
Instructions

LearnShell is a modular system for managing and performing exams with programming assignments

in scripting languages, especially Shell. LearnShell currently runs on a simple infrastructure with 2

servers and a number of Docker containers running inside. Scaling, load-balancing, and reporting in

the current infrastructure are inefficient.

1. Analyze the current infrastructure architecture and propose improvements for container

orchestration.

2. Compare Docker Swarm and Kubernetes platforms in general and their suitability for orchestrating

LearnShell containers.

3. Implement basic orchestration routines for LearnShell containers.

4. Configure GitLab CI for deploying some of the modules automatically.

5. Make sure you document your code.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 10 February 2021 in Prague.

Assignment of bachelor’s thesis

Title: Cluster infrastructure for LearnShell

Student: Samuel Majoroš

Supervisor: Ing. Jakub Žitný

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Web Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

Cluster infrastructure for LearnShell

Samuel Majoroš

Department of Software Engineering
Supervisor: Ing. Jakub Žitný

May 12, 2021

Acknowledgements

I would like to thank my supervisor, Ing. Jakub Žitný, for his endless patience
and enthusiasm as well as expert advice provided during the course of writing
this thesis. I would also like to thank my close ones for their unrelenting
support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 12, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Samuel Majoroš. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Majoroš, Samuel. Cluster infrastructure for LearnShell. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

Hlavným cieľom tejto práce je uvedenie funkčnej klastrovej infraštruktúry pre
projekt LearnShell 2.0, ktorý je používaný Českým vysokým učením tech-
nickým v Prahe. Aby sme dosiahli tento cieľ, najprv sme opísali súčasnú
infraštruktúru a posúdili dnešné najznámejšie technológie pre kontajnerovú
orchestráciu. Výsledkom je jednoduchý klaster, na ktorom bude LearnShell
hostovaný, a zadefinovaný je CI/CD proces pre v klastri existujúce servisy.
Náš kód sme pozorne zdokumentovali a kód uvádzame vo svojom vlastnom
repozitári.

Klíčová slova Kubernetes, Helm, Docker, Docker Swarm, Gitlab CI, Google
Cloud, Linux, LearnShell

vii

Abstract

The main goal of this thesis is to present a functional cluster infrastructure for
the LearnShell 2.0 project used by the Czech Technical University in Prague.
To achieve this, we have described the current infrastructure and scrutinized
today’s pre-eminent technologies for container orchestration. As a result, we
present a basic cluster on which the LearnShell project is to be hosted, and
have also defined CI/CD routines for the services contained therein by utilizing
Gitlab CI. We have documented our code thoroughly and display our code in
a separate repository.

Keywords Kubernetes, Helm, Docker, Docker Swarm, Gitlab CI, Google
Cloud, Linux, LearnShell

viii

Contents

Introduction 1
Motivation . 2

1 Architecture of LearnShell 3
1.1 Overview . 4
1.2 Architecture . 4

1.2.1 Proxy server . 5
1.2.2 Front end . 5
1.2.3 Back end . 5
1.2.4 Distributed task queue 6
1.2.5 Database . 6
1.2.6 Generator . 6
1.2.7 Evaluator . 6

1.3 Potential improvements . 7
1.3.1 High availability . 7
1.3.2 Load balancing . 7
1.3.3 CI/CD . 8
1.3.4 Staging environment . 8
1.3.5 Logging and monitoring infrastructure 9

2 Containerization and Orchestration 11
2.1 Theoretical concepts . 12

2.1.1 Virtualization . 12
2.1.2 Containerization . 14
2.1.3 Orchestration . 15
2.1.4 Cloud computing . 15

2.2 Technologies . 16
2.2.1 Docker . 16
2.2.2 Docker Compose . 17

ix

2.2.3 Docker Swarm . 18
2.3 Kubernetes . 19

2.3.1 History . 19
2.3.2 Architecture . 20
2.3.3 Building blocks . 21
2.3.4 Authentication and authorization 23

3 LearnShell Cluster Analysis 25
3.1 Docker Swarm vs. Kubernetes 26

3.1.1 General comparison . 26
3.1.2 Project-specific comparison 27

3.2 On-premises vs Cloud . 29
3.3 Package manager . 30
3.4 Private container registry . 31
3.5 Continuous integration and continuous deployment 33

4 LearnShell Cluster Implementation 37
4.1 Technologies . 38
4.2 Project structure . 38
4.3 Functionality . 40

4.3.1 Documentation . 40
4.4 Build script in-depth . 40

4.4.1 make help . 41
4.4.2 make clean . 41
4.4.3 make . 42

4.5 Deployments . 43
4.5.1 Deployment configuration 45

4.6 StatefulSets . 48
4.6.1 PostgreSQL . 49
4.6.2 Redis . 51

4.7 Networking . 52
4.7.1 Services . 52
4.7.2 Ingress . 53
4.7.3 Ingress configuration . 54

4.8 Private container registry . 56
4.8.1 Authentication . 56
4.8.2 Potential improvements 57

4.9 CI/CD implementation . 58
4.9.1 Gitlab Runners . 58
4.9.2 CI/CD pipeline configuration 59
4.9.3 Potential improvements 62

Conclusion 63

x

Bibliography 65

A Acronyms 69

B Kubernetes diagram legend 71

C Contents of enclosed CD 73

xi

List of Figures

2.1 VM-based virtualization with VMware [1] 12
2.2 Container-based virtualization with Docker [1] 14
2.3 Architecture of a Kubernetes cluster [2] 20

3.1 Visualization of typical CI/CD pipelines [3] 33
3.2 LearnShell CI/CD pipeline . 34

4.1 Directory tree of the LearnShell Cluster project 39
4.2 Deployments within our cluster . 44
4.3 PostgreSQL Helm chart . 49
4.4 Redis Helm chart . 51
4.5 Ingress Helm chart . 53

xiii

Introduction

As we become ever reliant on internet-based technology in our daily lives, it
stands to reason that there is a pervasive demand for software that is safe,
accessible, and most importantly, dependable. More and more, we are growing
accustomed to using the internet for even the most trivial of things, such as
ordering food or looking up the correct spelling of certain words. Therefore,
web applications are ever-increasingly throttled by an uncountable amount
of requests from users, and it is of great importance that technology adapts
to this challenge by employing new methods of creating an infrastructure
that is scalable in a way that makes it impossible to be overwhelmed by too
many requests to the point of system failure. In this thesis, we shall attempt
to explain the theory behind, as well as the need for, containerization and
orchestration as catch-all solutions to many problems troubling today’s web
applications. More specifically, we shall try and implement a basic cluster on
which the LearnShell portal of the Czech Technical University in Prague could
run in the near future. In summary, these will be the main goals of the thesis:

• Analyze the current infrastructure architecture of LearnShell.
• Explain the virtues of containerization and orchestration, as well as their

history.
• Compare existing orchestration technologies used in practice as well as

their suitability for orchestrating LearnShell containers.
• Implement a basic cluster based on cutting-edge orchestration systems.
• Explore implementation of continuous integration and continuous de-

ployment in LearnShell, specifically the newly created cluster.

1

Introduction

Motivation
This thesis is motivated by current inefficiencies in the LearnShell system
related to scalability, availability, and load balancing, as well as the current
absence of complex logging, monitoring, and reporting. By researching current
state-of-the-art technologies for containerization and orchestration, our aim is
to present a solution to many of these problems by migrating to a cluster-
based architecture. Such a solution would not only enable us to benefit from
high availability and ease of scaling LearnShell components depending on our
day-to-day needs but also potentially give us a platform for effective CI/CD
processes. During the course of implementing our cluster, we shall try and
explore all of these avenues and find ways to benefit from them.

2

Chapter 1
Architecture of LearnShell

In this chapter, we shall take a closer look at the architecture of LearnShell.
Before that, let us briefly describe its history. The first version of Learn-

Shell was designed and built by Karel Jilek, a student of the Czech Technical
University in Prague. In his bachelor’s thesis, titled "Command and script
testing system for bash language", he explains that the goal of this system
would be to create an environment that would be able to verify the validity
of a Bash script by simply comparing the output of that script with the out-
put provided by the system. [4] Later on, LearnShell would be used in the
course "Programming in Shell 1" to evaluate assignments and exams specific
to Bash programming. Eventually, a newer version, called "LearnShell 2.0"
was introduced. This version would build upon the old one, providing new
features, such as a plagiarism detection system, a logging system, as well as
introducing a newer front-end design. And last but not least, a cluster would
be created on which the application was to be deployed. In this chapter (and
by extension this thesis), we shall focus on describing the state of affairs in the
2.0 version, as this is the version on which work is being done at the moment.

Now, let us begin with an overview of the architecture. Next, we shall
focus on each separate piece of the puzzle as well as the tech stack in use.

3

1. Architecture of LearnShell

1.1 Overview

The current production-ready version of LearnShell is composed of six con-
tainers that are connected to each other on their local network, alongside an
evaluator service that runs on its own server. Each of those services fulfills a
specific role, as we will elaborate in the following subsections. In practice, the
term for this is "microservice architecture", which can be succinctly described
as a collection of small, autonomous services that work together. [5]

In general, such an architecture adheres to principles of deployability and
modifiability. [?] Meaning that by compartmentalizing your application into
several smaller pieces, one can easily modify and later, deploy one part of the
entire application without having to include the other parts, therefore avoiding
issues such as having to compile the entire application after changing just one
small piece of it. It is therefore only logical that in the case of LearnShell,
lightweight, easily configurable containers, in the form of Docker containers,
are used to divide the application into smaller parts, or packages. Not only
that, but these containers are fairly simple to get running via configuration
files. These containers communicate with each other via HTTP requests that
work like glue holding the entire application together. [6]

In the case of LearnShell, six containers in total are used as of right now.
In the following sections, we shall briefly explain the functionality of each
containerized package (plus the evaluator) in concise terms, as well as the
technologies used by those packages. However, to get a full understanding
of the inner workings of the application, it is advised to read the bachelor’s
thesis of Karel Jilek on this subject.

As a side note, even though the current architecture of LearnShell leans
towards a microservices-based one, it is definitely not an example of an applica-
tion purely made of microservices; for example, the backend service combines
several features, such as an administration panel and a GraphQL together,
and as such doesn’t fit the bill of a microservice and is closer to a monolithic
application in its scope. Nonetheless, the generator and evaluator only fulfill
one specific role each and are therefore much closer to the definition of a mi-
croservice. Since LearnShell is production-ready software, it is quite natural
that it doesn’t perfectly adhere to one paradigm, as that is nigh-on-impossible
to achieve in practice.

1.2 Architecture

In this section, we shall explore the LearnShell architecture, its components,
and technologies used, all of which except for the evaluator are currently
containerized and as such are prime candidates for migration into a cluster-
based architecture, which we shall cover later.

4

1.2. Architecture

1.2.1 Proxy server

For the purpose of receiving incoming traffic and redirecting it, a container
is used as a proxy server, which redirects requests received from the client,
and points them toward containers for further processing, and sending back
responses to the client received from these same containers as if it was by itself
their origin, therefore fulfilling the role of a reverse proxy. [7] A subdomain of
the fit.cvut.cz domain is assigned to the ip address of this proxy server.

For all this, nginx was chosen as the most suitable candidate. As of 2021,
nginx is the most commonly used web server and is renowned for its per-
formance and ease of use. [8] Naturally, a well-maintained Docker image is
available publicly on DockerHub, and there is no reason not to use it in pro-
duction in this application, as well.

1.2.2 Front end

This container contains the code for the front end side of the application. As
well as responding with the HTTP response, including assets such as CSS
files and images to display on the client side, it also sends GraphQL queries
to other containers, for example, to create or display assignments.

It is built entirely with Next.js, a modern JavaScript framework based on
React, improving on it by adding most importantly a built-in routing system
(by default, React does not contain one, and additional libraries, such as
React Router, must be used) and several additional features such as server-
side rendering or faster page loading by virtue of automatic code splitting.

1.2.3 Back end

The code in this container represents the data access layer of the application.
Among its functionalities is writing and reading data to the database (such as
users and assignments) and communicating with the generator and evaluator
services for the purpose of creating randomized data for validation of Bash
scripts and evaluating the outputs of these scripts by comparing them with
the generated data. [9] The back end also communicates with KOS, our
student information system, and integration with the system for grades and
evaluations, Grades, is planned for the future.

The entire back end is built in Django, a web framework written in Python
adhering to the model-view-presenter architectural pattern. In addition, the
container contains several Bash scripts to ensure, between other things, con-
nection and migration of data to the database, as well as configuration files
for the web server.

5

1. Architecture of LearnShell

1.2.4 Distributed task queue

In order to enable LearnShell to parallelize tasks related to the generation of
inputs and evaluation of Bash scripts, a distributed task queue is used. This
comes in handy because not all of those tasks are completed in the same time
horizon; therefore by using the distributed tasks queue, long-running tasks are
"worked on" by the services to which these tasks are assigned, namely generator
or evaluator, while simple tasks such as data retrieval are still executed without
having to wait for long-running tasks to finish.

The technologies used here are the Python library Celery, which provides
all the tools required for running a queue on LearnShell, while we use a key-
value database, Redis as an in-memory database on which the information
regarding jobs is stored in that queue until these jobs are finished. Both the
generator and the evaluator use their own distributed task queue, with the
generator using a containerized one and the evaluator running it on its own
server for now.

1.2.5 Database

Alongside Redis, the only stateful service in the application, a SQL database
is used to store all important data persistently. The database contains infor-
mation regarding users and their privileges, all the jobs performed by Celery,
assignments, and exams created by teachers, as well as submissions by stu-
dents. LearnShell utilizes the PostgreSQL engine, although there is no partic-
ular reason to use it in particular as opposed to other SQL engines; it boiled
down to the initial author’s preference.

1.2.6 Generator

To elaborate on what was already mentioned in the back end subsection, the
function of the generator service is the generation of randomized data for
validation of LearnShell assignments and exams.

Solely for this reason, the LearnShell Input-Describing Language (LI-DL
for short) was developed, a sort of minimalistic domain-specific language with
a syntax similar to JSON that generates custom assignments as well as test
cases, which the evaluator compares with the output of a shell script that is
turned in by the user. [4]

1.2.7 Evaluator

The evaluator, as befits its name, fulfills the role of a service that assesses
each submission made by the user. It does so by creating a chroot jail, which
is essentially a simulated root environment running on a directory; this way,
the directory in question is isolated from the rest of the computer, protecting
the computer from potential destructive effects of certain commands, such as

6

1.3. Potential improvements

the famous fork bomb. [10] It checks for criteria such as whether the user-
created or deleted the correct files, whether the files created have the correct
permissions, or the outputs (and the streams through which they are passed)
of the scripts submitted.

Currently, the evaluator runs on its own server and therefore is the only
service which is not packaged inside of a container. Note that this is why the
evaluator will not be a part of our cluster (both Docker Swarm and Kubernetes
require applications to be running in containers); instead, the cluster should
for now, connect to the server on which the evaluator is running. Once the
evaluator is containerized, there is no reason not to include it within our
cluster.

1.3 Potential improvements

Lastly, let us pick up on what was started in the introduction of our thesis, and
expand on current inefficiencies and potential improvements to the LearnShell
portal. Incidentally, all of these inefficiencies can be handled either completely
or in part by utilizing a cluster-based architecture for our application. Be
advised that we use several terms here which are not yet formally defined in
our thesis, such as Docker or CI/CD; to see their definitions and use cases,
consult the following chapters. This section merely serves as an introduction
to the problems we are attempting to solve, as well as potential additions to
LearnShell as it is right now.

1.3.1 High availability

An extremely important aspect of modern software is availability, which de-
notes the period of time when a service is available and is often expressed as
a percentage indicating how much time the application spends in a working
state. [11] By extension, a highly available application is simply an applica-
tion that spends as much time as possible up and running, with the downtime
being so negligible that it will not be noticed by users at all.

Orchestration technologies were built exactly with high availability in
mind; by running several replicas of components of LearnShell, all our com-
ponents are made redundant, meaning that if one component of LearnShell
fails, its replica rises immediately to fulfill the same role. Thus, we eliminate
any single points of failure, and the system can be kept up and running even
under extreme loads.

1.3.2 Load balancing

To follow up on the previous subsection, load balancing should be mentioned
as another powerful feature of architectures that run several replicas of their

7

1. Architecture of LearnShell

components. Generally, load balancing is defined as the methodical and effi-
cient distribution of network traffic across multiple servers in a server farm; in
our case, we may replace the word "server" with "workload" and "server farm"
with "cluster". [12] By creating and configuring the network of our cluster, we
can make our cluster manage the incoming traffic, that is web requests of all
kinds, in a resourceful way. For example, in case of an unusually high amount
of requests, load balancing algorithms would redirect these requests to those
workloads within the cluster that are least burdened at the moment, balancing
the number of requests and ensuring that there are minimal bottlenecks.

It should be noted that by itself, the nginx server used by LearnShell
has load balancing capabilities. However our architecture falls short by not
utilizing multiple replicas for critical parts of the application, and as such
there can be no real distribution of the requests being received by LearnShell
at the moment.

1.3.3 CI/CD

An implementation of a CI/CD pipeline has no real disadvantages and many
potential advantages and future opportunities. We will be discussing the exact
definition and our implementation at length in some of the following chapters
of this thesis. To provide a short summary, a CI/CD process would facilitate
the automation of some repetitive tasks by making our Gitlab server do these
tasks on each push or merge of a new Git commit. Here are some of these
tasks (which can be applied directly to LearnShell):

• Build Docker images and push them into our private registry.
• Run unit tests and block the execution of some tasks if they do not pass.
• Enable automatic code formatting of newly pushed code.
• Deploying latest versions of our applications into production.
• Explore implementation of continuous integration and continuous de-

ployment in LearnShell, specifically the newly created cluster.

1.3.4 Staging environment

Since we are working on providing a solution to issues regarding load balancing
and overall performance of LearnShell, it would be very beneficial for us to
make use of an environment that is almost exactly identical to our production
environment; in practice known as a staging environment. [13] This would
have several advantages; by having a mirror of our production environment,
we could for example configure our CI/CD process to first deploy the new code
to the staging environment, and double-check this new version of LearnShell
for any unnoticed bugs before finally deploying the code to our production
environment as well.

8

1.3. Potential improvements

However, where a staging environment truly shines is the potential for
running complex tests focused on performance. For example, to test the sys-
tem’s balancing capabilities, we could simulate a large number of requests of
all kinds and review the abilities of our staging environment to handle the
pressure. This process is often referred to as load testing. For example, one
could simulate hundreds of submissions sent to our evaluator, and watch in
real-time how fast the cluster evaluates these submissions.

To sum it up, a staging environment would provide for a great "testing
ground" of how ready the new version of our application really is for practical
use. In addition, with a working CI/CD process already set up, it could
be expanded by adding an option to deploy the new code to the production
environment by simply approving it manually when we are sure it is ready.

1.3.5 Logging and monitoring infrastructure

As another way of troubleshooting bugs within an application, logging and
monitoring infrastructure can be invaluable. By tracking and storing data
regarding even the most basic of things, such as submissions made by users,
we gain information that can prove to be of great help in the long run, be
it for debugging errors in our application or arriving at informed conclusions
regarding the scalability of our application.

In addition, if a batteries-included orchestration platform such as Kuber-
netes is used, a logging infrastructure can be set up with relative ease by
installing pre-built packages such as the ELK Helm chart (more on Kuber-
netes and Helm in the next chapters).

9

Chapter 2
Containerization and

Orchestration

In this chapter, we shall finally explain in detail the terms containerization
and orchestration; they are of such importance to this thesis that we feel that
a separate chapter is necessary to elaborate on the theoretical concepts as well
as their practical applications. Finally, we will review the most used solutions
for container orchestration, and at the beginning of the next chapter, we are
going to compare their use cases in general and specifically to LearnShell.

11

2. Containerization and Orchestration

2.1 Theoretical concepts

2.1.1 Virtualization

Figure 2.1: VM-based virtualization with VMware [1]

In days of yore, the only viable way for most companies to work out an IT in-
frastructure and provision servers for a company was by spending considerable
resources on buying physical servers, that is, by spending money on computers
and computer parts and running the servers on them. Although it works at
first glance, there is an issue that becomes apparent at scale; mismanagement
of the machine’s resources, be it its RAM, CPU, or physical memory. In sim-
ple terms, two problems could arise; either the company would underspend,
and buy fewer physical machines than was necessary, which would lead to
recurring outages and stress before new servers could be provisioned to sup-
port the ever-increasing amount of users. Another potential disaster could be
caused by the company overspending and sinking way more resources into buy-
ing and provisioning servers before it was necessary, therefore wasting money

12

2.1. Theoretical concepts

that could be used for different purposes.
Ideas of creating some sort of abstraction appeared in the sixties when

Jim Rymarczyk from IBM worked out a way to host multiple operating sys-
tems on the same piece of hardware, using a hypervisor, which is a software,
firmware, or hardware that creates virtual machines, emulations of computer
systems running their own operating systems. This type of hypervisor would
stand directly above the hardware in the hierarchy, and host multiple virtual
machines on top of it. [14]

Later on, at the tail end of the century, a newer virtualization model to
provide an abstraction of virtualized resources was developed by the engineers
at VMWare. [15] It would employ a hosted hypervisor, which means that the
hypervisor would be run on a host operating system, making it much easier
to manage virtual machines, therefore making virtualization more viable than
ever before. [14]

However, VM-based virtualization still effectively “carves out” a part of the
hardware resources of the physical server, as it creates a full-fledged operating
system that treats its allocated hardware as if it was the only operating system
running on it.

With the advent of Docker, container-based virtualization (henceforth re-
ferred to as containerization) turned into an extremely popular virtualization
technique, which we shall describe in the following chapter.

13

2. Containerization and Orchestration

2.1.2 Containerization

Figure 2.2: Container-based virtualization with Docker [1]

Even though containerization has been around for decades before Docker, for
example in the form of BSD “jails”, it is only with the creation of Docker
that it truly hit its stride. As seen on the diagrams above, the difference
between VM-based and container-based virtualization lies mainly in the fact
that while VM-based virtualization creates (virtualizes) an entire operating
system, with abstractions for hardware such as virtual CPUs and virtual disks,
container-based virtualization uses techniques within the kernel to only vir-
tualize the non-hardware aspects of the operating system, creating a separate
root filesystem or network system, while not emulating hardware at all. [14]

This opens up a whole new world of possibilities. Thanks to the efficiency
and fast start-up caused by using far fewer resources than full-fledged virtual
machines, as well as the opportunity to create truly specialized containers
that only focus on providing one service without any redundancies, it’s now
possible to manage these containers in such a way that it’s much easier to

14

2.1. Theoretical concepts

integrate these services together in a container-based architecture with the
added benefit of greater security and easier scaling if each container only has
one job.

These containers can then be efficiently managed, upgraded, and be over-
seen by tools built specifically for the configuration and management of con-
tainers, also known as container-orchestration systems, with the most com-
monly used at the moment being Kubernetes or K8s for short.

2.1.3 Orchestration

As we move into a container-based architecture, in which several microservices
delegate tasks and communicate with each other, there arises a need to manage
the containers, their lifecycles and the relations between them. This is where
the term container orchestration comes in.

There are several tasks which are managed by orchestration tools, such as
the provisioning and deployment of containers, health checks of these contain-
ers, managing the allocation of resources between these containers and many
more. More broadly, orchestration is the automated configuration and coordi-
nation of systems and software in general. However, in this particular thesis,
we shall focus on container orchestration in particular, that is, on the man-
agement of containers. At this moment in time, the most popular container
orchestration software by far is Kubernetes, as mentioned in the previous sec-
tion, however, Docker Swarm is another such tool that posits itself as easier
to use, and therefore preferable in certain cases. [16] We shall describe these
two platforms and the differences between them in more detail in some of the
next sections, as well as a chapter dedicated to Kubernetes.

2.1.4 Cloud computing

Even though the umbrella term "cloud computing" is not directly connected
to orchestration, it might be worth it to give an overview here, as there are
numerous immediate and powerful benefits of running clusters on the cloud.

As defined by one of the foremost cloud computing corporations in the
world, the cloud can simply be described as a collection of servers located all
over the world that can be accessed over the Internet, as well as the software
and databases that run on those servers. Therefore, by accessing the cloud,
users and companies don’t need to manage physical servers or run software
applications on their own machines. [17] The rise of cloud computing was
revolutionary, as it led to widespread adoption over the years by companies
small and large, not at all limited to technology. The staggering upwards
trend in the revenue of the cloud computing market over the last few years
should serve as sufficient proof. In fact, since 2016, the total cloud market
revenue has tripled in value, from around eight billion dollars to a little more
than twenty-four. [18]

15

2. Containerization and Orchestration

In practice, the adoption of cloud computing by companies (or communi-
ties) enables the developers to stop worrying about earthly matters like the
state of their physical machines, on which the application is running, and al-
lows them to delegate it entirely to the cloud provider. The business model
works on a pay-as-you-go approach for every cloud provider that is relevant in
today’s market, meaning that the customers periodically receive a bill based
on criteria such as how much data is stored on the cloud, or how many in-
stances of virtual machines are currently running. [19] An early adopter,
Amazon set the trend with Amazon Web Services in 2006, with Microsoft
(Azure) and Google (Google Cloud) following suit. Up to this day, Amazon
retains a mammoth share of the total cloud computing market revenue, as
well as a huge amount of diverse services, with Microsoft catching up and
Google having found its niche in Kubernetes offerings. Currently, all cloud
providers are making leaps and strides in maintaining and updating services
built specifically for enabling the users to create Kubernetes clusters on the
cloud, with Google generally being considered as the best choice, by virtue of
it being the main driving force behind the existence of Kubernetes itself.

As for this thesis, a testing cluster was built using Google Cloud and its
Google Kubernetes Engine, demonstrating the power of cloud computing in
practice. More on this will be revealed in the last chapter.

2.2 Technologies
After explaining some of the theory, let’s take a look at some of the most used,
tried, and tested containerization and orchestration software nowadays. All of
the following tools play a huge role in today’s tech world, and it could be said
that the advent of microservice-based architecture is largely thanks to these
tools. In addition, we will demonstrate a real-world application of these tools
in the last chapter, showcasing the Kubernetes cluster made for LearnShell.

2.2.1 Docker

Today, Docker is without any doubt the pre-eminent software for containeriza-
tion. It was originally meant to be merely an internal PaaS (Platform as a Ser-
vice) tool for dotCloud, a European company, however, it quickly gained trac-
tion as many truly big companies, for example, Microsoft and Google, started
noticing the numerous tangible benefits provided by switching to Docker in
production. [20] This led to a huge amount of resources being spent on the
development and improvement of the Docker project, with several off-shoot
tools created as a result, such as Docker Compose, or Docker Swarm.

Even though Docker is a complex piece of software, using it in practice is
not as difficult as one may think. Generally, it boils down to writing a configu-
ration file called a Dockerfile. Within the Dockerfile, the user specifies several
parameters, such as commands that are to be executed upon deployment of the

16

2.2. Technologies

container, and most importantly, using the FROM keyword, the base image
from which the container is to be derived. This image will be downloaded from
Dockerhub, which is essentially a public repository of pre-configured images,
with minimal overhead.

Generally, the most commonly used terms in the Docker world are “con-
tainer” and the aforementioned “image”. An image is an immutable (read-
only) file that contains the source code, dependencies, and libraries from which
the container is built. On the other hand, a container is a virtualized run-time
environment which is created from the image which serves as a template. [21]
It is completely isolated from the system on which it runs as well as extremely
lightweight in comparison to a virtual machine, mainly due to being virtual-
ized on the application layer instead of the hardware layer of the machine.

Docker images are stored in registries, which can be either public or private.
By running a command inside of the shell, the user can specify an image
name as well as a repository and a tag (signifying the version of the wanted
image), in order to use that image as a template from which to create a local
container. There are numerous repository offerings, that is platforms on which
one may host a registry. The most popular by far is DockerHub, however,
for purposes such as cloud integration, paid registries can be maintained by
cloud providers and other corporations, such as Amazon ECR, Google Cloud
Container Registry, or Gitlab Private Registry. Additionally, it is possible (and
sometimes preferable) to host a local registry, although it requires additional
setting up.

2.2.2 Docker Compose

Not long after its conception, Docker became ubiquitous in software engineer-
ing, as it enabled huge projects to be smoothly divided into containers, each
doing its own part independent of the other, moving from a monolithic ar-
chitecture to a microservices-based one. As projects increase in scope, the
amount of containers naturally increases as well, and with it the complexity
of running them and managing their interactions. For this reason, Docker
Compose was developed to be a tool that enables the user to create and start
multiple services within their respective containers. All this can be performed
by specifying a YAML file, docker-compose.yml, and running it from the com-
mand line to deploy a multi-container application. [22]

In addition, one can specify a bridge network on which the containers
defined by Docker Compose may communicate.

17

2. Containerization and Orchestration

2.2.3 Docker Swarm

Bridging the gap between containerization and orchestration, Docker Swarm
is, alongside Kubernetes, as of today the most used tool for creating and
managing a cluster. It was created as a lightweight, easy-to-use alternative
for cluster provisioning, enabling the user to quickly get up to speed and
set up a cluster, which is colloquially referred to as “swarm” in the Docker
nomenclature. As we have ultimately decided to go for Kubernetes as our
technology to create a LearnShell cluster, we shall give a concise description
of Docker Swarm in this subsection, followed by a comparison with Kubernetes
in the next chapter. However, we shall not delve deep into the details, as this
would be beyond the scope of the thesis.

The architecture of a swarm consists of several Docker hosts, that is servers
(be it on virtual machines, or physical ones) on which an installation of the
Docker engine is present, and one or more containers are running. [23] Those
are called nodes. There are two, and only two, types of nodes; the manager
node and the worker node. The nomenclature is fairly self-explanatory. While
the worker nodes only serve as vessels for containers contained therein, the
manager nodes, in addition to possessing all the capabilities of worker nodes,
also fulfill the function of maintaining the state of the swarm and the commu-
nication of its nodes, as well the scheduling of services. In a swarm, a service
is a definition of tasks to be executed on a node. [24] For example, one may
define a service to be a container created from an image pulled from a registry,
which is thereupon provided with a command that is to be executed once the
container is up and running. Therefore, when running a swarm and aiming to
run a container on a worker node, one should first create the node, and then
define a service to run a container on that same node.

In order to allow each node to transfer data between them, a network
can be established by using the overlay network driver as well as the bridge
network driver. The overlay network driver, also called ingress, handles traffic
to a swarm service from outside, while the bridge network driver connects the
Docker daemon one host to another Docker daemon on another host. Finally,
it is worth noting that Docker Swarm plays with other tools in the Docker
ecosystem; an example worth mentioning would be Docker Stack, which can be
used with a YAML file to quickly deploy a swarm. The structure of this file is
extremely similar to a docker-compose.yml file, with minimal differences, such
as specifying manager and worker nodes. If we were not using Kubernetes in
this project, we would definitely be writing a stack definition file and running
it via Docker Stack in order to create a swarm.

18

2.3. Kubernetes

2.3 Kubernetes
In this section, we will dive deep into the inner workings of Kubernetes, our
orchestration platform of choice. Due to the sheer depth of the Kubernetes
platform, we have dedicated an entire section to this technology. For the rea-
sons why we shall be using Kubernetes in our LearnShell cluster, see the next
chapter, specifically the section "Docker Swarm vs Kubernetes". The reader
might notice that this section is quite a bit longer than the one dedicated
to Docker Swarm; this is not only due to Kubernetes being a more complex
piece of software, and also to serve as a sort of glossary to return to from the
implementation chapter, which will not be jam-packed with theory.

To quote the official documentation; "Kubernetes, also known as K8s, is
an open-source system for automating deployment, scaling, and management
of containerized applications". [25] We shall be drawing from the documenta-
tion quite extensively in this section; where no other sources are provided by
citations, we have used the documentation as our source.

2.3.1 History

Kubernetes was developed and launched by many of the same developers that
used to work on Borg, Google’s internal platform for cluster management.
[10] These same developers would later work on Omega, which was to be
the second generation of Borg, and still an internal, proprietary tool used by
Google. Finally, in 2014, the Kubernetes project started in full swing, with the
ambition to present an open-source, truly multi-purpose orchestration system,
using both the experiences of Google’s developers that worked on Borg and
Omega years before as well as the power of the open-source community. [26]

The very first version of Kubernetes was released to the public on July
21, 2015, and a partnership with the Cloud Native Computing Foundation
was made, boosting development manpower significantly. Later on, in 2016,
the first package manager for Kubernetes was released, called Helm, which we
shall be using in our cluster, as it is a very powerful addition to the Kubernetes
ecosystem. With each passing year, the adoption for Kubernetes is increasing,
and this is reflected in the number of commits on Github; based on new
commits, its repository was the ninth most popular on Github in 2018. [27]

19

2. Containerization and Orchestration

2.3.2 Architecture

Figure 2.3: Architecture of a Kubernetes cluster [2]

Much like any cluster, a Kubernetes cluster consists of a number of worker ma-
chines, referred to as nodes, that run containerized applications within them.
One of these nodes has some additional features which enable it to control and
manage all the nodes in the cluster; therefore, it was given the name Master.
The master node is unique in that it contains a set of applications that is
referred to as the Control Plane, which contains the following components:

• kube-apiserver, which serves as a front end for the control plane by
exposing the Kubernetes API. When we use kubectl during our cluster
implementation, we are communicating with that API.

• kube-scheduler fulfills the function of assigning newly created Pods
(more on them later) and assigning them to nodes. It considers fac-
tors such as resource requirements, hardware constraints, and custom
configurations made by the cluster administrator. It is one of the key
applications in terms of assuring that the cluster is highly available.

• kube-controller-manager maintains the controllers of the cluster. A
controller is a control loop that constantly watches for any changes in
the cluster and changes the state of its workloads to reflect the desired

20

2.3. Kubernetes

state. A Deployment is an example of a controller that is very relevant
to our cluster.

• etcd is a highly complex component that stores the current state of
our cluster in its entirety as a key-value store. It contains information
such as its configuration, specifications, the status of running workloads,
network information, and more. [28]

• cloud-controller-manager is very similar to kube-controller-manager,
except it maintains specific to the cloud provider in which the cluster is
deployed. If the cluster is deployed on-premises or locally, then the clus-
ter does not have a cloud-controller-manager, as it would be unusable.

There are also three important applications that run on every node:

• kubelet is an agent that ensures that each containerized application on
the node is running on a Pod, and that the Pod is in a healthy state.

• kube-proxy allows for network communication between nodes by main-
taining specific network rules on each node it is running on.

• container runtime is the runtime on which our containerized applica-
tions should be running. Currently, the supported container runtimes
are containerd, Docker and CRI-O.

Now that we have described the architecture of a typical Kubernetes clus-
ter, let us direct our attention toward the basic building blocks of Kubernetes.

2.3.3 Building blocks

The complexity of Kubernetes starts to show in this subsection; there are
numerous different resources that one has to be acquainted with in order to
create a cluster of some complexity. As a general rule in the Kubernetes
community, these resources can be divided into workloads and other types of
resources, typically related to the configuration of workloads. A workload can
be defined simply as an application running on our cluster at least for some
time, somewhat synonymous with the general definition of a microservice. [29]
In our implementation chapter are some diagrams of the cluster that may shed
light on the general relationship between resources. Let us begin by describing
the workloads:

• Pod is the smallest deployable resource in Kubernetes. It can be re-
garded as a wrapper around one or more containers, in which they may
share storage and network resources.

• ReplicaSet is a controller that ensures that there is a stable set of
replica Pods running at a given time, ensuring high availability and
fault tolerance. It creates or deletes Pods dynamically to ensure the
correct amount of pods is running at any given time.

21

2. Containerization and Orchestration

• Deployment in turn serves to provide updates on both ReplicaSets and
Pods. In practice, it is recommended to use a Deployment, as it enables
the administrator to control everything regarding these resources from
one place, from commands to be executed on newly created containers
to the number of replica Pods. We shall provide more information on
Deployments in the implementation chapter, as we use them for our
LearnShell applications.

• StatefulSet is very similar to a Deployment, except that it is used
specifically for stateful applications, such as databases, by making use
of PersistentVolumes or PersistentVolumeClaims as storage units.

• DaemonSet is yet another workload that can be mistaken for a De-
ployment, however, it is different in that it ensures that all nodes run a
copy of the pod being managed by it. It has many applications, such as
running node monitoring or log collecting applications.

• Job creates a Pod and gives it commands to execute until a certain
number successfully terminates.

• CronJob creates a Pod and gives it commands to execute periodically
on a set datetime, written in the Cron format.

Now that we have described the workloads, let us continue by listing other
resources that are commonly used in Kubernetes (and which shall be used in
our cluster as well):

• Service provides a way to expose our pods as a network service. The
pod can be exposed using a ClusterIP to be accessible only by other
applications within the cluster, or either a NodePort or LoadBalancer
in order to be accessible from outside as well. Configuring services on
our pods is essential in order to assure that network communication
within our cluster is not compromised by actions such as redeployments
or simply deleting Pods and creating new ones.

• Ingress is a rather complex resource that manages external access to
services within a cluster. For example, if we want to have a single
IP address (and by extension, registered domain) which would access
different pods based on the specified path, we would use Ingress to route
traffic and provide load balancing for our cluster network by redirecting
requests to pod replicas based on routing algorithms.

• PersistentVolume and PersistentVolumeClaim are resources that
provision a set amount of storage space to be used by certain Pods
which are connected to them. This storage space is independent of
the space on these pods, which means that if a pod shuts down, it
does not lead to data being deleted, as it is saved outside of it. In
simple terms, the difference between the two resources lies in that while

22

2.3. Kubernetes

a PersistentVolume allocates the storage space for use immediately upon
its creation, a PersistentVolumeClaim acts as a request for storage, which
is executed only when it is needed by looking at our PersistentVolumes
and choosing one appropriate for our data.

• ConfigMap and Secret can be regarded simply as collections of key-
value pairs to be used by our pods namely as environmental variables.
They differ only in that Secrets store encrypted sensitive information,
while ConfigMaps do not.

While not technically being a resource, Namespaces are a vital part
of the Kubernetes ecosystem, and as such should be mentioned. In short,
Namespaces fulfill the function of separating virtual clusters backed by the
same physical cluster. This means that we can run multiple different clusters
on the cloud or on-premises, and use namespaces to isolate them from one
another. This is helpful especially in large organizations, but best practices
dictate that each cluster should have its own separate namespace. In our
project, this would be the "learnshell" Namespace, and we shall make it so.

2.3.4 Authentication and authorization

While this topic is particularly complex, a brief overview will be provided as
authentication and authorization are important parts of any cluster, including
ours.

In Kubernetes, there are two categories of users: normal users, and Ser-
viceAccounts created and managed by the cluster. While there are numerous
ways for users to authenticate and be able to make API calls to the api-server,
we shall focus on service accounts here, as they are of particular importance
in our implementation of a CI/CD process. A ServiceAccount is a special
type of account that can be used by Pods to contact the api-server just like a
normal user would. This can be useful in many cases, such as when we want
to restart a Deployment on cue, for example as part of our CI/CD pipeline.
Each ServiceAccount in our cluster has a unique bearer token with which it
can authenticate to the api-server to execute commands via API calls.

However, before actually execute these commands in practice, the api-
server first checks if the ServiceAccount in question has sufficient authority
to perform them. For this, Roles and RoleBindings are used. The ad-
ministrator can create a role with specific authority, for example restarting
Deployments, and bind this role via a RoleBinding to the ServiceAccount of a
specific pod. Once that is finished, the pod can perform API calls to the api-
server of the cluster, and the api-server will execute these calls after confirming
that the ServiceAccount is correctly authorized.

23

Chapter 3
LearnShell Cluster Analysis

In this chapter, which is the first of the two that describe the practical part of
this thesis, we shall explain our architectural decisions as well as the motives
behind them. We will describe the technologies used and why they were
necessary, and where need be, we shall compare the most viable technologies
for our particular use case.

25

3. LearnShell Cluster Analysis

3.1 Docker Swarm vs. Kubernetes

Since we will be implementing a cluster for LearnShell, one of the most im-
portant decisions we had to reach was to make an informed choice between
Docker Swarm and Kubernetes as our orchestration platforms. Therefore, in
this section, a comparison of Docker Swarm and Kubernetes will be made; for
each platform, we shall describe the general use cases, the advantages, and
disadvantages, as well as their future in the industry. Then, we will concen-
trate on LearnShell specifically, and reach a final decision on which platform
is the best for our use case in particular.

3.1.1 General comparison

As we have already discussed, the main practical difference between Docker
Swarm and Kubernetes historically lied in their complexity. Docker Swarm
is much more tied to Docker itself than Kubernetes, which supports several
container runtimes. In fact, as of 2021, the default container runtime of the
latest Kubernetes version is containerd. [30] In fact, swarm mode is natively
included in Docker, so there’s no need to install additional packages. As for
Kubernetes, things aren’t so simple, as we will elaborate later.

Additionally, the learning curve is much steeper with Kubernetes, how-
ever, Kubernetes has a much, much more rich ecosystem, and as such there
are many problems that can be easier to solve with Kubernetes than with
Docker Swarm. Regardless of the learning curve of each platform, it has to
be said that the documentation of both platforms is impeccably written, even
though the author of this thesis finds that Kubernetes has an edge in this
regard. One strength, in particular, is the option of running a test cluster via
an in-browser terminal, connecting to the cloud via SSH. [31] This enables
the user to immediately apply in practice what was learned through reading
the documentation. Therefore, it could be said in summary that while Docker
Swarm is easier to grasp initially, both platforms have great documentation
that explains the concepts quite capably, with Kubernetes being slightly bet-
ter.

One area where Kubernetes has a clear, unassailable advantage is industry
adoption. As proof, taking a look at the respective Github repositories of each
platform should suffice (this is possible due to both platforms being open-
source from the very start, and as such, all the code is publicly available).
By glancing at the pull requests of each repository (in layman’s terms, a
pull request is a request for review of code before it is merged into a branch
of a repository, and therefore integrated into the codebase[32]), one can see
that there is a world of difference; currently, the amount of pull requests for
Kubernetes is ten times more than the amount for Docker Swarm. [33, 34]
Another important factor is that Kubernetes was initially developed, and is
being maintained largely by Google; an industry behemoth. This means that

26

3.1. Docker Swarm vs. Kubernetes

there is a near-infinite reserve of resources dedicated to keeping Kubernetes
alive and well.

Industry adoption spills over to many other factors, one of them being
third-party support for a given orchestration platform. In this, Kubernetes is
a clear winner. Each major cloud provider maintains a service designed specif-
ically to simplify the creation of a cluster on the cloud, with Google Cloud
naturally being the fan favorite, due to its close connection to the product.
In addition to that, foremost git-repository managers provide integration with
Kubernetes, facilitating the integration of the cluster into the DevOps lifecycle
of the given project.

One notable factor that should not be underestimated, and is again tied
to industry adoption, is the future of each platform. Kubernetes is currently
extremely dominant in the orchestration space, and as such, it is entirely
possible that within the next few years, support for Docker Swarm could be
dropped completely. The developer should take this into account, especially
when it concerns any projects that should be here to stay, as migrating a large
project from Docker Swarm to Kubernetes could be a challenging feat.

In summary; the strength of Docker Swarm lies in its shallow learning
curve, as well as its seamless integration with other Docker offerings. How-
ever, Kubernetes wins in every other category; it is feature-rich, exquisitely
documented, and appears to be extremely dominant in comparison to Docker
Swarm in the industry.

3.1.2 Project-specific comparison

Finally, it is time to consider our options specifically regarding LearnShell,
and choose the best orchestration platform for our use case. We shall decide
based on these criteria; ease of setting up a cluster, maintainability, versatility,
and integration with other services used by LearnShell.

When it comes to quickly setting up a cluster, Docker Swarm wins; its nat-
ural integration with other Docker services, such as Docker Compose, comes
in really handy, as it allows us to run a few commands to get a cluster (or
swarm, to adhere to the nomenclature) running. However, the rich ecosys-
tem of Kubernetes holds its own here, as it gives us several options, such as
Minikube or Kubernetes-in-Docker, to quickly set up a cluster. Nevertheless,
a minimal understanding of how Kubernetes works is still necessary, and as
such, it remains true that a little more time reading the documentation will
be necessary.

In the case of LearnShell, we define maintainability by the difficulty of
keeping the cluster up and running, as well as updating the containers within
and adding new ones without disrupting it. Another important factor is how
difficult it would be for new members of the LearnShell team to get up to speed
with the cluster. In this case, the sheer size of the Kubernetes ecosystem plays
a very important role, since any potential new developers have a plethora of

27

3. LearnShell Cluster Analysis

articles, videos, books, or documentation on the internet at their disposal,
while Docker Swarm is dwindling in its presence. Therefore, one can assume
that if the cluster were to be improved upon in the future, it would be far
easier to do so with Kubernetes, since it is certain to be a dominant player in
the orchestration world for some time.

Versatility is admittedly a rather broad term to apply here, but in this
case, we are addressing questions such as how difficult it would be for us to
change up the proxy server on which LearnShell is running, or the database
used by LearnShell, or (most importantly) how easy or hard it would be to
migrate the cluster from on-premises architecture to the cloud. Whereas the
services used by the cluster are quite easy to change up in both platforms,
since Docker Swarm with its natural integration of Docker containers allows
us to simply pull a different image if we wanted to use a different database
engine, for example, and Helm makes this trivial with Kubernetes as well, it is
the cloud where Kubernetes really shines here. Since there are comprehensive
offerings on the cloud for Kubernetes, such as GKE on Google Cloud, it is
entirely within the realms of possibility to migrate the entire cluster to the
cloud. This could potentially not only lead to less upkeep, but to a much
smoother experience of maintaining the cluster, especially now that GKE
Autopilot was introduced, which promises greater optimization of resource
use by the cluster, leading to greater performance in addition to lower costs
of upkeep. [35]

The last criterion would be the integration with other services, which essen-
tially points to future possibilities of running a continuous integration routine
on Gitlab (where LearnShell repositories are hosted), in which it would be
possible to automatically replace older versions of containers with new ones
or possibly keeping different clusters for different purposes, such as a staging
cluster for testing purposes, and a production cluster, which the students and
teachers would be using. In this, Kubernetes is a clear winner, as Gitlab is
making a great effort in being containerization and orchestration friendly by
allowing even free-tier users to integrate a cluster with their projects. [36]
Also, it coincidentally allows us to keep a private container registry for free,
and creating CI routines with Gitlab Runners. However, unfortunately, for
the purposes of LearnShell, there are only so many features that we can use
at this moment in time, since the current release of Gitlab (11.8.10.) used
by the university is more than two years old, and we are using the Commu-
nity edition, which doesn’t have some features that could prove very useful.
Among these features is the Kubernetes Agent or Auto DevOps, a platform
that advertises reduced complexity in setting up pipelines, and probably most
importantly in our case, the option to integrate multiple clusters into Gitlab,
which would give us the option to have different pipelines, for example, one
for testing purposes, and one for the production cluster. Nevertheless, the
option to use a private Gitlab registry remains available, as well as the option
to use Gitlab Runners on our cluster to run CI pipelines; we shall elaborate

28

3.2. On-premises vs Cloud

on this later.
After much deliberation, we have decided to choose Kubernetes as our or-

chestration platform of choice. Even though the learning curve is undoubtedly
quite a bit steeper than the alternative, what gives it its edge in the case of
LearnShell is the fact that continuous integration routines for the cluster are
natively available within Gitlab, and that there is a strong argument for po-
tentially migrating the cluster from on-premises to the cloud, as all the cloud
providers are actively working on making this as painless as possible. Also, the
industry adoption of Kubernetes leads to a great amount of resources being
available in the case of troubleshooting the cluster.

3.2 On-premises vs Cloud
This section is dedicated to comparing the viability of hosting the LearnShell
cluster on "bare metal" servers potentially provided by the university with
hosting it entirely on the cloud, here represented specifically by GCP.

In the industry, Kubernetes clusters are almost never used on-premises.
There are several reasons for this, with the main ones being:

• Potential hardware limitations
• Potential for unrecoverable disasters
• Exponential difficulty of maintenance of the cluster

The first two reasons are quite self-explanatory; if a cluster is deployed on-
premises, there’s always a chance that somewhere in the process, it is found
out that more resources are needed for it to be highly available, which can
be a problem if we can’t allocate more resources on our current setup. Also,
there’s always a chance of a disaster happening on the hardware level; even
though a Kubernetes cluster, if correctly set up, is immune from failures based
on one part of the application crashing, it still needs to be run on hardware.
Therefore, if a disaster such as a server room fire occurs, the consequences for
the cluster would be absolutely dire.

However, the most extensive disadvantage is the fact that an on-premises
cluster would need to be carefully maintained in order to function at its best.
One would have to consistently manage updates, security, backing up of per-
sistent data manually, which could lead to hours upon hours of time spent on
the maintenance of the application. This could be a problem especially in the
case of organizations that have high turnover, and therefore the cluster would
potentially be maintained by someone who played little part in setting it up.

All of these problems can be resolved by using a cloud provider, such as
Google Cloud, for hosting the cluster; hardware resources of data centers are
practically boundless, and even in the case of an absolute blackout in the
region, the cluster would be promptly moved to machines in another region.

29

3. LearnShell Cluster Analysis

In addition, by using managed Kubernetes services, one can avoid all the
headache of ensuring periodic back-ups of databases or adhering to best or-
chestration practices, be it in matters of security or keeping updates up to
date, as the cloud provider would handle all this automatically on its own.
[37]

There is one notable fact that should be called attention to; Kubernetes can
be built rather easily to be as provider-independent as possible, and therefore
it is viable to host a cluster on any cloud provider, as well as on-premises
with minimal changes to the configuration files in which the cluster is to be
defined. As such, our practical solution, which is in the following chapter,
is made to be completely identical for both the on-premises cluster as well
as for the cloud cluster. With that in mind, we can easily move between
an on-premises cluster and a cloud-hosted one, depending on the direction
LearnShell goes in. For example, it could be prudent to run a staging cluster
for testing purposes on a school server, with the added bonus of running our
CI/CD-focused deployments there, as those do not depend on performance in
our use case at all. On the other hand, to maximize performance, a production
cluster should ideally be run on the cloud, as a cloud-based solution would
be infinitely scalable and immune to complete disasters such as a server room
fire on-premises.

3.3 Package manager

During the process of writing code, software developers may often encounter
problems which are better solved by using tried and tested libraries instead of
writing the code by themselves. This can have two advantages; spending less
developer time and providing the developer with secure and well-architected
code (provided that he chooses a library of good quality). Today, to install
these libraries, one would use a package manager, that is a system that auto-
mates the process of installing and updating libraries, among other features.
In LearnShell, for example, npm is used for the JavaScript front-end, and pip3
is used for the Python3 back end.

In the Kubernetes world, a package manager of sorts exists as well; its
name is Helm, and it manages packages called Helm charts, which are sim-
ply bundles of configuration and definition files to create Kubernetes workloads
and resources. [38] By taking a closer look at the Docker containers currently
employed in LearnShell, we quickly notice that the PostgreSQL and Redis
containers have no additional configuration, aside from environment variables
and port mapping. In addition, as we have outlined in the Kubernetes sec-
tion of the previous chapter, databases can be a bit more verbose to set up,
as they represent a stateful component of an application; therefore, after a
database pod is killed and revived, there should be a persistent layer on which
the data remains. Also, if we run multiple database pods, all of these pods

30

3.4. Private container registry

should always be connected to the same persistent volume. In practice, we
would need to set up a StatefulSet, a PersistentVolume, or a PersistentVolume-
Claim and expose the database on a headless Service, which is a considerable
amount of manual configuration. In summary, using Helm is very appropriate
in situations where we know that we may be reinventing the wheel by writ-
ing multiple configuration files and commands. Additionally, by using Helm
charts that abide by the current best practices of cluster configuration, we
avoid the potential headache of improper configuration, or one which does
not adhere to the best practices; however, we should still be careful on which
Helm charts to trust.

To make use of Helm charts, one first has to add a repository from which to
pull these charts. Afterwards, by using the install command, helm checks the
currently added repositories for the chart and installs the chart if it is found,
giving it the chosen name. An instance of a chart running on Kubernetes is
referred to as a "release"; by signifying a name in the install command, all
the workloads and resources in the cluster that are part of the release will be
called as such. Importantly, a YAML file, usually called values.yaml (in our
case, we shall prefix it by the name of the release) can be referred to from
which variables can be pulled to customize the configuration of the release,
such as login credentials, disk space allocated by the persistent volumes, or
static IP addresses from which to access the cluster from the internet in the
case of charts focused on networking. This file is called a Values file in the
Helm nomenclature. [39]

In addition, there are several other tricky aspects than just stateful appli-
cation which can be handled by using Helm. For example, as we will demon-
strate, charts can be used to simplify network configuration, and to set up
CI/CD with internal access to the cluster, which can prove extremely useful
for our particular use case.

3.4 Private container registry
For our cluster to run Deployments, we need to provide Kubernetes with the
necessary Docker images from which to create containers contained within the
Pods maintained by these Deployments. For that, there is a requirement for
a private container registry, wherein these images will be located. From our
research of possible private container registry offerings, we have arrived at a
crossroads between three alternatives:

• Self-hosted registry
• Google Container Registry
• Gitlab Container Registry

Since we have deployed a cluster on Google Cloud, a natural option would
be to also host our images there; it would enable easy and robust integration

31

3. LearnShell Cluster Analysis

with our GKE-hosted Kubernetes cluster. However, there is a monthly fee of
0.026 dollars per GB per month, and we would like to avoid any monthly pay-
ments as much as possible. [40] Therefore, we shall narrow our scope to free
offerings. Out of those, we have only found two possibilities that are both free
of charge as well as private. We could use a self-hosted registry, which is def-
initely possible. However, there are two disadvantages; since it is self-hosted,
we would have to set it up, as well as maintain it manually, which could lead to
trouble down the road, as we are trying to maximize automation, and there-
fore avoid the need for manual maintenance. Secondly, such a solution would
be harder to integrate with Gitlab and its CI/CD offering; it would still be
possible, but additional configuration would be necessary, increasing complex-
ity. There is only one option that is both free, private and enables integration
with Gitlab, and that is hosting the image registry on Gitlab itself, using the
Gitlab Container Registry. This is also the best provider-independent option,
as a DevOps pipeline on Gitlab would be easiest to improve upon by hosting
the images there, as well.

As such, we arrive at the conclusion that Gitlab would be the ideal option
for a private container registry, especially when taking proper CI/CD routines
into consideration.

32

3.5. Continuous integration and continuous deployment

3.5 Continuous integration and continuous
deployment

Figure 3.1: Visualization of typical CI/CD pipelines [3]

As the last goal of this thesis, we would like to implement a basic CI/CD
configuration for LearnShell. To do this, we were requested to use the tools
made available by Gitlab, the Git-repository management platform used by
our university. Therefore, the choice of software used for CI/CD was essen-
tially made for us; although, we are perfectly in agreement with that choice,
as Gitlab CI has all the features we need. First, let us quickly describe what
the terms CI/CD actually mean;

• Continuous integration is the practice of building and testing appli-
cations continuously and automatically; in practice, this would generally
mean that every time a new commit is pushed into a Git repository, a
dedicated server, usually called a build server, would execute jobs that
would be comprised of building the application and running tests on it
in order to verify if the newly built version is working correctly.

• Continous deployment is another step beyond CI; if we can build and
test our applications continuously, there’s no reason not to automate
deployment as well, which is where CD comes in; upon building and
testing our application, the application can be deployed into either our
staging server or our production server, or both. [41]

In order to properly analyze the technologies which we shall be making
use of to enable proper CI/CD pipelines, we should take care to accurately
define our goals in a diagram.

33

3. LearnShell Cluster Analysis

Figure 3.2: LearnShell CI/CD pipeline

In this diagram, the uppermost large rectangles represent the parties per-
forming certain tasks and the smaller rectangles below them represent their
assigned tasks, performed sequentially. To sum it up, we would like to do the
following on each push to the master branch of a LearnShell Gitlab repository:

1. Build a Docker image(s).

2. Run unit tests if any are written.

3. Push the local images to our registry.

34

3.5. Continuous integration and continuous deployment

4. Redeploy Deployment inside our Kubernetes cluster containing the Pod
which pulls the freshly pushed image.

To build a pipeline running these tasks, we shall be using Gitlab CI/CD.
To achieve this, we shall be writing a .gitlab-ci.yml file, which will be parsed
to create a pipeline on every new commit into the repository. And to run
the tasks (or to adhere to the Gitlab CI terminology, jobs), we shall make
use of Gitlab Runner, which is an application that serves as a platform for
running jobs specified in that Gitlab pipeline. More details regarding the
implementation of our pipelines will be provided in the next chapter.

35

Chapter 4
LearnShell Cluster

Implementation

In this final chapter of our thesis, we shall focus completely on the practical
side, which is the implementation of our cluster in practice. An overview of
our code and our directory structure is to be provided, as well as diagrams
showing the cluster in its entirety. However, be advised that we will not be
going deep into theory since that was already elaborated upon in the previous
chapters.

Importantly, the cluster which we shall be focusing on in this chapter is
the one running on Google Cloud, however, there is no difference between
the on-premises cluster implementation and the cloud one; this is merely the
personal preference of the author, as the user interface of Google Cloud proves
to be really helpful for debugging. Lastly, one may notice that our cluster
implementation does not contain the LearnShell evaluator. This is because
the evaluator has not yet been containerized due to issues outlined in the first
chapter. Once a containerized evaluator is implemented, it is not at all difficult
to include it in our cluster. As of right now, however, the cluster can work
with the evaluator server instead, although some additional configuration may
or may not be needed.

The entire source code of the cluster configuration repository is available on
https://gitlab.fit.cvut.cz/learnshell-2.0/ls-cluster/tree/majorsam.
Noe that this link is only accessible by students or members of staff of the
Czech Technical University in Prague.

37

https://gitlab.fit.cvut.cz/learnshell-2.0/ls-cluster/tree/majorsam

4. LearnShell Cluster Implementation

4.1 Technologies

To start off, let us briefly summarize the main technologies we have made use
of after our analysis:

• Kubernetes as our orchestration platform.

• Docker as our containerization platform.

• Gitlab Container Registry as our private container registry.

• Helm as our package manager.

• Google Cloud as our cloud platform, and by extension GKE as our
Kubernetes engine.

• Minikube as our local development single-node cluster platform.

• Gitlab CI/CD and Gitlab Runners to facilitate CI/CD for Learn-
Shell components.

As a side note, we have used Linux as our operating system of choice both
locally and on the cloud, due to its seamless integration with Docker. On
Google Cloud, we have deployed three VMs running Debian, as it is the distri-
bution we are most familiar with. These VMs were provisioned automatically
by GKE to function as nodes for our cluster. As for the on-premises implemen-
tation, we are currently running it on Minikube; however, a Minikube cluster
is not quite fit for production, since it is only a single-node cluster tailor-made
for local development. [42] On the other hand, hosting a cluster on the cloud
makes it far more viable for production right off the bat, as we have the option
of adding and removing nodes as we see fit (alongside lots of other features),
and as such we can create a cluster optimized for high-availability, allowing
for drastic performance improvements by utilizing resources of multiple ma-
chines (or nodes, in the Kubernetes nomenclature) as well as protecting us
from disasters such as node crashes by having other nodes step in before the
crashed node recovers. [43]

Less importantly, Vim was used as our text editor due to its ease of use
when editing configuration files and availability on machines on the cloud.
Also, we have used Bash in our build script for its prevalence in the Linux
world.

4.2 Project structure

Let us continue with a brief overview of the project structure of the repository
with our cluster configuration.

38

4.2. Project structure

Figure 4.1: Directory tree of the LearnShell Cluster project

As we can see from the output of running tree in the project root, the
files in our repository are almost exclusively either YAML configuration files
or shell scripts, which is par for the course in a Kubernetes application; the
YAML files contain instructions based on which we build all resources in our
cluster, while the shell script uses them to build our cluster from scratch. By
running wc -l on all the (not auto-generated) files in the repository, we arrive
at an estimation of a little less than 350 lines of code, with the bulk of it being
in the Deployment configurations and the shell script.

There are several facts worth mentioning regarding our project structure.
Firstly, as one can see from the first figure, there are no files specifying different
configurations for specific cloud providers (or for on-premises clusters). This
is because with some additional work and research regarding matters such as
backward-compatible versions of Ingress, Kubernetes allows us to create truly
provider-independent cluster configurations; therefore, as of right now, we can
build our cluster using the build script on both Google Cloud as well as on-
premises, and there is no particular reason to doubt that it would be the same
for other cloud providers, such as AWS or Microsoft Azure. Secondly, the
project might seem deceptively small, especially when one considers the num-
ber of lines written. We achieved this by making use of two tools; Helm charts
to forego having to write configuration files for our databases as well as us-

39

4. LearnShell Cluster Implementation

ing shell commands (such as kubectl expose deployment to create services)
instead of specifying our workloads and resources in YAML files.

Should we instead decide to build Roles, ServiceAccounts, PersistentVol-
umeClaims, StatefulSets, etc. via kubectl apply on configuration files, our
project would quickly increase in size, if we go purely by the number of lines of
code. This would not be advantageous, not even for configuration debugging
purposes, since kubectl has commands specifically for describing workload and
resource specifications and reading logs of workloads.

4.3 Functionality

Before we get to any diagrams, we should properly explain what the project
does. Essentially, it all boils down to our Makefile and build script. By calling
make, a cluster is built from scratch in the "learnshell" namespace, in order
to isolate the workloads and resources of our cluster from those potentially
running on the user’s machine(s) for other purposes.

However, there are some prerequisites for our build script to run correctly.
Obviously, Kubernetes should be installed on the machine, as well as its pre-
requisite, Docker. Next, Helm is required for installing Helm charts, which
play a very significant role. Also, a shell interpreter is required for the build
script to run, and Make should be installed to call Makefile commands. How-
ever, one can also run the build script by itself; the Makefile is there merely
for the convenience of the user. Finally, a platform to run the cluster on is re-
quired; the script is verified to work on Minikube and GKE, however, it should
work everywhere, even though we have not tested it on other providers.

Upon running the Makefile command, setting up the cluster could take
several minutes; be advised that the process is far slower on the on-premises
cluster, due to it running on Minikube, which is a single-node cluster. In
comparison, the Google Cloud cluster uses GKE to make sure all the pre-
provisioned nodes share the load of setting it up and maintaining it and is
therefore many times faster.

4.3.1 Documentation

For a consise guide on how to set up the LearnShell cluster, see the Mark-
down documentation packaged with the project in the Gitlab repository of
the cluster. The documentation includes a step-by-step guide as well as a list
of current issues and potential improvements.

4.4 Build script in-depth

To properly understand the process of building a cluster from the ground up,
let us through the key sections of our build script. To do this, we shall analyze

40

4.4. Build script in-depth

what is happening inside when specific Makefile tasks are executed.

4.4.1 make help

By far the simplest of the three, make help merely outputs a list of commands
that can be called.

4.4.2 make clean

Moving on, the make clean task deletes all workloads in the "learnshell"
namespace, which is the reserved namespace of our cluster. It does so by
calling ./build.sh clean, which in turn calls the function described above
and exits immediately. The code itself is rather self-explanatory; first, we
delete all workloads within the cluster, then we uninstall our Helm charts in
order to be able to reinstall them completely in the future.

This function serves another important role, as we have configured our
build script to call it every time an error occurs within the creation of the
cluster. The advantage of this is that there are no side effects related to
workloads in case of failures during the build process, and one can call the
build script without worrying about polluting the namespace in case of any
complications.

41

4. LearnShell Cluster Implementation

4.4.3 make

Finally, we arrive at the most important task, which is building the cluster.
This is done by simply calling make without any additional arguments, which
executes our build script in full.

As a preliminary stage, the script pre-emptively ensures that we have a
clean "learnshell" namespace to work with. Afterwards, the script is configured
to immediately exit in case of any errors, and just before exiting, to clean up
the namespace and echo an error message.

Next, the script makes sure that we have the correct Helm repositories on
hand, and installs the necessary Helm charts while updating them with our
custom values. The PROJECTS variable refers to the different LearnShell
projects on Gitlab, in this case, web (the front end), core (the backend),
generator, and evaluator. Therefore, we create Gitlab runners for each project,
pre-emptively even for the evaluator, as it can potentially benefit from CI/CD
even without being containerized at the moment, for example, to potentially
run unit tests on each commit.

42

4.5. Deployments

Here, we traverse our work directory and create Kubernetes resources
where possible, while omitting Helm-related files.

After creating our resources, we expose all LearnShell Deployments. Since
we are planning to make the front end as well as the back end accessible by the
end-user, we expose them via NodePorts, while keeping other services exposed
only within the bounds of our cluster. More on this will be revealed in the
Networking section.

This final part of our build script is related to the CI/CD process. A
ServiceAccount is generated that only has one privilege, which is updating
Deployments. All our Gitlab Runners will make use of this account to facilitate
continuous deployment within our cluster.

4.5 Deployments

After the build process is finished, we are presented with a complete cluster,
including diverse Kubernetes resources such as Deployments (and by extension
ReplicaSets, Pods), StatefulSets, PersistentVolumes, PersistentVolumeClaims,
Services, ServiceAccounts, Secrets, ConfigMaps, and more. This section in
particular is dedicated to the Deployments which in our case specifically rep-
resent components unique to LearnShell.

43

4. LearnShell Cluster Implementation

Figure 4.2: Deployments within our cluster

44

4.5. Deployments

As we can see in figure 4.2, we have four LearnShell Deployments in total,
named respectively web, celery, generator, and backend.

The general workflow of each of our Deployments is as follows:

1. Deployment resources are generated by using kubectl apply -f on
our YAML file containing the Deployment definition.

2. ReplicaSet resources are in turn created and maintained by our De-
ployments.

3. Pod resources are created, updated, and deleted by our ReplicaSets, ac-
cording to the data specified in our YAML file; of particular importance
is information such as the number of replica Pods that should be run-
ning at any given time, the ports on which our Pods shall communicate
or the images from which our containers should be created.

In addition, each of our Deployments is exposed to our cluster via its own
Service to assure seamless communication between the Pods maintained by
them.

4.5.1 Deployment configuration

To provide some insight into our Deployments, let us take a closer look at one
of our YAML files in which they are specified. For this purpose, we shall be
using our backend Deployment.

In each Kubernetes object definition, there are four required fields:

• apiVersion, which defines the version of the Kubernetes API that we
want to use to create our object. By specifying apps/v1, we tell the
Kubernetes engine to use the latest version.

• kind specifies the object to be created; in our case, a Deployment.
• metadata contains data that help us uniquely identify our object. Typ-

ically, that would be a name, labels of all kinds, such as the application
to which the object belongs, or the namespace. Here we use just two

45

4. LearnShell Cluster Implementation

labels; one for the name of our resource, and the second for our appli-
cation.

• spec is the most verbose, as it entails the state which is desired for our
object. As such, the spec field is very different across objects, with very
different specifications between different resources. In the next snippet,
we shall go into more detail regarding our spec field.

Importantly, within the spec field, the replicas keyword commands the
ReplicaSet created by our Deployment to create (and maintain) as many
replica Pods as we want. In our case, just one, as this cluster is not in produc-
tion. However, a production-ready cluster would have as many replica Pods
as is necessary to ensure high availability between them. Furthermore, the
selector field serves as a way for our resources to identify each other; here,
we specify that the Deployment should be matched to other resources that
also have the learnshell app label, therefore grouping them together via this
label.

In this snippet, which is a continuation of the spec field, we have written a
template from which our Pods should be built. The template automatically
understands that it should build Pods, as it is defined within a Deployment
configuration, and inherits its API version as well. Therefore, there is no need
to specify either the apiVersion or the kind fields. Within the metadata field,
we simply assign the Pod to our learnshell application and give it the same
name as the Deployment which manages it. As for the spec field, there are
two key-value pairs:

• containers is mapped to a list of one or more container specifications,
defining the containers which should be built within the Pod.

46

4.5. Deployments

• imagePullSecrets is in turn mapped to a list of Secrets in our cluster
which we shall be using to authenticate to our Gitlab private registry
and pull Docker images from it. As the backend Pod only takes a single
container, which contains the code for the backend component, we only
need to include the secret to the private registry within our backend
repository on Gitlab.

Furthermore, let us walk through the containers field, which contains a
single container:

• name is self-explanatory; it assigns a name by which we can identify
our container within the Pod.

• image tells the Pod from where to pull the container image. Here, it
is the URL of our server and its open port, with the path starting at
the LearnShell group, continuing with the repository within that group,
and finally the name of the image.

• ports is a list of ports that the container should be using, much like in
a typical Docker container on any other machine.

• command and args is simply a command and a sequence of its argu-
ments that should be run on container start-up. In our case, we first
execute a script that runs for 300 seconds until it connects to our Post-
greSQL database which is running on another Pod, and on completion,
starts serving our Django application.

• envFrom is tied to our ConfigMap resources. By using configMapRef,
we tell our container to use all the variables contained within the spec-
ified ConfigMap. However, it is also possible to handpick the variables
to pull from our ConfigMap, if need be.

As for our other Deployments, their YAML configurations all follow a very
similar pattern to the one we just demonstrated. Each Deployment has its
own unique name and its own unique template by which Pods are created,
with different ports, start-up scripts, and of course, Docker images. For a
closer inspection into our configuration files, see the Gitlab repository for our
cluster.

47

4. LearnShell Cluster Implementation

4.6 StatefulSets
Since LearnShell is a stateful application with two different databases (a Post-
greSQL database and a Redis key-value cache store), we need a way of ensuring
persistent storage in our cluster. This can be done by using StatefulSets in
tandem with PersistentVolumeClaims. Better yet, one may notice that there
aren’t any specific demands we may ask of our databases; besides details such
as setting the desired capacity of our PostgreSQL database, our databases
should behave exactly like those in any other applications. As such, Helm
charts are a very solid choice for our use case, as there is nothing particularly
unique in what we want our databases to do, besides the obvious, which is
persistent storage of data.

We installed both our PostgreSQL and Redis Helm charts from the Bitnami
Helm chart repository, which is maintained (among other Bitnami offerings)
by VMWare since the acquisition of Bitnami in 2019. [44] In addition, we
have used the Gitlab Helm chart repository for our Gitlab Runners; however,
we have dedicated a separate section to our CI/CD process, where they will
be expanded upon.

48

4.6. StatefulSets

4.6.1 PostgreSQL

Figure 4.3: PostgreSQL Helm chart

The above diagram shows the workloads and services generated by our
Helm chart, and serves as a perfect example of a basic stateful application in
a Kubernetes cluster. After the installation of the PostgreSQL chart, several
resources are created; most importantly, a StatefulSet which directly creates
and maintains replica Pods, and a PersistentVolumeClaim resource which dy-
namically allocates storage that persists even after our Pods are deleted.

49

4. LearnShell Cluster Implementation

There are two Services in use here; a "classic" Service which enables the
communication between our PostgreSQL Pod and other pods (as seen in the
previous section, the backend Pod establishes network communication with the
postgres Pod immediately upon the start-up of its container) and a "headless"
Service. A headless Service differs from a ClusterIP service (which we are using
in our Deployments as well) in that it assigns an IP address to each of our pods,
while a ClusterIP service assigns the same IP address to all Pods belonging
to a single Deployment (or StatefulSet). [45] In communication between Pods
and outside of our cluster, the ClusterIP service is utilized, while during the
process of writing to our PostgreSQL database, we use the headless Service.
This is because our StatefulSet has to watch out for potential overwrites of
the data in our database, and as such it has to process each new write request
individually for each Pod; as such, each Pod needs to be identified by its own
IP address. In our Values file for this Helm chart, we specified the name of
our database as well as the necessary credentials (although more precaution,
ideally using a Secret would be preferable in a production cluster). Also, the
size of our PersistentVolume (into which the PersistentVolumeClaim writes
data) was defined as 20GiB.

50

4.6. StatefulSets

4.6.2 Redis

Figure 4.4: Redis Helm chart

Our second Helm chart represents our Redis cache database. Here, we can
see another sizable advantage of using Helm charts, as they can be used to
quickly get slightly more complex systems up and running according to best
practices; in our case, Bitnami packaged a Redis system with a simple master-
slave architecture, containing one Master and two Slave Pods. This is thanks
to one of the great features of Kubernetes; since it was built with the goal
of assuring high availability and redundancy, it is tailor-made for systems
adhering to a master-slave architecture.

In practice, a Redis Master server bears the responsibility of writing new
data to Redis Slaves; by continuously synchronizing data with the Redis Mas-
ter, which serves as a source of truth for our system, redundancy is assured; if
one Redis Slave were to cease functioning, another would take its place with
no loss of data. On the other hand, for read operations, any Redis Slaves can
be used, as these operations cause no changes of data in our database. [46]

51

4. LearnShell Cluster Implementation

Similarly to our PostgreSQL chart, a headless Service is used to differenti-
ate between Pods when writing to our PersistentVolume. Importantly, there
is also one service for our Redis Master and one service for our Redis Slave to
allow for seamless communication between them.

4.7 Networking

To enable communication between our Pods over the local cluster network
as well as to expose our cluster to the internet, some networking configura-
tion is necessary. In this section, we shall provide an overview regarding the
Kubernetes resources (and their configuration) we used to achieve these goals.

4.7.1 Services

As was discussed in the previous chapters, a Kubernetes cluster uses Services
to expose applications running on Pods to the network. There are different
types of Services, each of them suited for different purposes. In summary, we
make use of the following types of services in our cluster:

• ClusterIP is the most used by far and serves the purpose of assigning
IP addresses to Pods as well as a single DNS name for a set of Pods
(such as backend.learnshell.svc.cluster.local), therefore enabling our De-
ployments to send data to and from each other.

• NodePort is almost the same as the ClusterIP Service, except that it
also exposes our service to the internet. This Service can be accessed by
specifying the IP address of the NodePort and the open port.

• LoadBalancer also exposes the service to the internet, with the added
bonus of using load balancing to control the incoming traffic more effi-
ciently. To achieve this, it either uses the cloud provider’s load balancer
or a load balancer which is set up on our on-premises machine.

Lastly, we use the Ingress resource to expose our cluster to the internet by
providing a specific IP address and DNS name to access our application as a
user.

52

4.7. Networking

4.7.2 Ingress

Figure 4.5: Ingress Helm chart

Much like in the case of our StatefulSets, we have used a Helm chart to set
up Ingress for our cluster. As we can see from the diagram, our configuration
looks quite similar to a typical Deployment in our cluster, with an important
difference in that it also uses a Service dedicated to load balancing of incoming
requests.

53

4. LearnShell Cluster Implementation

One of the most important parts of an Ingress configuration is the Ingress
controller, which can be in simple terms imagined as a Deployment that fa-
cilitates the creation of Pods with specific web server technologies. In fact,
there are numerous different controllers maintained as of today, with three
controllers (AWS, GCP, and nginx) having official support from the Kuber-
netes community and many more being maintained by large companies and
used in projects all across the world. In this cluster, the nginx controller is
used for two reasons; it is completely provider-independent and by far the
most convenient to set up due to the current version of LearnShell using an
nginx proxy server to forward requests to its components.

4.7.3 Ingress configuration

In addition to the Ingress controller, a working Ingress configuration also
requires a resource that serves as a set of rules based on which requests from
outside of the cluster are forwarded to specific components of the LearnShell
system. These rules are outlined in a configuration file which we shall analyze
in this subsection. As in the Deployment section, let us take a closer look at
this file.

As in our Deployments, there are four required fields, which fulfill the same
function as in any other resource:

• apiVersion here is different from the others in our cluster; instead of
v1, v1beta1 is used. The reason is that in order to make our Ingress
configuration work on both GCP and on-premises, we unfortunately can
not use the newest version of the Kubernetes API, as it is not supported
yet by GCP. Therefore, we have to use v1beta1, an older version of
the API which is quite different from v1 in regards to the syntax of
configuration files. Nevertheless, as soon as cloud providers start using
v1 for Ingress, there is no reason not to migrate to that version in our
cluster as well.

• kind is much the same as anywhere else, simply denoting the kind of
resource we want to create.

• annotations provides our Ingress with additional information in regards
to functionality. Here, we specified that regular expressions should be
used in the rules inside our spec value, that no SSL redirection should

54

4.7. Networking

be used at the moment as the current version of our cluster does not
use HTTPS (of course, this can and will be configured once the cluster
is used in production) and that we are using the nginx controller, here
told inside the ingress.class key-value pair.

• name is self-explanatory.

The spec field is, as usual, the longest part of our configuration file. In
an Ingress resource, it mandatorily contains the rules by which our network
should abide when handling requests from outside. However, there are many
other options to configure, such as the DNS name that should be translated
into the IP address which serves as the root of our application website. In our
case, there is no host, but should the cluster be used in practice, it would be
set to the current website of the LearnShell portal.

In any case, we command Ingress to route any requests received via the
HTTP protocol based on the specified path. The first path, which translates

55

4. LearnShell Cluster Implementation

to http://<ip addr>/* uses the asterisk wildcard to redirect any request to
the web Pod using port 3000 (on which our JavaScript front end is exposed).
In the paths below, special cases, are specified, such as /admin. In case the
request is made to that path, it is redirected directly to our back end instead.
These rules are also used for static files; if the client requests a CSS file within
the /static/admin/css path, for example, it is retrieved from that very folder
inside the container running inside of our backend Pod.

4.8 Private container registry

As we have decided to use the Gitlab Container Registry to store our Docker
images, this process will be dedicated to showing our process of setting it
up. Since container registries are not enabled by default on Gitlab, we need
to enable it in the permissions of each repository which should have its own
registry. In addition, we need to generate a deploy token with read registry
access for each Gitlab repository. We shall use it later to authenticate from
our cluster. Both of these tasks can be completed by using the web GUI of
the Gitlab server. After these fairly straightforward tasks, we should reiterate
why we require a registry for our cluster.

4.8.1 Authentication

Firstly, we want the Pods in our cluster to pull images from our registry, which
shall be used as templates for the containers running within them. Secondly,
in order to keep our cluster up-to-date, we want to push newly built images
into our registry for the cluster to pull from.

To pull as well as push from a private container registry as a developer,
one merely needs to authenticate using docker login <registry url> and
providing his credentials to prove he has the necessary privileges. However, to
make a Pod inside our cluster pull images from that same registry automati-
cally as part of its lifecycle, some additional configuration is needed. According
to the Kubernetes documentation, a Pod should use a Secret to authenticate
to private registries. Thus, we have created Secrets for each repository which
is part of the LearnShell group, so that the generator Deployment can pull a
Docker image from the Gitlab repository containing the code for the generator,
and likewise for our other Deployments.

The Secret should contain a key-value pair, binding the key named ".dock-
erconfigjson" to a value that represents a base64 encoded Docker configuration
file containing only the authentication data for our registry. See the image
below for an example of such a file, which we wrote purely for didactic pur-
poses.

56

4.8. Private container registry

As we can see from this figure, the file is in JSON format. The first key-
value pair, with the key "auths" refers to a collection (in JSON nomenclature,
the exact term is object) of more key-value pairs, in this case only consisting
of one pair. This pair uses the URL of the registry as well as the port on
which Gitlab exposes it. As the associated value, there is an object consisting
of the following:

• username, in this case, represented by the name of our deploy token
with read registry access.

• password as the value of the deploy token.
• email can be any email with at least developer access in the group to

which the registry belongs (in this case LearnShell 2.0 on Gitlab).
• auth is merely the output of base64 <<< <username>:<password>.

Finally, by base64 encoding the Docker configuration file, we receive the
desired value of .dockerconfigjson in our Secret. By following these guidelines,
we have created Secrets for all of our registries, and our Pods can hereby pull
images from them.

Since our CI/CD process necessitates the pushing of images into our reg-
istries, it is imperative that they can be accessed from our pipelines. Thank-
fully, this is a much less time-consuming task, as Gitlab CI provides us with
built-in variables CI_REGISTRY_USER, CI_REGISTRY_PASSWORD and
CI_REGISTRY, which provide us with the username to push containers to
the registry, a password which is newly generated (and valid) for each job and
the URL, as well as port, if one is specified in the registry configuration.

4.8.2 Potential improvements

As of right now, we are using multiple registries, one per every repository
in the LearnShell 2.0 group on Gitlab. Using one group registry for all of
our repositories would be much easier to manage since we wouldn’t need to
have multiple Secrets on our cluster for each registry. Unfortunately, this
is not possible in the current version of Gitlab used by the Czech Technical
University, which is Gitlab 11.8.10. Additionally, if we tried to circumvent this
problem by simply specifying a dummy repository with the sole purpose of

57

4. LearnShell Cluster Implementation

hosting our registry, we would encounter issues with authentication; the built-
in variables defined in the previous section can be only applied to a registry
hosted in the repository in which the CI/CD pipeline is defined. Therefore,
we have no choice but to run multiple registries. Nevertheless, this is not a
problem functionality-wise; it is merely a quality of life issue regarding the
number of Secrets which we have to maintain.

However, group level registries were introduced in Gitlab 12.10, and are
specifically designed to provide a single registry for the entire group, with each
repository being able to access the registry in its CI/CD pipeline. Once our
university upgrades its Gitlab version, it would be trivial to move from project
level to group level registries.

4.9 CI/CD implementation

Finally, it is time to direct our attention to the implementation of a CI/CD
pipeline by making use of several of the tools from the large toolbox which is
the Gitlab CI offering. As we have described our goals, as well as the general
structure of our pipelines in the previous chapter, we will directly jump into
the implementation. We have implemented CI/CD routines for the front end,
back end, celery, and generator Deployments.

To create a functioning CI/CD pipeline, there are two preliminary steps:
writing a configuration file from which a pipeline will be constructed and
provisioning an environment on which to run jobs that are contained within
the pipeline.

4.9.1 Gitlab Runners

According to the Gitlab documentation, a Gitlab Runner is an application
that works with Gitlab CI to run jobs inside pipelines. This application can
be deployed to several different operating systems, and it is entirely up to
decide whether to install it as a package, container, or as a Helm chart.

By installing it as Helm chart in our cluster, we not only make our work a
bit easier for ourselves, as we avoid having to provision a VM for our runners,
but we also make use of an extremely useful boon; as the runners would now
belong to our cluster, we can configure them to have specific privileges, such as
updating Deployments or deleting Pods. The Helm chart for a Gitlab Runner
can be installed much like any other chart; one adds a chart repository (here
provided by Gitlab) and installs it from the repository, optionally supplying
it with a Values file. Provided below is an example of such a file.

58

4.9. CI/CD implementation

The gitlabUrl value is tied to the URL of the server on which Gitlab is
running, while the runnerRegistrationToken is a unique token that maps the
Helm chart to the repository in which we want to run our pipeline. Under
runners, setting the privileged value to true allows our runner to run docker
commands, such as docker exec, which we will be using for running unit tests,
and imagePullSecrets is much the same as in our other Pods, in that it assigns
a Secret to the Pod on which the runner is deployed which authenticates it to
pull Docker containers from a private registry during our CI/CD jobs.

The values under rbac (this acronym stands for role-based access control)
are a bit more complicated; create is mapped to a boolean which essentially
tells the Helm chart if we want to create a special ServiceAccount for the
Pod on which the chart is running. The value of serviceAccountName in turn
specifies which ServiceAccount to associate with the Pod; if we don’t include a
value, the default ServiceAccount of the cluster is used. On another note, if we
allow the chart to create a ServiceAccount by itself (we can assign privileges
to it via the same Values file), this would mean that each runner in its cluster
would have its very own ServiceAccount. While this is not a problem from a
functionality-based viewpoint and neither is it a security concern, we save our
future selves some work by configuring a ServiceAccount on our own, as this
would mean that if we wanted to change up some privileges for our runners,
we only have to edit a single file (that which configures the privileges for
our account). Using the default ServiceAccount would be a bad practice, as
that account is used by all our other Pods; even though we want to give our
Pods with Gitlab Runners the privilege of manipulating Deployments, that
doesn’t mean we would like to allow any other pods to tamper with these
Deployments as well. Therefore, we have created a special ServiceAccount
called "cicd", which is bound to an equally named Role via a RoleBinding.
This Role only allows cicd to perform updates on Deployments, and nothing
else.

4.9.2 CI/CD pipeline configuration

The second step in setting up our CI/CD process is actually defining our
pipeline. We will use the pipeline for our front end Deployment as a demon-
stration of our CI/CD implementation, as it already contains a collection of
unit tests we can execute as part of our CI process. As we have discussed

59

4. LearnShell Cluster Implementation

beforehand, in Gitlab CI, CI/CD pipelines are divided into jobs, which are
defined in a configuration file in the root of the project, by default named.
gitlab-ci.yml. Let us walk through the .gitlab-ci.yml file for the LS Web repos-
itory, which contains the JavaScript code for the LearnShell front end.

To see an example of a LearnShell pipeline, visit the following link:
https://gitlab.fit.cvut.cz/learnshell-2.0/ls-web/pipelines/136554.
As with our cluster configuration, this link is only accessible by students or
members of staff of the Czech Technical University in Prague. Additionally,
permission has to be granted by the LearnShell group owner; in order to
enable access to LearnShell pipelines, please contact the maintainers of the
LearnShell group.

At the start of our file, by setting the image to docker:latest, we de-
mand that the runner creates a Docker container in which to run the now
isolated pipeline. Additionally, by specifying docker:dind as a service, Docker-
in-Docker is installed into our container, which enables our container to build
Docker images. The "stages" keyword defines a sequence of stages (essentially
groups of jobs), with a caveat that if the current stage doesn’t succeed, our
pipeline does not move on to the next one. Let us continue with the definition
of the "build" job.

60

https://gitlab.fit.cvut.cz/learnshell-2.0/ls-web/pipelines/136554

4.9. CI/CD implementation

As we can see from the code, this job is dedicated to the build stage of
our pipeline. Following the analysis from our previous chapter, this job does
most of the grunt work of our pipeline. It builds our Docker image, runs a
container, immediately executes unit tests on it, and finally pushes the newly
built image into our private registry. The last part, that is the "only" keyword,
serves to notify our runner to only run this job if the commit is pushed into
the master branch of our repository.

The last stage in our pipeline is the deploy stage, as defined here. Here, we
pull the image of Alpine Linux, which is a minimalistic Linux distribution used
extremely commonly as a sort of empty container without any additional pre-
installed programs beyond what is absolutely necessary. In the container that
is created for us, we install the shell utility "curl", which is a commonly used
tool to transfer data to and from servers. By using curl, we send a PATCH
request to the IP address of the API server of our cluster. This request
contains data that would update the timestamp of our Deployment (marked
as <update-timestamp> because it is needlessly long for this demonstration),
and authenticate using a ServiceAccount token, which we retrieved manually
from our pod and saved into a Gitlab project variable. This solution might
be rather obfuscated; another option is to install kubectl and use it to restart
the Deployment. However, that solution would be slower for the runner to
execute, since it installs additional software that is not really necessary for a
simple request to the cluster API.

As for the other repositories, their pipelines are almost completely identical
to this one, with their .gitlab-ci.yml files only differing in minutiae regarding
names of images and Deployments.

61

4. LearnShell Cluster Implementation

4.9.3 Potential improvements

While we are quite satisfied with our current CI/CD process, we are still
slightly constrained by the version of Gitlab in use by the university. There
are two features we could make use of in the future if newer versions are used;
group variables and running of jobs after a commit is merged into a branch.
Currently, the environmental variables KUBE_SERVICEACCOUNT_TOKEN
and KUBE_APISERVER are the same across all repositories, since we are
using the same ServiceAccount for all our runners. Therefore, it would be
preferable to have a single place from which to set this variable globally for
the group. Unfortunately, this is only available in the later versions of Git-
lab. Furthermore, our current pipelines are devised so that their jobs only
run when a commit is made into the master branch. Ideally, we would like
these jobs to run only after a merge request is accepted into that branch. As
with group variables, the issue lies in the fact that running jobs post-merge
is not available in our version. Still, pushes into master are almost always
made in the form of merges from other branches, and as such, this isn’t at all
a pressing issue.

As in the previous section, these improvements are merely quality of life
ones; our goals are fully achieved with the tools on offer by our version of
Gitlab.

62

Conclusion

In closing, let us walk through the goals set in this thesis.
In the first chapter, a review of the current infrastructure architecture of

LearnShell was provided, and several possible improvements were proposed.
Then, we have gone over the theoretical concepts behind modern cluster plat-
forms and talked about some of the most used technologies in the field. After-
wards, we analyzed and scrutinized the suitability of technologies that would
help us create that cluster, and used our acquired knowledge to build a project
that would create a cluster from a combination of configuration files and com-
mands, allowing the user to choose between an on-premises cluster and a
cloud-based one (while discussing the pros and cons of each). Finally, as
our last task, we implemented a CI/CD pipeline for each project where it
was deemed necessary, by using our newly created cluster to deploy Gitlab
Runners. Additionally, diagrams and code snippets from our project were
provided in order to shed light on our cluster infrastructure as well as our
CI/CD process.

In order to achieve our aims, many different technologies were used, though
there was a special focus on Docker, Kubernetes, and Gitlab CI for container-
ization, orchestration, and CI/CD respectively. The code is available for stu-
dents and staff on a repository in the Gitlab server of the Czech Technical
University in Prague. Moreover, we have organized the Docker images into
private registries on Gitlab and built pipelines around them via Gitlab CI.

While we feel confident that the goals were completed, there is always
room for improvement; in this current iteration, the cluster can be used in
practice as a staging environment for development, but to be truly production-
ready, some additional work would be required. Nonetheless, we believe that
in this state, LearnShell is well-situated to migrate completely to a cluster
infrastructure in the near future.

63

Bibliography

[1] Docker, Inc. Comparing Containers and Virtual Machines. [Online]. [cit.
10.5.2021]. Available from: https://www.docker.com/resources/what-
container

[2] Google, Inc. Kubernetes Components. [Online]. [cit. 6.5.2021].
Available from: https://kubernetes.io/docs/concepts/overview/
components/

[3] Maul, F. Locally testing Gitlab CI jobs. 2018, [Online]. [cit. 6.5.2021].
Available from: https://medium.com/fme-developer-stories/
locally-testing-gitlab-ci-jobs-aeb3eb5ec4a8

[4] Jílek, K. Command and Script Testing System for Bash Language. Bache-
lor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2018.

[5] Newman, S. Building Microservices: Designing Fine-Grained Systems.
O’Reilly media, 2015, ISBN 9781491950357.

[6] Fowler, M. Microservices. 2014, [Online]. [cit. 24.4.2021]. Available from:
https://martinfowler.com/articles/microservices.html

[7] The Apache Software Foundation. Forward and Reverse Proxy. [Online].
[cit. 24.4.2021]. Available from: http://httpd.apache.org/docs/2.0/
mod/mod_proxy.html

[8] Netcraft Ltd. Web Server Survey. 2021, [Online]. [cit. 24.4.2021]. Available
from: https://news.netcraft.com/archives/category/web-server-
survey/

[9] Borský, J. Generátor vstupních dat pro validaci Bash skriptů. Bache-
lor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2019.

65

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://medium.com/fme-developer-stories/locally-testing-gitlab-ci-jobs-aeb3eb5ec4a8
https://medium.com/fme-developer-stories/locally-testing-gitlab-ci-jobs-aeb3eb5ec4a8
https://martinfowler.com/articles/microservices.html
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
https://news.netcraft.com/archives/category/web-server-survey/
https://news.netcraft.com/archives/category/web-server-survey/

Bibliography

[10] Nemeth E. et al. Unix and Linux System Administration Handbook.
Addison-Wesley, 2018, ISBN 9780134277554.

[11] Digital Ocean, Inc. What is high availability? 2016, [Online]. [cit.
9.5.2021]. Available from: https://www.digitalocean.com/community/
tutorials/what-is-high-availability

[12] Citrix, Inc. What is load balancing? [Online]. [cit. 11.5.2021]. Avail-
able from: https://www.citrix.com/solutions/app-delivery-and-
security/load-balancing/what-is-load-balancing.html

[13] Sharma, A. Test Environment Management. ITSM Press, 2018, ISBN
9781912651269.

[14] Jain, S. M. Linux Containers and Virtualization. Apress, 2020, ISBN
9781484262832.

[15] Shankland, S. VMware ready to capitalize on hot server market. 2002,
[Online]. [cit. 4.10.2020]. Available from: https://www.cnet.com/news/
vmware-ready-to-capitalize-on-hot-server-market

[16] Smith, R. Docker Orchestration. Packt, 2017, ISBN 9781787122123.

[17] Cloudflare, inc. What is the cloud? [Online]. [cit. 25.4.2021]. Avail-
able from: https://www.cloudflare.com/learning/cloud/what-is-
the-cloud/

[18] Feldman, S. The Cloud Market Keeps Moving Upwards. 2019,
[Online]. [cit. 25.4.2021]. Available from: Availableonhttps://
www.statista.com/chart/19039/cloud-infrastructure-revenue/

[19] Amazon, inc. AWS Well-Architected Framework. 2020, [Online].
[cit. 25.4.2021]. Available from: https://docs.aws.amazon.com/
wellarchitected/latest/framework/wellarchitected-
framework.pdf

[20] Krochmalski, J. Docker and Kubernetes for Java Developers. Packt, 2017,
ISBN 9781786468390.

[21] Simic, S. Docker image vs container. 2019, [Online]. [cit. 4.10.2020]. Avail-
able from: https://phoenixnap.com/kb/docker-image-vs-container

[22] Docker, Inc. Docker Compose. [Online]. [cit. 5.10.2020]. Available from:
https://docs.docker.com/compose/

[23] Docker, Inc. Swarm mode key concepts. [Online]. [cit. 10.10.2020]. Avail-
able from: https://docs.docker.com/engine/swarm/key-concepts/

66

https://www.digitalocean.com/community/tutorials/what-is-high-availability
https://www.digitalocean.com/community/tutorials/what-is-high-availability
https://www.citrix.com/solutions/app-delivery-and-security/load-balancing/what-is-load-balancing.html
https://www.citrix.com/solutions/app-delivery-and-security/load-balancing/what-is-load-balancing.html
https://www.cnet.com/news/vmware-ready-to-capitalize-on-hot-server-market
https://www.cnet.com/news/vmware-ready-to-capitalize-on-hot-server-market
https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
Available on https://www.statista.com/chart/19039/cloud-infrastructure-revenue/
Available on https://www.statista.com/chart/19039/cloud-infrastructure-revenue/
https://docs.aws.amazon.com/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://docs.aws.amazon.com/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://docs.aws.amazon.com/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://phoenixnap.com/kb/docker-image-vs-container
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/key-concepts/

Bibliography

[24] Docker, Inc. How nodes work. [Online]. [cit. 5.4.2021]. Avail-
able from: https://docs.docker.com/engine/swarm/how-swarm-mode-
works/nodes/

[25] Google, Inc. [Online]. [cit. 29.4.2021]. Available from: https://
kubernetes.io/docs/home/

[26] Gunaratne, I. A New Era of Container Cluster Management
with Kubernetes. 2016, [Online]. [cit. 8.4.2021]. Available from:
https://medium.com/containermind/a-new-era-of-container-
cluster-management-with-kubernetes-cd0b804e1409

[27] Conway, S. Kubernetes is first CNCF project to graduate. 2018, [Online].
[cit. 9.4.2021]. Available from: https://www.cncf.io/blog/2018/03/06/
kubernetes-first-cncf-project-graduate

[28] Juggery, L. A Closer Look at Etcd: The Brain of a Kuber-
netes Cluster. 2019, [Online]. [cit. 2.5.2021]. Available from:
https://betterprogramming.pub/a-closer-look-at-etcd-the-
brain-of-a-kubernetes-cluster-788c8ea759a5

[29] Noland, D. Introduction to Kubernetes Workloads. 2019, [Online].
[cit. 2.5.2021]. Available from: https://rancher.com/learning-paths/
introduction-to-kubernetes-workloads/

[30] Kubernetes Blog. Don’t Panic: Kubernetes and Docker. 2020, [Online].
[cit. 7.4.2021]. Available from: https://kubernetes.io/blog/2020/12/
02/dont-panic-kubernetes-and-docker/

[31] Google, Inc. Interactive Tutorial - Creating a Cluster. [Online]. [cit.
12.5.2021]. Available from: https://kubernetes.io/docs/tutorials/
kubernetes-basics/create-cluster/cluster-interactive/

[32] Axosoft, LLC. Pull Requests. [Online]. [cit. 12.5.2021]. Available from:
https://support.gitkraken.com/working-with-repositories/
pull-requests/

[33] Swarm-kit Github Repository. [Online]. [cit. 7.4.2021]. Available from:
https://github.com/docker/swarmkit/pulls

[34] Kubernetes Github Repository. [Online]. [cit. 7.4.2021]. Available from:
https://github.com/kubernetes/kubernetes/pulls

[35] Google Kubernetes Engine Documentation. Autopilot Overview. [Online].
[cit. 7.4.2021]. Available from: Availableonhttps://cloud.google.com/
kubernetes-engine/docs/concepts/autopilot-overview

67

https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://medium.com/containermind/a-new-era-of-container-cluster-management-with-kubernetes-cd0b804e1409
https://medium.com/containermind/a-new-era-of-container-cluster-management-with-kubernetes-cd0b804e1409
https://www.cncf.io/blog/2018/03/06/kubernetes-first-cncf-project-graduate
https://www.cncf.io/blog/2018/03/06/kubernetes-first-cncf-project-graduate
https://betterprogramming.pub/a-closer-look-at-etcd-the-brain-of-a-kubernetes-cluster-788c8ea759a5
https://betterprogramming.pub/a-closer-look-at-etcd-the-brain-of-a-kubernetes-cluster-788c8ea759a5
https://rancher.com/learning-paths/introduction-to-kubernetes-workloads/
https://rancher.com/learning-paths/introduction-to-kubernetes-workloads/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-interactive/
https://support.gitkraken.com/working-with-repositories/pull-requests/
https://support.gitkraken.com/working-with-repositories/pull-requests/
https://github.com/docker/swarmkit/pulls
https://github.com/kubernetes/kubernetes/pulls
Available on https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
Available on https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview

Bibliography

[36] Nagy, V. A new era of Kubernetes integrations on GitLab.com. 2021, [On-
line]. [cit. 8.4.2021]. Available from: https://about.gitlab.com/blog/
2021/02/22/gitlab-kubernetes-agent-on-gitlab-com/

[37] Arundel J. and Domingus J. Cloud Native DevOps with Kubernetes.
O’Reilly, 2019, ISBN 9781492040767.

[38] Boucheron, B. An Introduction to Helm, the Package Manager
for Kubernetes. [Online]. [cit. 12.5.2021]. Available from: https:
//www.digitalocean.com/community/tutorials/an-introduction-
to-helm-the-package-manager-for-kubernetes

[39] Helm community. Using Helm. [Online]. [cit. 10.5.2021]. Available from:
https://helm.sh/docs/intro/using_helm/

[40] Google, Inc. Container Registry Pricing. [Online]. [cit. 6.5.2021]. Available
from: https://cloud.google.com/container-registry/pricing

[41] Wolff, E. Practical Guide to Continuous Delivery. Addison-Wesley, 2017,
ISBN 9780134691473.

[42] Google, Inc. Install Tools. [Online]. [cit. 12.5.2021]. Available from:
https://kubernetes.io/docs/tasks/tools/

[43] van Vugt, S. Pro Linux High Availability Clustering. Apress, 2014, ISBN
9781484200797.

[44] Bitnami blog. VMWare to acquire Bitnami. 2019, [Online]. [cit. 7.5.2021].
Available from: https://blog.bitnami.com/2019/05/vmware-to-
acquire-bitnami.html

[45] Lukša, M. Kubernetes in Action. Manning, 2017, ISBN 9781617293726.

[46] Mani, S. Highly available Redis architecture. 2018, [Online]. [cit.
9.5.2021]. Available from: https://medium.com/kokster/highly-
available-redis-architecture-613c89f887b4

68

https://about.gitlab.com/blog/2021/02/22/gitlab-kubernetes-agent-on-gitlab-com/
https://about.gitlab.com/blog/2021/02/22/gitlab-kubernetes-agent-on-gitlab-com/
https://www.digitalocean.com/community/tutorials/an-introduction-to-helm-the-package-manager-for-kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-helm-the-package-manager-for-kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-helm-the-package-manager-for-kubernetes
https://helm.sh/docs/intro/using_helm/
https://cloud.google.com/container-registry/pricing
https://kubernetes.io/docs/tasks/tools/
https://blog.bitnami.com/2019/05/vmware-to-acquire-bitnami.html
https://blog.bitnami.com/2019/05/vmware-to-acquire-bitnami.html
https://medium.com/kokster/highly-available-redis-architecture-613c89f887b4
https://medium.com/kokster/highly-available-redis-architecture-613c89f887b4

Appendix A
Acronyms

API Application Programming Interface

CD Continuous Delivery

CI Continuous Integration

CSS Cascading Style Sheets

GCP Google Cloud Platform

GKE Google Kubernetes Engine

GUI General User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP Internet Protocol

JSON JavaScript Object Notation

K8S Kubernetes

URL Uniform Resource Locator

VM Virtual Machine

YAML YAML Ain’t Markup Language

69

Appendix B
Kubernetes diagram legend

71

Appendix C
Contents of enclosed CD

readme.txtdescription of the contents of the CD
ls-cluster.............. repository containing the cluster configuration
cicddirectory containing gitlab-ci.yml files used for CI/CD
assignment.pdfassignment in PDF format
thesis.pdf......................................thesis in PDF format

73

	Introduction
	Motivation

	Architecture of LearnShell
	Overview
	Architecture
	Proxy server
	Front end
	Back end
	Distributed task queue
	Database
	Generator
	Evaluator

	Potential improvements
	High availability
	Load balancing
	CI/CD
	Staging environment
	Logging and monitoring infrastructure

	Containerization and Orchestration
	Theoretical concepts
	Virtualization
	Containerization
	Orchestration
	Cloud computing

	Technologies
	Docker
	Docker Compose
	Docker Swarm

	Kubernetes
	History
	Architecture
	Building blocks
	Authentication and authorization

	LearnShell Cluster Analysis
	Docker Swarm vs. Kubernetes
	General comparison
	Project-specific comparison

	On-premises vs Cloud
	Package manager
	Private container registry
	Continuous integration and continuous deployment

	LearnShell Cluster Implementation
	Technologies
	Project structure
	Functionality
	Documentation

	Build script in-depth
	make help
	make clean
	make

	Deployments
	Deployment configuration

	StatefulSets
	PostgreSQL
	Redis

	Networking
	Services
	Ingress
	Ingress configuration

	Private container registry
	Authentication
	Potential improvements

	CI/CD implementation
	Gitlab Runners
	CI/CD pipeline configuration
	Potential improvements

	Conclusion
	Bibliography
	Acronyms
	Kubernetes diagram legend
	Contents of enclosed CD

