-3.

For example, we might want just a single neuron to learn a coefficient
for each of the eleven positions so that it would multiply them with the scores,
sum those, and output a single number representing the attacking strength
of the team. This would be possible if there would be only one formation.
Because that is not the case, the neuron would for example have to use a
coefficient that is mostly associated with a forward for a midfielder or even
a defender. Since the formations differ a lot, this would cause problems.
Moreover, sometimes the player scores are missing and we want to make
predictions even for the matches, in which only a few FIFA player scores are
not available, since removing those matches would only further reduce our
already not so large dataset.

We have solved this problem in the following way. The players of
each team in each match are divided by their positions into three groups
- goalkeeper alone, defensive players, and offensive players. An average of
FIFA player scores SF{ for each group g for each team ¢ is computed, which
provides additional 2 x 3 input features for a model.

B 3.4.2 Match statistics

Processing match statistics is more complicated. Predicting the result-
ing scores based on the number of shots on target in the game would have
very high accuracy, but it can not be done as the model receives these data
after the end of a match.

Here we make an assumption that the teams that have high scores in
certain statistics are more probable to maintain those high scores in the future
and vice versa. For instance, if a team achieves high ball possession in the
last matches, we assume that this team is likely to preserve it in the following
matches. Then we can compute an average of the team’s individual statistics
and make it an input feature for the model. For it to be representative we
need to compute the average from a reasonable amount of historical matches.

10



3.5. Final dataset

We designed the computation of the statistics features in the following
way. A form F} ¢ of a team ¢ for a specific statistic s is computed as a weighted
average of the last n values v, ; of team ¢ for statistic s. We use weighted
average because recent matches are more relevant for the computation of form.
As a weighting function, we use successful exponential weighting introduced
in Dixon and Coles [1997.

M
o Zi:Mt_n Wt iVs t,i

t,s — M
Zi:Mt—n Wi

(3.1)

wy; = e °Ta (3.2)

where « is a metaparameter and T is the number of days passed
since when the match was played. For a we use a value 0.002 that was found
to be well-performing in Boshnakov, Kharrat, and McHale 2017

In our models, we work with two forms - short-term and long-term
form. Therefore for each team for each statistic, two input features are
provided in the input. Those two forms differ only in the number of matches
n that determines how many last matches the weighted average is computed
from. Since there are too many hyperparameters in the model that we could
not search the optimal values for all of them, we decided to fix n = 10
for short-term form and n = 60 for long-term form. Matches with a team
that does not have enough preceding matches played are not included in the
training set. In the project code included, the values of statistics are stored
in a circular buffer for efficiency.

. 3.5 Final dataset

We have covered the process of gathering, analyzing, and preprocessing
the data. Below we present a description of the final dataset that was used
to evaluate our models.

We have collected approximately 25000 matches. In the dataset, there
are 16 different leagues that can be seen in the table [3.2l For every league,
there are from 4 to 7 latest seasons contained where the last matches take
place in approximately half of the 2020/2021 season. For 10 leagues for the
seasons 2019/2020 and 2020/2021, we have market odds for the “over/under
2.5” set by bookmaker Bet365.

The enumeration of input features available for every match follows.

8 League ID

11
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® Home, away team IDs

B Team features. The following are contained in the feature set for each
team separately.

short-term form - a vector of weighted averages of selected statistics
(table 3.4)) from the last 10 matches

long-term form - a vector of weighted averages of selected statistics
(table 3.4)) from the last 60 matches

SFtG - goalkeeper’s FIFA player score
SFP - average of FIFA player scores of defensive players

SFQ - average of FIFA player scores of offensive players

Scored Crosses

Half-time scored Fouls

Possession Throw ins

Shots off target Passes

Shots on target Passes completed (%)
Total shots Long balls

Corners Touches

Pass success percentage Aerials won
Interceptions made Clearances

Table 3.4: Match statistics used for short-term and long-term form features

12



Chapter 4

Models

In this chapter, we describe the models used in this thesis. At first, we
present two different classifications of them and describe the pros and cons of
each type. Then we go through base models that will be used for comparison
with our models. In the end, we focus in detail on the models we introduce.

Before diving into the models, we should briefly describe the way the
models will be evaluated since this is not the typical approach in predictive
modeling. Knowing the approximate way the models will be evaluated will
help understand the models. Because our data are time-dependent, we have
implemented a simulation that starts at a certain date and every day it gives
to the model results of all the preceding matches and offers all matches that
take place on the current day as an opportunity for predicting their outcomes.
The full description of the simulation can be found in section [5.1

The models we present in this thesis are neural networks with various
inputs and they either predict parameters of statistical distributions (Poisson-
based) or they predict probabilities of individual events (classification).

BN a1 Categories of models by input

Most of the basic models used for making predictions in sports take
only the IDs of the teams and the resulting scores as input. In this thesis, we
aim to find out whether additional data in this task can be helpful. Therefore
we divide the models by the data they work with.

B 4.1.1 TID models

In order to decide whether the additional data make a difference, we
need models that do not use those data for predictions, therefore one type
of model will obtain only the team IDs and the league ID as an input. For

13



4. Models

all the historical matches the models receive the resulting scores. We refer
to the models as the TID models. Such models typically try to model the
strength of each team and then use it to predict for instance a winner or the
expected goals scored by those teams.

B 4.1.2 STATS models

Those models are built around many features and are thus relatively
complex. The following data are forwarded to the model for each match
during the simulation. The FIFA player scores are optional.

B team IDs
® league ID
B team features for both teams

SFE - goalkeeper’s FIFA player score
SFP - average of FIFA player scores of defensive players
SFP - average of FIFA player scores of offensive players

short-term form - a vector of weighted averages of selected statistics
(table 3.4)) from the last 10 matches

long-term form - a vector of weighted averages of selected statistics
(table 13.4)) from the last 60 matches

B 42 Categories of models by the output

There are two types of machine learning algorithms that can be ef-
fectively used for this task - Poisson-based and classification. In this thesis,
we have designed and implemented models for both of the types and in
this section, we provide their description and comparison. These categories
determine the last layer of the neural networks, therefore even the output
and learning process.

B 4.2.1 Poisson-based models

In machine learning, regression is a process of finding a function that
predicts values of a continuous output variable y based on input variables X.
In this problem, we can use regression to estimate parameters of probability
distributions of the match score outcomes. Once the model is fitted to the
data, we can predict the probability of any score outcome P(Gpg = x,G4 = )

14



4.2. Categories of models by the output

for a match. This is very useful since with this approach only one model is
needed and such a model is versatile. With such a model we can not only
predict specific match outcomes, but we can derive probabilities of related
events, such as “home team wins”, “draw”, “away team wins” and what
interests us the most in this thesis - “over/under 2.5 goals” and “both teams
to score” events.

For example, we can compute the probability of the number of goals
in a match being less than 2.5 by

P(GH+GA<2.5)= Z P(GHZCC,GA:y) (4.1)

z,y€No;z+y<2.5

The disadvantage of this approach is that an assumption about the
distribution of goals has to be made, which is limiting the expressivity of the
model. There are many variables influencing the game and the distribution
of score results. There are different targets. Most of the time the ambition
for both teams is to win. Sometimes it seems unlikely for a team to win so
the strategy is to play defensively and make it a draw. When the end of a
season is approaching, the teams need a certain amount of points in order to
finish the season with the best result achievable given the current situation,
meaning that some teams do not need any additional points because they are
safely in the lead and therefore they do not play aggressively anymore.

The regression of parameters of such models can be performed by
optimizing the likelihood of the actual results according to the distributions,
in our case the final scores.

B Double Poisson model (DP)

Probably the most straightforward approach for predicting the distri-
bution of goals is to use the double Poisson model which was introduced in
Maher (1982 The model assumes the scores of both teams to be independent
and that each of the scores has a Poisson distribution. Poisson distribution
has a parameter A\, which is estimated by the model for each team in a match.

The assumption of the double Poisson model that the scores of both
teams are independent is not probably true. Let’s have a match where one
team scores the first goal in a match in the second half. Both teams have to
react to that and adjust their strategy. If the other team’s target is to win,
the coach sends in more offensive substitutes to turn the match. On the other
hand, if the other teams would score, the coach might send in more defensive
players to maintain the lead. Even though we believe that the goals scored
by the teams are not independent, thus the assumption being incorrect, this
simple and well-established model is still very competitive (Ley, Wiele, and
Eetvelde 2019) and therefore we will use it for our main reference model.
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4. Models

The probability of a resulting match score between home and away
teams being x : y is defined by the model as

M e~ A )\fle*)‘A

x! y!

PGy =2,Ga =y| g, \a) = (4.2)

where \; is a mean of the underlying Poisson distribution. The \; can
be understood as a scoring rate of team t. In the original paper, those rates
were expressed by

InAg =Sy —Sa+h
(4.3)
InAg =854 — Sy
where S; is a strength of a particular team and h is a home advantage.
The model assigned a single strength parameter S to every team.

With the neural networks, we can either estimate those strengths and
home advantage, or we can estimate the \ parameters directly. We have
tested both of these approaches and the former performed significantly better,
therefore we have further neglected it and we were predicting the A parameters
indirectly by estimating the strengths and using equation 4.3. The same
applies to the following Poisson-based model.

B Bivariate Poisson model (BP)

Even though the double Poisson model explains the data well, in fact
surprisingly well taking into consideration its simplicity, it is desirable to
include a more sophisticated model. We decided to use the idea of the bivariate
Poisson model introduced also in Maher [1982l This model enhances the fitting
by encompassing a dependency between the two Poisson distributions. For
modeling the dependency we chose to use the following formula, which was
originally introduced as a bivariate version of the Weibull model in Boshnakov,
Kharrat, and McHale [2017.

P(Gg =2,GaA =y g, \a) = C(F(z[ m), F(y|Aa))
C(F(x — 1| m), F(y|\a))
— C(F(x|Am), F(y — 1{Aa))
+ C(F(x —1|Am), F(y — 1|A4))

where F' is cumulative distribution function and C'is a copula function.
In our case F' can be computed as
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4.2. Categories of models by the output

x T Nip—M
Flalh) = 3 (i) = 30 28 (4.5)

|
i=1 i=1 v

where f is Poisson probability mass function.

We decided to use Ali-Mikhail-Haq copula function (Kumar |[2010)) for
this model. This function is defined as

uv

Cu,v) = 1= k(1 —u)(l—wv)

(4.6)

where k € [—1,1] is a copula parameter. In addition to learning the
A or S parameters, this model will learn also the x parameter. Due to the
nature of our problem and repeated training during the simulation, x will
change in time.

B 4.2.2 Classification models

This approach is very distinct. There is no assumption about a
distribution. In classification there are classes, in our case the events, we aim
to predict. The training sample consists of the input features and a label,
e.g. event “over 2.5 goals” being true or false. The models do not output
any probabilities of concrete scores, only probabilities for each of the classes
(this is not even imperative, some models do output only the estimated class
instead of probabilities).

The biggest disadvantage of this approach is that there are no relation-
ships of the classes involved in the process of making predictions even though
the relationships exist. Let’s consider four possible events - the resulting score
being 0 : 0, the score being 0 : 1, the score being 1 : 0, and the event of the
number of goals in a match being less than 1.5. For each of the individual
events, we can create a classification model predicting the probability of such
an event. The problem is the possible inconsistency of those models as it is
not guaranteed that

?
> Py =P (4.7)
z,y€No;z+y<1.5

where P, , is the predicted probability of the score x : y and P<y 5 is
the predicted probability of “under 1.5” by the corresponding models.

Another issue of this way of predicting is that for every type of event
we need a new model which can be computationally expensive if we aim to
predict multiple different events.
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On the other hand, an advantage of this approach is that it is much
more direct and no assumptions are made. Such models focus only on
minimizing a loss function for the target we have specified which can lead to
higher accuracy.

. 4.3 Architecture

In the previous section, we have covered two categorizations of models,
each yielding two categories of models. All their combinations give us 4
fundamental types of models.

® TID + Poisson-based - Models that receive team IDs as the input and
predict parameters of a statistical distribution. We refer to them as
TID-DP if they model double Poisson distribution or TID-BP if they
model bivariate Poisson distribution.

m TID + classification - Models that receive team IDs as the input and
predict probabilities of particular events (classification). We refer to
them as TID-C models.

® STATS + Poisson-based - Models that receive statistics and FIFA scores
as input and predict parameters of a statistical distribution. We refer
to them as STATS-DP if they model double Poisson distribution or
STATS-BP if they model bivariate Poisson distribution.

® STATS + classification - Models that receive statistics and FIFA scores
as input and predict probabilities of particular events. We refer to them
as STATS-C models.

We were able to implement all those models as feed-forward neural
networks due to their versatility. We have designed them so that each of
them can be configured in many possibilities and many of those possibilities
are common for all of them.

All the models have a variable number of hidden linear layers followed
by a variable and optional activation function.

The difference between TID and STATS models lies in the first layer.
The first layer of the TID models consists of two parallel embedding layers
with a configurable dimension, one for home team ID, second for away team
ID. The first layer of the STATS models consists of two parallel linear layers.
Each of the linear layers processes the statistics and FIFA scores of one team.
In all the models the output of the first layer is then forwarded to a sequence
of linear layers.
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4.3. Architecture

The first layer’s embedding layers or linear layers in one model can be,
but do not have to be, identical (based on the configuration). Them not being
identical means that the first layer learns all the coefficients separately for
home and away teams. This might provide a better fit to the data if enough
data is provided. We work mostly with the variant of them being identical.

[ Linear layer ]

A
|

[ Tanh ]
A

[ Linear layer ] [ Embedding layer ]
A

[ Embedding layer ] [ Embedding layer ]

Figure 4.1: Sample TID-DP/BP model architecture

Similarly, the difference between the Poisson-based and classification
models is in the last layer. The output of the sequence of hidden layers
for the Poisson-based models represents the strengths Sg, S4 from which
the A parameters of the particular distribution are computed by applying
transformation described by equation On the other hand, the output of
the sequence for the classification models is a vector with a dimension of the
number of classes the model predicts. A softmax function is then applied to
this vector, which gives the estimated probabilities for each class.

Before the last fully connected linear layer in the sequence of hidden
layers, the league ID is fed to an embedding layer. The output of the
embedding layer is then concatenated with the current output of the sequence
of fully connected layers. This is then forwarded to the last fully connected
layer.

The last experimental model we present is a combination of STATS
and TID models for classification denoted by STATS+TID. It is a STATS
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Figure 4.2: Sample STATS-C model architecture

model as we have described, only before the last linear layer in the sequence
an output of a full TID model is concatenated (together with the embedded
league) with the current output of the sequence. The idea is to utilize all the
available information for predictions, but it may lead to an overly complex
model for the amount of data we have.

A sample architectures can be seen in figures 4.1] and The former
can represent both the TID-DP or the TID-BP model as their architecture is
the same since they differ only in a loss function. The last tanh activation
function outputs a vector of dimension two, the estimated strengths Sgr, S 4.
The latter represents the STATS-C model predicting “over/under 2.5”. The
estimated probabilities are represented by P’'(X).

B 4.3.1 Configurations

The models have a lot of hyperparameters and there are too many
configurations for us to evaluate all of them. Therefore we had to fix some of
them to a certain value. Such value was mostly tested in a few evaluations
and compared to an alternative while the performance was reasonably good.
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The value could not be tested with all the possible configurations, therefore
there might be, and probably are even better configurations. An enumeration
of hyperparameters influencing performance can be found in table 4.1l

If a hyperparameter is fixed, its value is present in the table, otherwise,
the hyperparameter is evaluated for multiple values. All the hyperparameters
are related to all the models except for those with the * symbol, which are
related only to the STATS models. “Min training samples” defines the number
of samples needed for the model to begin training and making predictions.
The learning rates were different for individual models based on which seemed
to work well.

More important are the linear layers and activations. In this thesis,
the linear layers are represented by a list of dimensions of individual layers.
To illustrate, a value [6, 4, 3] represents a model with 3 hidden linear layers -
FC1, FC2, FC3 with dimensions [6,4], [4, 3], [3, Do] respectively, where Do
is the dimension of output which is always 2 except for classification models
predicting “home/draw/away” (HDA) events. The first number in the list
determines a dimension D of the output of the model’s first layer, which
differs between TID and STATS models, but Dy is the same because the first
layer of each of them outputs two vectors, one for each team. In this case
for TID models, the dimension of the two embedding functions would be
Dy = g = 3 for each team. Similarly, the output dimension of the two linear
layers in the STATS model would be Dy = § = 3.

The activation functions tested in this work are sigmoid function, tanh
function, and ReLU, and also using no activation function is evaluated. Only
one of these options is always applied to the whole model, meaning that no
model combines two different activation functions.

hyperparameter fixed value
n matches in short-term form* 10
n matches in long-term form* 60
weighted average of statistics™ True
league embedding dimension 3
min training samples 1000
min training samples (league) 100
optimizer Adam
same first layer True
learning rate 0.0003-0.03

linear layers
activation function

Table 4.1: Hyperparameters of the models
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| W Fitting the models

Although we have designed all the models to be neural networks, per-
forming a parameter optimization by minimizing a loss function significantly
differs between the statistical and classification models. We discuss that in
this section.

A typical training of a model in machine learning is performed by
splitting the dataset into two disjoint subsets (training set and validation set),
then the model is fitted to the training set and evaluated on the validation
set. In this specific problem, during the simulation, the model is fitted to the
currently available historical data in every step. Since we do not possess too
much data, giving up a part of the data for validation becomes too expensive.

Furthermore, the models present in this thesis are mostly quite complex
and there are many input features. This in combination with an insufficient
amount of data can easily lead to overfitting. In order to utilize the full po-
tential of the data we designed the training of our models, which is performed
in every step of the simulation, to be done in the following way:

® All the data are randomly split into two disjoint subsets - training set
X and validation set X ;.

® A neural network corresponding to the model and the configuration is
initialized.

B The training of neural network is initiated while the number of iterations
is being measured. During the training cycle, the training loss (loss
measured on the X;rn) and validation loss (loss measured on the X,al)
are being monitored. There are two possible ways for the training cycle
to be interrupted:

The validation loss stops decreasing for too long. When this happens,
the model is usually overfitting the data and is unable to better
explain the variance in them. The cause of this is the model being
too complex, e.g. due to too many input variables.

The decrease in training loss drops below a predefined €. This usually
represents the model converging to certain values of parameters
and not making significant changes anymore. This may either
happen when the model is too simple and being already close to the
optimal setting of its parameters given the input, or when during
the optimization the model hits a local minimum which is a common
problem in machine learning.

® No matter which of the opportunities above interrupts the cycle, the
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number of iterations for when the validation loss was the lowest is
recorded.

® Another training is performed, but this time over all of the data. The
stopping criterion is the recorded number of iterations for minimal
validation loss in the previous training. This way we expect the model,
no matter its complexity, not to overfit the data and at the same time
utilize its full potential.

® The resulting neural net is stored and used for predicting the forthcoming
matches. Although we have designed all the models to be neural networks,
performing a parameter optimization by minimizing a loss function
significantly differs between the statistical and classification models. We
discuss that in this section.

B 4.4.1 Poisson-based models

In this work, we fit the Poisson-based models to the resulting scores
of matches. It is performed by minimizing over their weighted negative
log-likelihood function:

N
=1
N
—lnL:Zwi-lnP(GHﬂ- :.CL‘Z',GAJ' :yiw) (4.9)
i=1

where 6 represents the parameters of the model, w; is a weight of a
match sample and P is defined by the concrete Poisson-based model. As a
weighting function, we use the same as for the weighting of statistics in the
STATS model. That is the exponential time weighting introduced in Dixon
and Coles [1997| as an improvement of the double Poisson model

wy; = e A (4.10)

where a = 0.002 is a metaparameter and T is the number of days
passed since when the match was played.

During training the double Poisson model outputs the current estimate
of Aii, Aa,; for all the input matches with resulting scores x; : y;. For such a
score a negative log-likelihood has to be computed.

The bivariate Poisson model outputs also the parameter x and the
optimization is performed with respect to that as well.
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B 4.4.2 Classification models

We fit the classification models directly to our target classes. As a loss
function, we decided to use a cross-entropy loss that is defined for a sample ¢
as

C
- Z Yic - lnpi,c (411)
c=1

where C' is the number of classes (e.g. C = 2 for “over/under 2.57),
Yic is a binary indicator (y;. = 1 if ¢ is the correct class for the sample 7)
and p; . is the estimated probability of class ¢ by the model.

B 4.4.3 Sample evolution of loss

For illustration purposes, in figures 4.3 we present the training loss
during training Poisson-based (left) and classification (right) STATS models
both with two inner layers. There are three losses in each figure. The training
and validation losses represent the first training as described above. The
“train+validation” losses represent the second training on all available data.
We can see them stop at the minima of the validation loss as it was designed.
The losses are so smooth most likely because each step of adjusting the model
parameters is always performed over the whole training dataset. Since the
validation losses are decreasing, we can see that the models are learning.
Moreover, we can notice some overfitting for both the models represented by
the slowly increasing validation loss, which is more visible for the classification

model.
STATS-BP STATS-C
H 0.715 i
— train | — train
38 —— validation 0.710 | —— validation
—— train+validation ' —— train+validation
0.705
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o o
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Figure 4.3: Loss of STATS models during sample training

24



Chapter 5

Experiments

In this chapter, we describe the experiments and their results. There
were several goals. One of the goals was to examine how hard it is to predict
the score-related events since it was not done thoroughly yet. Also, we
aimed to create new models with the potential of providing better prediction
results than the baseline models and with the possibility to be easily modified,
possibly improved, and built upon. Another goal was to verify the value of
additional data on top of the score results for predicting soccer events. Below
we provide the description of series of experiments that examine the models
from different perspectives.

. 5.1 Evaluation

The typical evaluation of predictive models is such that the training
dataset is divided into two parts - training set and validation set. The
model is fitted to the training set and the expected quality of such model is
measured on the validation set. This is a very simple yet effective approach.
Unfortunately due to the nature of our problem, meaning the fact that our
data are time-dependent, we can not use this approach for most of the models.

In this problem for any match, we can utilize the knowledge of all the
historical results happening before this match. Of course, we can not include
in training any of the matches from the future. One approach would be to
split the data in a specific date d into two parts - B (all matches happening
before d) and A (all matches happening on or after d), then training on
all the B dataset and make predictions for all the matches from A dataset.
This procedure is suboptimal. For most of the matches in A, there are other
matches that take place before them and the model might utilize their results
for the predictions.

We have designed and implemented an environment as an entity
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that simulates real-world predicting of time-dependent soccer events. This
environment takes as input all of the data and the model. Based on the
required data features of the model the environment builds a dataset for the
session. When everything is set, the simulation starts. During the simulation,
the environment starts at some specific date and for every day it performs
the following:

B [t gives the model all of the historical results so that the model can
fit the data that include the latest results. This is very important for
the double Poisson model described below since it tries to model the
strengths of individual teams and the most recent results are the most
relevant.

B [t gives the model matches that will happen in the near future so that
the model can make predictions for them.

B In the case of simulating betting on the market odds it evaluates the bets
given by the model and updates its current financial balance (bankroll)
based on the results.

. 5.2 Evaluation metrics

In this section, we describe the evaluation measures and their charac-
teristics.

B 5.2.1 Accuracy

Accuracy is one of the most basic evaluation metrics for classification
tasks and should be included. One has to be careful using this for evaluating
the quality of a model since there is a common mistake of neglecting prior
probabilities of individual classes. A 97% accuracy does not mean anything
if we do not have any information about the dataset. If a majority class has
a prior probability of 97%, achieving such accuracy is trivial with a so-called
naive model that simply predicts always the majority class.

B 5.2.2 Brier score

The Brier score is a scoring rule proposed in Brier (1950 that evaluates
the quality of probabilistic predictions.

Most of the examined prediction problems have only two classes and
for their evaluation, we use the Brier score in this thesis. The Brier score for
binary events is defined as
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N
1
BS = — Z(yc,i — Desi)? (5.1)
N =
where N is the number of predicted instances, ¢ is any of the two
classes since the result is the same, y. is a binary indicator for instance 7, and
Pe is the estimated probability of class ¢ for instance ¢ by the model. This

rule can be understood as a mean squared error of the forecast.

B 5.2.3 Ranked probability score (RPS)

The ranked probability score was introduced in Epstein [1969. This
metric is used for evaluating ordinal outcomes. With using this metric the
whole estimated probability distribution is taken into account. In Hubacek,
Sourek, and Filip Zelezny 2019/ and Wheatcroft 2019, the authors pointed
out that the distribution does not have to correspond to the outcomes
being ordinal. Regardless of that, this metric is heavily used for evaluating
“home/draw /away” predictions in soccer. Predicting “HDA” events is not the
main focus of this thesis, but we include it for a more proper comparison of
models and therefore we include this metric as well. The RPS for one sample
is defined as

1 Lo/ 2
RPS = (Z(yc - pc)) (5.2)
r—1¢«
i=1 \c=1
where C is the number of classes, y. is a binary indicator of the correct
class and p. is the estimated probability of class ¢ by the model. For evaluation
of a quality of a model the average RPS over all samples is computed and

the lower the score, the better.

. 5.3 Evaluated models

B 5.3.1 Baseline models

As our baseline models, we have chosen the original double Poisson
and bivariate Poisson models. That is due to them being simple yet still very
competitive (Ley, Wiele, and Eetvelde 2019)) while using only the team IDs
and resulting scores as an input. With our notation, they can be denoted by
TID-DP and TID-BP with no hidden layers and no activation functions.

Furthermore, we include a naive model mainly for more proper evalua-
tion of accuracy, but for better comparison of other metrics as well.
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B 5.3.2 Our models

In the section [4.3| we have described the four fundamental types of
model:

® TID + Poisson-based
® TID + classification
m STATS 4+ Poisson-based

B STATS + classification

For each of these types, we have created many configurations. Each
of them was evaluated on all types of events - “over 2.5”, “both teams to
score” and “home/draw/away’. The variants of individual fundamental types
differ mostly in the number and dimensions of linear layers and activation
functions.

The most common layer configurations we have experimented with
are [], [4], [4,4], [4,6,4]. [] denotes using no hidden layers at all. From some
initial experiments, it seemed that more layers would make the models overly
complex.

For most of the configurations, we have tested all of the mentioned
activation functions - sigmoid, tanh, ReLLU and also using no activation
function.

B 54 Experimental design

Due to the large number of possible configurations of our models we
had to perform a hyperparameter optimization. We could not evaluate all
of them so we were observing the results of some and we have fixed some of
the hyperparameters to values that seemed to work reasonably well. Even
though, the number of configurations in the experiments is high and therefore
we have separated a part of the data to which we refer to as a test dataset.
The rest of the data, that was used to train and validate all of the models,
will be referred to as a training and validation (T&V) dataset.

The test dataset will be used for providing an unbiased evaluation
of the final model. The final model will be chosen based on the results on
the T&V dataset. It is necessary because such an extensive hyperparameter
optimization can have a similar effect to model overfitting on a training
dataset. The hyperparameter values, that were picked because they had the
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best results on the T&V dataset, might be suboptimal due to a chance and
they could perform worse on another set of samples.

For the test dataset, we have chosen the last two seasons (2019/2020
and 2020/2021), because for those we were able to retrieve market odds
for the events we focus on. Unfortunately, the coronavirus crisis largely
impacted the development and consistency of the seasons. Moreover, the
impact differs between leagues as some of them were only paused but finished
a few months later, but others stopped and never finished. Therefore there
are fewer matches and also we might expect interruptions and maybe even the
absence of soccer fans in the stadiums to make the matches less predictable.
Moreover, there are not many matches from season 2020/2021 in the dataset
because the data were retrieved only a couple of months after the beginning
of the season.

We should mention that not for all of the matches predictions were
made. Each type of model is restricted by some rules that define which
matches the model is not supposed to make predictions for. The models using
team IDs as their input features are not predicting matches in the first 6
rounds of every season because the teams change a lot over the summer due
to transfers of players. The models using the long-term form of teams are
not predicting matches with a team that does not have a history of 60 played
matches. Since there are new teams incoming every season from lower leagues
that do not have any history, it filters a lot of the matches from the original
amount. In the evaluation, we take into consideration only the matches
predicted by all of the models tested. In the T&V dataset, it constitutes
approximately 3500 matches, in the test dataset, it is almost 3000.

As an approach for the hyperparameter optimization on the T&V
dataset, we have chosen a simple grid search. We have manually specified
a subset of hyperparameter space that was exhaustively searched through.
The hyperparameter spaces were not identical for different types of models
due to their different characteristics of them and the fact that some of the
hyperparameters are not present in other models. We examine the results
of the evaluation on the T&V dataset from different perspectives, such as
accuracy, Brier score, or ranked probability score. Then we choose the final
models based on the results and this model is tested on the test dataset.

B 5.4.1 Betting against bookmaker

Because we were able to retrieve the odds for the final seasons, we
have evaluated the final model also by betting on the market based on the
predictions. In this thesis we work with decimal odds represented by a value
ox € R,ox > 1 where X is the event we can bet on. For instance opo.5 = 2.2
means that if we bet 1 unit on “Over 2.5” and we win, we receive 2.2 units
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back, which makes a profit of 1.2 units.

We can easily derive a probability of event happening that corresponds
the odds as p,(X) = i If for an estimated probability of the event X by

our model p,,(X) it holds that p,,(X) > po(X), the expected value of this
bet for us is positive, therefore we shall bet.

For the evaluation of the models on the market odds we use three
different strategies - “unit-loss”, “unit-win” and “unit-impact” (Barge-Gil and
Garcia-Hiernaux 2020). While using any of these strategies, we bet b units
on every odds for which p,,(X) > p,(X) while the amount b is determined by
the strategy. The “unit-loss” strategy is trivial, it always bets 1 unit. While

using the “unit-win” strategy, we bet

Cuw
b= (5.3)

where ¢, is a constant, the potential profit of every bet we make. The
“unit-impact” instead of holding constant the potential loss or win, it holds
constant the difference between them, which is achieved by betting

ox — 1

(5.4)

ox
where ¢; is the constant difference.

Furthermore from the odds, we have derived estimated probabilities of
individual events so that we could evaluate all the metrics for the bookmaker
as well for comparison with our models. Because the real market odds are
not fair it holds that

Y po(X)>1 (5.5)

XeQ

where 2 is a set of all possible outcomes in the classical sense. As
an estimate of the bookmaker’s predicted probabilities, we have normalized
Po(X) so that its sum over  is 1.

Pt (X) = Po(X)

B ZX’eQ Po(X') (5:6)
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Chapter 6

Results and discussion

In this chapter, we present the results of the experiments. Since there
are many different types of models, multiple events, and two datasets, there
are many outcomes and we highlight the most interesting insights. In the
table |6.1) we can see the resulting values for all the metrics. The table is
divided into three sections, each one for one type of events predicted - “BTTS”,
“02.5” and “HDA”. The left three columns containing numbers represent the
results on the T&V dataset and the right ones represent the test dataset. The
abbreviations ACC, Brier, RPS, xEnt stand for the metrics accuracy, Brier
score, Rank Probability Score, and cross-entropy respectively. Furthermore,
in the O2.5 section, an evaluation of the bookmaker’s predictions is included.
For easier readability, we have separated baseline models, Poisson-based
models, classification models, and bookmaker by a thin line. A bold value
represents the best result amongst our models for the metric in that type of
event. The final configurations of the models can be found in table 6.2l

. 6.1 Baseline models

In the table, we can see the results of the naive model and the baseline
models. We should mention that since “BTTS” is a binary classification prob-
lem and the accuracy for baseline models is below 50%, we can paradoxically
swap the predictions and achieve accuracy of 1 — A, where A is the original
accuracy. But even though, the baseline models perform significantly worse
on “BTTS” in all metrics than the naive model which is not very surprising.
The DP model uses only a single value for each team for estimating the distri-
butions underlying the resulting scores, whereas BP adds also a x parameter
representing some dependency between the distributions. Those models are
very simple and indirect predictions of “BTTS” seem to be inappropriate.

Predicting “O2.5” was a little bit better, but the models only slightly
outperformed the naive model on the test dataset. This might mean that the
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models were learning some variation of the data, but were not able to predict
the probabilities correctly enough.

On the contrary, the results of predicting HDA are much better for
the baseline models. One of the reasons for evaluating the performance on
the “HDA” was to be sure that the models are correctly implemented.

In order to explain the results, one can imagine the estimated proba-
bility distribution of score for a match as a matrix

Poo Foa
Pio Pigo... (6.1)

where Pg,, ¢, is the estimated probability of resulting score G : G 4.
The most probably correct explanation for the mentioned results is the size
and shape of the parts of the matrix representing the particular events. It is
very hard to predict all the probabilities very precisely, but it can be easier
to model some parts of the matrix than others. We compute such a matrix
from only up to three parameters and overestimation and underestimation of
some probabilities are inevitable.

These models use mainly the strengths of both teams for constructing
such matrix, and the results for events “home”, “draw” and “away” share
an important common characteristic. For instance, all the score results
corresponding to the home team winning share the characteristics that the
home team scored more goals, which is intuitively related to the strengths.
Whereas there is no such characteristic for “BTTS” or “02.5”, that could be
easily connected to strengths.

Surprisingly, the DP model always performed slightly better than the
BP model. It might be due to the chosen copula function or the method of
modeling its parameter x and other approaches could be more suitable.

. 6.2 Poisson-based models

In this section, we describe the results of the TID-DP, TID-BP, STATS-
DP, and STATS-BP models. When comparing the baseline models with our
Poisson-based models, we can see that generalizing the idea of DP and
BP into simple neural networks proved to be a significant improvement in
predicting “BTTS” and “O2.5”. Considering “BTTS”, the models had troubles
outperforming the naive model, but they are no longer noticeably worse.

In predicting “02.5” the improvement is even more visible. The
models clearly outperform both the naive and the baseline models. We can
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BTTS
T&V Test
Model ACC  Brier xEnt ACC  Brier xEnt
Naive 53.10 0.2490 0.6912 : 53.44 0.2488  0.6908
DP 4897 0.2525 0.6982 : 48.15 0.2522  0.6976
BP 48.68 0.2521 0.6975 | 49.36 0.2516  0.6963
‘TID-DP 53.31  0.2484  0.6899  53.89 0.2481  0.6893
TID-BP 53.54 0.2476 0.6883 52.61 0.2488  0.6908
STATS-DP 55.00 0.2484 0.6900 ' 52.65 0.2491  0.6914
STATS-BP 53.17  0.2487  0.6906  52.99  0.2495  0.6921
‘TID-C 53.22  0.2485  0.6902  53.23 0.2489  0.6910
STATS-C 53.63 0.2476 0.6884 55.41 0.2463 0.6857
STATS+TID-C 53.36  0.2505  0.6945 53.96 0.2476  0.6884
02.5
T&V Test
Model ACC  Brier xEnt ACC  Brier xEnt
Naive 53.62 0.2487 0.6905 : 52.92 0.2491 0.6914
DP 52.76  0.2465 0.6858 : 53.58 0.2476 0.6884
BP 52.67 0.2468 0.6865 | 53.27 0.2479  0.6890
"TID-DP 55.09 0.2441  0.6811  56.55 0.2434  0.6798
TID-BP 56.60 0.2432  0.6796 55.72  0.2450 0.6833
STATS-DP 55.37 0.2453  0.6837 54.31 0.2468  0.6868
STATS-BP 55.64 0.2443  0.6814 = 55.14 0.2465  0.6860
‘TID-C 57.20  0.2430 0.6790 @ 57.14 0.2447  0.6825
STATS-C 58.20 0.2421 0.6772 58.01 0.2418 0.6767
STATS+TID-C  55.19 0.2462 0.6857 = 57.14 0.2423  0.6776
‘Bookmaker 1 59.42  0.2391  0.6709
HDA
T&V Test
Model ACC RPS  xEnt ACC RPS  xEnt
Naive 45.26  0.2288  1.0656 @ 41.34 0.2319  1.0799
DP 53.73  0.1967  0.9705 50.50 0.2094 1.0163
BP 53.48  0.1970 09719  50.40 0.2096  1.0165
‘TID-DP 54.64 0.1966 0.9685 4991 0.2084 1.0123
TID-BP 53.22  0.2029  0.9880 48.15 0.2135  1.0277
STATS-DP 53.45 0.1990 0.9765 50.78 0.2054 1.0046
STATS-BP 54.64 0.1965 0.9693 51.19 0.2048 1.0027

Table 6.1: Experimental results of evaluated models on both T&V and test
datasets
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Model Layers  Activation FIFA score
TID-DP 4] None -
TID-BP 4] Tanh -
STATS-DP 4] Tanh True
STATS-BP [4, 6, 4] None True
TID-C (02.5) [4,4]  Tanh -
TID-C (BTTS) [4,4]  Tanh -
STATS-C (02.5) [4, 6,4] None False
STATS-C (BTTS) [4, 6, 4] Tanh False
STATS+TID-C (02.5)  [4, 4] Tanh True
STATS+TID-C (BTTS) [4, 4] Tanh True

Table 6.2: Final configurations of individual types of models

say that the models were able to learn some variance of the data. There is a
mostly moderate decrease in the quality of metrics between the T&V and
test datasets which was expected given the number of configurations we have
been choosing from. So far, we can see that TID models are more successful
than STATS models. A reason for that might be that the input data are too
wide and the model is too complex for predicting the strengths of the teams.

On the other hand, the improvement is not so visible in predicting
“HDA”. This is also the only type of event for which the STATS Poisson-based
models achieve better results than TID.

In the “HDA” results we can also notice the largest decrease in perfor-
mance between the T&V and test datasets - 3-5 percentage points difference
for all the models. The accuracy of the naive model gives us the ratio of
matches in which the home team has won since “home” is the majority class.
That means that in the last two seasons there was a significant decrease in
home teams winnings. These last two seasons were severely impacted by the
coronavirus crisis and soccer fans were mostly banned from attending the
matches. This could have reduced the effect of home advantage since most of
the fans in a stadium were usually supporting the home team. This might
be the reason for the decrease in quality of the models in the test dataset,
therefore it does not necessarily mean the performance is poor.

. 6.3 Classification models

In this section, we describe the results of the TID-C, STATS-C, and
STATS+TID-C models. It should be mentioned that classification models
denoted by the same name predicting the different types of events are in-
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dependent. For instance, the TID-C model predicting “BTTS” and TID-C
model predicting “0O2.5” are different models. On the other hand for each
type of Poisson-based model, only one representative was chosen for all three
types of events. For this reason, we do not include classification models
predicting “HDA”, they would be mutually independent with those predicting
score-related events and thus less relevant for this work.

It is noticeable that the classification models perform generally better
than Poisson-based models, which suggests that the classification approach is
better for predicting these types of events despite its disadvantages.

Considering “BTTS”, results of TID-C are very similar to the naive
model’s and it does not really perform better than TID Poisson-based models.
The STATS-C on the other hand clearly outperformed all of the other models.
Even though its accuracy was not the best on the T&V dataset, it showed to
have potential with the results on the test dataset.

In predicting “02.5”, the STATS-C model stands out. It has consis-
tently performed the best in all the metrics. Also, the other classification
models have achieved better results than the rest of the models.

By combining the STATS and TID models, the resulting STATS+TID-
C models have probably become too complex and the outcomes have worsened
in comparison to the STATS-C models. There might be better ways of
integrating those two types of models which is a potential for future work.

Furthermore, we can see that the decrease in quality of the classification
models on the test dataset is negligible, sometimes the performance even
increases.

Given the results of the STATS-C models, we can say that additional
data can be very helpful in predicting score-related events, which is one of
the main findings of this thesis. Furthermore, there is a large potential for
improving the input data by adding or removing some features, or processing
them in a different way.

B 6.4 Other insights

One can notice that none of the models were able to perform as well
as the bookmaker did, which was not our primary goal. It is generally very
hard to do that, but it shows that there is great potential for improving the
models we have presented.

The “BTTS” event proved to be very difficult to predict. Baseline
models were not even able to learn the majority class. Also, most of our
models were not able to outperform the naive model. On the other hand,
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even though our models were not as successful as the bookmaker in predicting
“02.5”, the models have significantly outperformed both the naive and the
baseline models and demonstrated that they have great potential.

Another interesting finding is that the best predictor for good results
of predicting the score-related events on the test dataset proved to be the
Brier score. The models that performed the best on the test dataset had
always the lowest Brier score on the T&V dataset, and the pattern is visible
for other models as well. The cross-entropy seems to be strongly correlated
with the Brier score and proved to be useful as well. On the other hand,
the accuracy was not a good predictor; there are models whose accuracy has
dropped or even increased significantly between the datasets.

In the table[6.2] we present the final configurations chosen for each type
of model based on the best results on the T&V dataset. For the TID models,
it was counter-productive to employ more than two inner layers. Except for
the STATS-DP, STATS models have proved to work best with at least two
inner layers.

Some models worked better with the tanh activation function, for
other models it was best to not include any activation function. We are aware
that the resulting function making predictions becomes linear, but due to
great performance, we have included it in this thesis. On the contrary, the
sigmoid and ReLLU have never outperformed the before mentioned options.
The decrease in the quality of the models was significant.

Also for some models, it was beneficial not to use the FIFA player
scores for making predictions. This might be due to the STATS models being
already very complex and adding additional features while using a not so
large dataset could be hurtful. There might be better ways of including such
data in our models. For instance, the data might not have to be included in
the first layer’s input but could be added in a later stage of the computation.
This is another potential for future work. Other interesting results might be
provided by designing a model using only FIFA player scores as input data.

B 65 Profitability on the betting market

In this part of the experiments, we provide the results of evaluating
the models by betting against the bookmaker on the “over/under 2.5” market.
For comparing the models in terms of profitability we chose the “unit-win”
strategy because of the best results, but the differences were minor and we

will discuss that as well.

The results can be seen in the figure 6.1 The figure is divided into
two charts, one depicting the running absolute profit of the Poisson-based
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models, the second one represents the classification models. The naive and

the baseline models are represented by dotted lines. In the charts, a ‘day
represents a day in which at least one betting opportunity takes place.

It should be mentioned that it is generally very hard to make a profit
by betting against a bookmaker in the long-term for two reasons. First is
that the bookmaker’s predictions are already very good, which we can see for
example in the experimental results on our test dataset. The second reason
is that the bookmaker’s odds are unfair. For the purpose of this thesis, there
is no need to understand how exactly the unfairness work. One can imagine
it as a percentage fee for each bet, for instance, 4% of the bet amount. Let’s
have a model that is able to give better predictions than the bookmaker so
that given fair odds, the model would generate an average profit of 1% per
bet. Unfortunately given that we have to pay a fee of 4%, we lose an average
of 3% on every bet.

The first thing to notice in the charts is that the baseline models
generate similar losses to the naive model, approximately 115-135 units,
which is not a large difference in this scale.

In the upper chart, we can see that none of the Poisson-based models
was able to be significantly less loss-making than the baseline models. The
smallest loss of 107 units was generated by the TID-BP model, whereas a
Poisson-based model whose performance was the best on the test dataset,
the TID-DP has finished with the largest loss amongst them. But once again,
those differences are insignificant and a change could have played a role in
this as well.

In the bottom chart, it can be seen that the STATS+TID-C model’s
performance is poor as well. On the contrary, the other classification models
achieve far better results. TID-C finishes with a loss of only 79 units, which
seems to be a great result in comparison with other TID models. But by far the
best result was achieved by the STATS-C which finished the incomplete two
seasons being profitable, 415 units to be specific, which is a very surprising
result given the unfairness of the odds and the fact that on the test dataset
the bookmaker has far better performance in the evaluated metrics.

There are several thoughts on how it is possible. The first one is
simply a chance. The more models we evaluate, the larger is the chance that
a profitable model occurs. It would be interesting to evaluate this model
on a larger dataset, but acquiring more of such detailed data is problematic.
One option is to wait several years, gather the new data using the code in
this project, and re-evaluate the models. Another reason for this result being
possible, as was described in Hubadek and Sir 2020, is the disadvantage of a
“market maker”. “Market maker” creates a large set of odds and our model
as a “market taker” can bet only on those odds that it is confident enough to
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do so. The third reason is that the model has learned to be better than the
bookmaker on different matches. Nonetheless, the results of the STATS-C
model are very promising.

We further provide a comparison of the models and the betting strate-
gies in terms of “Return on Investment” (ROI). ROI is a metric measuring
the profitability of an investment, more specifically the amount of return
relative to the investment. In this case, we calculate ROI for a model as

P
I== 2
RO T (6.2)
where P is the absolute profit and T is the total sum of resources the

model has bet.

This gives us another perspective on the comparison of the performance
of the models. In the figure [6.2| we can see that most models achieve ROI of
approximately from —7 to —8%. An interesting result is that the BP model,
which is the worst-performing in terms of absolute profit, has actually better
ROI than the TID-DP model. It is because even though the TID-DP has bet
fewer resources, its loss was almost as large as the one of the BP model.

In the figure we can also see that the differences between the strategies
were minor, only some models were noticeable more successful using the unit-
win strategy. For a more proper comparison of the strategies, a significantly
larger dataset would be needed.
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Profit of regression models using unit-win betting strategy
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Figure 6.1: Profit of the evaluated models on the test dataset
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Figure 6.2: Comparison of ROI between the models and the strategies
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Chapter 7

Conclusion

One of the goals of this thesis was to compare different approaches
to modeling score-related events in soccer. As baseline models, we have
chosen the original double Poisson (DP) and bivariate Poisson (BP) models
whose competitiveness was shown in Ley, Wiele, and Eetvelde 2019 Our
models were either Poisson-based or classification models. The Poisson-based
models are a generalization of the DP and BP models. In this work, we have
found out that even though the original DP and BP models are good for
predicting “HDA” events, their performance in predicting “BTTS” and “02.5”
was very poor. Although our Poisson-based models did significantly improve
the baseline models on “BTTS” and “02.5” events, they have still performed
worse than the classification models, which proved to be the best approach
out of those evaluated. This is probably due to its advantage of estimating
directly the probabilities of the individual events.

Another goal was to test the hypothesis that detailed data can be useful
in forecasting score-related events. This was achieved by dividing all the types
of models into two categories - TID and STATS models. TID models were
taking as input for every match only the team IDs, date, and resulting scores,
whereas the STATS models were receiving detailed statistics for every team
optionally with FIFA player scores. On the test dataset, the STATS models
have always significantly outperformed the TID models, therefore we believe
that additional data provide a large potential for modeling score-related
events.

We have also evaluated the models by betting on “over/under 2.5
goals” market odds. As expected, mainly due to unfair odds, most of the
models were not profitable while Poisson-based models performed generally
worse than classification models. Surprisingly STATS classification model
happened to be profitable over the course of two incomplete seasons. There
might be multiple reasons for this happening and more data is needed to
properly evaluate the model’s potential, but the results are very promising.
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. 7.1 Future work

Based on the results in this thesis, many future work opportunities
arise. For many of the steps in this work we have chosen only a small subset
of possible approaches for testing, but the others could have worked better.

Retrieving more data samples for this problem would be a hard task,
but the preprocessing of the data could be done differently. For instance,
variances of individual statistics might be included along with the averages.
Also instead of using league ID as a feature, league statistics such as goal
average per match could be better utilizable by the model.

The models themselves are very modular. Because of the large number
of possible architectures and configurations, it is more than likely that some
would improve the current performance significantly. For instance, some data
such as FIFA scores might be employed separately from the match statistics
or even in later stages of computations. Also, some regularization techniques
or different loss functions might be used. Our regression models were based
on the Poisson distribution, but other approaches might be more suitable,
such as a bivariate Weibull count model introduced in Boshnakov, Kharrat,
and McHale 2017.

For further validation of our findings, an evaluation of our models on
the upcoming seasons could be done.
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Appendix A

List of attachments

® Source code for the work done in this thesis. We declare that all the
source code was created by us.
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