
Insert here your thesis’ task.

Bachelor’s thesis

Cluster infrastructure for LearnShell:
monitoring and logging

Ilya Ryabukhin

Department of Applied Mathematics
Supervisor: Ing. Jakub Žitný

May 13, 2021

Acknowledgements

First of all, I’d like to thank my friends and family. Especially the family.
They were the first people in my life who were believing that I’d finish my
studies. Even in the time when I was not so sure about that. Their support
is not possible to measure or evaluate. Mummy␃, daddy␃ and my sister␃, you
are amazing!

I also want to thank doc. RNDr. Josef Kolář, CSc. He was the first person
in the university who let me in, went with me through the campus and gave
me the chance to enter without any exams. That’s the kindness that I won’t
forget.

Also I want to thank several professors, who were helping me a lot to
succeed in my studies. I’m talking about RNDr. Jǐrina Scholtzová, Ph.D.,
Ing. Pavel Hrabák, Ph.D. and Ing. Michal Štepanovský, Ph.D. They were
always respecting me in the same way as all other students.

Moreover, I want to thank all of my classmates that were helping me
during my studies in the university. Especially Bc. Askar Kolushev. Without
his support and passion to help I wouldn’t prepare well to some subjects’
exams or tests.

I want to thank the Mrs. Ludmila Facer, who was helping me to solve
my administrative issues even out of her working hours or vacation. She was
always asking about my study results and was worrying for me.

And my special thanks goes to two professors that taught me a lot and
I won’t forget them: Ing. Jan Trávńıček, Ph.D. and of course Ing. Ladislav
Vagner, Ph.D. These two are the most outstanding professors in my life. They
have changed completely my mindset. It has started from very first lecture,
where I’ve got late for 30 minutes. And starting that time and until nowadays
they influenced me in the biggest way. Děkuji vám oběma za to.

Also my special thanks goes to my supervisor Ing. Jakub Žitný and my
teammate Samuel Majoros. They were always helping with actual thesis.

And of course I should thank Netflix and Marvel for creating a great
movies. Especially the Avengers and Spider-Man.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Ilya Ryabukhin. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Ryabukhin, Ilya. Cluster infrastructure for LearnShell: monitoring and log-
ging. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2021.

Abstrakt

Následuj́ıćı práce pojednává o analýze současného systému LearnShell, který je
použ́ıván v současném vzdělávaćım procesu na naš́ı fakultě. V ńıže uvedeném
textu se pod́ıvám na současnou situaci, sleduji všechna stávaj́ıćı úzká mı́sta,
navrhuji řešeńı pro některé z nich a definuji cestovńı plán, jaké jsou daľśı
kroky, které zde lze provést. Vysvětĺım také vybrané př́ıstupy a technologický
zásobńık a porovnám je se současnými trendy na trhu.

Kĺıčová slova Kubernetes, Docker, DevOps, Shell, klastr, kontejner, or-
chestrace

Abstract

The following thesis is about analysis of current LearnShell system that is used
in current education process on our faculty. In the text below I’ll have a look
on the current situation, observe all existing bottlenecks, propose solutions
for some of them and define a roadmap of what are the next steps that can
be done here. Also, I’ll explain selected approaches and technology stack and
compare it to the current market trends.

vii

Keywords Kubernetes, cluster, Docker, Shell, container, DevOps, orches-
tration

viii

Contents

Introduction 1
Motivation and objectives . 1
Problems . 2

1 State-of-the-art 5

2 Analysis and architecture 9
2.1 Microservices Architecture . 9

2.1.1 Containers . 9
2.1.1.1 What is the difference from Virtual Machine? . 9
2.1.1.2 Docker . 10
2.1.1.3 Docker image vs Docker container 11
2.1.1.4 Alternatives to Docker 12

2.1.2 What is a microservice? 13
2.1.3 Microservices vs monolith? 14

2.2 Kubernetes . 15
2.2.1 Introduction . 15
2.2.2 K8S Architecture . 16

2.2.2.1 Control Plane 16
2.2.2.2 Node . 17
2.2.2.3 Pod . 17

2.2.3 Scaling . 18
2.3 Logging and Monitoring . 19

2.3.1 Logging . 19
2.3.2 Monitoring . 20

2.4 DevOps . 21
2.4.0.1 Difference from Agile 22
2.4.0.2 CI/CD . 22

2.5 Solution Architecture . 23

ix

3 Realisation 25
3.1 Solution Design . 25
3.2 Implementing logging and monitoring 26

3.2.1 Solution selection . 26
3.2.1.1 ElasticSearch 27
3.2.1.2 Logstash . 27
3.2.1.3 Kibana . 27
3.2.1.4 Alternatives to ELK 27

3.2.2 Implementing ELK . 27
3.3 Implementing DevOps practices 28

3.3.1 CI pipeline . 28

Conclusion 31
Main insights . 31
Next steps . 31

Links 33

Bibliography 35

A Acronyms 37

B Contents of enclosed CD 39

x

List of Figures

0.1 Current architecture in production environment 2

2.1 Difference between container and Virtual Machine [1] 10
2.2 Difference between Docker and container [2] 11
2.3 Docker container setup [2] . 12
2.4 Application with microservices architecture [3] 13
2.5 Application with monolith architecture [4] 15
2.6 Kubernetes cluster architecture [5] 16
2.7 Difference between horizontal and vertical scaling[6] 18
2.8 Example of logging and monitoring solution 21
2.9 Proposed solution architecture . 24

3.1 Proposed solution design . 26
3.2 Implementation of ELK . 28

xi

Introduction

Motivation and objectives

Since I was starting my studies on the FIT faculty of Czech Technical Univer-
sity in Prague in 2017 one of the strongest memories was the enormous number
of students trying to pass BIE-PS1 (Programming in Shell 1) subject. In my
opinion, this is one of the most complicated subjects in the first semester.
Moreover, that is also a compulsory one for all study branches, which means
that there is no chance to fail it. Fortunately, I have passed this subject in the
first semester, but lots of my classmates had retaken this course (there were
some students that were taking it even more than 2 times).

It is worth to mention that this is a practice-oriented course, which
means it is more about proper application of knowledge rather than just cram
knowledge. And one of the reasons of failure could be the fact that we had the
issues to get this practice. The only way to get somehow guided practice was
attending the tutorials and completing the home assignments. But there were
limited number of assignments and most of them already were solved
during the tutorials. It led to the fact that the students have faced a problem
of lack of practice materials.

To solve this issue students needed to browse resources on the Internet
to find some practice exercises. And if we consider the fact above that the
course is practice-oriented, then we can conclude that the problem creates a
consequence of lowering the chances to pass the course. Another issue
that needed to be fixed is manual assessment and exam tests check. All
the tests and exam during the semester were written on the paper and were
manually checked. In comparison, another programming subject in the first
semester, which is BIE-PA1 (Programming and Algorithmics 1), has its own
evaluation system Progtest. Moreover, this system is used in other subjects
on the faculty, so we can take as an axiom that the efficient automation
of student’s works evaluation is possible.

All the issues covered above had motivated to create a LearnShell platform.

1

Introduction

It makes students to learn the basics of Shell programming faster and easier.
Moreover, the knowledge there should be really strong, as they are required
throughout the whole education cycle. It means that system is assumed to
teach in the most user-friendly way to motivate students to learn the
subject not just to pass the subject, but to avoid possible issues with subjects
that are kind of referencing to Shell.

So, the platform is designed to solve some challenges:

• practice of Shell exercises, an exercise is chosen randomly. The goal of
that is to improve knowledge level of Shell and to find out the
weaknesses in the knowledge base;

• hosting of assessment tests, assignments and exams for BIE-PS1 subject.
So, this system is aimed to be a single entrypoint to all practice part
of the course;

• automatic evaluation of exercise. This would let system to automate
the evaluation process and decrease professor’s load.

Problems

Current system design is properly described in Figure 0.1.

Figure 0.1: Current architecture in production environment

This solution has its own pros and cons. On the one hand, the solution is
not designed as a monolith (most of the components are covered within

2

Problems

isolated environment called microservice; this term will be properly defined
and described in the following chapters) and is quite strong from the net-
working security perspective (solution has two proxy servers; one stands
for default gateway, while second proxies the traffic through microservices).
On the other hand, let us observe the negative factors of current implementa-
tion:

• the solution is scaled between two servers. So, there could be the problem
of server overhead. Proxy is not able to handle that, simply because
its goal is to forward the request to some server that can fulfill it, while
we need to balance the load between the servers;

• another problem of current implementation is logging. Logs are usually
one of the most powerful tools for debugging. And here we have multiple
servers to handle, so in current approach we should manually integrate
all logs. This is non-efficient and risky approach, because some of the
data may be lost during manual transfer. It means that proper logs
collection is required. Also, it could be a benefit if we could enable some
efficient logs search and monitoring, since it would enable solution
to scale faster and would not slow down the log analysis process;

• at the moment solution is deployed manually on multiple servers. And
complexity of this operation would increase linearly to the number of
servers. That is definitely not a best practice, so there is a need to
implement some DevOps best practices, especially CI/CD pipelines
(it will be described further).

To sum this all chapter up, we have a current solution, that has its pros
and cons. It can and should be improved, so my goal is to analyse all the found
issues and provide a solution to logging and monitoring related problems,
including CI/CD pipelines.

3

Chapter 1
State-of-the-art

Nowadays more and more companies all around the world get better under-
standing of Digital Transformation term. It can be defined as a process of
using digital technologies to create or modify business processes [7]. And the
system that is given to improve is a great example of transforming the slow
and inefficient process into modern and efficient one, because it aims to
substitute the manual assignments checks and improves education process.

It is not a secret that digital transformation is the way to cut the costs.
But before the actual transformation let me introduce several types of costs
that we will use further in this chapter. So, there are two types of expenses:

• Capital Expenses (CAPEX). This is a one-time expense that is used
for long-term purpose. An example of such could be a hardware purchase
[8]. Usually, this expense is quite huge, but it is done only once. So,
we can conclude that CAPEX is preferred in long-term initiatives and
projects.

• Operational Expenses (OPEX). This is an opposite to CAPEX:
OPEX is an expense that is used for day-to-day operations. An example
of such in our domain is usage of cloud provisioned infrastructure. This
expense is relatively small, if we would compare it to CAPEX, but is
done more regularly. So, the OPEX is the best solution in case there is
an innovative project or the solution is on MVP stage.

Now we are aware of several expenses types and we can explore several
ways of creating the solution. And all of them are on the different phase of
digital transformation. Let us briefly go through all the possible approaches:

• Traditional approach. In this case solution is designed in rather naive
way, which could lead to several issues. The main one is that this solution
is not scalable enough, which means that it would take a longer time to
deploy it to some dedicated server. Also, it would require additional
low-level skillset in infrastructure setup and support. This would lead

5

1. State-of-the-art

to growth of both CAPEX and OPEX, which is usually not the best
thing to start the project with.

• Cloud-native approach. Such an approach brings lots of benefits to
the solution. In this case solution has zero CAPEX, which is preferred in
the very beginning. Also, building a solution in such manner would lead
to broaden vendors choice that would make lower OPEX than in tradi-
tional approach because of huge amount of competitors. And depending
on solution, it can even be deployed without infrastructure support. So,
that is again lowering the OPEX. Moreover, the solution will be available
depending on vendor’s SLA, so it lead to high availability of solution.

Actually, huge penetration of cloud computing is one of the growth reasons
of digital transformation [9]. And cloud computing does not always mean that
solution will be hosted somewhere in external environment. Let us have a look
on different types of cloud:

• Private cloud. Basically, that is the most expensive offer. The only
reason for that is that a company is required to purchase specific hard-
ware that is usually more expensive than usual. Nevertheless, this offer
guarantees that the data would not leave physical building of the data
center. So, that is the most secure solution.

• Public cloud. All the services are deployed in public data centers, but
there are a strong security compliance rules. It means that there is a
shared responsibility, where vendor is obliged to fulfill SLA and physical
security, while company should maintain data security. This offer is
the easiest and fastest to implement, but some companies would not
establish it.

• Hybrid cloud. This is the compromise that takes all advantages of
previous two. It has everything that does not have any obligatory re-
quirements in public cloud and everything that is restricted to some
physical location either by governmental or company’s compliance - in
private cloud.

Another things to discover is all possible cloud offerings. All of them are
used in their own specific scenarios, but we should be aware of all of them.
So, there are three types of cloud solutions:

• Infrastructure-as-a-Service (IaaS). This offering transfers respon-
sibility related to physical assets to the vendor. However, the company
must maintain all the software, except OS. As the result, this is the most
flexible solution, but there is still lots of tools to maintain.

• Platform-as-a-Service (PaaS). This is the most popular solution on
the market at the moment [10]. PaaS hides the implementation from

6

the user, but its usage is still a thing to be properly described, as data
security is still considered by company. So, this solution is a median
between all offering that requires less support.

• Software-as-a-Service (SaaS). This thing is also called ”black box”.
Simply, that is a solution where the company should not care about any-
thing like security. It can be configured even to be run locally, however,
the company doesn’t control the data workflow. In total, this solution is
the easiest to use, but there is no control over its work.

To sum this chapter up, the current digital transformation process focuses
mostly on creating cloud-oriented solutions, as the cloud computing opens up
new growth opportunities. That is the reason why it is extremely important
to build solution in cloud-native manner, since this approach would provide
additional benefits from the operations and financial perspective.

7

Chapter 2
Analysis and architecture

2.1 Microservices Architecture

This term has been used several times in the text above, but, unfortunately,
there was not convenient place to get so much into details. And now I would
like to define and describe several terms, that would be useful in the following
text. Probably, that is the most important part of the thesis.

2.1.1 Containers

Docker defines container as standard unit of software that packages up code
and all its dependencies so the application runs quickly and reliably from
one computing environment to another [11].

2.1.1.1 What is the difference from Virtual Machine?

The main difference between container and VM is described in the Figure 2.1.
Let us highlight all the differences:

• Container is an abstraction of code and its environment, so it ab-
stracts the application level. In the meanwhile, VM abstracts everything
including hardware [11].

• Multiple containers share single OS kernel, which makes them to
have a small size (usually measured in MBs), while each VM copies
whole OS and has separate kernel, which would increase the image size
up to tens of GBs [11].

• Including the previous fact, we can also conclude that containers is
fast to boot in comparison with VM. It is quite obvious (each VM has
to boot its own OS and only then the app, while container should boot
only the app), but it is worth to mention.

9

2. Analysis and architecture

Figure 2.1: Difference between container and Virtual Machine [1]

The image also includes a part called Docker. But what is that and how is
it related to the containers at all? It will be described in the next subsection.

2.1.1.2 Docker

So, in the previous section there was explained a concept of container. Now let
us focus on the thing called Docker . This is an open-source software designed
to facilitate and simplify application development. It is a set of platform-as-
a-service products that create isolated virtualized environments for building,
deploying, and testing applications [1]. And as you would remember the pre-
vious section, virtualized environments is called a container. So, Docker and
container is not the same thing. Let us explore the difference.

As it can be seen on Figure 2.2, there is a quite long way from executing
Docker to a container creation. We are not yet interested in the Kubernetes
part, it will be introduced further in this chapter. So, let us get through the
main steps:

1. Docker calls a component called containerd. This is an open-source
container runtime, where the container is further getting prepared [2].

2. After that another component Open Container Initiative (OCI) is get-
ting called. It creates and runs all container processes [2].

3. Then OCI calls runc, which is a command-line tool for running the
container processes creaeted by its caller [2].

4. Only at this moment container is prepared.

And to be precise, all of this time only container concept was introduced.
Now it is time to get into another terms: what is Docker image and does
it differ from Docker container?

10

2.1. Microservices Architecture

Figure 2.2: Difference between Docker and container [2]

2.1.1.3 Docker image vs Docker container

In the text above there was introduced the container concept and its relation
to Docker. But further in the text there will be two separate terms with huge
difference: Docker container and Docker image. Let us go through them.

First, let us define the image. This is the an immutable (unchangeable)
file that contains the source code, libraries, dependencies, tools, and other files
needed for an application to run [2]. Figure 2.3 shows that image contains

11

2. Analysis and architecture

several read-only layers and one container layer. Each layer represents some
instruction in image definition file (Dockerefile). All the details of image defi-
nition and best practices will be described in the next chapter.

The last layer in the container is read-write one and simply represents the
application itself. Imagine that the image contains some OS and the last layer
should be an executable that runs the app. In this case all the OS setup and
dependencies installation is read-only, which is quite obvious (the OS setup is
quite stable and should not change within the same app), while the last layer
executes the app and it is a read-write one.

To sum up this section, we can think of Docker image as a template, while
container is an instance of this template.

Figure 2.3: Docker container setup [2]

2.1.1.4 Alternatives to Docker

There a usual misunderstanding that Docker container and general container
are the interchangeable terms. Well, that is not true. Simply because in 2017
99% of containers were done using Docker, but one year later the Docker share
decreased up to 83% [12]. I would not go into all alternatives to Docker, my
goal is just to show that there is at least something that is also used on the
market. So, let us find it out.

The first project I want to talk about it LXD. The share of such technology
was around 1%. It emulates the experience of operating Virtual Machines but

12

2.1. Microservices Architecture

in terms of containers and does so without the overhead of emulating hardware
resources [13]. I would personally assume that it looks like chmod command
in Linux kernel (changing the permissions for individual users and groups of
users), but to isolate the whole environments, not just a single file or directory.

The second project I would like to mention is rkt produced by CoreOS. It is
assumed to be more secure alternative to Docker [13]. Also, rkt supports not
just Docker images, but appc containers as well (another alternative to Docker,
which is deprecated). In addition, rkt works out of the box in Kubernetes (it
will be described further) and for that reason is the only main competitor with
12% share in 2018 [12].

To wrap this whole conversation about containers, here was introduced
the most important concept that will be used further and will become a basis
for further architecture and implementation details.

2.1.2 What is a microservice?

Now we know what is container. Now let us have a look at the microservices
themselves. On the Figure 2.4 there is described an example of e-commerce
application with microservices architecture.

Figure 2.4: Application with microservices architecture [3]

Let us go through the main points of such an approach:

13

2. Analysis and architecture

• All solution consists of small components, each of them is called a mi-
croservice. Each of them is isolated from each other, so it is a container.

• Each microservice connects to the only database. The reason for that
is compliance to Database-per-Service pattern [14]. I would not go into
details of the pattern, since that is a bit out of the scope, but the only
thing that is sufficient to know is that each DB is also a container.

This architecture approach is quite interesting, but how can we answer if
microservices architecture is good enough? Well, we need to compare it with
more traditional way, or the monolith architecture.

2.1.3 Microservices vs monolith?

Now we know what is a microservice. So, it is time to find its pros and cons.
Comparing to monolith architecture (see Figure 2.5), let us describe some
meaningful advantages of microservices:

• The microservice concept is easier to understand and maintain. It
means that the code would be responsible just for single service. The
monolith has the opposite approach and doesn’t isolate the code, so it
becomes less readable. That would leave each service relatively small
and that is the reason of calling each service a microservice.

• The isolation of components brings a benefit of loos coupling. That is
one the best practices in the architecture that simply states to make the
components as independent as possible. This leads to faster deploy-
ment and less downtime, since we need to deploy not the monolith
service, but only its updated part, which also means that there could be
even no downtime at all.

• Despite the loos coupling, there is an advantage of high cohesion. This
is also one of architecture best practices that means that we can ex-
plicitly state which services are called by another ones. It brings better
testability and maintainability.

• Because of proper code isolation, there is a great fault isolation. So,
if some subsystem fails, then there is an option to ”roll back” only the
failing component. Moreover, this can be also used for easier adjustment
of the system.

As all the pros of microservices are discussed, now we should go to its cons:

• Basically, monolith is rather simpler than microservices. For that reason,
projects with 2-3 components would not need such a complication.

14

2.2. Kubernetes

Figure 2.5: Application with monolith architecture [4]

• There is a huge question about how to decompose the monolith into
microservices. In case of complicated data workflow that would lead to
additional data synchronization, just because the microservices are
independent and not synced.

• Microservices use huge amount of memory in comparison with monolith.
Just because each of them has a separate environment, which increases
whole memory consumption by N times in case of N microservices
in comparison with single monolith. [3].

So, let us wrap the section up. Here were discussed all the main things
about microservices architecture. Also, there were discussed not only the basic
concepts, but overall its pros and cons. Now it is time to move to specific
technologies or approaches that would let us improve existing solutions.

2.2 Kubernetes

2.2.1 Introduction

Now we are aware of the microservices architecture basics. Now let us get a
bit deeper in this topic, since all the implementation is mostly based on

15

2. Analysis and architecture

concepts from here.
Kubernetes (also known as K8S) is portable, extensible, open-source plat-

form for managing containerized workloads and services, that facilitates both
declarative configuration and automation [15]. The project was open-sourced
by Google in 2014. This solution supports microserevices architecture and
is used for load balancing and building a cluster , which actually enables
usage of multiple hardware units within the same solution. K8S itself con-
sists of several components (see Figure 2.6), let us go through the K8S cluster
architecture.

Figure 2.6: Kubernetes cluster architecture [5]

2.2.2 K8S Architecture

2.2.2.1 Control Plane

This is the most high-level component. It makes global decisions about the
cluster, as well as detecting and responding to cluster events [5]. Despite the
fact that it controls overall cluster it connects to the cloud provider. The
thing is that each cloud provisioned K8S cluster has a default load
balancer . It means that load distribution between nodes (will be described
further in this section) is managed automatically.

So, the control pane consists of several components:

• kube-apiserver. This is actually the public facing component that
exposes the API and used in all the communications. Also, that is used
for horizontal scaling (it will be described in the next section);

• etcd. This component represents highly available ”key-value” stor-
age. In computer science there is a data structure called Dictionary or
Map that is the most convenient to explain the component purpose on;

16

2.2. Kubernetes

• kube-scheduler. This is one of the main features of controller plane. This
component stands for pods scheduling, meaning that the ones with no
node will be assigned to any. The difference between node and pod will
be described later in the text;

• kube-controller-manager. This is a component that consists of multiple
controllers (functionality of nodes, jobs, endpoints, services) that are
combined for simplicity reasons;

• cloud-controller-manager. This is an optional manager and used in
cloud-provisioned environment and also consists of several controllers
(cloud load balancing, deletion of nodes and services).

2.2.2.2 Node

Now it is time to learn more about node. Simply, that is a physical or
logical virtual machine [16]. It is used to run the cluster or its part on such
a node (the cluster with single node is also called minikube). In production
environment each K8S cluster has at least three nodes. And there should be
two types of nodes: master and worker nodes. The master one is needed to
deploy a control plane, while the worker node runs the application itself.

Each worker node has several components under the hood:

• kubelet. This component makes sure that each container runs in a
pod [5]. It is worth to mention that kubelet manages not all containers,
but just such that were created by the K8S.

• kube-proxy. This is network related component that maintains net-
work rules on each of nodes.

• Container runtime. This is a the software that is responsible for
running containers [5]. That is actually the main part of Docker
definition. Simply because Docker is one of possible container runtimes.
Some of them were mentioned in the beginning of the chapter, but now it
is time to talk about the K8S specific container runtimes. K8S supports
several of them: previously mentioned Docker, containerd (the enter-
prise standard container runtime that was derived from Docker), CRI-O
(lightweight K8S special container runtime) or any other implementation
of K8S CRI (Container Runtime Interface) [5].

2.2.2.3 Pod

The last (and the smallest) component that is contained in K8S is a pod.
Basically, that is a is a group of one or more containers, with shared storage
and network resources, and a specification for how to run the containers [16].

Each node can have any amount of podes, while each pod should have at
least one container. Since that, there are two main ways of using the pods:

17

2. Analysis and architecture

• One container per pod. This is the most common way in K8S and
is recommended in most of the cases.

• Multiple containers per pod. This is not so common pattern that enables
to connect the containers called co-located ones. It has rather advanced
usage scenarios and needs to be used only in specific cases [16].

2.2.3 Scaling

This term was used before in the text. Well, there is a time and place to define
that. Basically, that is used to make solution more available and decrease
downtime.

As it can be seen in Figure 2.7, there are two types or scaling available:

• Vertical scaling. This means that there is a single machine that
increases or decreases its capacity. This approach is quite usual in
cloud provisioned infrastructures (you can select your app plan or VM
type). But this approach is usually not applicable for some on-premise
infrastructures, because on-premise servers could have not so powerful
hardware. This type of scaling is available in K8S, but at this moment
it is in one of preview versions, so it is quite risky to use it in production
environment.

• Horizontal scaling. This is the opposite to its vertical sibling and means
that multiple instances with the identical software and hard-
ware setup are initialized. This is an only stable scaling in K8S
that is available. This approach can be easily applied on either cloud
infrastructure or on-premise environment.

Figure 2.7: Difference between horizontal and vertical scaling[6]

18

2.3. Logging and Monitoring

So, let us wrap it up. We have learned about Kubernetes, have defined pod
and node terms. Also, there was defined a difference between horizontal and
vertical scaling. Now it is time to move forward and get to the core of the
implementation: Logging and Monitoring.

2.3 Logging and Monitoring

This part is the actual topic of the thesis. Here will be defined both logging
and monitoring, and their main advantages.

2.3.1 Logging

This term can be defined as practice of collecting all the data produced by
hardware and software [17]. For example, that could be an authentication or
authorization attempt, data sent as a response of API, usage data of CPU or
RAM etc. This practice consists of several independent processes and multiple
goals:

• Log aggregation. This is an actual the process of collecting the data
into some single place. Most frequently used way for that is simply write
this data to some .txt or .csv file. It is also quite obvious that the log
file has a huge size.

• Log storage. This stage was partially mentioned in the previous pro-
cess. It is not about only the exact logs storage, but is about the logs
management. In most of the companies and production systems there
is a thing called retention period, which is the number of days that
system’s data should be kept. So, it means that the out of date log
files must be deleted.

• Log enrichment. At this moment we have somehow managed logs
aggregation and storage. Now it is time to add some other informa-
tion. It is not produced by the system itself, but can be useful further.
Such an approach is called enrichment. Such an information could be
additional information about user, for instance, IP address and corre-
sponding geographic location.

• Log analysis. This is probably the main part of the whole process.
everything has a purpose and logging is not an exception. It was men-
tioned above the log files are huge, so it makes lots of sense to analyze
it not manually, but using some tools. So, there is a thing called log
analyzers. This process has several goals, and the main ones are to find
bottlenecks in the processes and comply with regulatory or secu-
rity standards. At first sight it main seem that log analysis is already
a part of monitoring, but that will be described a bit later.

19

2. Analysis and architecture

To sum this all up, the logging practice becomes a must have thing to
implement nowadays. However, the log files are relatively huge in size and
require proper maintenance. And that is the thing where monitoring comes
into play. And we will describe it further.

2.3.2 Monitoring

This term is widely used within topics that are related to the support. Broadly
speaking, monitoring is the process of collecting, aggregating, and analyzing the
metrics provided by the components in your environment by using a monitoring
solution [18]. It consists of three main parts:

• Metrics. Simply, that is a raw data about resource usage or behavior
that your monitoring system collects from any of the applications or
services on your infrastructure [18]. There are several inputs for them
(CPU performance, disk space, network activity), and actually logs is
one of possible metrics within the monitoring.

• Monitoring. This process is actually build an environment to control
the metrics and prepares a base for alerting. This part can represent all
the insights using graphics (maps, charts) and visualizing some metrics
into some dashboard.

• Alerting. This part is used to notify the host about some anomaly in
the monitored metrics. It is quite clear that host would not notice some
abnormal actions, because of huge amount of information. So, the goal
of this part is to solve this issue.

So, now it is quite obvious that logs is one of possible metrics within the
monitoring. Now, let us define several types of monitoring. There are some
domain specific ones (e.g., network or database monitoring) that could be
understood quite straight forward, but let us focus on two main types of
monitoring:

• Real User Monitoring (RUM). This kind of monitoring focuses on
user-related types of activities. This can be frontend load time, page-to-
page customers conversion, spent time on each page etc. Thus, it can
be any activity that is performed by the user while the app usage.

• Application Performance Monitoring (APM). Usually this type
of monitoring is considered as the only possible, but that is not true.
Its goal is to find the places where it is possible to reduce costs or op-
timize the workflow. And here is presented only the application-related
activities, such as system metrics.

On the Figure 2.8 there is an example of how can monitoring solution look
like. Simply, that is the combination of both charts and metrics. But let us

20

2.4. DevOps

Figure 2.8: Example of logging and monitoring solution

define two main reasons to have such a logging and monitoring embedded into
the solution:

• Resource Management. The logging and monitoring enables the so-
lution stakeholders to define the bottlenecks in the processes and per-
form operational changes considering real data from the system. Also,
such management could help to control if the solution meets the key
requirements or SLA.

• Advanced troubleshooting. Having logging and monitoring helps to
find the issues faster and, consequentially, cheaper. This becomes more
critical in the cluster environment, when there are multiple pods and
nodes that should be properly managed. Also, there is an option to set
up the alerting, so the administrator would be informed immediately
after some accident happened. That could decrease the downtime and
again help to meet the SLA or other non-functional requirements.

So, let us wrap the discussion about the logging and monitoring part.
Here were described the goals of these two practices and advantages that they
bring. Also, we have found out the difference between the kinds of metrics
and the high level processes. And both logging and monitoring can be called
a DevOps practices. And we will discuss the DevOps just now.

2.4 DevOps

Now it is time to go into another important topic. It it related to the logging
and monitoring, as well as it connects all the things together.

21

2. Analysis and architecture

This term is defined as a set of practices that combines software develop-
ment (Dev) and IT operations (Ops) [19]. These practices become more and
more important today. Furthermore, I would like to mention that there is a
standard ISO/IEC AWI TR 24586, which is now under development by ISO
and is aimed to standardize everything related to DevOps [20].

DevOps can be used as some kind of umbrella term for several practices.
Obviously, some of them are related to the actual development (code version
control, testing, CI/CD etc.) and other - to operations (releases, monitor-
ing etc.). And monitoring is one of DevOps practices. Let us meet
with some others: Agile, Continuous Integration and Continuous Delivery or
CI/CD.

2.4.0.1 Difference from Agile

Agile is another buzzword that is related to DevOps, but is different and is
often used as a DevOps substitution. To be precise, that is not true. Agile
has a definition of practices involve discovering requirements and developing
solutions through the collaborative effort of self-organizing and cross-functional
teams and their customer(s)/end user(s). [21]. So, it means that agile can be
used mostly in software development and it has tighter application
domain, while DevOps combines practices from multiple domains.

2.4.0.2 CI/CD

This part is about one of practises mentioned above. Here I would like to
define what is Continuous Integration (CI) and Continuous Delivery (CD).

But before I would go into that let me define the process that we would
consider as a baseline for improvement. So, the current process looks like the
following:

• Deployment is done manually, which leads to high human factor
impact.

• The images are built manually, which leads to high human factor
impact.

• The code is tested manually, which leads to high human factor im-
pact.

There was mentioned several times a high human factor impact. Now
it is time to describe its consequences, since that could be not that obvious:

• Manual processes take the time of developers that they can spend on
something more meaningful. So, lack of automated processes decreases
the productivity.

22

2.5. Solution Architecture

• Existence of human factor increases the error rate. Simply be-
cause human is able to get tired or lose some meaningful detail that
would lead to error. And the cost of such an error can be extremely
high (violation of service SLA, spending additional resources on resolv-
ing the issue, drop in company’s quotes etc.)

All the processes described above are easy to execute and do not change
depending on input. It means that this processes can be easily automated.
And including the fact that there is a high risk of human error, we can conclude
that this processes may and must be automated.

And here is the place where CI/CD comes into play. It helps to solve the
problems described above as they are the practices for automating the
processes related to integration, test and deployment. Each of them is
described with the file called pipeline. CI/CD consists of two parts:

• CI stands for Continuous Integration and used for automated tests and
builds. Usually this thing is done after each commit in some branch or
pull request to it.

• CD is a Continuous Delivery and should deploy solution automatically.
It is supposed to be triggered after successful CI operation. Usually be-
cause of security in production environment there is a tool called manual
approval that helps to decrease the risk of putting the whole en-
vironment down.

So, let us sum all the section up. Here was described the concept of
DevOps and the difference between two popular practices: CI/CD and Agile.
Now there is full amount of theory required to propose the changes to the
existing solution. Let us have a look.

2.5 Solution Architecture

Now let us have a look on the solution architecture that is proposed to imple-
ment (see Figure 2.8). It includes everything that was covered in this chapter.
There is not a detailed description (that is called a design and will be de-
scribed in the next chapter) and is used just for understanding the high-level
components.

There are some workflows that are proposed to implement:

1. There is a K8S LearnShell cluster where all the components are
dockerized. It sends all the data from the cluster to the selected logging
and monitoring solution.

2. Despite the logging there are the processes to be improved. To be exact,
that is about CI/CD. So, during the CI pipeline all the containers should
be uploaded to private Docker registry.

23

2. Analysis and architecture

Figure 2.9: Proposed solution architecture

After all, we need to conclude this chapter. Here were discussed all the con-
cepts that are crucial to understand the whole scope of work. Now, we can go
into implementation details.

24

Chapter 3
Realisation

Two chapters above were a bit abstract and not exact about the implemented
solution. Now it is time to get more into that. In this chapter we will get
deeper into the exact solution design and all implementation details.

3.1 Solution Design

In the previous chapter there was discussed an architecture of the solution.
It is more high level, but here will be discussed all the details. It is com-
pletely described in the Figure 3.1. Now let us go into more details of the
implementation:

• There are bunch of private GitHub repositories that are representing
each component of the LearnShell solution.

• After the commit in the default branch there is a CI pipeline trig-
gered that does two things: builds and pushes image into the
Azure Container Registry and deploys the container of previ-
ously pushed image in Azure Kubernetes Service. It is pushed
securely, because in the middle of the process there were created a
imagePullSecret, which provides another layer of security.

• In the meantime, the cluster itself should be ready for logging. There
are 4 components needed to obtain that (it will be discussed further
in details): ElasticSearch for real-time search, Kibana for visualization,
Metricbeat for metrics collection and Filebeat for logs collection. All of
them are downloaded using Helm charts. These are the components
that are already k8s-friendly.

Let us sum this section up. Here we know exactly about what and how
should be implemented. Now let us move to the exact implementation.

25

3. Realisation

Figure 3.1: Proposed solution design

3.2 Implementing logging and monitoring

3.2.1 Solution selection

The monitoring becomes critical in the K8S environment. The reason
for that is quite simple: there is a tremendous amount of log files that are
created by single node application, so this amount multiplies by number of
nodes that are used in the cluster. In case of large companies that could be
even thousands of nodes, so the amount of logs can be up to tens or hundreds
of TBs per day. And one of the most commonly used solution is ELK . It is
combined out of three solutions: ElasticSearch, Logstah and Kibana. So, let
us quickly go through all of them.

26

3.2. Implementing logging and monitoring

3.2.1.1 ElasticSearch

This is the most important part of ELK solution. It is a NoSQL database
providing distributed data storage, which is based on Java that provides high
compatibility [22]. Its main feature that it provides near real-time search
engine that supports full-text search and can be called from RESTful
API. It uses indexes for search, so it can bee possible to improve search
speed.

3.2.1.2 Logstash

This part connects the solution with the cluster itself. Its main goal is to
collect logs from several sources and transform them. It is worth to say that
it does not matter if the data is structured or not. Additionally, it can
find the geographical coordinates from IP address and anonymize
PII data, where the last feature provides additional security [22].

3.2.1.3 Kibana

This solution is a data visualization tool. It connects all the dots together:
Logstash provides the data, Kibana searches for given data in ElasticSearch
and draws all the graphics in near real-time. This solution has several dis-
advantages (limited data export options [23]), but as a part of ELK solution
that would not make any meaningful issues.

3.2.1.4 Alternatives to ELK

First of all, the Kibana is not the only solution to visualize the results of
ElasticSearch. There is a solution called Grafana, which has started as a fork
of Kibana and is more focused on the metrics, while Kibana supposes to be
applied broader. Moreover, the Grafana requires explicit separation of
data collection and storage, so that could bring more issues to set all up.

Also there is an alternative to whole ELK stack called Prometheus. This
solution is more focused on metrics only, while the ELK works with all types
of data, mostly logs. That is not a full alternative because of a bit different
scope, but usually there is a trade off between these two solutions. I should
also mention that there are some cases where Prometheus and ELK are used
together.

3.2.2 Implementing ELK

Now let us briefly go through the implementation details. In the Figure 3.2 is
shown a part of build.sh script, which describes the ELK setup. So, let us
have a look there:

27

3. Realisation

helm repo add e l a s t i c https : // helm . e l a s t i c . co

helm i n s t a l l −n l e a r n s h e l l e l a s t i c s e a r c h e l a s t i c / e l a s t i c s e a r c h
−−s e t s e r v i c e . type=LoadBalancer

helm i n s t a l l −n l e a r n s h e l l kibana e l a s t i c / kibana
−−s e t s e r v i c e . type=LoadBalancer

helm i n s t a l l −n l e a r n s h e l l metr i cbeat e l a s t i c / metr i cbeat

helm i n s t a l l −n l e a r n s h e l l f i l e b e a t e l a s t i c / f i l e b e a t

Figure 3.2: Implementation of ELK

• First of all, there is bunch of helm repositories, which manages the
kubernetes-ready services. They need to be downloaded, otherwise there
would not be possible to upload needed each separate service, or chart.
In this case, there is elastic repository used.

• Some of them are set to be a load balancers. It means that they are
exposed with external IP address and can be accessed from the public
web.

And in the result, the logging and monitoring service will be accessible
from EXTERNAL-IP: 5601 address, where EXTERNAL-IP is a external IP
address of Kibana.

To conclude this section, the ELK setup is not requiring lots of time and
effort, but would bring lots of meaningful advantages, so this solution would
be definitely a useful one.

3.3 Implementing DevOps practices

3.3.1 CI pipeline

And now that is time to show CI pipeline. It triggers on each commit into
the default branch and is required for each individual repository. It has
the high level parts:

• Build stage. This stage has two jobs to be done: build the image and
push it to the private Docker registry.

• Deployment stage. It has a goal to deploy a container of the previously
pushed image to the K8S cluster. But before that it is required to create

28

3.3. Implementing DevOps practices

an entity called imagePullSecret that will provide another security
layer while deploying into the cluster .

Now we have a CI pipeline that is able to automate all the steps needed to
maintain solution up to date relatively fast and easy. And this is time to
analyse and conclude all the job described above. So, it will be in the next
chapter.

29

Conclusion

To conclude all the discussion described above there is a need to discuss two
main things: what are the advantages of the solution and what are the
things to be improved. So, let us get into the main insights.

Main insights

These are the things that can be considered as a positive solution outcome.
Well, there are few of them:

• Now the cluster is able to simply collect and analyze the informa-
tion from all the nodes in the cluster. It was discussed above, but
briefly these steps solves a huge bottleneck in the cluster’s scalability.

• There is a CI pipeline provided. This resolves the issues related to the
solution maintenance and operations.

These are the main insights that are showing the main advantages. Now
it is time to talk about the things to be improved.

Next steps

Not everything looks perfectly at the moment. Let us go in more details:

• Right now there are at least two components of logging and monitor-
ing (ElasticSearch and Kibana) that are exposed to the public Internet.
That is a huge security guidelines violation, since that is com-
pletely not secure. Moreover, both of the services can be accessible
through http. That is done for testing purposes only and should be
definitely improved before moving the solution into production environ-
ment.

31

Conclusion

• Another thing that can be improved is a automation of ElasticSearch
index creation. Now it requires additional index setup, which would
not completely automate the process. It is worth to mention that the
process is simple and repeats over the attempts, so such a process
must be automated for the better result.

Now let us sum everything up. In this text were discussed lots of concepts
that are becoming more and more popular nowadays (DevOps, K8S, Docker)
and how they can be applied to the given LearnShell solution. Moreover,
there was done a full documentation of all the solution in the GitLab READE
file. Despite the theoretical knowledge, there was also a guide to the solution
architecture, design and implementation phases. So, we can claim that all
the problems stated in the introduction were resolved and current
solution would bring a positive outcome.

32

Links

• GitLab repository - https://gitlab.fit.cvut.cz/ryabuily/ls-azure

• GitHub repository - https://github.com/ilya2108/ls-web

• Kibana dashboard - http://20.82.215.142:5601/

• ElasticSearch - http://20.82.215.140:9200/

• Frontend - http://20.82.211.217:3000/profile

33

Bibliography

[1] Simic, S. Docker Image Vs Container: The Major Differences. Available
from: https://phoenixnap.com/kb/docker-image-vs-container

[2] Donohue, T. The differences between Docker, containerd, CRI-O and
runc. Available from: https://www.tutorialworks.com/difference-
docker-containerd-runc-crio-oci/

[3] Richardson, C. Pattern: Microservice Architecture. Available from:
https://microservices.io/patterns/microservices.html

[4] Richardson, C. Pattern: Monolithic Architecture. Available from: https:
//microservices.io/patterns/monolithic.html

[5] Kubernetes. Kubernetes Components. Available from: https://
kubernetes.io/docs/concepts/overview/components/

[6] Section. Scaling Horizontally vs. Scaling Vertically. Available
from: https://www.section.io/blog/scaling-horizontally-vs-
vertically/

[7] Salesforce. What is Digital Transformation? Available from:
https://www.salesforce.com/in/products/platform/what-is-
digital-transformation/

[8] Ross, S. CAPEX vs. OPEX: What’s the Difference? Available from:
https://cutt.ly/svRa039.

[9] Markets; Markets. Digital Transformation Market. Available
from: https://www.marketsandmarkets.com/Market-Reports/
digital-transformation-market-43010479.html?gclid=
CjwKCAjwjuqDBhAGEiwAdX2cj-Y_PzImMNchPP1tZfUoJidfitwc_
YaGV6WbJ_xOtxSSqwO6-YQE8hoCaeIQAvD_BwE

35

https://phoenixnap.com/kb/docker-image-vs-container
https://www.tutorialworks.com/difference-docker-containerd-runc-crio-oci/
https://www.tutorialworks.com/difference-docker-containerd-runc-crio-oci/
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/monolithic.html
https://microservices.io/patterns/monolithic.html
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://www.section.io/blog/scaling-horizontally-vs-vertically/
https://www.section.io/blog/scaling-horizontally-vs-vertically/
https://www.salesforce.com/in/products/platform/what-is-digital-transformation/
https://www.salesforce.com/in/products/platform/what-is-digital-transformation/
https://cutt.ly/svRa039.
https://www.marketsandmarkets.com/Market-Reports/digital-transformation-market-43010479.html?gclid=CjwKCAjwjuqDBhAGEiwAdX2cj-Y_PzImMNchPP1tZfUoJidfitwc_YaGV6WbJ_xOtxSSqwO6-YQE8hoCaeIQAvD_BwE
https://www.marketsandmarkets.com/Market-Reports/digital-transformation-market-43010479.html?gclid=CjwKCAjwjuqDBhAGEiwAdX2cj-Y_PzImMNchPP1tZfUoJidfitwc_YaGV6WbJ_xOtxSSqwO6-YQE8hoCaeIQAvD_BwE
https://www.marketsandmarkets.com/Market-Reports/digital-transformation-market-43010479.html?gclid=CjwKCAjwjuqDBhAGEiwAdX2cj-Y_PzImMNchPP1tZfUoJidfitwc_YaGV6WbJ_xOtxSSqwO6-YQE8hoCaeIQAvD_BwE
https://www.marketsandmarkets.com/Market-Reports/digital-transformation-market-43010479.html?gclid=CjwKCAjwjuqDBhAGEiwAdX2cj-Y_PzImMNchPP1tZfUoJidfitwc_YaGV6WbJ_xOtxSSqwO6-YQE8hoCaeIQAvD_BwE

Bibliography

[10] Hou, T. IaaS vs PaaS vs SaaS Enter the Ecommerce Vernacular: What
You Need to Know, Examples and More. Available from: https://
www.bigcommerce.com/blog/saas-vs-paas-vs-iaas/

[11] Docker. What is a Container? Available from: https://www.docker.com/
resources/what-container

[12] Doerrfeld, B. 5 Container Alternatives to Docker. Available from:
https://containerjournal.com/topics/container-ecosystems/5-
container-alternatives-to-docker/

[13] Academy, A. C. N. Docker Alternatives. Available from: https:
//www.aquasec.com/cloud-native-academy/docker-container/
docker-alternatives/

[14] Richardson, C. Pattern: Database per service. Available from: https:
//microservices.io/patterns/data/database-per-service.html

[15] Kubernetes. What is Kubernetes? Available from: https://
kubernetes.io/docs/concepts/overview/what-is-kubernetes/

[16] Kubernetes. Nodes. Available from: https://kubernetes.io/docs/
concepts/architecture/nodes/

[17] sematext. Logging vs Monitoring: How are They Different & Why You
Need Both. Available from: https://sematext.com/blog/apm-vs-log-
management/

[18] sematext. The Complete Guide to Metrics, Monitoring & Alerting. Avail-
able from: https://sematext.com/blog/monitoring-alerting/#toc-
what-is-monitoring-2

[19] Wikipedia. DevOps. Available from: https://en.wikipedia.org/wiki/
DevOps

[20] ISO. Software and systems engineering — Agile and DevOps princi-
ples and practices. Available from: https://www.iso.org/standard/
79010.html

[21] Wikipedia. Agile software development. Available from: https://
en.wikipedia.org/wiki/Agile_software_development

[22] Rogerson, L. Prometheus vs. ELK. Available from: https://
www.metricfire.com/blog/prometheus-vs-elk/

[23] Gupta, V. Grafana vs. Kibana. Available from: https:
//www.metricfire.com/blog/grafana-vs-kibana/

36

https://www.bigcommerce.com/blog/saas-vs-paas-vs-iaas/
https://www.bigcommerce.com/blog/saas-vs-paas-vs-iaas/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://containerjournal.com/topics/container-ecosystems/5-container-alternatives-to-docker/
https://containerjournal.com/topics/container-ecosystems/5-container-alternatives-to-docker/
https://www.aquasec.com/cloud-native-academy/docker-container/docker-alternatives/
https://www.aquasec.com/cloud-native-academy/docker-container/docker-alternatives/
https://www.aquasec.com/cloud-native-academy/docker-container/docker-alternatives/
https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/data/database-per-service.html
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://sematext.com/blog/apm-vs-log-management/
https://sematext.com/blog/apm-vs-log-management/
https://sematext.com/blog/monitoring-alerting/##toc-what-is-monitoring-2
https://sematext.com/blog/monitoring-alerting/##toc-what-is-monitoring-2
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/DevOps
https://www.iso.org/standard/79010.html
https://www.iso.org/standard/79010.html
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://www.metricfire.com/blog/prometheus-vs-elk/
https://www.metricfire.com/blog/prometheus-vs-elk/
https://www.metricfire.com/blog/grafana-vs-kibana/
https://www.metricfire.com/blog/grafana-vs-kibana/

Appendix A
Acronyms

CI Continuous Integration

CD Continuous Delivery

K8S Kubernetes

ELK ElasticSearch, LogStash and Kibana

PaaS Platform-as-a-Service

IaaS Infrastructure-as-a-Service

SaaS Software-as-a-Service

SLA Service Level Agreement

CAPEX Capital Expenses

OPEX Operational Expenses

MVP Minimum Viable Product

OS Operating System

VM Virtual Machine

MB Megabytes

GB Gigabyte

TB Terabyte

DB Database

API Application Programming Interface

CRI Container Runtime Interface

37

A. Acronyms

CPU Central Processing Unit

RAM Random Access Memory

REST Representational State Transfer

PII Personal Identifiable Information

ISO International Organization for Standardization

JVM Java Virtual Machine

IP Internet Protocol

38

Appendix B
Contents of enclosed CD

readme.txt the file that contains all the technical explanation
src.......................................the directory of source codes

learnShell.................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

39

	Introduction
	Motivation and objectives
	Problems

	State-of-the-art
	Analysis and architecture
	Microservices Architecture
	Containers
	What is the difference from Virtual Machine?
	Docker
	Docker image vs Docker container
	Alternatives to Docker

	What is a microservice?
	Microservices vs monolith?

	Kubernetes
	Introduction
	K8S Architecture
	Control Plane
	Node
	Pod

	Scaling

	Logging and Monitoring
	Logging
	Monitoring

	DevOps
	Difference from Agile
	CI/CD

	Solution Architecture

	Realisation
	Solution Design
	Implementing logging and monitoring
	Solution selection
	ElasticSearch
	Logstash
	Kibana
	Alternatives to ELK

	Implementing ELK

	Implementing DevOps practices
	CI pipeline

	Conclusion
	Main insights
	Next steps

	Links
	Bibliography
	Acronyms
	Contents of enclosed CD

