
Instructions

Lazy evaluation is a strategy that delays expression evaluation until its value is needed. This allows one

to avoid unnecessary computation and use of infinite data structures. Recently, Goel and Vitek looked

into the use of laziness in R [1], which is one of the most widely used lazy programming languages.

They found little evidence supporting that programmers use laziness to save on computation or use

infinite data structures. It would be interesting to compare this to the use of laziness in Haskell. For

this, we need a way to trace the execution of real-world Haskell programs.

The goal of this thesis is, therefore, to design and implement a dynamic tracing framework for Haskell.

It shall be scalable in order to allow us to analyze a large corpus of Haskell code available on GitHub.

The dynamic tracer should capture all interesting events such function call and argument order

evaluation and present them in an easy to be queried form.

 

[1] DOI: 10.1145/3360579

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 4 February 2020 in Prague.

Assignment of bachelor’s thesis

Title: Haskell Dynamic Tracing

Student: Ondřej Kvapil

Supervisor: Ing. Filip Křikava, Ph.D.

Study program: Informatics

Branch / specialization: Computer Science

Department: Department of Theoretical Computer Science

Validity: until the end of summer semester 2020/2021

Bachelor’s thesis

Haskell Dynamic Tracing

Ondřej Kvapil

Programming Research Laboratory
Supervisor: Ing. Filip Křikava, Ph.D.

May 13, 2021

Acknowledgements

I would like to thank Ing. Filip Křikava, Ph.D. and professor Jan Vitek for not
only making this work possible, but for being open, friendly, and supportive
throughout the whole process. Special thanks goes to Artem Pelenitsyn and
Aviral Goel who provided me with advice and direction in my work. Additional
thanks goes to Benedict Allen, Abigail Magalhães de Alcantara, and Jonathan
Coates, who have had a greater influence on my love of programming languages
than they might think, and to my friends and family for an endless supply of
entertainment.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended.
In accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive
authorization (license) to utilize this thesis, including any and all computer
programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any and
all persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity. However, all persons that makes use of the above license shall be
obliged to grant a license at least in the same scope as defined above with
respect to each and every work that is created (wholly or in part) based on the
Work, by modifying the Work, by combining the Work with another work, by
including the Work in a collection of works or by adapting the Work (including
translation), and at the same time make available the source code of such work
at least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 13, 2021 .

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Ondřej Kvapil. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kvapil, Ondřej. Haskell Dynamic Tracing. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2021.

Abstrakt

Haskell je jeden z nejznáměǰśıch jazyk̊u s non-strict sémantikou. Na jednu stranu
přináš́ı tato sémantika pohodĺı nekonečných datových struktur, ř́ıd́ıćıch kon-
strukćı definovaných uživatelem a možnost vyhnout se nepotřebným výpočt̊um.
Na stranu druhou jsou tyto výhody postiženy dańı na výkonu za běhu pro-
gramu a těžko předv́ıdatelným chováńım call-by-need. Nab́ıźı se otázka: Vyplat́ı
se ĺıná evaluace? K zodpovězeńı této otázky muśıme porozumět tomu, jak
je lenost využ́ıvána v praxi. K tomuto účelu jsme vyvinuli nástroj pro dy-
namickou analýzu použitelný k trasováńı evaluace funkčńıch parametr̊u. Je
implementován jako zásuvný modul kompilátoru Glasgow Haskell Compiler.

Kĺıčová slova Haskell, dynamické trasováńı, ĺıné vyhodnocováńı, zásuvné
moduly kompilátor̊u, generické programováńı, GHC

vii

Abstract

Haskell is one of the most well-known instances of a programming language
that uses non-strict semantics. On the one hand, this brings the convenience of
infinite data structures, user-defined control flow, and the possibility to avoid
unnecessary computation. On the other hand, these benefits are hampered by
the runtime overhead and hard-to-predict the behaviour of call-by-need. This
begs the question: Is laziness worth it? To answer this question, we need to
understand how laziness is used in the wild. To this end, we develop a tool
for dynamic analysis used to trace the evaluation of function parameters. It is
implemented as a compiler plugin for the Glasgow Haskell Compiler.

Keywords Haskell, dynamic tracing, lazy evaluation, compiler plugins,
generic programming, GHC

viii

Contents

Introduction 1

1 State-of-the-art 5
1.1 The Glasgow Haskell Compiler 5

1.1.1 Architectural overview 6
1.1.2 Strictness features . 12

1.2 Existing tools . 14

2 Analysis and design 19
2.1 Approach . 19
2.2 Using GHCi . 20
2.3 Using compiler plugins . 25

3 Implementation 31
3.1 Working with GHC . 31
3.2 Dynamic tracing with plugins 33

Conclusion 41

Bibliography 43

A Acronyms 47

B Contents of enclosed SD card 49

ix

List of Figures

1.1 The memory layout of a generic closure. 11

xi

List of Listings

1 A naive implementation of list length. 2
2 Example lazy expressions. 2
3 Deep evaluation of an applied lazy function. 27
4 The QuickSort algorithm on linked lists. 34
5 The QuickSort algorithm, rewritten. 34
6 The top-level rewriting function. 35
7 The generic transformation function. 35

xiii

List of Tables

1.1 An overview of existing solutions to thunk discovery and laziness
debugging. 17

xv

Introduction

Conventional programming languages of all paradigms use – almost equivocally
– eager evaluation strategies. Non-strict semantics has far-reaching implications
on the design of a language [1] and comes with both benefits in expressiveness
and implementation challenges.

The non-strict semantics of the Haskell language were a guiding principle
which influenced or directly determined many of the decisions made at its
inception over thirty years ago [2]. Lazy evaluation is a potentially powerful
implementation strategy for non-strict languages, freeing the programmer to
focus on what a program means rather than on how it is computed. Laziness
naturally accommodates user-defined control flow and evaluates only the
required subset of a given program in a demand-driven manner. However,
the implementation of non-strict features via laziness in GHC brings many
pitfalls which Haskell programmers need to deal with. Automatic avoidance of
unnecessary thunk allocations is conservative [3]: if GHC is unable to prove
the strictness of a function in an argument by static strictness analysis, the
function will remain lazy, possibly leading to pathological memory behaviour
at runtime.

Haskell code is pure.1 Functions in Haskell correspond closely to math-
ematical functions: they are deterministic and free of side-effects. Haskell
programs include pure descriptions of effectful computations built in a compo-
sitional way via the IO monad. Each program exports a top-level definition
called main. Invoking the program begins the demand-driven evaluation of its
main definition by the runtime. Haskell’s strong static type system provides a
compile-time distinction between pure and effectful code and ensures the two
cannot be mixed in an impure way.

When the runtime evaluates an expression, it does so to the least extent
possible. For example, take the list ys = fact 5 : fact 6 : fact 7 : []
of three values of the factorial function.2 Evaluation of the function applications

1Unless it uses unsafe facilities of the language.
2The empty list is spelled [] and the cons cell is written infix as :.

1

Introduction

length [] = 0
length (_:xs) = 1 + length xs

Listing 1: A naive implementation of list length.

is delayed by storing the necessary data in runtime structures called thunks.
When we apply the function length (defined in Listing 1) to ys and force the
value of the application, e.g. by printing it to standard output, the function
pattern-matches on the ys value. Case analysis requires the scrutinee to be in
Weak Head Normal Form (WHNF). An expression is said to be in weak head
normal form if it has been evaluated to the outermost data constructor (such
as : or []) or lambda abstraction.

The list ys is in WHNF already, it is an evaluated cons cell with a thunk
at the head and another evaluated cons cell at the tail. Since length only
counts the cons cells in a list and does not need to evaluate their elements,
the application of length to ys will leave the thunks untouched and finish in
linear time.

-- snd is non-strict in the first
-- component of the pair
snd :: (Int, Int) -> Int
snd (x, y) = y

-- purity and laziness: foo reduces to 3,
-- complexComputation is not evaluated
foo = snd (complexComputation, 3)

-- non-strict semantics can prevent
-- runtime errors
foo' = snd (error "oops!", 3)

-- computations are shared,
-- even across threads
bar = let x = complexComputation

in x `par` f x
Listing 2: Example expressions where the semantics of Haskell notably differ
from that of strict languages.

Other examples can be seen in Listing 2. The binding foo evaluates
efficiently to the integer 3, but not until its value is required for the evaluation
of another computation. The foo’ example is more interesting. Some programs
which would crash or diverge in strict languages cleanly terminate in Haskell.

The Haskell Prelude, a collection of commonly used definitions imported
into every module, includes the special function seq :: a -> b -> b, which

2

evaluates its first argument to WHNF and returns its second argument.3 Since
evaluation to WHNF happens automatically, one may wonder what is the
purpose of this function. Its usefulness becomes apparent when the user starts
dealing with programs in which performance is critical or with longer-running
applications. In these situations, the problems of laziness tend to surface.
Thunks which are never forced by the program but are still reachable in the
object graph waste memory. Haskell is a garbage collected language and similar
memory leaks slow the garbage collector down, adding a negative impact on
runtime performance. The problems with laziness are well-known and difficult
to debug. The user may be tempted to add calls to seq or other utilities to
force evaluation and avoid thunk build-up.

This fight against the semantics is detrimental to the developer experience
of the language. The question arises whether the benefits of laziness outweigh
the toll it takes on the programmer. This work focuses on laying the empirical
groundwork to help answer this question.

3Although not necessarily in this order.

3

Chapter 1
State-of-the-art

Although there are many functional languages of the ML family which enjoy
widespread use (F#, OCaml, SML), Haskell is the only non-strict language
among them. The Glasgow Haskell Compiler (GHC) implements Haskell’s
non-strict semantics by lazy evaluation facilitated mainly by a runtime data
structure called a thunk, which represents delayed computations.

Laziness leads to many issues with runtime behaviour of Haskell programs,
although it is an efficient implementation of non-strict semantics as required by
the Haskell spec [4]. The accumulation of thunks at runtime is a frequent cause
of pathological memory behaviour and unpredictable performance. There is
a number of libraries and tools which aim to help the Haskell programmer
inspect the runtime state of the Haskell heap, force the evaluation of thunks
known to be forced by the program at a later point anyway, and avoid their
creation altogether for certain expressions.

We open this chapter with an overview of GHC. We then follow with a
survey of several debuggers and solutions for the inspection and management
of thunks. We found no existing tools that would directly capture enough
information to be suitable for dynamic tracing and strictness analysis, but two
came close (Hat and ghc-heap-view).

1.1 The Glasgow Haskell Compiler

GHC is the most widespread Haskell distribution. Its plethora of language
extensions [5], which range from simple syntactical utilities to complex type
system add-ons, lets the programmer customise the set of features provided by
the language. We briefly discuss the internal organisation of the project and
in the process explain those basics of the Haskell language that are needed for
the later chapters.

5

1. State-of-the-art

1.1.1 Architectural overview

Although a thorough and authoritative – if a little dated – description of the
architecture of the compiler is available in the aptly named, freely accessible
Architecture of Open Source Applications [6], we include a summary of the key
points relevant to our work as well as to the discussed technicalities. GHC is
an optimising compiler for the Haskell language. The project consists of three
major components: (1) the compiler itself, (2) the boot libraries (a collection
of core libraries GHC itself depends on), and (3) the Runtime System (RTS,
a large library of C code linked into every compiled program). RTS provides
low-overhead runtime support for facilities abstracted away by Haskell code
such as garbage collection, exception handling, or concurrency primitives.

The compiler turns Haskell source code into object and interface files.4 The
process is organised in a pipeline that consists of the following phases:

Parsing constructs abstract syntax trees. Lexical and syntactical errors are
reported here.

Renaming resolves identifiers into fully qualified names. Undefined references
are reported here. The renaming phase reassociates operator applications
in the AST formed during parsing. This is because Haskell allows
specifying the precedence and associativity of infix operators, but their
properties are only available after their references have been resolved.

Typechecking verifies the program’s type-correctness. Type checking anno-
tates all binders in the program with type signatures. Type errors are
reported here.

Desugaring converts Haskell surface syntax to the much smaller intermediate
language, Core.

Simplification performs optimisations on the Core language, including de-
mand analysis, let floating, dead-code elimination, common subexpres-
sion elimination, constructor specialisation, and others.

Conversion to STG translates Core to the language of the Spineless Tagless
G-machine, suitable for code generation.

Code generation produces machine code or LLVM bitcode for further pro-
cessing by the LLVM toolchain.

4These describe high-level information about a compiled module, including data type
definitions and inlineable functions.

6

1.1. The Glasgow Haskell Compiler

Compiler front end

Phases of the pipeline from parsing to desugaring form the compiler front end.
It starts out with a textual representation and gradually transforms it into
increasingly structured data before passing it on to the back end. During this
process, the front end identifies and reports all errors in the user’s code.

As the program flows through the pipeline, its invariants gradually change.
The codebase reflects this by passing different data types from phase to phase.
For example, the type of binders changes from Names, which represent fully-
qualified names, to Ids, which are annotated with type information. The types
of the nodes of the surface syntax tree are indexed by an uninhabited type
GhcPass, which is itself indexed by the Pass data type (i.e. GhcPass has kind
Pass -> *), lifted to the type level. Together, the GhcPass types represent
the various phases of the compiler front end, from parsing to renaming to
type checking. The type level distinction between phases complicates the type
signatures of almost all functions in the pipeline, but the choice comes with
important benefits. First, indexing AST types by the GhcPass types provides
a compile-time guarantee that nodes from different phases cannot be mixed
unintentionally. Second, the phase type parameter allows one to use the Tress
that Grow pattern [7], that enables easy extensions of both sum and product
types at various phases.

Trees that Grow

Let us take a small detour to explain the concept of the design pattern,
invented specifically to add extensibility to GHC’s abstract syntax data
types. The basic algorithm for making a data type extensible is as
follows:

1. Index the data type of choice by a type parameter ξ, called the
extension descriptor,

data D = ... → data D ξ = ...

2. add one new constructor Extra to the data type,

data D ξ = C1 ... | ... | Cn ...
↓

data D ξ = C1 ... | ... | Cn ... | Extra

3. create a type family XCon – a function from types to types – for
all constructors,

type family XC1 ξ
...

7

1. State-of-the-art

type family XCn ξ
type family XExtra ξ

4. add one field of type XCon ξ to every constructor.

data D ξ = C1 ... | ... | Extra
↓

data D ξ = C1 (XC1 ξ) ... | ... | Extra (XExtra ξ)

This small refactoring enables the programmer to both restrict the
use of certain constructors and introduce new constructors depending
on the extension descriptor ξ. The programmer can apply these modifi-
cations by manipulating the definitions of the type families rather than
the original data type itself. It also lets the programmer add new fields
to the existing constructors, again depending on the particular type ξ.

To define the original data type without extensions in terms of its
extensible variant, it suffices to fix the extension descriptor to some
type, e.g. to Void, and omit any equations for the type families. Doing
so leaves the type level applications of the shape XCon Void irreducible
and thus isomorphic to any empty type, with the only valid value being
⊥ (such as undefined). In effect, the extension fields of constructors
cannot be pattern-matched against, because they have no constructors.
The extension constructor Extra can still be matched, but cannot hold
any data. It can be hidden completely by not exporting it from the
module of definition.

For extensions, it suffices to add type family instances – the analogy
of function equations for type functions – which resolve a particular
assignment of the extension descriptor to the desired type of the exten-
sion.

As presented, the Trees that Grow transformation leaves much to be
desired from a usage perspective: we have to pass a void or undefined
for unused extension fields during construction, these extensions also
clutter the pattern matches, and matching on both constructors and
multiple fields added via extensions is clunky at best. These grievances
can be solved by the use of a convenient syntactical feature of Haskell
called pattern synonyms[8]. These let the programmer abstract over
patterns and so define reusable interfaces to the data types extended via
the Trees that Grow transformation, hiding the structural complexity
of the underlying flexible data type.

For an in-depth description of the design pattern, its generalisations
to multiple type parameters, existentials, GADTs, hierarchies of exten-
sion descriptors, as well as relations to generic programming, typeclasses,

8

1.1. The Glasgow Haskell Compiler

and for many other practically useful details, we recommend [7], which
introduces the idea.

Although the Trees that Grow pattern is not used universally through-
out the GHC project, its concepts play an important role in many of
the core data types.

Compiler back end

The back end of the compiler starts with the desugaring phase, which translates
the resolved and type checked surface syntax into an Intermediate Representa-
tion (IR) called Core. The Haskell language contains many redundancies and
shorthands designed to make the syntax more user-friendly. The AST data
types contains hundreds of constructors. In contrast, Core only has about 10
syntactical forms. Essentially, it is a variant of System F extended with type
equality coercions [9].

Although Core is typed, the compiler only type checks Core programs if the
user explicitly asks for it. Core types exist mostly to validate the compiler’s
internal consistency – desugaring a Haskell program that passed typechecking
into incorrectly typed Core would be a compiler bug.

Most of the optimisation passes GHC performs are local semantics-preserv-
ing transformations of Core (Core-to-Core passes) which are applied in many
iterations during invocations of the simplifier [10]. These include e.g. constant
folding, inlining, or fusion of nested case expressions. The local rewritings
improve intermediate code between applications of heavier optimisations, such
as specialisation (to eliminate overloading), demand analysis, let floating, and
others.

The optimised Core is transformed to a slightly different representation
which corresponds to programs of an abstract graph reduction machine, the
Spineless Tagless G-machine (STG) ([11], later revised in [12]). It is translated
again to the low-level imperative language Cmm, a dialect of C−−, before
entering one of the final stages of the code generation phase. A successful run
of the compiler typically terminates in GHC’s built-in native code back end,
but the Cmm representation can be translated to LLVM bitcode and additionally
processed by the LLVM pipeline.

A notable divergence in the compiler is the bytecode compilation pipeline.
Bytecode is executed by the RTS interpreter, the backbone of GHC’s interactive
interface (GHCi). GHCi includes a debugger which can pause and resume the
evaluation of an interpreted Haskell program and print the runtime values
of local bindings. We will discuss GHCi in greater detail in Chapter 2. The
bytecode pipeline does not involve optimisations, the conversion to STG, or
any later passes. Instead, the separate generator translates Core directly to
bytecode instructions, although this is about to change in GHC 9.2 [13].

9

1. State-of-the-art

Compiler plugins

Both the front end and the back end of the compiler can be modified or extended
in a modular way using compiler plugins, which come in two main flavours:5
Core plugins on the back end and source plugins on the front end [14]. The
former act on the Core language and are best suited for optimisations, while
high level analyses, language extensions and code generation are better handled
by the latter. We will discuss source plugins in more detail in Chapter 2.

Runtime System

The runtime system consists of about 50,000 lines of C and C−− code. It
implements all the functionality Haskell programs require that is not compiled
into the programs themselves, much of which involves low-level interactions
with abstractions provided by the operating system. The major components
of the RTS are the following:

• A user-space scheduler which multiplexes lightweight Haskell threads
onto heavy OS threads,

• a storage manager, including a block allocation layer, which abstracts
over memory management, and a parallel generational garbage collector,

• primitives for exception handling, concurrency, and built-in operations,

• a bytecode interpreter and a dynamic linker for GHCi, and

• support for Software Transactional Memory (STM).

The scheduler is at the heart of the RTS. Haskell threads yield to the
scheduler when their assigned slice of execution time expires, when they run
out of heap or stack space, or when they need to switch between machine code
execution and bytecode interpretation. Any foreign calls into or out of Haskell
need to pass through the scheduler as well.

The storage manager defines the data structures which represent Haskell
values at runtime. Since the understanding of these representations is crucial
for the understanding of the implementation of laziness in GHC and the
trade-offs involved, we will discuss the relevant parts of the storage manager
here.

Closures (the runtime objects of programs compiled with GHC) share the
same basic representation shown in Figure 1.1. The header contains primarily
a pointer to the metadata of a closure, though it also includes a profiling
header if profiling is enabled. The payload of a closure usually contains data
not known at compile time. The info table identifies the type of the closure

5There are other types of plugins as well, including typechecker, hole fit, front end, and
DynFlags plugins, but these are not that relevant to our work.

10

1.1. The Glasgow Haskell Compiler

Header Payload

Info table
Entry code

Figure 1.1: The memory layout of a generic closure.

(data constructor, function, thunk, . . .). It informs the garbage collector about
the pointerhood of the payload. The entry code is the code executed when
entering, i.e. evaluating the closure. For example, the entry code of functions
represents the body of the function.

The STG uses a number of registers, a heap, and a stack which stores
function arguments and continuations. Closures can also reside statically in
the compiled object code of a Haskell program. During execution, any heap
allocations are preceded by a heap check, which invokes garbage collection if
not enough space is left on the heap. Similarly, when code needs to push values
onto the stack, it performs a stack check and grows the stack if necessary.

All the dynamic allocations are managed by the garbage collector, including
stack frames and lightweight threads.

There are over 60 different types of closures. Here is a summary of the
most important ones:

Function closures represent Haskell functions. When entered, functions
assume that all their arguments are present at the top of the stack. This
is known as the eval/apply evaluation model [15].
The payload of a function closure carries pointers to the free variables of
the function’s body.

Thunks represent unevaluated expressions. When entered, the corresponding
expression is evaluated and the closure is replaced with an indirection
to the resulting value. This ensures that thunks are not evaluated
multiple times, as subsequent attempts at evaluation will instead enter
the indirection which will simply return the existing value.

Indirections are proxies to other closures. Their payload is simply a single
pointer to the target object. To reduce the overhead of sharing, indirec-
tions are removed by the garbage collector and never outlive the youngest
generation.

Black holes are thunks under evaluation, with a layout identical to that of
indirections. Since thunks are shared across threads, a thread entering

11

1. State-of-the-art

a black hole blocks until it is overwritten with an indirection to the
evaluated object.

Data constructors carry their arguments (fields) as payload, ordered such
that pointers come first. Their entry code returns immediately to the
topmost stack frame (a constructor itself is always evaluated, although
its arguments may not be).

Thread state objects represent lightweight Haskell threads, including their
stacks. Since a TSO is simply a closure, it is managed by the garbage
collector, just like any other heap object. The garbage collector sends
exceptions to blocked threads which become unreachable.

1.1.2 Strictness features

GHC is not only used for production ready Haskell, but also serves as an incu-
bator of new language features – including those directly related to managing
the amount of laziness in a program. These allow programmers to aid the
compiler in optimising by avoiding unnecessary non-strictness where its static
analysis does not suffice.

A simple and robust method of preventing undesired laziness is the language
extension BangPatterns, which introduces a new pattern syntax !pat for
forcing an expression to WHNF before pattern-matching it against pat. For
short functions and clear algorithms which do not benefit from pervasive
laziness it is often very easy to simply annotate certain patterns in the program
with exclamation marks and observe a reduction in memory consumption.

The language extension shares the exclamation mark syntax with the
Haskell 2010 strictness flags feature [16]. While BangPatterns add optional
strictness to pattern matching, strictness flags do the same for data types.
Unfortunately, proper use of this flexibility hinges on the programmer’s knowl-
edge of how is the particular piece of code going to be used. While it is
good practice to request the early evaluation of values which will have to be
forced anyway, sprinkling strictness annotations throughout library code in
an attempt to prevent space leaks may lead to the unintentional sacrifice of
the benefits of laziness, even preventing some usage patterns in subtle ways.
Additionally, since these strict evaluation facilities only force thunks to WHNF,
the evaluated objects may still retain large delayed expressions. The ability to
excise thunks from a Haskell value completely was the core motivation for the
development of the deepseq library.

The lack of programmer insight into how a piece of code is used in a
program and what strictness properties it has is a major developer experience
issue [17, 18, 19, 20, 21]. Some of the discussed debugging tools help ameliorate
the problem, but GHC itself includes features especially suited to doing so. The
compiler supports two profiling modes, cost-centre profiling and “ticky-ticky”
profiling, which the GHC User’s Guide dedicates a chapter to [22]. While

12

1.1. The Glasgow Haskell Compiler

the “ticky-ticky” mode is only of interest to GHC developers, the cost-centre
profiling functionality is an easy-to-use tool for understanding the time and
space behaviour of Haskell programs. All it requires of the programmer is a
recompilation of the modules of interest with a few specific compiler options.

Cost-centre profiling assigns the so-called “cost-centres” to certain sections
of code. The RTS records any time spent and allocations performed during
the evaluation of code associated with a cost-centre. These recordings are
summarised by a time and allocation profiling report, which the profiled
program generates. The report indicates the time and space requirements of
each cost centre in proportion to the entire program. GHC is able to introduce
cost centres automatically by adding them to all non-inlined bindings, but the
user also has the option to annotate terms with a pragma to fine-tune the
placement of cost centres.

GHC’s implementation of profiling can shed some light on the use of
call-by-need in a Haskell program. The compiler can also provide certain
deeper insights about the program’s strictness, although it presents them in
a substantially less user-friendly manner. In particular, GHC can output the
translation of surface syntax to its internal language, Core. Being a fairly small
λ calculus, Core has a clearer semantics including a strict pattern-matching
operator case e of arms..., which indicates obviously strict subexpressions.
Furthermore, the Core output features demand signatures, inferred by GHC’s
demand analysis [3], which classify binders depending on how strict they are in
their arguments and to what extent do they use the components of arguments
of product types. The results of demand analysis are crucial for subsequent
optimisation. Understanding the demand signatures of a program can equip
the programmer with the information necessary to determine which patterns
would most benefit from the BangPatterns extension, which data types could
be annotated with strictness flags, and which parts of the program should be
refactored in other ways in order to improve the native code generated by the
compiler.

The GHC-provided tooling outlined above – particularly the option to dump
Core code during compilation and analyse demand signatures – is rather obscure.
It is reasonable to expect the average Haskell programmer to only reach for
the profiling tools in a time of dire need, e.g. when writing high-performance
code or dealing with unacceptable space leaks. It is further reasonable not to
expect the average Haskell programmer to know the internals of the compiler
well enough to ask it for the Core representation of their program, or indeed to
be aware at all of the existence of demand signatures, which are only described
in the GHC Commentary.6 Perhaps it would be interesting to include the
strictness information inferred by the compiler in interfaces programmers often

6The commentary is intended for GHC developers and is hosted on a GitLab instance
(online), unlike the User’s Guide which is bundled with the GHC distribution and revised for
every release.

13

1. State-of-the-art

interact with, such as the various widgets provided by the Haskell Language
Server (HLS) [23], but to our knowledge no such tool exists at the time of
writing.

In theory, the Glasgow Haskell Compiler’s optimisations are advanced
enough to compile the majority of Haskell code fairly efficiently, without space
leaks or allocation slow-downs, while enabling the greater flexibility, code reuse,
and abstraction of a non-strict language. However, inefficiencies introduced to
support unnecessary laziness which are small enough not to cause substantial
problems could hide in the compiled program. It is a part of the motivation
behind this thesis to lay the groundwork necessary for their detection.

1.2 Existing tools

Apart from functionality implemented in the compiler itself, the Haskell envi-
ronment includes a number of practical solutions to help with debugging. A few
of these deal specifically with the issues with laziness that Haskell programmers
have to face.

Hoed

Hoed [24] is a tracer and debugger for Haskell. Unlike the built-in debugger
of GHCi, Hoed is implemented as a regular Haskell library. Users of Hoed
manually annotate functions of interest to make the tracer capture relevant
information during execution. The annotations are simply calls to the provided
debugging function observe with a signature similar to that of the trace
function from the Debug.Trace module of Haskell’s standard library. Both
trace and observe circumvent the guarantees of the type system and are
in fact impure. observe has type Observable a => Text -> a -> a, its
Text argument has to equal the name of the function being annotated. The
Observable constraint on a is used by Hoed internally, the typeclass has
a default implementation. The resulting trace of the debugging session is
exposed via a web-based interface, to which the users connect with a regular
web browser. Hoed’s traces include information about which functions have
been called during the execution of the annotated program and what were
their arguments. It only collects information about annotated functions.

Hoed features several tools to help users analyse problems with their code
and find the culprits of test failures. One of these is algorithmic debugging,
an interactive trace browser which uses an algorithm similar to binary search
to locate the deepest incorrect function in the recorded call tree. It does so
by asking the user questions about whether certain evaluations were correct,
working its way gradually deeper into the tree. The “algorithmic debugger”
ultimately reports the faults it located.

While Hoed’s approach to debugging is certainly interesting and quite
distinct in comparison to debuggers in other languages, it lacks any kind of

14

1.2. Existing tools

awareness of the low-level details of non-strictness. Hoed is thus intended
for use with property testers like QuickCheck [25], and not as a tool for the
identification and resolution of language implementation -dependent issues,
such as memory leaks.

nothunks

nothunks is a recently released Haskell package which helps in writing thunk-
free code. It defines a new typeclass, NoThunks, along with instances for
common Haskell types. Any type with a NoThunks instance can be inspected
for unexpected thunks. The library also implements a number of alternatives
to common functions from the Prelude. These reimplementations check for un-
expected thunks introduced during execution, throwing an exception whenever
a thunk is detected.

The exceptions of nothunks contain helpful information about the context
of the thunk which the library function detected, guiding the programmer
in locating the unexpectedly lazy code or data structure. The library also
allows various relaxations to the strictness of its inspection policy, such as
the OnlyCheckWhnf and AllowThunk newtypes. Thanks to GHC.Generics[26],
nothunks also offers the convenient deriving (Generic, NoThunks) syntax
to add instances of the necessary typeclasses for custom data structures auto-
matically.

The nothunks package can greatly help fix serious memory leaks caused
by thunk accumulation. However, it is intended primarily for the complete
removal of thunks from the runtime state of a program, and does not help
with careful strictness analysis.

Hat

The Haskell Tracer Hat [27] is a source-level tracer. It works by compiling
Haskell source files to annotated – but still textual – Haskell source files. After
this source-to-source translation, the user compiles the annotated source code
and runs it to produce a Hat trace.

The trace is a rich recording which contains high-level information about
each reduction the program performed. Hat comes with a number of utilities
for exploring the trace files, including some forms of forward and backward
debugging, filtering utilities which show all arguments passed to top-level
functions, virtual stack traces, and even an interactive tool for locating errors
in a program, similar to one of the features of Hoed.

Hat was initially developed for the nhc Haskell compiler [28]. It centred
around the idea of using a single, rich trace of a program’s execution to support
several different kinds of debugging. Despite its advanced features, it did not
seem to attract many users [28], possibly due to feature disparities between
the supported syntax and new language extensions.

15

1. State-of-the-art

Hat’s source-to-source translation makes it portable between different
compilers. The project uses the haskell-src-exts package to parse the
language, rather than relying e.g. on the GHC API. While Hat cannot directly
answer questions about the strictness of debugged functions, its approach
to rewriting the source language is interesting. Tracing necessarily leads
to runtime overhead, but the code produced by Hat is subject to compiler
optimisations. Hat therefore does not need to worry about low-level details
of the optimiser and how it reorders, splits and combines expressions. The
connection between the tracing code and the original source is maintained
thanks to the semantics-preserving nature of optimisations.

htrace

htrace [29] is a simple package which exports a single function: htrace ::
String -> a -> a. As the name and function signature suggest, this function
mirrors the behaviour of the standard trace, except that htrace hierarchically
indents the tracing messages based on the current call depth. It works simply
by manipulating a global mutable variable and hiding this fact from the user
with unsafePerformIO.

Although very simple and oblivious to any laziness implementation details,
this approach is still useful for debugging purposes. The indented tracing
messages suggest the depth to which various thunks are evaluated at different
points of the program’s operation.

ghc-heap-view

ghc-heap-view is a Haskell package which enables advanced introspection of
the Haskell heap from within pure Haskell code. It relies on the ghc-heap
library which comes bundled with GHC.

The library’s notable high-level features include a function which attempts
to recreate readable Haskell source code from a runtime value, using let
bindings to express sharing. There are also tree and graph data structures
for heap mapping and a high-level algebraic data type for all Haskell closures,
complete with their info tables.

Haskell Program Coverage

Haskell Program Coverage[30] is (unsurprisingly) a code coverage tool for
Haskell. Unlike the other tools in this section, HPC is not directly related to
laziness control and debugging. Similarly to Hat, HPC has a source-to-source
mode of operation but additionally offers tight integration with GHC and
comes bundled with modern releases of the compiler. It supports all GHC
language extensions.

HPC allows easy instrumentation of arbitrarily complex Haskell programs
without source annotations. It wraps subexpressions in the program with

16

1.2. Existing tools

Tool Source
changes

Order of
evaluation

Thunks Memory
awareness

Hoed Required Recorded Transparent None
nothunks Required Ignored Detected Limited
Hat Unnecessary Recorded Transparent None
htrace Required Illustrated Transparent None
ghc-heap-view Unnecessary Ignored Reified Full

Table 1.1: An overview of existing solutions to thunk discovery and laziness
debugging.

an unsafe side-effecting function which records its evaluation by mutating
a module-wide array of integer counters. The final state of the per-module
arrays forms the HPC trace. This architecture is wired into the GHC compiler
pipeline in all the major data structures (the surface syntax, Core language,
and STG), which makes it both robust and performant. The tool comes
bundled with utilities for displaying the original source code with colourful
mark-up, highlighting interesting subexpressions based on the information
extracted from the trace. Notably, HPC supports traces of the boolean values
of pattern guards, which are added to the visualisation.

HPC’s feature set can be of tremendous help to the Haskell programmer,
especially when combined with tools like QuickCheck [25]. However, its traces
are tuned specifically for code coverage and do not contain enough information
to be useful for any kind of dynamic strictness analysis. While the HPC traces
are sufficiently granular, the subexpression counters lack necessary information
about their execution context and timing.

Summary

Table 1.1 summarizes the surveyed tooling. The Memory awareness column
suggests to what extent is the particular package or program aware of runtime
representations. Independence of the structures underlying Haskell values leads
to better portability and a clean interaction with regular Haskell code. On the
other hand, more low-level approaches such as ghc-heap-view give a much
clearer view of the runtime state.

Despite Haskell users’ considerable interest in avoiding the implicit delaying
of computations which the language is notorious for, there are no records of
a large-scale study of the use of laziness in practice akin to [31]. The tool
with a feature set closest to what is necessary for a comprehensive analysis
of the practical use of laziness is likely ghc-heap-view, which allows the user
to interactively inspect the heap objects and look inside thunks using GHCi.
However, the package primarily provides a rich library interface. It does not
implement a tracing mode, which would facilitate collection of laziness-relevant
information during the execution of entire programs.

17

Chapter 2
Analysis and design

The goal of this work is to design and implement a tool suitable for under-
standing how is laziness used in real-life Haskell programs. To analyse the
practical implications of GHC’s implementation of non-strict semantics, we
have to understand the strictness properties of functions. For example, some
arguments may be evaluated if and only if others are. Our tool must capture
these dependencies and usage patterns, as they may uncover both use cases
where laziness is essential and places where it could be safely avoided, even
though static analysis cannot determine so. In this chapter, we focus on the
task of dynamic tracing and evaluate two possible solutions to the problem.

2.1 Approach

Dynamically inferring the strictness properties of functions requires a peek
under the hood of Haskell’s runtime machinery. Typical Haskell code is
oblivious to the underlying representation of the values it manipulates, as
reification of the heap objects underneath the abstractions would weaken
equational reasoning and parametricity.

Once we have the power to inspect the runtime representations of values,
we need to use it to determine the strictness of functions. A function f is strict
in an argument a if a has to be evaluated whenever f a is evaluated.

There is a number of possible approaches to this problem. As discussed in
Chapter 1, related projects which we could build on already exist, at various
levels of abstraction. At the lowest level, we could modify the RTS and extract
information about heap objects there. We could also modify the compiler in
various ways, since it already includes support for HPC and profiling, which
is similar to the tracing we would like to implement. Another option is to
follow the path of Hat, rewriting the textual source code of traced programs.
In this work, we explore two design directions: extending GHCi and tracing
with compiler plugins.

19

2. Analysis and design

2.2 Using GHCi

The bytecode compilation pipeline and the interpreter offer a refreshing break
from the comparative complexity of GHC’s back end. The interpreter is at the
perfect level of abstraction to directly track evaluations of interpreted functions
and the stream of control flow in a program.

One of the issues with this approach that is clear from the outset is the range
of supported language extensions. The bytecode compiler and the interpreter
lack support for unboxed tuples and sums, shrinking the set of programs the
tracer would be able to analyse. In our design of a GHCi-based solution,
we took inspiration from [31], which modified the virtual machine of the R
language.

Before we describe the GHCi tracing modifications, let us take a closer
look at how this part of the compiler project works. GHCi is an interactive
interface built on GHC’s bytecode compilation pipeline and the bytecode inter-
preter of the RTS. It offers a read-eval-print loop popular in other functional
programming languages.

GHCi consists of several key components: the UI, the GHCi library code,
the debugger, the bytecode generator, and the bytecode interpreter. The
following sections will introduce each of the building blocks from which GHCi
is composed, starting with an overview of how they fit together.

The life of an interpreted expression

GHCi can serve either as a REPL interface, processing expressions one by one,
or as an alternative compilation and execution environment for entire modules.
These two modes can be freely mixed. The backbone of GHCi is a modified
GHC pipeline which culminates in bytecode generation, producing a collection
of bytecode objects together with high-level information about breakpoints,
pointers to allocated string literals, and other data.

Compiled7 bytecode objects and their metadata together form Compiled-
ByteCode. GHCi includes a dynamic linker capable of resolving references
between bytecode objects as well as between BCOs and object code.

These features are transparent to the user, who manipulates GHCi via its
user interface. The UI is implemented separately from the core functionality
and communicates with the GHCi library code via message-passing. This
separation allows the UI and the library code, which is in charge of interpreted
evaluation, to run in different processes. GHCi features a mode of operation
called “Remote GHCi,” in which the UI and the interpreter communicate
over a Unix pipe. Remote GHCi is useful for situations where the capabilities
and heap object definitions of the runtime systems of the compiler and the
interpreter differ, e.g. when the compiler and GHCi UI were built regularly
with optimisations, but the interpreter was built with profiling.

7That is, compiled to bytecode instructions.

20

2.2. Using GHCi

When evaluating an expression, the library code forks a new thread to
perform evaluation independently of the interpreter server. This ensures that
exceptions raised during evaluation of an expression do not crash GHCi. The
server forwards exception handlers appropriately to ensure this is the case.
The two threads communicate via mutable variables, or MVars. These are
concurrency primitives from the Control.Concurrent.MVar module which
effectively implement concurrent, mutable Maybes [32]. A mutable variable of
type MVar a contains either no values or a single value of type a. It can be
safely shared across threads and supports operations takeMVar and putMVar.
The former operation extracts the value stored in an MVar, leaving the variable
empty if a value is present. If the variable is empty, the operation blocks. The
complementary operation putMVar blocks on a full variable and fills it with a
value as soon as it is empty.

Two MVars play an important role in the design of GHCi, statusMVar and
breakMVar. These variables form a communication channel between the server
thread and the thread responsible for the evaluation of an expression, which
we will call the eval thread.

When the server thread forks into the eval thread to begin expression
evaluation, it waits on the statusMVar. The eval thread keeps running and
eventually either produces a result, throws an exception, or hits a breakpoint.
In the former two cases, it simply fills the statusMVar with the appropriate
information (either the result of evaluation or the exception) and exits. The
server thread resumes execution, passing the result from the eval thread to
the UI.

The case when the eval thread hits a breakpoint is more interesting. First,
the eval thread fills the statusMVar to wake the server thread, notifying it
of the breakpoint. Then it waits until the server thread fills the breakMVar,
pausing evaluation. The server thread notifies the UI, passing along an identifier
of the breakpoint that the eval thread hit. At this point, the UI notifies the
user that evaluation paused on a breakpoint. The user can continue to enter
expressions into the GHCi prompt, these will be evaluated independently by
newly forked threads. These can also hit breakpoints and wake the server
thread, which notifies the UI again. None of this interferes with the initial
eval thread, because every forked eval thread gets a new pair of status and
breakpoint mutable variables. The user may resume execution in the UI, which
messages the server thread, which in turn fills the appropriate breakMVar,
waking the eval thread and blocking on statusMVar once again.

Bytecode generation

The bytecode facilities of GHC involve a detour from the typical sequence of
steps performed to transform Haskell sources all the way to a form suitable for
linking or execution. After desugaring, the program is transformed directly

21

2. Analysis and design

into bytecode instructions.8 Optimisations implemented in the simplifier
are not performed. GHCi is intended for interactive evaluation and favours
fast, iterative development over runtime performance, making the naive code
generation approach a reasonable choice.

Every top-level definition, every scrutinee of a case expression, and every
right-hand side of a non-trivial let expression are compiled to a Byte Code
Object (BCO). Such an object contains an array of bytecode instructions
together with the data typically associated with a heap object: the arity of
the BCO, a bitmap indicating which of its arguments are pointers, the literals
it refers to, and pointers to various objects it refers to (symbols, primitive
operations, other BCOs, or the object’s array of breakpoint information).

The bytecode format comprises 67 instructions in total, 35 of which only
exist to provide various ways of pushing values to the stack. The rest of the
virtual instruction set consists of a few instructions for heap allocation, various
less-than and equality tests, two instructions for invoking the C FFI, an explicit
stack check instruction, and others. The wide variety of instructions of a shared
or similar purpose, particularly in the case of stack pushes, is the consequence
of distinguishing between the representation of their arguments. These can
be pointers subject to garbage collection, word-sized integers, 64bit integers,
floating point and double precision numbers, etc.

There is one particular instruction that catches the eye: BRK FUN. The
bytecode generator places BRK FUN instructions at the very beginning of every
bytecode object. These instructions correspond to breakpoints, though they
are only relevant when the user has “placed” a breakpoint at a position in
the source code. Alas, “placing” breakpoints is something of an illusion,
the instructions are pervasive and every breakpoint has a numeric identifier
assigned at compilation time. The introduction of a new breakpoint in the
GHCi UI simply sets a flag in a breakpoint bitmap, enabling the corresponding
breakpoint instruction from the perspective of the interpreter.

The bytecode interpreter

The interpreter which GHCi relies on is a part of the RTS. Its primary workhorse
is the interpretBCO function which handles closure evaluation, unboxed re-
turns, function application, and interpretation of bytecode instructions. For
tasks it is unable to deal with, such as application of machine-code functions,
it returns to the scheduler.

The interpreter looks at the top of the stack to decide what to do. If it
finds a closure, it inspects its type. Most closures are evaluated by entering,
that is, execution jumps to their entry code. For some types of closures (such
as indirections), the interpreter includes shortcuts to avoid the overhead of
returning from the interpretation loop to the scheduler and entering the closure.

8As previously mentioned, this approach will soon be replaced by a new bytecode pipeline
which follows the usual compilation process all the way to STG[13].

22

2.2. Using GHCi

To handle other types of closures, the interpreter returns to the scheduler,
setting a field in the TSO which indicates that execution should proceed with
machine code evaluation when the thread is woken again.

If the stack is set up for a BCO application with a RET BCO closure below
a bytecode object with its arguments, the interpreter executes the BCO
instructions. Interpretation of byte code works simply by case analysis on the
current instruction.

The debugger

A notable feature of GHCi is its debugger, which allows the programmer to
place breakpoints on certain expressions in their code. The interpreter then
pauses execution when it is about to evaluate an expression marked by a
breakpoint.

Due to laziness, the order in which breakpoints are hit depends on the order
in which their respective thunks are forced to WHNF, not directly on the order
in which functions are called. Breakpoints thus equip the Haskell programmer
with a powerful tool for debugging order of evaluation issues caused by the
language’s non-strict semantics.

Internally, breakpoints rely on a special bytecode instruction called BRK -
FUN. Upon encountering this instruction, the interpreter first checks whether
it is already returning from a breakpoint (via a flag in the TSO). If it is not
returning from a breakpoint and the associated breakpoint is enabled, the
interpreter pauses execution at this point.

Pausing on a breakpoint is quite an involved action. The interpreter
prepares to call a “breakpoint IO action,” a Haskell function invoked to resume
GHCi’s server thread by filling the shared mutable variable. A pointer to this
function is kept in a global variable in the RTS and updated from the Haskell
side via FFI. The preparation for an IO action call saves the top stack frame
to a new closure, a pointer to which is passed to the IO action. The stack is
then set up to call the IO action, and the interpreter returns to the scheduler
in order to perform the call.

At no point is the instruction pointer persisted – the progress of evaluation
of the current BCO is lost whenever the interpreter stops at a breakpoint.
This is acceptable, as the bytecode generator makes sure to only put BRK FUN
instructions at the very start of bytecode objects and the TSO flag ensures
that a just-visited breakpoint is not stopped at again.

When stopped at a breakpoint, the user can still evaluate expressions at
the GHCi prompt. It is thus possible to encounter another breakpoint while
stopped at a breakpoint or to hit the same breakpoint multiple times, without
ever resuming paused evaluation. The debugger maintains a stack of contexts
which makes this possible.

Additionally, the REPL has access to the free variables in the paused
expression. The :print command lets the user print the values of the free

23

2. Analysis and design

variables without forcing their evaluation, binding thunks to fresh variables.
The :force command does the same, except that it forces the evaluation of
the reference it is applied to. These commands are available even when not
stopped at a breakpoint, but become especially useful when stepping through
a program.

Tracepoints

Our design for dynamic tracing via GHCi builds on the existing functionality
of breakpoints. We introduce tracepoints, a simpler variant of breakpoints
which uses the communication channel between the server and eval threads
to pause evaluation at every breakable expression.

The compiler features a generic approach to AST annotations via the
Tickish type. Values of the Tickish data structure are called ticks and
appear both in the surface syntax and in the Core language. Haskell Program
Coverage functionality, profiling, and breakpoints are all implemented as ticks
annotating Haskell expressions. The compiler includes scoping rules for ticks,
these specify how closely should a particular tick stick to the expression it
annotates, which is important for optimisations.

Profiling ticks and breakpoints are added to the Core program during the
desugaring phase. Breakpoint ticks capture the free variables of the expression
they annotate. When the interpreter pauses at a breakpoint and sets up the
stack to call the GHCi breakpoint IO action, it saves the top stack frame9 into
a stack application closure. A pointer to the closure is passed to the IO action
and then messaged to the UI. This lets the debugger print out the values of
free variables at the site of a breakpoint.

Tracepoints are equivalent to breakpoints, except that they do not need
to support nested hits. Our motivation for introducing a breakpoint analogy
was to open room for future extensions while preserving the functionality of
breakpoints. Tracepoints share the breakMVar with breakpoints. Besides the
communication channel between the server and the eval threads, most of
the changes necessary for tracepoints are simple duplications of the existing
breakpoint infrastructure. We add a new constructor for Tickish which
represents a tracepoint, a new bytecode instruction TRC FUN, a new IO action, a
new status message for tracepoint hits, and the accompanying code throughout
GHCi. Modifications to the module abstractions are not necessary because
tracepoints do not need to be enabled or disabled – the interpreter should stop
at each and every one.

We modify the UI such that when a tracepoint is hit, all the values of the
free variables of the corresponding expressions are logged to a trace file. We

9That is, the portion of the stack referenced by the just entered BCO. The size of the
stack frame is determined from the BCO’s bitmap, which indicates the pointerhood of its
arguments / free variables.

24

2.3. Using compiler plugins

also save accompanying timing information and the corresponding location in
the source file. Evaluation then resumes without pause.

Summary

The tracepoint approach could be extended and improved in many ways. For
example, we could tighten the loop between the interpreter and the reaction
to a tracepoint encounter. There is no good reason why it should have to
route through the UI. We could also replace the built-in :print command
with ghc-heap-view and perform additional analysis of the runtime values
while stopped at a tracepoint.

Nevertheless, our evaluation of the outlined solution points to significant
problems. The resulting trace does not contain enough information to make
useful inferences about the strictness properties of the code. The problem
seems to be that with nested thunks, evaluation does not follow a single logical
thread, but rather “skips around” depending on the demands made on the
delayed computations. The hard-to-predict, gradual normalisation of values
makes it prohibitively difficult to relate different trace entries. The context
in which a trace record originated is not guaranteed to be the same for the
previous or the following record.

These problems could be overcome by introducing state into the tracing
framework. It would be enough to mirror the tree-like hierarchy of subex-
pressions in the source code with tokens which would relate them at runtime,
similarly to how htrace uses a simple mutable counter to track nested calls.
Unfortunately, neither the bytecode pipeline nor the interpreter offer a good
point of extension for adding said state. Introducing impurities in the Core
program is difficult and error-prone. The bytecode generator and interpreter
are both too far removed from the source program and would require sizeable
changes to accommodate the sort of ad-hoc functionality necessary to make
tracepoints work well.

The GHCi approach has other downsides as well. The current bytecode
pipeline lacks support for some language extensions and interpretation is much
slower than execution of machine code. These issues are not as problematic as
the low utility of the tracing results, however.

2.3 Using compiler plugins

To produce useful tracing output, a dynamic tracing framework must capture
interesting events during a program’s evaluation and relate them to one another.
In particular, the evaluation of function arguments must be clearly related
to the respective function call to enable reasoning about the strictness of a
function on a call-by-call basis. While retaining the order of evaluation is
trivial in a call-by-value language, laziness introduces interleaving. This can
only be dealt with by the introduction of state into the program (or into the

25

2. Analysis and design

tracing framework) in order to recover the dependencies between function calls
and argument evaluations, which are no longer implicit in the order of the
trace events.

It is this function-call-specific state that becomes difficult to express without
high-level information about the program structure at hand, as is the case
with the GHCi approach described in Section 2.2.

Adding state

Fortunately, introduction of function-call-specific state is rather trivial. The
source program can simply be rewritten to store the state in local variables.
It suffices to keep a unique identifier of the particular function call that the
argument evaluation traces can refer to. Such a unique identifier necessarily
needs to change with every function call. In clean Haskell code without unsafe
features, this is impossible in general, as the language requires the use of the
IO monad in order to perform side-effecting computations.

Since rewriting functions into a monadic form would be a difficult under-
taking, we prefer the way of unsafe features. Integer counters are enough for
call identification purposes, so we choose to keep one counter per function. All
counters can be stored in a single mutable map indexed by function names.
Unsafe functions in the standard Prelude can also be used to persist tracing
information to a file.

Equipped with a means of introducing benign side-effects into programs
for tracing purposes, we are in search of a way of rewriting source code
to put these side-effects to use. One plausible approach would be direct
source code rewriting, akin to Hat. As described in Section 1.2, source-to-
source transformations have the benefit of generality, but also the downside
of additional complexity in both the rewriting process itself and the build
process of the program, which the user of our tool would have to deal with.
Furthermore, true implementation agnosticism of the tracing framework would
require compiler-independent support for inspection of the Haskell heap, for
which no solution seems to exist at the time of writing. A less general but more
ergonomic way of rewriting source code is via GHC’s source plugins, which
hook directly into the compiler pipeline and can operate on the surface-level
syntax at different stages.

Source plugins

Source plugins [14] are a relatively recently introduced feature of GHC. Com-
piler source plugins are Haskell packages which invoke the GHC API to hook
into the compiler pipeline and modify the compiled program at various stages
of the front end. Unlike Core plugins [33], which operate on the internal
language, source plugins deal with the entirety of Haskell’s surface syntax.

26

2.3. Using compiler plugins

Rather than parsing, transforming, and serialising the source code sep-
arately to the compilation step, we can design a plugin that performs the
required source transformations in the compiler pipeline directly. We introduce
two tracing functions, traceEntry and traceArg. We then rewrite the source
program to call traceEntry every time a function in the program is invoked
and we thread every reference to a function’s argument through traceArg.
This introduces the opportunity to inspect the runtime representations of
the arguments passed to a function when the result of the function is under
scrutiny.

We can determine some of the strictness properties of a transformed function
from the calls it makes to the tracing utilities. If we record a call to a
(transformed) top-level function f :: Int -> Int -> Int defined as f x y
= ... via traceEntry but no calls to traceArg, the function makes no use of
any of its arguments, and is therefore non-strict in both of them. Examples of
functions of this behaviour include f x y = 3, f x y = undefined, or f x y
= f x y. Note that the latter example references the arguments on the RHS,
but these references are never evaluated. If a call to f is followed by a call
to traceArg for the x argument, but the program terminates and no calls to
traceArg for the y argument occur, we say that f is strict in x and potentially
lazy in y. f could be lazy in y, but it could also conditionally require y to be
evaluated based on the value of x. The property of a multi-argument function
being strict in one argument if another argument matches a predicate (and
being non-strict in that argument otherwise) is what makes the interpretation
of traces of nested functions tricky.

More interesting cases arise with types which can contain thunks themselves
– their Weak Head Normal Form differs from their normal form. Consider g ::
Int -> [Int] (defined as g x = ...). We could observe entries of g to be
always followed by evaluations of x. This does not mean that g is necessarily
strict in x, because the evaluations we have observed may simply happen to be
immediately followed by evaluations of g’s return value beyond WHNF. This
is the case in Listing 3.

g :: Int -> [Int]
g x = [x]

main = print . g $ 2 + 2
Listing 3: Deep evaluation of an applied lazy function.

However, a decisive analysis of the strictness of a function is not the point
of dynamic tracing. We wish to understand the use of laziness in practice. We
are interested not only in whether a function used its argument at all, but also
in how many calls it did so. We would like to learn e.g. whether there are lazy
functions which are only invoked in a strict manner (akin to the use of g in

27

2. Analysis and design

Listing 3), or invoked in a strict manner most of the time.10 The relationships
between the values of arguments in a single function call are instrumental in
providing the context necessary for the interpretation of tracing results.

Rewriting the AST

Armed with the impure tracing functions and a plan on how to apply them,
we move on to the problem of syntax tree transformation. The GhcPlugins
module [34] of the GHC API includes the necessary functions to hook into the
compiler pipeline. A source plugin can choose to modify the syntax tree at
three different stages: right after parsing, between renaming and typechecking,
or just after the typechecker has run. These hooks involve different trade-offs.
Construction of new (sub)trees becomes more and more difficult further down
the pipeline as the internal representation accumulates metadata from the
various stages. On the other hand, the available metadata may be necessary for
certain tasks and can help plugin authors write more robust implementations.
For example, constructing parsed expressions is almost as easy as writing
the surface syntax in a source file, using strings as identifiers, but it may
result in accidental captures of bindings in scope. Because the renaming phase
disambiguates identifiers, constructing renamed ASTs avoids this issue, at the
expense of either working with abstract identifiers, or invoking a renaming
phase manually.

As Pickering’s introduction to source plugins shows, the costs associated
with the construction of syntax trees later in the pipeline are not prohibitive [35].
The GHC API exports high-level functions which let the plugin author take
trees from parsed to renamed to typechecked in only a few lines of code.
Moreover, the plugin author can use the quasiquoting features [36] of Template
Haskell [37] to greatly simplify the construction of expressions. The quasi-
quoting facilities even manage references to definitions in the scope of the
plugin’s source code automatically. Common patterns in the expressions
created by the plugin can be included as regular top-level definitions in the
plugin’s module or in a module the plugin depends on and spliced into the
syntax tree. With these high-level features in mind, the suitable injection
mechanisms for a dynamic tracing source plugin seem to be before and after
typechecking. We only discuss the latter approach in the following text, even
though a source plugin operating on the renamed AST would likely be very
similar. Note that the API makes no hard distinction between the different
approaches to pipeline extensions. Indeed, a source plugin simply provides a
value of the Plugin data type, overriding the appropriate fields of a default
plugin implementation with monadic functions. A source plugin could run
custom code after each of the front end stages.

10For small functions like the one in our example, inlining will take care of eliminating
unnecessary laziness. For larger functions, inlining may not help, or the strictness analysis
may be too conservative to eliminate unnecessary overhead.

28

2.3. Using compiler plugins

The actual process of rewriting the right-hand sides of function definitions
involves the data types for the surface syntax of Haskell, which has hundreds of
constructs [6, Key Design Choices]. The general task of transforming hierarchies
of deeply nested data types has many innovative Haskell solutions, including
optics and generic programming. While we could use profunctor optics or
novel generic approaches, we leverage a fairly simple, if a bit dated, generic
programming technique via the Scrap Your Boilerplate (SYB) library [38].
SYB’s built-in querying and transformation schemes empower the Haskell
programmer with means of applying type-specific functions in all appropriately
typed fields of a nested data structure. The library is built using powerful
generalisations of folding and a number of combinators, making it easy to
create new traversal schemes as compositions of existing building blocks.

29

Chapter 3
Implementation

In this chapter, we confront some of the development-related issues that tend
to arise when working with the GHC project, in the hope of easing future
endeavours. The description of the problems we encountered in our work
relates to features of the compiler which did not fit in earlier chapters. Next,
we discuss the implementation details of a compiler source plugin we developed
for dynamic tracing and present the results of the implementation.

3.1 Working with GHC

While obtaining and compiling a local copy of GHC source code is unnecessary
for compiler plugin development, a programmer inexperienced with the internals
of the project may find it helpful to occasionally peek under the hood of its
APIs. Obtaining a working copy is naturally a prerequisite for modifying the
project – we did so when evaluating the GHCi approach.

The GHC codebase is a large and complicated collection of source files
written primarily in Haskell and C [6]. The project is supported by a custom
build system called Hadrian [39], itself written in Haskell, introduced to replace
architecture based on GNU Make. As of GHC 8.10.2, either system can build
the project. We do not recommend using Make: Hadrian was developed to
address many issues with Make, including its excessive complexity and poor
performance. Additionally, the build tool of the programmer’s choice can be
combined with a Docker- or Nix-assisted setup, simplifying the installation
of other dependencies required for the build process. Tools for simplifying
library management are compelling choices for projects with larger teams.
However, we found it significantly easier to set up a “native” development
environment. Both Nix and Docker suffer from substantial disk usage overhead.
Our experience in developing a Docker container for GHC 8.10.2 indicates that
large portions of the native setup have to be replicated in the container.

For example, correctly configuring HLS to load the GHC source code
is quite an involved task, eased by the hie-bios project [40] which ships

31

3. Implementation

with Hadrian (as a part of the GHC source tree). However, compiling GHC
inside the container results in hie-bios reporting include paths specific to
the container’s filesystem to the language server, which in turn breaks all of
its functionality. One possible solution is installing HLS inside the Docker
container instead and letting the code editor of choice talk to the containerised
process. In comparison, a native setup with ghcup is far easier and comes
with fewer surprises along the way, which is why we would recommend it for a
project similar in scale to ours.

Build process

The first step to working on the project after obtaining the source code is
setting up the build system. GHC is a self-hosting compiler, meaning it can
and does compile its own source code. Since the project quickly adapts to use
new language extensions, specific releases of GHC require specific versions of it
already installed. As a result, the management of GHC versions on a Unix-like
system with a system-wide package manager can be difficult. The ghcup
tool [41] can greatly ease this task and enable quick switching between versions.
ghcup lets the developer quickly install and switch between the releases of not
only GHC itself, but also Cabal, the Haskell build system and dependency
manager, and the Haskell Language Server (HLS), an LSP-compliant language
server providing Haskell-specific editor integration features.

In our setup, we chose to use Hadrian. The build system bootstraps the
compiler in several steps. The GHC provided by the system is referred to as
the stage 0 compiler. GHC comes with build scripts which use the stage
0 compiler to build first the Hadrian build system. Once Hadrian has been
built, the user invokes it to build the stage 1 compiler, which is a GHC linked
against the stage 0 base library. The stage 1 compiler is subsequently used
to build the core libraries from scratch. It is then utilised again to build the
stage 2 compiler, which is linked against the freshly built base. The stage 2
compiler constitutes a complete build of GHC from source code. There is an
optional follow-up step, where the stage 2 compiler builds a stage 3 compiler,
which is useful for profiling GHC while building GHC.

Hadrian offers many configuration options defined as a Haskell module
called UserSettings and comes with a template settings file which explains
the various options the user can tweak. The main abstraction is a build flavour,
a collection of build settings which fully define a GHC build. For debugging
the RTS, it is important to know about a lower-level abstraction called a build
way. Libraries and the RTS can be built in multiple ways, which configure
far-reaching GHC-specific features, such as profiling and debugging symbols.
The RTS can be built in threaded and non-threaded ways, the latter way runs
in a single operating system thread. When exploring GHCi, we developed a
custom build flavour which built the RTS with the debugging variant of the

32

3.2. Dynamic tracing with plugins

threaded way. There are still some issues with the Hadrian RTS build process,
which means the configuration has to include more ways than necessary.11

After the initial build, the stage 1 compiler can be frozen by passing a
command-line option to the build system on subsequent invocations. This
prevents rebuilding the stage 1 compiler every time a source file changes,
which speeds up the edit-compile-run cycle tremendously.

Developer experience

The complexity of the GHC codebase confuses many an editor plugin, which
makes code navigation and exploration difficult. Thankfully, the HLS project
continues to accumulate useful features and improve in stability. Over the
course of our work, HLS went through releases 0.9.0, 1.0.0, and 1.1.0. The
latter can reliably search for symbol references in most of the GHC source
files. This feature was introduced in release 1.0.0, but the indexing process got
stuck in the GHC project. Given the daunting scale of the compiler, similar
tooling is tremendously helpful to an inexperienced developer. If the language
server continues to mature, it could play an important role in attracting more
developers to GHC or even to Haskell in general.

In stark contrast to the near out-of-the-box experience of HLS, the Cabal
package system is very user-unfriendly software. It consists of the Cabal library
and the cabal-install package, which provides the cabal command-line tool.
The project has outgrown its intended use cases, as evidenced by the sorry
state of the command-line interface. For example, the interface can install
but not uninstall packages. The commands that cabal implements are split
into variants with v1-, v2-, and new- prefixes. The best solution for certain
use-cases (such as installing multiple versions of a local package for a specific
package database) seems to be deleting the database and building the package
again from scratch. We ran into this problem when installing our compiler
plugin into the package database of a local fork of the compiler.

3.2 Dynamic tracing with plugins

With a Haskell development environment ready, we have all we need to dive
into the implementation of a compiler plugin. We take a look at the details
first, then take a step back and cover building and applying the plugin.

Our goal is to transform the following code into a variant that produces a
recording of laziness-related events during evaluation. Take the naive version
of the QuickSort algorithm shown in Listing 4 as an example. We would like
to log both calls to this function and evaluations of its arguments.

A transformed version of qsort with dynamic tracing is shown in Listing 5.
Every reference to an argument is replaced with a call to the helper function

11https://gitlab.haskell.org/ghc/ghc/-/issues/17814

33

https://gitlab.haskell.org/ghc/ghc/-/issues/17814

3. Implementation

qsort [] = []
qsort (a:as) = qsort left ++ [a] ++ qsort right

where (left, right) = (filter (<=a) as, filter (>a) as)
Listing 4: The QuickSort algorithm on linked lists.

traceArg, patterns in function definitions are split into binding and pattern
matching, and the right hand sides of functions are wrapped in let expressions
which introduce callNumber variables.

qsort xs = let !callNumber = traceEntry "qsort"
in case traceArg "qsort" "xs" callNumber xs of

[] -> []
(a:as) ->

qsort left
++ [traceArg "qsort" "a" callNumber a]
++ qsort right

where
(left, right)
= (filter

(<= traceArg "qsort" "a" callNumber a)
(traceArg "qsort" "as" callNumber as),

filter
(> traceArg "qsort" "a" callNumber a)
(traceArg "qsort" "as" callNumber as))

Listing 5: The QuickSort algorithm on linked lists, extended with impure
tracing calls.

The call number variables let us group the trace records by the call they orig-
inated in. Any references to function arguments first pass through traceArg,
opening the opportunity to inspect the underlying runtime structure before it
is actually used in the program.

Anatomy of a plugin

Our source plugin consists of four modules.

• TracingPlugin, the entry point of execution and the only exposed
module of the package,

• Typechecking, which contains utilities for typechecking expressions con-
structed by the plugin,

• Logging, which defines the tracing functions that we compile into source
programs, and

• Rewriting, where the magic happens.

34

3.2. Dynamic tracing with plugins

The TracingPlugin module simply defines and exports a Plugin derived
from the defaultPlugin implementation, overriding typeCheckResultAc-
tion, the function invoked after the typechecking phase. Neglecting command-
line arguments, our action has the type ModSummary -> TcGblEnv -> TcM
TcGblEnv. As the type indicates, it computes within the typechecking monad
(TcM) with access to information about the current module (ModSummary),
modifying its typechecking environment (TcGblEnv). The action is invoked
once for each compiled module. The typechecking environment is a large data
structure which describes the top level of a module with 58 fields. Of these,
only tcg_binds :: LHsBinds GhcTc is interesting to us. The type construc-
tor LHsBinds stands roughly for “located Haskell bindings” and represents a
collection of all the top-level bindings of a module annotated with their source
file locations. Our post-typechecking action simply threads this field through
our rewriting function, which also computes in the typechecking monad, and
returns the transformed bindings.

The rewriting function, shown in Listing 6, resides in the Rewriting module.
It initiates a stateful computation which transforms the bindings in a generic
manner using the SYB library.

rewrite :: LHsBinds GhcTc -> TcM (LHsBinds GhcTc)
rewrite binds = fst <$> (`runStateT` initialState)

(everywhereM' trans binds)
Listing 6: The top-level rewriting function, a sole export of the Rewriting
module.

Since the GHC API abstracts over compiler state using (among other
types) the TcM monad, the generic transformation involving any non-trivial
compiler computations needs to be monadic as well. This transformation is
implemented by the trans function (shown in Listing 7), which additionally
carries a context from the roots of the top-level definitions down to their leaves.
We combine the stateful traversal with the typechecking monad by way of the
mtl package, itself inspired by [42], using the StateT monad transformer.

trans :: Typeable a => a -> StateT WrapperState TcM a
trans = mkM collectFunInfo `extM` wrapRef `extM` incrementCC

Listing 7: The generic transformation function.

trans is applied in a single, top-down traversal of the ASTs via a SYB
scheme derived from everywhereM. Ultimately, the function pattern-matches
on important structures in the syntax trees of top-level bindings in three
different ways:

1. collectFunInfo adds information about the current function to the
WrapperState,

2. wrapRef wraps argument references with a tracing function, and

35

3. Implementation

3. incrementCC wraps the right-hand side of each function with a let
binding, introducing a call counter variable into its scope.

Each of these building blocks of the complete transformation operates
slightly differently.

collectFunInfo :: Bind -> StateT WrapperState TcM Bind pattern-
matches on the various sorts of bindings that can appear in an AST and
extracts the names of the named ones, saving them to the WrapperState
context, thus providing the name of the innermost named function to
the other transformations.

incrementCC :: RHS -> StateT WrapperState TcM RHS pattern-matches
on right-hand sides of functions and introduces calls to the tracing
function traceEntry using Template Haskell (TH). Calling traceEntry
with a function name increments a global call counter for that function
and returns the counter’s current value. incrementCC has to introduce
a new binding in the scope of the right-hand side so that tracing calls on
the RHS can refer to the call ID. Since TH cannot lift the Haskell AST
types, the binding has to be constructed in two steps.
First we read the WrapperState to find out the name of the function
we are currently transforming. We construct a TH expression for the
application of traceEntry to the function name and bind it via a let
binding which assigns the result to a new call counter variable in the
scope of a dummy expression (a proxy to undefined). Then we typecheck
this expression and run a SYB transformation which replaces the dummy
subexpression with the original right-hand side. Care must be taken
when replacing a node in the typechecked AST because the typechecker
inserts type applications for polymorphic terms such as undefined.
Finally, incrementCC also finds the Id of the call counter variable via a
SYB query and saves it in the WrapperState.

wrapRef :: LExpr -> StateT WrapperState TcM LExpr pattern-matches
on references to function arguments in function bodies. Its purpose is to
transform every argument reference into a call to traceArg.
To identify references to function arguments, wrapRef consults the
boundVars :: [Id] collection. This collection is built independently of
the wrapRef transformation, since it needs no function-specific informa-
tion. We rely on the fact that while references to bindings are semantically
valid only in local (lexically-scoped) contexts, they have globally unique
identifiers. Collecting the identifiers of function arguments is thus a
simple task of traversing all the syntactical pattern-matching structures
which bind them. We once again leverage SYB to do this without having
to pattern-match on the entirety of surface syntax.

36

3.2. Dynamic tracing with plugins

When the reference wrapping transformation identifies a function argu-
ment, it constructs a partial application of the traceArg tracing function
and applies the original binding reference to it. The partially-applied
traceArg is an unsafe identity function which logs information about
the argument’s runtime representation to a file.
Since the overall rewriting operation proceeds in a top-down manner, the
wrapRef transformation runs into the issue of producing subexpressions
it could recursively match on again. This could be avoided by tagging
the transformed expressions somehow. Unfortunately, this is difficult to
achieve, because the AST datatypes lack useful typeclass instances for
doing so. Crucially, there is no notion of equality on syntax trees and
no hashing implementation which would let us store the transformed
expressions in a hash set (or at least a set). We work around this
limitation by stripping the source location tags from the AST nodes and
checking for their presence before invoking wrapRef’s rewriting logic,
but we are aware of the problems with this approach. However, issues
with error reporting are largely mitigated by the fact that the plugin is
invoked after the source program passed the typechecking phase.

Implementation of tracing utilities

The tracing functions inserted into the AST by the rewriting logic reside in the
Logging module. They leverage the unsafe IO features of Haskell, specifically
the standard unsafePerformIO :: IO a -> a from System.IO.Unsafe, to
hide the side-effects of tracing from the type system. When invoked, these
functions append a row of CSV-encoded data to a trace file, a log of interesting
events that occurred during the evaluation of a Haskell program, which is
suitable for further analysis.

traceEntry :: String -> Int marks the evaluation entry point of a func-
tion. Taking the function’s name, it increments its call counter in the
background and returns its new value. The call counters are stored
in a global map called functionEntries :: IORef (Map String Int).
The IORef indirection makes functionEntries a mutable variable which
can be manipulated in the IO monad. The map is explicitly marked with
a {-# NOINLINE #-} pragma to ensure it is shared between the tracing
calls. Since the IORef constructor returns a reference in the IO monad,
we allocate the global variable via unsafePerformIO.
The call counter map is empty at first, individual counters are initialised
on-demand. The initialisation of a new call counter and the increment of
an existing one are both described concisely by the insertWith operation
on Maps, which takes a binary function on values, a key, an initial value,
and a map, and either initialises the key to the initial value or updates
it by applying the binary function to its current value and the initial

37

3. Implementation

one. This operation is applied atomically via atomicModifyIORef’ to
accommodate concurrent updates.

traceArg :: String -> String -> Int -> a -> a indicates a reference to
a function argument. Partially applying this function to the name of the
enclosing function, the name of the referenced argument, and the number
of the call to the enclosing function leaves an impure identity, which is
applied to the actual argument. traceArg leverages the ghc-heap-view
library to take a peek at the runtime representation of the argument to
determine whether it has been evaluated or not.

logt :: TraceSort -> [String] -> IO () persists a tracing message to
the trace file. Calls to this function are not introduced during the
rewriting process directly, but both traceEntry and traceArg call it
internally. The function can thus stay in the safe realm of the language,
as its type indicates. File system operations in Haskell require a value
of type Handle which the RTS uses to manage IO with file system
objects. Allocating a handle corresponds to opening a file. Since that is
a potentially expensive operation, we store the handle in another non-
inlineable IORef, again created globally with unsafePerformIO. logt
then simply reads the IORef, appends tracing data to the file, and flushes
the handle, to avoid problems with lazy IO and prevent data loss when
the program exits.

The types Bind, RHS, and LExpr are aliases for the more verbose structures
of the surface syntax.

Using the plugin

Applying a compiler plugin in the pipeline of GHC is straightforward. The
user simply passes a command-line option -fplugin set to the name of the
module that exports the plugin definition. Multiple plugins can be specified at
once by passing more than one -fplugin option, the compiler applies them
in the order they are defined.12 To make the module visible to the compiler,
it has to be installed in GHC’s package database. Installation is a matter of
executing the Cabal command cabal install --lib in the plugin’s directory.
An example project with a Cabal configuration that applies the plugin on all
modules is included on the enclosed medium.

Shortcomings

Our implementation work does not include all the transformations required to
perform the perfect rewriting as illustrated in Listing 5. Instead, it performs

12Still subject primarily to the order of phases in the pipeline, but ordered secondarily
according to the succession of command-line arguments to avoid ambiguities.

38

3.2. Dynamic tracing with plugins

a simplified transformation which neither separates variable binding from
destructuring nor untangles nested pattern matches. Due in part to limitations
in Template Haskell, let bindings of call counters do not include bang patterns.
Several styles of pattern definitions are also unsupported. A notable omission
is the support for the popular do notation, commonly used when working with
monads.

The plugin unfortunately suffers from a bug caused by the traversal scheme
used in the rewriting transformation. The error stems from the way the
call counter variables are referred to in the stateful computation. When the
traversal exits a lambda, it should restore the call counter reference to that of
the surrounding context. This does not happen because SYB does not offer a
way of detecting this step. In effect, the plugin inserts undefined references to
code of certain shapes, crashing the compiler during desugaring. Fixing this
bug in the scope of SYB is challenging, because the monadic transformation
proceeds sequentially through the syntax tree.

Despite these issues, we feel that the design laid out and partially imple-
mented in this work is suitable for dynamic tracing. All of the shortcomings
listed above are implementation problems which can be addressed in future
work. Handling of do notation can be implemented via source-level desugaring,
mirroring the work of the desugaring phase of the compiler. This is in fact the
technique already implemented by Hat. The traversal issue can similarly be
fixed by the choice of another generic programming library better suited for
monadic tree operations, or by replacing the generic programming approach
with another. The remaining deficiencies have straightforward solutions and
could be alleviated with more time.

One simple but necessary improvement to the implementation is changing
the representation of names in the trace. The examples and our implementation
uses strings, which can lead to name clashes. However, GHC assigns globally
unique identifiers to all names. During compilation, the plugin should produce
a table associating fully qualified names to their numeric identifiers. The trace
can then refer to functions and arguments with integers instead.

It remains to be seen whether the choice of rewriting after the typechecking
phase supports the future extensions. It may be easier to perform some
transformations without the annotations introduced by the typechecker and
trigger rewriting just after the renaming phase, or even right after parsing.

39

Conclusion

This thesis aimed to design and implement a scalable dynamic tracing frame-
work for Haskell. Although the implementation does not support all of Haskell
syntax, the design allows for great scalability thanks to tight integration with
the Glasgow Haskell Compiler. Tracing is added by rewriting the syntax trees
of source programs. The traced programs produce recordings of function call
and argument evaluations in CSV format, suitable for subsequent analysis.

Future work

Our work is only the beginning of the journey towards understanding the
practical implications of laziness. The compiler plugin we developed needs to
be finalised and extended before it can start recording data on unmodified
real-world programs. After incorporating these fixes, it can support large-scale
collection of traces, providing the empirical evidence for use in a future study.

41

Bibliography

[1] Hudak, P.; Hughes, J.; et al. A history of Haskell: being lazy with class,
chapter Haskell is pure. In [2], 2007, pp. 12–1.

[2] Hudak, P.; Hughes, J.; et al. A history of Haskell: being lazy with class.
In Proceedings of the third ACM SIGPLAN conference on History of
programming languages, 2007, pp. 12–1.

[3] GHC Commentary – demand. Accessed: 2021-05-03 10:57:53. Available
from: https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/
compiler/demand

[4] Marlow, S.; et al. Haskell 2010 language report. Available on:
https://www.haskell.org/onlinereport/haskell2010, 2010.

[5] GHC Team. GHC User’s Guide Documentation, chapter 10.
GHC Language Features. In [43]. Available from: https://
downloads.haskell.org/˜ghc/8.10.2/docs/users_guide.pdf

[6] Marlow, S.; Peyton Jones, S. In The Architecture of Open Source Ap-
plications: Structure, Scale, and a Few More Fearless Hacks, volume II,
chapter The Glasgow Haskell Compiler.

[7] Najd, S.; Jones, S. P. Trees that Grow. J. UCS, volume 23, no. 1, 2017:
pp. 42–62.

[8] Pickering, M.; Érdi, G.; et al. Pattern synonyms. In Proceedings of the
9th International Symposium on Haskell, 2016, pp. 80–91.

[9] Sulzmann, M.; Chakravarty, M. M.; et al. System F with type equal-
ity coercions. In Proceedings of the 2007 ACM SIGPLAN international
workshop on Types in languages design and implementation, 2007, pp.
53–66.

43

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/demand
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/demand
https://downloads.haskell.org/~ghc/8.10.2/docs/users_guide.pdf
https://downloads.haskell.org/~ghc/8.10.2/docs/users_guide.pdf

Bibliography

[10] GHC Commentary – Core to Core pipeline. Accessed: 2021-05-05
02:55:00. Available from: https://gitlab.haskell.org/ghc/ghc/-/
wikis/commentary/compiler/core-to-core-pipeline

[11] Peyton Jones, S. L.; Salkild, J. The spineless tagless G-machine. In Pro-
ceedings of the fourth international conference on Functional programming
languages and computer architecture, 1989, pp. 184–201.

[12] Jones, S. L. P. Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine - Version 2.5. Journal of Functional
Programming, volume 2, 1992: pp. 127–202.

[13] Stegeman, L. Support unboxed tuples and sums in GHCi. Accessed: 2021-
05-11 09:44:26. Available from: https://gitlab.haskell.org/ghc/ghc/
-/merge_requests/4412

[14] Pickering, M.; Wu, N.; et al. Working with source plugins. In Proceedings
of the 12th ACM SIGPLAN International Symposium on Haskell, 2019,
pp. 85–97.

[15] Marlow, S.; Jones, S. P. Making a fast curry: push/enter vs. eval/apply
for higher-order languages. ACM SIGPLAN Notices, volume 39, no. 9,
2004: pp. 4–15.

[16] Marlow, S.; et al. Haskell 2010 language report, chapter 4.2.1 Algebraic
Datatype Declarations. In [4], 2010.

[17] Sewell, W. Memory profiling in Haskell. Accessed: 2021-05-11 10:00:07.
Available from: https://making.pusher.com/memory-profiling-in-
haskell/

[18] Yang, E. Z. Anatomy of a thunk leak. Accessed: 2021-05-11 09:53:19. Avail-
able from: http://blog.ezyang.com/2011/05/anatomy-of-a-thunk-
leak/

[19] de Vries, E. Being lazy without getting bloated. Accessed: 2021-05-
11 09:41:27. Available from: https://well-typed.com/blog/2020/09/
nothunks/

[20] Kulal, S.; Ganvir, R.; et al. Space leaks exploration in Haskell. Dissertation
thesis, Indian Institute of Technology Bombay Mumbai 400076, India.

[21] Mitchell, N. Detecting Space Leaks. Accessed: 2021-05-11 09:49:22. Avail-
able from: http://neilmitchell.blogspot.com/2015/09/detecting-
space-leaks.html

[22] GHC Team. GHC User’s Guide Documentation, chapter 8. Profiling.
In [43]. Available from: https://downloads.haskell.org/˜ghc/8.10.2/
docs/users_guide.pdf

44

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/core-to-core-pipeline
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/core-to-core-pipeline
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/4412
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/4412
https://making.pusher.com/memory-profiling-in-haskell/
https://making.pusher.com/memory-profiling-in-haskell/
http://blog.ezyang.com/2011/05/anatomy-of-a-thunk-leak/
http://blog.ezyang.com/2011/05/anatomy-of-a-thunk-leak/
https://well-typed.com/blog/2020/09/nothunks/
https://well-typed.com/blog/2020/09/nothunks/
http://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html
http://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html
https://downloads.haskell.org/~ghc/8.10.2/docs/users_guide.pdf
https://downloads.haskell.org/~ghc/8.10.2/docs/users_guide.pdf

Bibliography

[23] Successor of ghcide & haskell-ide-engine. One IDE to rule them all.
Accessed: 2021-05-03 12:24:18. Available from: https://github.com/
haskell/haskell-language-server

[24] GitHub – MaartenFaddegon/Hoed: Hoed – A Lightweight Haskell Tracer
and Debugger. Available from: https://github.com/MaartenFaddegon/
Hoed

[25] Claessen, K.; Hughes, J. QuickCheck: a lightweight tool for random
testing of Haskell programs. Acm sigplan notices, volume 46, no. 4, 2011:
pp. 53–64.

[26] Universiteit Utrecht; University of Oxford. GHC.Generics – Hackage:
The Haskell Package Repository. Accessed: 2021-05-12 16:29:53. Avail-
able from: https://hackage.haskell.org/package/base-4.15.0.0/
docs/GHC-Generics.html

[27] The Haskell Tracer Hat. Available from: https://
archives.haskell.org/projects.haskell.org/hat/

[28] Hudak, P.; Hughes, J.; et al. A history of Haskell: being lazy with class,
chapter 10.4.2 Debugging via redex trails. In [2], 2007, pp. 12–1.

[29] Kirpichov, E. htrace: Hierarchical tracing for debugging of lazy
evaluation. Accessed: 2021-05-12 11:49:26. Available from: https://
hackage.haskell.org/package/htrace

[30] Gill, A.; Runciman, C. Haskell program coverage. In Proceedings of the
ACM SIGPLAN workshop on Haskell workshop, 2007, pp. 1–12.

[31] Goel, A.; Vitek, J. On the Design, Implementation, and Use of Laziness
in R. Proc. ACM Program. Lang., volume 3, no. OOPSLA, Oct. 2019, doi:
10.1145/3360579. Available from: https://doi.org/10.1145/3360579

[32] Jones, S. P.; Gordon, A.; et al. Concurrent Haskell. In POPL, volume 96,
1996, pp. 295–308.

[33] GHC Team. GHC User’s Guide Documentation, chapter 12.3 Compiler
plugins. In [43]. Available from: https://downloads.haskell.org/˜ghc/
8.10.2/docs/users_guide.pdf

[34] GhcPlugins. Available from: http://hackage.haskell.org/package/
ghc-8.10.2/docs/GhcPlugins.html

[35] Pickering, M. Source Plugins: Four ways to build a typechecked Haskell ex-
pression. Available from: https://mpickering.github.io/posts/2018-
06-11-source-plugins.html

45

https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/MaartenFaddegon/Hoed
https://github.com/MaartenFaddegon/Hoed
https://hackage.haskell.org/package/base-4.15.0.0/docs/GHC-Generics.html
https://hackage.haskell.org/package/base-4.15.0.0/docs/GHC-Generics.html
https://archives.haskell.org/projects.haskell.org/hat/
https://archives.haskell.org/projects.haskell.org/hat/
https://hackage.haskell.org/package/htrace
https://hackage.haskell.org/package/htrace
https://doi.org/10.1145/3360579
https://downloads.haskell.org/~ghc/8.10.2/docs/users_guide.pdf
https://downloads.haskell.org/~ghc/8.10.2/docs/users_guide.pdf
http://hackage.haskell.org/package/ghc-8.10.2/docs/GhcPlugins.html
http://hackage.haskell.org/package/ghc-8.10.2/docs/GhcPlugins.html
https://mpickering.github.io/posts/2018-06-11-source-plugins.html
https://mpickering.github.io/posts/2018-06-11-source-plugins.html

Bibliography

[36] Mainland, G. Why It’s Nice to Be Quoted: Quasiquoting for Haskell.
In Proceedings of the ACM SIGPLAN Workshop on Haskell Workshop,
Haskell ’07, New York, NY, USA: Association for Computing Machin-
ery, 2007, ISBN 9781595936745, p. 73–82, doi:10.1145/1291201.1291211.
Available from: https://doi.org/10.1145/1291201.1291211

[37] Sheard, T.; Jones, S. P. Template Meta-Programming for Haskell. In
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell
’02, New York, NY, USA: Association for Computing Machinery, 2002,
ISBN 1581136056, p. 1–16, doi:10.1145/581690.581691. Available from:
https://doi.org/10.1145/581690.581691

[38] Lämmel, R.; Jones, S. P. Scrap your boilerplate: a practical design pattern
for generic programming. ACM SIGPLAN Notices, volume 38, no. 3, 2003:
pp. 26–37.

[39] Mokhov, A.; Mitchell, N.; et al. Non-recursive make considered harmful:
build systems at scale. ACM SIGPLAN Notices, volume 51, no. 12, 2016:
pp. 170–181.

[40] Pickering, M. GitHub – mpickering/hie-bios. Accessed: 2021-05-09
03:38:39. Available from: https://github.com/mpickering/hie-bios

[41] ghcup – The Haskell (GHC) toolchain installer. Available from: https:
//www.haskell.org/ghcup/

[42] Jones, M. P. Functional programming with overloading and higher-order
polymorphism. In International School on Advanced Functional Program-
ming, Springer, 1995, pp. 97–136.

[43] GHC Team. GHC User’s Guide Documentation. Available from: https:
//downloads.haskell.org/˜ghc/8.10.2/docs/users_guide.pdf

46

https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/581690.581691
https://github.com/mpickering/hie-bios
https://www.haskell.org/ghcup/
https://www.haskell.org/ghcup/
https://downloads.haskell.org/~ghc/8.10.2/docs/users_guide.pdf
https://downloads.haskell.org/~ghc/8.10.2/docs/users_guide.pdf

Appendix A
Acronyms

API Application Programming Interface.

AST Abstract Syntax Tree.

BCO Byte Code Object.

CSV Comma-Separated Values.

FFI Foreign Function Interface.

GADT Generalised Algebraic Data Type.

GHC Glasgow Haskell Compiler.

GHCi GHC interpreter.

GNU GNU’s Not Unix, a Unix-like operating system.

HLS Haskell Language Server.

HPC Haskell Program Coverage.

IR Intermediate Representation.

LLVM Low-Level Virtual Machine.

LSP Language Server Protocol.

OS Operating System.

REPL Read-Eval-Print Loop.

47

Acronyms

RHS Right-Hand Side.

RTS Runtime System.

STG Spineless Tagless G-machine.

STM Software Transactional Memory.

SYB Scrap Your Boilerplate.

TH Template Haskell.

TSO Thread State Object.

UI User Interface.

WHNF Weak Head Normal Form.

48

Appendix B
Contents of enclosed SD card

readme.md an overview of the SD card contents
src.......................................the directory of source codes

examples..................example programs for use with the plugin
plugin implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

49

	Introduction
	State-of-the-art
	The Glasgow Haskell Compiler
	Architectural overview
	Strictness features

	Existing tools

	Analysis and design
	Approach
	Using ghci
	Using compiler plugins

	Implementation
	Working with ghc
	Dynamic tracing with plugins

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed SD card

