
Instructions

LearnShell is a modular system for managing and performing exams with programming assignments

in scripting languages, especially Shell. LearnShell currently offers only basic functionality for

searching among students, solutions, assignments, and exams.

1. Analyze the current infrastructure architecture and propose a new “search” module that will speed

up search queries between frontend, backend, and database.

2. Configure the search backend and implement the communication with the frontend.

3. Implement smart search in the frontend UI (full-text search, tags, modifiers, filters).

4. Make sure you document your code and cover it with tests.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 15 February 2021 in Prague.

Assignment of bachelor’s thesis

Title: Smart search module for LearnShell

Student: Matěj Karpíšek

Supervisor: Ing. Jakub Žitný

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Web Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

Smart search module for LearnShell

Matěj Karpíšek

Department of Software Engineering
Supervisor: Ing. Jakub Žitný

May 12, 2021

Acknowledgements

I would like to thank my supervisor Ing. Jakub Žitný for leading my thesis
and his valuable advice. And thanks to my family for their support during
COVID times which made many things more challenging.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 12, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Matěj Karpíšek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Karpíšek, Matěj. Smart search module for LearnShell. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

LearnShell je webovou aplikací pro automatickou opravu shellovských úloh s
chybějící funkcionalitou pro vyhledávání. Tato práce se zabývá analýzou, ná-
vrhem, implementací a testováním nového chytrého vyhledávacího modulu pro
zmíněný systém. Cíle bylo úspěšné dosaženo. Modul — který byl postaven na
open-source vyhledávači Elasticsearch — podporuje fulltextové a inkremen-
tální vyhledávání v reálném čase, boolovské operátory a několik typů dotazů.

Klíčová slova LearnShell, chytrý vyhledávací modul, webová služba, full-
textové vyhledávání, Elasticsearch

vii

Abstract

LearnShell is a web application for the automatic correction of shell assign-
ments with the missing searching functionality. This thesis deals with the
analysis, design, implementation, and testing of a new smart searching mod-
ule for the system. The goal has been successfully achieved. The module
— which has been built upon an open-source search engine Elasticsearch —
supports full-text, real-time, incremental search, bool operators, and several
types of queries.

Keywords LearnShell, smart search module, web service, full-text search,
Elasticsearch

viii

Contents

Introduction 1
Goals . 2

1 LearnShell 3
1.1 Tech stack . 3
1.2 Architecture . 9
1.3 Data model . 10
1.4 Searching functionality . 11

2 Analysis and design 13
2.1 Requirements . 13
2.2 Full-text search . 15
2.3 Data storage . 16
2.4 Elasticsearch details . 18
2.5 Design . 21

3 Realization 25
3.1 Back end . 25
3.2 Front end . 31

4 Testing 33
4.1 Unit testing . 33
4.2 Python unit tests . 33
4.3 TypeScript unit tests . 34
4.4 React component unit tests . 35

Conclusion 37

Bibliography 39

ix

A Acronyms 41

B Contents of enclosed CD 43

C Figures 45

D Result examples 49

E User documentation 55
E.1 SmartSearch - User documentation 56

x

List of Figures

1.1 Docker diagram [11] . 9
1.2 LearnShell architecture diagram (Created using [15]) 10

2.1 Indexing documents and resulting index (Source: [17]) 15
2.2 The search module data model (Created using [15]) 21
2.3 The search module architecture (Created using [15]) 22

C.1 Difference between SPA and traditional web page [7] 46
C.2 LearnShell database diagram (Created in PyCharm) 47

D.1 A basic query example . 50
D.2 A tooltip example for submission script that does not fit (same

works for assignment descriptions) 51
D.3 An example of specific field query and and operator 52
D.4 An example of quoted query . 53
D.5 An example of not operator and and operator 54

xi

List of Tables

2.1 Comparison of Elasticsearch and RDBMS terminology 18

xiii

List of Listings

1 Docker file example . 8
2 An example of explicit mapping 19
3 GraphQL API definition example 22
4 Elasticsearch and Kibana docker compose configuration 26
5 Submission index declaration 28
6 QueryBuilder class . 29
7 GraphQL API declaration example 30
8 GraphQL client example . 31
9 Python unit test example . 34
10 TypeScript unit test example 35
11 React component unit test example 35

xv

Introduction

LearnShell is used to support the teaching of the shell at FIT CTU in Prague.
It is a web application that has been firstly developed by one of the students
and since then has been improved many times. It provides the functionality of
assignments, exams, and their automated correction. One of its current short-
comings is that teachers cannot efficiently search among the many documents1

LearnShell comes with.
This thesis deals with the mentioned problem and comes up with a smart

search module that will improve the searching experience for users of the sys-
tem. It follows the common software engineering approach: analysis, design,
realization, and testing.

The first chapter is about the analysis of the current state of LearnShell. It
mentions its architecture, data model, and all technologies that will influence
the development of the search module.

The second chapter is about the analysis and design of the search module.
It deals with the tools that will be used during the development and the
reasons for their choice.

The third chapter deals with the realization of the results of the previ-
ous chapter. And describes how the tools were used to achieve the working
solution.

The last chapter mentions unit testing and shows some of the examples of
unit tests that were used during the development.

1users, assignments, exams, submissions, corrections

1

Introduction

Goals
The point of this thesis is to achieve the following goals:

• First of all, it is necessary to understand the system that will be modified,
so the first goal is to analyze the infrastructure of LearnShell. The
result will be the knowledge of its data model, architecture, the current
searching functionality, and the technologies it is built on.

• Secondly, based upon the system owner requirements, the functional
and non-functional requirements will be specified for the search mod-
ule, which with the previous analysis of the infrastructure, will be the
foundation for the following analysis, design, and implementation of the
back-end2 part of the module.

• Thirdly, using the API of the back-end part, the front-end3 part of the
search module will be implemented.

• During the development, the code will be properly documented and
tested.

• Finally, the achieved results will be summarized, evaluated and possible
extensions of the module will be suggested.

2The part of a web application that takes care of business logic and data storage
3The part of web application user communicates with

2

Chapter 1
LearnShell

1.1 Tech stack
In this section, the technologies (libraries, frameworks, software. . .) of Learn-
Shell will be described. Some of them have a long history and will be men-
tioned only briefly, so more focus can be put on the newer ones.

1.1.1 PostgreSQL
To store its data persistently and securely, LearnShell uses PostgreSQL. It
is an object-relational database management system whose origins date to
1986. Traditional relation database stores its data in tables where each column
value is atomic. However, PostgreSQL comes with additional object-oriented
features which, for example, allow to store complex data types such as arrays
and JSON4. [1]

1.1.2 Django
Most of the web applications are built upon a framework and LearnShell is
no exception. Django is a Python framework for web database-driven appli-
cations which takes care of most of the hassle of web development. It has a
long history as it was created in 2003, which provides reliability behind the
whole framework. Django puts emphasis on the ease of creating applications,
reusability, security, scalability, and the principle of DRY5. [2]

Django leverages one fundamental principle called ORM6. As mentioned
in the previous section, all data in a relational database are stored in tables.
This leads to a problem since the data being worked within Python have
an object-oriented structure. An object-relational mapper is a library that

4JavaScript Object Notation
5Don’t repeat yourself
6Object–relational mapping

3

1. LearnShell

takes care of this problem by automatically transferring the data stored in a
relational database for us. In Django, the mapper can be used by writing a
model class that represents a single table in a relational database and also
provides the API for CRUD7 operations. [3]

1.1.3 Web API
Web application programming interfaces enable web applications to expose
their functionality to the outer world. REST8 and GraphQL are two different
ways to build such interfaces and LearnShell uses both.

1.1.3.1 REST

Representational state transfer is a software architectural style for distributed
systems that was developed by Roy Fielding in 2000. It must follow several
guiding principles as explained in [4].

The key feature of REST is that all data is abstracted using resources.
A resource represents an exposed object of the system and is uniquely iden-
tified. Even though REST is protocol agnostic, it is most commonly used
with HTTP9 where each resource corresponds to a single web address and the
CRUD operation is specified by the HTTP method. [4]

1.1.3.2 GraphQL

GraphQL is a query language for APIs and a runtime to handle those queries
developed by Facebook and released as open-source in 2015. It tries to solve
some of the common problems of REST APIs but comes with its own pitfalls.
[5]

The key difference compared to REST is that the API is described in
terms of data types and fields, not endpoints. All queries are sent to a single
endpoint and using the GraphQL query language, describe the data we want
to receive. A runtime then handles the query, ensures we ask for the types
and fields that are described, and otherwise provides helpful errors. [5]

What makes GraphQL great is that you get only the data you ask for,
avoiding under-fetching or over-fetching. You can get all the data in a single
request, avoiding overloading the backend. And since GraphQL is strongly
typed, you get the data in a predictable, secure way. [6]

Regarding the disadvantages. Firstly, queries can quickly become com-
plex and hard to manage without the usage of proper patterns and tools.
For example, queries requesting multiple different types with many nested
fields. Secondly, all the queries must be parsed and executed by the GraphQL

7create, read, update, delete
8Representational state transfer
9Hypertext Transfer Protocol

4

1.1. Tech stack

runtime which results in a slight overhead. Lastly, there are problems with
caching. Since GraphQL does not use different endpoints such as REST, it is
not possible to implement HTTP level cache for requests. [6]

1.1.4 React, Next.js and Typescript
LearnShells frontend is built upon the concept of SPA10. Traditionally, when-
ever a new page is requested, the whole page is returned from the server and
then the browser reloads for the changes to take effect. Single-page applica-
tions change this behavior and using the AJAX11 technology, request only
the data they need and then dynamically rewrite the page. [7] This leads to
a more efficient, responsive, and desktop-like experience. The whole process
can be seen in Figure C.1.

1.1.4.1 React

As mentioned in the previous section, single-page applications use AJAX
technology. JavaScript changes the page dynamically by manipulating the
DOM12 which is a tree data structure representing the whole page. React is
a JavaScript library to make such manipulations easier.

To achieve higher abstraction and declarative API, React comes with the
concept of the Virtual DOM. React does not immediately manipulate the real
DOM, but instead stores an ideal, or “virtual”, DOM representation in mem-
ory, which is then synced with the real one in a process called reconciliation.
This enables us to avoid common JavaScript tasks such as attribute manipu-
lation or manual DOM updating. Instead, it is declaratively told to React in
what state the page is supposed to be in and it takes care of the rest. [8]

React applications are built out of components. Components are the build-
ing blocks of the page in React world, they manage their own state, encap-
sulate rendering logic and can be composed to create more complex ones.
Since the drawing logic of a web page is specified with HTML13, React came
with JSX which is a syntax extension to JavaScript. It enables us to write
HTML-like code in JavaScript which is then transpiled14. [8]

React leverages several principles from the functional paradigm which must
be followed when developing a component:

• Component’s state must be immutable. If we want to change it, we must
create a new one and assign it using React’s API. The reason behind this
is that React uses reference comparison to decide whether a component

10Single-page application
11Asynchronous JavaScript and XML
12Document object model
13HyperText Markup Language
14Compiled from JavaScript source code with extensions to valid JavaScript source code

5

1. LearnShell

has changed and must be rerendered. This makes the process extremely
fast compared to checking every single field of the state object.

• Components can receive arbitrary data as a parameter called props.
Those data are read-only and must not be modified which makes com-
ponents pure functions.

• Composing components leads to a component hierarchy. In such a hier-
archy, data must always flow one way only, from the parent components
to the child ones. The only way for a child component to communicate
with the parent is by a callback passed by props.

All of this is necessary to make React work properly. On top of that, it
makes components easier to manage, test, and predict their behavior.

1.1.4.2 Next.js

Single-page applications are great, but they come with several problems.
Since the web page is dynamically rewritten, the browser routing system does
not support such behavior. Search engine crawlers usually do not execute
JavaScript, which means they cannot see the dynamically generated content.
The JavaScript code can become large, bloated with extensions, and include
browser unsupported features. All of those problems and much more, are
solved by React framework — Next.js. [9]

Next.js solves the routing problem by having its own file-system-based
routing system. It works in a way that the project includes a specific directory
pages where each file or directory corresponds to a page route automatically.
Files contain a React component representing a page with the given route. [9]

To achieve better performance and SEO15 the framework makes use of a
concept called pre-rendering. A page’s HTML is generated in advance, instead
of having it all done by JavaScript in the browser. [9]

Next.js also uses a bundler WebPack and a compiler Babel which requires
zero configuration to work. They take care of the last-mentioned problem. [9]

1.1.4.3 Typescript

Next.js supports implicit TypeScript integration. TypeScript is a program-
ming language developed by Microsoft and released in 2012. As its name
suggests, it extends JavaScript with optional static typing. TypeScript is syn-
tactically a superset of JavaScript, so JavaScript source code is valid Type-
Script code. [10] The reason behind the language is that a lot of bugs can be
caught ahead of time during compilation using static typing. Furthermore,
IDEs16 can provide much better code completion so the documentation does

15Search engine optimization
16Integrated development environments

6

1.1. Tech stack

not have to be used as much. On the other hand, a little more code must be
written.

1.1.5 Docker
The whole project, except a single service, which is not Docker compatible
yet, is built upon Docker. Docker is OS-level virtualization technology and
product released as open-source in 2013. Using Docker, the software is pack-
aged into containers and distributed with its needed environment to be easily
run on any Docker running platform. It started with already existing con-
cepts in the Linux world, such as cgroups and namespaces, but came up with
a single user-friendly solution. What makes Docker exceptional compared to
virtual machines, even though they both offer resource isolation benefits, is
the performance overhead. All containers share a single host kernel making
it a lightweight solution, whereas virtual machines come up with their own
kernel and hardware virtualization. [11]

1.1.5.1 Architecture

All containers are run on a client-server application called Docker Engine.
According to [12] the engine consists of three major components:

Docker daemon
Like every daemon, it is a process that runs in the background and
handles commands sent by clients. Its main purpose is to manage various
Docker objects such as images, containers, networks, and volumes.

Docker client
It’s a terminal or GUI application that’s used whenever a user wants to
make a Docker operation. All commands are delegated and handled by
the Docker daemon

REST API
Works as a communication bridge between the client and the daemon.

1.1.5.2 Images

Images are multi-layer read-only templates for containers. Templates are in a
way similar to the concept of classes and objects in object-oriented program-
ming. Whenever we want to create and run a container, we need to have
its image, to begin with. Multi-layer structure makes creating new images
easier by creating new ones built upon existing ones. The fact that layers
are read-only makes reusing layers across different images possible, avoiding
duplication and saving a significant amount of memory in the end. [12]

A new image can be created upon a dockerfile which is a text file with
Docker-specific instructions. All the instructions are executed in a sequential

7

1. LearnShell

manner and a new image is created based on them. We can see an example
in Listing 1.

FROM ubuntu:20.04
CMD echo "Hello, World!"

Listing 1: Docker file example

As I’ve already mentioned, images are multi-layer. Therefore, how are
all the different layers merged in the end to be used by a single running
container? Docker came up with a solution based upon UnionFS. UnionFS
allows merging files across different file systems called branches into a single
virtual file system where contents of directories sharing the same paths will be
all seen in a single logical directory. Name collisions are resolved by assigning
different precedence to each branch. [13]

By leveraging the mentioned virtual file system, containers can be worked
with as expected and in an efficient way.

1.1.5.3 Containers

The most fundamental concept in the world of Docker virtualization. Con-
tainers are built upon images and are the final working unit that packages all
the code with its required environment. They can be run or stopped. They
can form virtual networks. They can share the host file system. Among many
other things. [11]

Making use of the multi-layer principle of images, containers are simply
created by adding a new writable layer to the image. We can create several
containers out of a single image with each having its own unique writable
layer. [11]

By default, containers are stateless which means that all the data is lost
after restarting the container. Containers usually connect to an external
database service to store data persistently. Fortunately, Docker has its own
solution called Docker volumes which make specified container directories per-
sistent. [11]

Communication among containers is possible by another Docker object
called network. Whenever containers share the same user-defined network,
they are accessible through the container’s name specified while creating. This
works because of an internal domain name system that translates container
names to their private IP addresses. [11]

1.1.5.4 Registry

Registry is what comes up naturally and makes Docker so pleasant to work
with. It’s a public repository where images can be stored and easily accessed.

8

1.2. Architecture

Docker came up with its own registry Docker Hub but also unofficial ones
exist. [12]

1.1.5.5 Compose

According to Docker documentation [11]: “Compose is a tool for defining
and running multi-container Docker applications. With Compose, you use
a YAML17 file to configure your application’s services. Then, with a single
command, you create and start all the services from your configuration.”

Docker Compose is what makes working with multi-container applications
much easier. Each service is a Docker image with additional configurations
specified such as Docker volumes, environmental variables, and port mapping
between Docker network and host network. Everything in one place.

1.1.5.6 Summary

All of the mentioned can be seen in action in Figure 1.1.

Figure 1.1: Docker diagram [11]

1.2 Architecture
LearnShell is a web application that follows a microservice architecture, which
means that the application is divided into a set of loosely coupled services.
Each of the services is easily maintainable, testable, and independently deploy-
able. The communication between them is realized using REST or GraphQL
API18. [14]

17A human-readable data-serialization language
18Application programming interface

9

1. LearnShell

The simplified version of the architecture is shown in Figure 1.2. Each box
represents a service. The arrows connect communicating services. We can see
that the frontend is a fully decoupled service that communicates with the
backend via GraphQL API. This pattern is common for SPA web applications
which request only the necessary data using JavaScript and then dynamically
rewrite the current page.

PostgreSQL

Browser

HTTP

GraphQL

REST API REST API

Backend

Django app

PS1-Evaluator

Flask app

PS1-Generator

Flask app

Frontend

Next.js app

Authentication server

KOS API

Figure 1.2: LearnShell architecture diagram (Created using [15])

1.3 Data model
As mentioned previously, LearnShell uses PostgreSQL RDBMS19. We can see
in Figure C.2 that the database diagram is quite complicated, so only the
significant entities are explained.

User
User represents a user of the system such as a student or a teacher. And
is primarily used for authentication and authorization purposes.

Assignment
Assignments are a bit complicated since they are dynamically generated

19Relational database management system

10

1.4. Searching functionality

using an external service for each student. Assignmenttemplate contains
data about which generator and evaluator service is used for a given
assignment. Assignment contains data for the services. Generatedas-
signment is generated by the generator service using the two mentioned
entities for each student.

Exam
Assignments can be standalone or we can use exams to group several
assignments. Examtemplate is used to specify to which course the exam
belongs and which assignments it contains. Assignmenexamtemplate
represents many-to-many relation between Assignment and Examtem-
plate. Exam represents an actual exam to be written by the specified
teacher at a given time. Studentwritesexam is created when a student
starts to write the exam.

Submission
Submission is created whenever a student submits a solution to some
assignment. The data are base6420 encoded. It is then asynchronously
passed to an evaluator service to be corrected.

Correction
Correction is asynchronously added when the evaluator service com-
pletes the correction. Contains the result for given Submission.

1.4 Searching functionality
LearnShell currently does not have implemented any specific searching module
in the frontend. Basic searching can be done manually by clicking through
the details of entities listed in the frontend. This way is highly inefficient and
unlisted entities are not even searchable.

In the backend, GraphQL API provides filtering by any field for all entities.
On top of that, number fields support range queries and string fields support
prefix, substring, suffix, and regex21 queries. The usability of this functionality
will be elaborated in the upcoming chapter where a new search module and
changes to the system will be designed.

20Encodes binary to ASCII characters
21String matching given regular expression

11

Chapter 2
Analysis and design

2.1 Requirements
A prerequisite for the success of a software project is a precise specification
of the requirements which must be satisfied by the target product. A good
requirement must be specific, measurable, achievable, and realistic.

2.1.1 Functional requirements
Functional requirements are used to specify what the system should do. [16]

F1 – User search
The search module can search among users.

F2 – Assignment search
The search module can search among assignments.

F3 – Submission search
The search module can search among submissions.

F4 – Exam search
The search module can search among exams.

F5 – Full-text search
The search module can full-text search.

F6 – Search among all document types by default
The search module searches among all document types, which were men-
tioned in F1, F2, F3 and F4, by default, but concrete document types
can be specified using a tag.

F7 – Search among all attributes by default
The search module searches all the document’s text attributes by default.

13

2. Analysis and design

F8 – Incremental search
The search module can search incrementally, which means the unfinished
query is used to find and present the relevant result.

F9 – Basic query
The search module must support searching by the terms a document is
supposed to contain.

F10 – Quoted query
The search module must support queries where the order of terms in a
query matters.

F11 – Specific field query
The search module must support searching by a specific field of docu-
ment.

F12 – Boolean operators
The search module must support boolean operators (and, or, not) which
can be used to join multiple queries, or negate the meaning of the query.

2.1.2 Non-functional requirements
Non-functional requirements are used to describe how the system performs a
certain function. They are necessary to design appropriate system architec-
ture. [16]

NF1 – Search performance
Since the search module must support incremental search (F8), search
queries must be resolved in real-time (below 1 second).

NF2 – GraphQL API
The search functionality of the search module must be exposed using
GraphQL API.

NF3 – Security
The search module must consider security. All of the functionality is
available to teachers and administrators. Students can only search for
their own submissions.

NF4 – LearnShell integrability
The search module must be compatible with LearnShell.

NF5 – Web UI
The search module’s functionality must be accessible using an easy-to-
use web interface integrated into LearnShell’s site.

14

2.2. Full-text search

2.2 Full-text search
Full-text search provides the ability to search the whole content of natural-
language documents. Given a query, which usually consists of the terms we
want the document to contain, all the documents that satisfy the query are
returned, usually sorted by relevance to the query. Searching by going through
each word for each document would be highly inefficient, which led to the usage
of indices.

Indexing is a process where the content of the document is preprocessed
resulting in a helpful data structure (index) which is then used instead of
the document to search rapidly. Preprocessing consists of the following three
steps:

1. Parsing the document into tokens. It is useful to split the content of the
document into different classes of tokens, such as numbers, words, and
email addresses, so they could be processed differently.

2. Processing the tokens. Depending on the configuration, tokens are usu-
ally converted from upper-case to lower-case, the stopping words, which
are words too common to be useful for searching, are removed and words
are normalized by removing suffixes.

3. Storing the processed tokens. Finally, all of the processed tokens are
stored in a data structure optimized for searching. [1]

Figure 2.1: Indexing documents and resulting index (Source: [17])

In figure 2.1 an example of indexing three simple documents and the result-
ing data structure called inverted index can be seen. The index then could be
used to find documents that contain the given token quickly since the tokens
are sorted.

15

2. Analysis and design

2.3 Data storage
The first thing to consider is whether the current LearnShell’s data storage
(PostgreSQL) is suitable, given the specified requirements. In this section,
PostgreSQL’s functionality along with two other alternatives is analyzed.

2.3.1 PostgreSQL

Relational databases are usually normalized and LearnShell is not an excep-
tion. Data in such a database are structured in a way following normal forms,
achieving reduced data redundancy and improved data integrity. The cost
of this is that whenever we want to query some related tables, they must be
joined beforehand, which leads to some performance overhead. Such perfor-
mance is not negligible at the moment when a large number of complex search
queries must be handled in real-time.

Without further configuration, whenever a table is searched, the database
has to scan the whole table to find the matching entries. This can be improved
by creating an index on the given column which makes the search fast. The
cost of this is that the insert, update and delete operations become slower
as the index must be also changed. Since all the text fields must be search-
able, indices would have to be created for each of them, resulting in another
significant performance overhead. [1]

On the other hand, PostgreSQL provides support for efficient full-text
searching functionality, which includes full-text indexing, linguistic support,
and search result ranking. The disadvantage is that indices can be created
above one table only, so fields from different tables cannot be indexed together
and the first-mentioned problem occurs once again. [1]

2.3.2 Elasticsearch

Elasticsearch is the most popular open-source search engine built on top of
Apache Lucene. [18] It provides features of a NoSQL database, such as hori-
zontal scaling, schema-less data model, and an ability to handle a large amount
of data. However, its main advantage is the rich searching functionality, in-
cluding full-text search, powerful query DSL22, near real-time searching (below
1 second), and support of various data types. [19]

Regarding our use case, the data in such software are modeled based upon
the queries. In contrast to relational databases, data redundancy is welcome,
leading to avoidance of join operations and achieving high performance.

Elasticsearch is built to be horizontally scalable, which means deploying
instances across multiple machines, achieving increased capacity, performance,
and fault tolerance. [19]

22Domain specific language

16

2.3. Data storage

The functionality is exposed via a rich REST API and is completely JSON-
based, which means all data which is supposed to be inserted into Elasticsearch
must be converted to JSON beforehand, which is not a problem in LearnShell.
Furthermore, external tools such as Logstash can be used to insert different
data sources. [19]

Elasticsearch is usually used with two other products, Kibana and Logstash,
named together as the ELK stack. Kibana is a web application used to ex-
plore, analyze and visualize the data in Elasticsearch. It can be especially
helpful during development to debug. Logstash is a data aggregator which
can be configured to automatically fetch data from various sources and send
them to Elasticsearch. It is usually used to collect logs, but the plugins can
be used to handle many different use cases. [20]

2.3.3 Apache Solr
Apache Solr is the second most popular open-source search engine. [18] The
search engine is very similar to Elasticsearch in many ways, including be-
ing built on top of Apache Lucene. And that is the reason only the crucial
differences will be mentioned.

Solr has always been more focused on enterprise-directed applications. It
works well when searching a massive amount of static data is necessary and
integrates easily with big data tools such as Hadoop and Spark. [19]

In contrast to Elasticsearch which supports JSON-based files only, Solr
supports various data sources such as XML, CSV23 files, Microsoft Word doc-
uments, and PDFs. [19]

Solr’s documentation is much worse to become familiar with and is kind
of lacking. Elasticsearch’s one is much better organized, visualized, and offers
great examples, therefore it’s a clear winner in this case.

2.3.4 Summary
I mentioned some of the advantages and disadvantages of PostgreSQL, Elas-
ticsearch, and Apache Solr. LearnShell does not need any of the enterprise-
related functionality of Apache Solr and therefore Elasticsearch seems to be
a better option. Even though PostgreSQL could handle the requirements
of the search module, I decided to use both PostgreSQL and Elasticsearch.
PostgreSQL remains the primary data storage and the only source of truth,
whereas Elasticsearch becomes the secondary data storage with searchable
data only. This solution ensures that the primary storage remains fast for all
operations because the full-text search will be handled by Elasticsearch at the
cost of data redundancy, additional service configuration, and the necessity of
data synchronization.

23Comma-separated values

17

2. Analysis and design

2.4 Elasticsearch details
Since Elasticsearch has been chosen as the secondary data storage, it is nec-
essary to explain some of its functionality a bit deeper.

As mentioned, Elasticsearch also works as a NoSQL database, which means
the data are stored as JSON documents in the case of Elasticsearch. Since
most people are rather familiar with relational database terminology, the com-
parison between them can be seen in Table 2.1.

Table 2.1: Comparison of Elasticsearch and RDBMS terminology

Elasticsearch Relational database
Index Database
Type Table
Document Record (Row)
Field Attribute (Column)

It used to be possible to have several types for a single index, but because
most of the configuration is on the index level, nowadays the best practice is to
always have a single type for each index. Therefore, an index can be thought
of as a collection of similar documents and each document is a collection of
fields, which are the key-value pairs containing the data. By default, all fields
are indexed and special data structured are created based upon the data type
of the field. For example, for the text fields, inverted indices are created. [20]

2.4.1 Mapping
By definition: “Mapping is the process of defining how a document, and the
fields it contains, are stored and indexed.”. [20] Elasticsearch is schema-less,
which means mapping is being automatically done when new fields are encoun-
tered during inserting and data types are resolved from the data. However, it
is often necessary to change the default behavior and therefore explicit map-
ping can be used to define the data.

Explicit mapping allows to precisely define the data type for each field
of the document, customize analyzers for text fields and optimize fields for
different kinds of queries. The same field can be indexed in different ways for
different purposes. [20]

Listing 2 shows an example of a REST request to change the explicit
mapping for index assignments. Name becomes a keyword field, description
a text field and inserted a date field.

2.4.2 Analyzers
In Listing 2 two different field types were mentioned — keyword and text.
The difference between them is that text field values are analyzed for full-

18

2.4. Elasticsearch details

PUT /assignments
{

"mappings": {
"properties": {

"name": {"type": "keyword"},
"description": {"type": "text"},
"inserted": {"type": "date"}

}
}

}

Listing 2: An example of explicit mapping

text search while keyword strings are left unchanged. An analyzer is used to
preprocess the text and is composed of three building blocks:

Character filter
Firstly, the text is converted into a stream of characters. The stream
is then processed by a character filter which can add, remove or change
characters. For example, a character filter could be used to transform
emoticons to their text equivalents (:) → happy). An analyzer can have
zero or more character filters, which are applied in order.

Tokenizer
The processed stream of characters is split into individual tokens by a
tokenizer. For example, whitespace tokenizer would split characters into
tokens whenever it sees a whitespace. An analyzer must exactly have
one tokenizer.

Token filters
Lastly, the stream of tokens is processed by a token filter which can add,
remove or change individual tokens. The most common token filters are
a lowercase token filter that converts all tokens to lowercase, a stop token
filter that removes stop words, and a token filter to normalize words. An
analyzer may have zero or more token filters. [20]

Elasticsearch offers several built-in analyzers which are often suitable enough
for many different languages and types of text. However, the individual build-
ing blocks are also exposed, which can be used to build new custom analyzers
specific to the use case. [20]

2.4.3 Query DSL
Query domain-specific language is provided by Elasticsearch to define queries
in JSON and execute them using Elasticsearch’s REST API. Some of the

19

2. Analysis and design

queries relevant to the search module’s requirements are explained:

Term query
The term query is the most basic type of query. It is used to search
for a document that contains an exact term in the given field. Unlike
full-text queries, an analyzer is not used.

Boolean query
The bool query is used to combine other queries using boolean operators.

Prefix query
The prefix query works similarly to the term query, but the query string
is used as a prefix. Documents that contain the specified prefix in the
given field are returned.

Match query
The match query is the standard query to perform a full-text search.
An analyzer specified on the field is used to process the query string and
then the documents are returned sorted by a score that corresponds to
the relevance to the query. For example, the higher the occurrence of
the terms in the document, the higher the score. Furthermore, in the
case of several fields, some of them can have higher relevance than others
which can be configured.

Multi-match query
The multi_match query is an extension of the match query which allows
querying multiple fields.

Match boolean prefix query
The match_bool_prefix query analyzes its input but unlike the match
query, constructs a bool query from the terms. Each term except the
last one is used in a term query and the last one is used in a prefix
query. It is a perfect query for implementing an incremental searching
mentioned in the requirements.

Match phrase query
The match_phrase query works as the match query, but the given field
must contain all terms and exactly after each other.

Match phrase prefix query
The match_phrase_prefix query works exactly as the match_phrase
query, but the last term is used in a prefix query matching any words
that begin with the term. [20]

20

2.5. Design

2.5 Design
The section describes the key parts of the design of the search module. When-
ever possible, diagrams are used to achieve a clearer way of description.

2.5.1 Data model diagram
Figure 2.2 describes the data model of the search module. For each searchable
entity, an index will be created in Elasticsearch with the mentioned fields. It
can be seen that some denormalization has to be done. Submissions newly
contain a correction object to represent that the submission has been already
corrected, a submitter username, an assignment name, and a generated assign-
ment id. All of this to achieve maximum performance avoiding join operations
at the cost of some memory.

User

+id
+username
+first_name
+last_name
+email
+ip_address
+is_admin
+is_active
+date_joined

Submission

+id
+generated_assignment_id
+submitted_script
+assignment_name
+submitter_username
+correction
+created_at

Exam

+template_id
+name

Assignment

+id
+name
+description

Figure 2.2: The search module data model (Created using [15])

2.5.2 GraphQL API
The GraphQL API closely corresponds to the data model. For each index,
a GraphQL type is created with the same fields and with an argument for
the query string. An example for an assignment using the GraphQL DSL is

21

2. Analysis and design

shown in Listing 3. UserIndex receives an argument representing the query
string, which is then processed, executed and a list of the relevant documents
is returned.

type AssignmentDocument {
id: ID!
name: String!
description: String!

}

type Query {
userIndex(query: String): [AssignmentDocument]!

}

Listing 3: GraphQL API definition example

2.5.3 The search module

Frontend

Backend

Elasticsearch
GraphQL API QueryBuilder

Elasticsearch
client

 the query string...

Search result

Specify what to search for
GraphQL client

Figure 2.3: The search module architecture (Created using [15])

The diagram in Figure 2.3 shows all of the components of the search mod-
ule and the communication between them. Each of the components has the

22

2.5. Design

following meaning:

Search box component
The search box component is the main front-end component with which
a user interacts. It is composed of three child components: a search
box where a query string is written, a select box that can be used to
specify a document type, and the search result component where the
result is dynamically rendered. Whenever the query string is changed,
it is immediately passed to the GraphQL client component.

GraphQL client
The GraphQL client receives the query string and the data from the
select box builds an appropriate GraphQL query and executes the query.
The result of the query is then returned to the search box component.

GraphQL API
The GraphQL API component is an implementation of the GraphQL
server runtime and contains the index types mentioned in the previous
section. It passes the query string to the QueryBuilder component.

QueryBuilder
The QueryBuilder component parses the query string and builds an
appropriate Elasticsearch query using the Elasticsearch client’s interface.
The query is then executed and the result is returned.

Elasticsearch client
The Elasticsearch client component takes care of three things: synchro-
nizes the data between the primary storage and Elasticsearch, defines
the explicit mapping of indices, and exposes the search interface.

23

Chapter 3
Realization

3.1 Back end
3.1.1 Elasticsearch, Kibana
First of all, it is necessary to configure the project’s Docker compose file
which can be located in the ls directory, to run Elasticsearch and Kibana
services. Kibana was used during the development for debugging purposes
such as viewing the data, removing indices, and using Kibana’s command line
to execute REST API commands.

Listing 4 shows the configuration that has been added to the Docker com-
pose file for both newly added services. It can be seen that the Elasticsearch
service exposes its REST API using port 9200, port 9300 is used for node
communication which is not used in this case since only a single node is exe-
cuted. Additionally, the Docker volume is configured to make Elasticsearch’s
data persistent across restarts. The Kibana web interface can be accessed at
the localhost using port 5601.

3.1.2 Architecture
The following step is to implement the search module components in the back-
end part of LearnShell. There are two possible ways to proceed:

1. The components may be implemented as part of a newly created mi-
croservice. This solution would achieve the maximum amount of decou-
pling and separating concerns at the cost of increased complexity. It
would be necessary to implement additional API for the service and the
data synchronization would be harder.

2. The components may be implemented as part of LearnShell’s Django
project. This solution would make the data synchronization easy since
direct access to Django’s ORM could be made use of.

25

3. Realization

ls-elasticsearch:
networks:
- ls-bridge

image: docker.elastic.co/elasticsearch/elasticsearch:7.11.1
volumes:
- 'ls-elasticsearch-data:/usr/share/elasticsearch/data'

environment:
- node.name=es01
- cluster.name=es-docker-cluster
- discovery.zen.minimum_master_nodes=1
- discovery.type=single-node
- network.host=0.0.0.0
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"

ulimits:
memlock:

soft: -1
hard: -1

ports:
- 9200:9200
- 9300:9300

ls-kibana:
networks:
- ls-bridge

image: docker.elastic.co/kibana/kibana:7.11.1
environment:

ELASTICSEARCH_URL: http://ls-elasticsearch:9200
ELASTICSEARCH_HOSTS: '["http://ls-elasticsearch:9200"]'

ports:
- 5601:5601

depends_on:
- ls-elasticsearch

Listing 4: Elasticsearch and Kibana docker compose configuration

The second option has been chosen since the advantage of having eas-
ier data synchronization is crucial. Furthermore, Django provides a way to
structure the project into separate, reusable modules called applications. This
way, the codebase would not be polluted with the search module code. There-
fore, the smart_search directory was created in the apps directory where all
back-end components will be located.

Another consequence of the chosen solution is that all code will be writ-
ten in Python. The code will be written with the emphasis put on Python
idioms to make maximum use of the language. Furthermore, even though the
language is dynamically typed, type hints will be used to make the code more
clear and avoid some of the bugs in advance.

26

3.1. Back end

3.1.3 Elasticsearch client

The Elasticsearch client component is built using a Python library — Django
Elasticsearch DSL24. It is a thin wrapper around elasticsearch-dsl-py25 library
which provides all features of Elasticsearch DSL but in a pythonic object-
oriented API avoiding the necessity to directly use Elasticsearch’s REST API.
Additionally, it provides support for Django ORM models and allows data
synchronization via hooks to Django model methods.

Listing 5 shows an example of an index declaration for submissions using
the library. A Python class is used to specify all necessary information in a
declarative way, which is then extracted using reflection. Each class attribute
with the given configuration is then used to create the explicit mapping of the
given index. Methods that start with the string “prepare” are called before the
corresponding Django model data are inserted and can be used to preprocess
the data. In the example, they are used to decode the base64 strings and for
denormalization purposes.

The full_text_entrypoint field is a custom one to which all other fields
are copied. This way, all fields can be queried in a single query instead of
querying each field separately. The SearchAsYouType data type is specialized
for incremental searching. The details can be found in [20].

Whenever a Django ORM object is created, updated, or deleted, the corre-
sponding Elasticsearch index is automatically changed in a non-blocking way,
which is necessary because indexing can take some time. The class also pro-
vides methods to cover all Elasticsearch queries. And in a similar way, all
searchable entities are covered.

3.1.4 Query builder

As mentioned, the query builder component’s task is to parse the query string
and produce the corresponding Elasticsearch query. The component is built
upon a Python library — PyParsing26. The library is used to define a parsing
expression grammar (PEG) and based upon the grammar, provides parsing
functionality. PEGs are an alternative to context-free grammars having the
same expressive power but are easier to use for describing machine-oriented
languages. [21]

Listing 6 shows a class containing the grammar definition which is declared
using class variables to avoid building a new parser for each call. Furthermore,
a dictionary is used as a cache to avoid reparsing the same query strings.

24https://github.com/django-es/django-elasticsearch-dsl
25https://github.com/elastic/elasticsearch-dsl-py
26https://pyparsing-docs.readthedocs.io/en/latest/

27

3. Realization

@registry.register_document
class SubmissionDocument(Document):

"""
Contains Submission Elasticsearch index definition and mapping to corresponding Django model
class.↪→
Fields are 1:1 mapped to corresponding Django model objects (can be changed using attr=''
parameter).↪→
"""
Fields with with explicit data type mapping
submitted_script = fields.TextField(attr='submission_data', copy_to=SEARCH_AS_YOU_TYPE_FIELD,

analyzer=STANDARD_ANALYZER_WITH_ASCII_FOLDING)↪→
assignment_name = fields.TextField(copy_to=SEARCH_AS_YOU_TYPE_FIELD,

analyzer=STANDARD_ANALYZER_WITH_ASCII_FOLDING)↪→
submitter_username = fields.TextField(copy_to=SEARCH_AS_YOU_TYPE_FIELD,

analyzer=STANDARD_ANALYZER_WITH_ASCII_FOLDING)↪→
correction = fields.ObjectField(properties={

'id': fields.IntegerField(),
'score': fields.IntegerField()

})

def prepare_assignment_name(self, submission_instance: Submission):
gen_assignment = submission_instance.generated_assignment
assignment_name = gen_assignment.assignment.name
return assignment_name

def prepare_submitter_username(self, submission_instance: Submission):
gen_assignment = submission_instance.generated_assignment
student_username = gen_assignment.student.username
return student_username

def prepare_submitted_script(self, submission_instance: Submission):
data_dict = submission_instance.submission_data
script_base64 = data_dict['script']
return decode_base64(script_base64)

generated_assignment_id = fields.LongField()
full_text_entrypoint = SearchAsYouType(analyzer=STANDARD_ANALYZER_WITH_ASCII_FOLDING)

class Index:
"""
Contains Elasticsearch index related configuration.
"""
Name of the Elasticsearch index
name = 'submissions'
See Elasticsearch Indices API reference for available settings
settings = {'number_of_shards': DEFAULT_NUMBER_OF_SHARDS,

'number_of_replicas': DEFAULT_NUMBER_OF_REPLICAS}

class Django:
"""
Contains Elasticsearch index - Django model mapping configuration.
"""
model = Submission # The model associated with this Document

The fields of the model you want to be indexed in Elasticsearch with implicit data type
mapping↪→

fields = [
'id',
'created_at'

]

Listing 5: Submission index declaration

28

3.1. Back end

class QueryBuilder:
"""
QueryBuilder class contains grammar definition for pyparsing module
and single method which parses input strings and generates Elasticsearch
query.↪→
"""
Cache for built queries
builder_cache: Dict[str, Search] = {}
Grammar definition using pyparsing module
not_operator = pp.Suppress(pp.CaselessKeyword('not') | pp.Literal('~'))
and_operator = pp.Suppress(pp.CaselessKeyword('and') | pp.Literal('&'))
or_operator = pp.Suppress(pp.CaselessKeyword('or') | pp.Literal('|'))
quoted_str = pp.QuotedString(quoteChar='"', unquoteResults=True)
specific_field_query = pp.Combine(pp.Word(pp.alphanums +

'._')('field_key') + pp.Literal(':')) + quoted_str('field_value')↪→
quoted_query = quoted_str
words_query = pp.Group(pp.ZeroOrMore(~(and_operator | or_operator |

not_operator) + pp.Word(pp.printables)))↪→
query = quoted_query | specific_field_query | words_query
grammar = pp.infixNotation(query, [(not_operator, 1, pp.opAssoc.RIGHT,

handle_not_operator),↪→
(and_operator, 2, pp.opAssoc.LEFT,

handle_and_operator),↪→
(or_operator, 2, pp.opAssoc.LEFT,

handle_or_operator)])↪→
specific_field_query.setParseAction(handle_specific_field_query)
quoted_query.setParseAction(handle_quoted_query)
words_query.setParseAction(handle_words_query)

@staticmethod
def build_query(search_query: str) -> Search:

"""
Parses input string and generates corresponding Elasticsearch query.
:param search_query: String representing search query
:return: Elasticsearch Search object generated from input string
"""
Look at cache
if search_query in QueryBuilder.builder_cache:

return QueryBuilder.builder_cache[search_query]

parser_result = QueryBuilder.grammar.parseString(search_query)
[elastic_query] = parser_result
QueryBuilder.builder_cache[search_query] = elastic_query
return elastic_query

Listing 6: QueryBuilder class

29

3. Realization

3.1.5 GraphQL API
The GraphQL API of LearnShell is generated by an external Python library
that is tightly coupled to the Django ORM models and this caused a problem
of not having enough flexibility to declare the new search API because custom
objects with custom arguments had to be made. To avoid modifying the
internals of the library, a new GraphQL endpoint “/graphql_search”, next to
the original “/graphql”, was built just to provide the searching functionality.

A Python library Graphene27 which provides all of GraphQL’s standard
functionality and implements the runtime, was used to build the new API. An
example of the declaration of index types can be seen in Listing 7. Each type
takes a query string as an argument and returns a list of the corresponding
documents. Resolvers are used to handle the task of getting the data. It can
be seen that the dispatch function takes a user object to handle the security,
type of index to be searched, and the query string. And it returns a list of
documents matching the query sorted by relevance.

class QueryType(graphene.ObjectType):
"""
Contains Query type definition for GraphQL API.
Entrypoint for all immutable GraphQL queries.
"""

user_index = graphene.List(UserDocumentType, **QUERY_PARAMS,
required=True)↪→

assignment_index = graphene.List(AssignmentDocumentType, **QUERY_PARAMS,
required=True)↪→

submission_index = graphene.List(SubmissionDocumentType, **QUERY_PARAMS,
required=True)↪→

exam_index = graphene.List(ExamDocumentType, **QUERY_PARAMS,
required=True)↪→

Resolvers handle GraphQL queries for above fields.
def resolve_user_index(root, info, query):

return dispatch_search_request(info.context.user, UserDocument, query)

def resolve_assignment_index(root, info, query):
return dispatch_search_request(info.context.user, AssignmentDocument,

query)↪→

def resolve_submission_index(root, info, query):
return dispatch_search_request(info.context.user, SubmissionDocument,

query)↪→

def resolve_exam_index(root, info, query):
return dispatch_search_request(info.context.user, ExamDocument, query)

Listing 7: GraphQL API declaration example

27https://graphene-python.org/

30

3.2. Front end

3.2 Front end

The front end’s components will be part of LearnShell’s Next.js project and
will be written in TypeScript. To follow the project’s structure, React com-
ponents will be put into the components directory, whereas pure TypeScript
code will be put into the modules directory.

3.2.1 GraphQL client

First of all, it is necessary to be able to connect to the newly built GraphQL
API. A lightweight client graphql-request28 already used by LearnShell is good
enough for this task.

In Listing 8 can be seen two main functions of the component. Build-
GraphQlQuery takes care of generating a GraphQL query based upon the
parameters to avoid fetching unnecessary entities. HandleQuery is an entry
point to the component which receives a query string and takes care of all
the steps to get to the actual search result of the query. The function is
asynchronous which means a promise object is returned instead of waiting for
the result and blocking the code flow resulting in a page freeze. A callback
function can be passed to the promise which is called the moment the result
is available.

async function handleQuery(searchQuery: string, filterList:
Array<DocumentSelectOption>, allSelectOptions: Array<DocumentSelectOption>):
Promise<SearchResult> {

↪→
↪→

const graphQlQuery = buildGraphQlQuery(filterList, allSelectOptions);
const searchQueryResult = await searchFetcher(graphQlQuery, {'query':

searchQuery});↪→
return searchQueryResult;

}

function buildGraphQlQuery(filterList: Array<DocumentSelectOption>, allSelectOptions:
Array<DocumentSelectOption>): string {↪→
if (filterList.length === 0) {

filterList = allSelectOptions;
}
const innerQueries = filterList.map((docType) =>

documentTypeQueryMapping[docType.value]).join('');↪→
const query = gql`query searchByGivenQuery($query: String!) {

${innerQueries}
}`
return query;

}

Listing 8: GraphQL client example

28https://github.com/prisma-labs/graphql-request

31

3. Realization

3.2.2 React components
React components are needed for building the UI of the search module. They
will handle the user interaction and delegate the search requests to the GraphQL
client component described in the previous section. LearnShell makes use of
Atlassian’s29 official UI library when building React components which also
provides components useful to the search module.

QuickSearch is an Atlassian component suitable to the requirements. It
provides a search box with a place to render the search result. The best
feature is that it takes care of the visual design and the component matches
the rest of the page. The component was used to build an actual search
module component that takes care of handling the search events, getting the
search result, and rendering the search result in a useful way.

LearnShell’s page has a side panel that can be used to contain the access
point to the search component because it can be accessed at any time with-
out redirection. The panel is represented by a drawer component which was
therefore modified to contain the newly implemented search component. The
components in action can be seen in Figure D.1.

29https://atlaskit.atlassian.com/

32

Chapter 4
Testing

Testing is a fundamental part of the development cycle of any software. It
ensures that the requirements are truly fulfilled and minimizes the chance of
the occurrence of bugs. The search module was tested during the development
with one of the testing methods — unit tests.

4.1 Unit testing
Unit testing is about testing individual units of code such as functions, meth-
ods, or classes depending on the language and the programming paradigm.
Those units are tested separated from the rest of the application meaning any
external dependencies must be replaced with fake objects called mocks. This
ensures that only the unit is being tested.

One of the advantages of this method is that unit tests can be written once
and then run automatically by a testing framework at any time. Whenever
the codebase changes, unit tests ensure that the change did not break any of
the units of code.

On the other hand, it may be hard to design unit tests for complex code
with lots of dependencies and unit tests that are actually useful. Furthermore,
unit tests do not guarantee that the codebase is bug-free since it is not possible
to cover all the possible execution paths of the code. And from the essence of
the matter, they will not catch bugs that come from the integration of several
units.

4.2 Python unit tests
For back-end components which were were written in Python, the language
provides native support for unit tests — unittest30. The testing framework

30https://docs.python.org/3/library/unittest.html

33

4. Testing

was used to cover the most important parts of the components. An example
of such a unit test can be seen in Listing 9 where the authorization logic is
being tested.

class TestHandleAuthorization(TestCase):
def test_user_is_authorized(self):

mocked_user = Mock(spec=User)
mocked_user.is_admin = False
res = handle_authorization(SubmissionDocument, mocked_user)
self.assertIsInstance(res, Search)

def test_user_is_not_authorized(self):
non_authorized_documents = (UserDocument, ExamDocument,

AssignmentDocument)↪→
mocked_user = Mock(spec=User)
mocked_user.is_admin = False

for doc in non_authorized_documents:
with self.assertRaises(PermissionDenied):

handle_authorization(doc, mocked_user)

def test_admin_is_always_authorized(self):
mocked_admin = Mock(spec=User)
mocked_admin.is_admin = True
res = handle_authorization(SubmissionDocument, mocked_admin)
self.assertIsInstance(res, Search)

def test_not_supported_document_type(self):
mocked_document_type = Mock(spec=Document)
mocked_user = Mock(spec=User)
mocked_user.is_admin = False
with self.assertRaises(NotImplementedError):

handle_authorization(mocked_document_type, mocked_user)

Listing 9: Python unit test example

4.3 TypeScript unit tests
Since JavaScript or TypeScript do not come with native support for unit
testing and neither LearnShell did use any, a new testing framework had to be
chosen and integrated. Jest31 is the most popular one and also comes with an
extension ts-jest32 for supporting TypeScript. [22] An example of a unit test
using the Jest’s API can be seen in the example 10 where an asynchronous
function that takes care of executing GraphQL queries, is being tested. The
API is quite similar to Python unit tests but is written in a functional way.

31https://jestjs.io/
32https://github.com/kulshekhar/ts-jest

34

4.4. React component unit tests

jest.mock('graphql-request')

describe('Test GraphQL api fetcher function', () => {
test('Fetcher calls GraphQL client with correct parameters.', async () =>

{↪→
const mockedGraphQlClientClass = (graphql.GraphQLClient as jest.Mock);
const query = 'graphqlquery';
const queryVariables = {};
await searchFetcher(query, queryVariables);
expect(mockedGraphQlClientClass.mock.instances[0]

.request.mock.calls[0][0]).toBe(query);
expect(mockedGraphQlClientClass.mock.instances[0]

.request.mock.calls[0][1]).toBe(queryVariables);
})

})

Listing 10: TypeScript unit test example

4.4 React component unit tests
To be able to write unit tests for React components using Jest, another tool is
required. Enzyme33 allows to shallowly render the components and simulate
user interactions on them. The unit test coverage of the main component can
be seen in Listing 11.

// Configure Enzyme to use React 16 adapter
Enzyme.configure({adapter: new Adapter()});

// React component shallow testing using Enzyme
describe('SearchDrawer React component tests', () => {

test('Admin should have option to select document type', () => {
const searchDrawer = shallow(<SearchDrawer admin={true}/>);
expect(searchDrawer.find('CheckboxSelect').exists()).toBeTruthy();

})
test('Students dont have option to select document type', () => {

const searchDrawer = shallow(<SearchDrawer admin={false}/>);
expect(searchDrawer.find('CheckboxSelect').exists()).toBeFalsy();

})
test('Searching actually changes value of search box because it is controlled

component', () => {↪→
const searchDrawer = shallow(<SearchDrawer admin={false}/>);
const searchQuery = "testQuery";
// Simulate searching event
searchDrawer.simulate('SearchInput', {

target: {value: searchQuery}
});
expect(searchDrawer.prop('value')).toBe(searchQuery);

})
})

Listing 11: React component unit test example

33https://enzymejs.github.io/enzyme/

35

Conclusion

The goal of the thesis was to come up with a smart search module for Learn-
Shell, which will improve the user search experience. This goal has been
successfully achieved following the common software engineering development
cycle: analyze, design, implement and test.

The whole LearnShells’s infrastructure was described, including its tech-
nologies and some of their advantages and disadvantages, the data model and
some of the important entities, the microservice architecture, and — finally
— its original searching functionality.

The functional and non-functional requirements of the search module were
specified. The appropriate database storage was analyzed which led to the
selection of Elasticsearch and finally the changes to the backend and frontend
of LearnShell were designed.

The realization part of the search module was described. The maximum
effort was held to use the correct tools and patterns which positively influenced
the whole development process and made many things much easier.

In the last chapter, the unit testing method was described and shown in
the examples of unit tests that were used during the development.

Finally, some of the ideas by which the module could be improved, are
suggested:

• Front-end search box could have some highlighting features for char-
acters with special meaning. This would require the parser to send the
parsed query together with the search result, or the frontend would have
its own parser.

• At this time, the search module is fault-tolerant, but without any feed-
back. If there is an error, it just returns an empty result set. This could
be improved by informing the user why the query failed. For example,
when a non-existing field is accessed.

37

Conclusion

• There is no way to change the priority of and and or operators, also
they cannot be used to form more complex nested queries. The parser
could be improved by nested bool queries using parentheses.

38

Bibliography

[1] “About PostgreSQL”. In: PostgreSQL.org [online] (1996-2021). [cit. 2021-
04-22]. url: https://www.postgresql.org/about/.

[2] In: Djangoproject.com [online] (2005-2021). [cit. 2021-04-21]. url: https:
//www.djangoproject.com/start/overview/.

[3] “Object-relational Mappers (ORMs)”. In: Full Stack Python [online]
(2012-2021). [cit. 2021-04-22]. url: https://www.fullstackpython.
com/object-relational-mappers-orms.html.

[4] “What is REST”. In: Restfulapi.net [online] (2020). [cit. 2021-04-22].
url: https://restfulapi.net/.

[5] In: Graphql.org [online] (2021). [cit. 2021-04-23]. url: https://graphql.
org/.

[6] “GraphQL Advantages and Disadvantages”. In: Javatpoint.com [online]
(2011-2018). [cit. 2021-04-23]. url: https://www.javatpoint.com/
graphql-advantages-and-disadvantages.

[7] “Single-Page Apps vs Multiple-Page Web Apps: What to Choose for
Web Development”. In: Yalantis.com [online] (2021). [cit. 2021-04-23].
url: https://yalantis.com/blog/single-page-apps-vs-multiple-
page-apps/.

[8] “React documentation”. In: Reactjs.org [online] (2021). [cit. 2021-04-23].
url: https://reactjs.org/docs.

[9] “Next.js documentation”. In: Nextjs.org [online] (2021). [cit. 2021-04-25].
url: https://nextjs.org/docs.

[10] “Typescript documentation”. In: Typescriptlang.org [online] (2012-2021).
[cit. 2021-04-24]. url: https://www.typescriptlang.org/docs/.

[11] “Docker documentation”. In: Docker.com [online] (2013-2021). [cit. 2021-
04-25]. url: https://docs.docker.com/.

39

https://www.postgresql.org/about/
https://www.djangoproject.com/start/overview/
https://www.djangoproject.com/start/overview/
https://www.fullstackpython.com/object-relational-mappers-orms.html
https://www.fullstackpython.com/object-relational-mappers-orms.html
https://restfulapi.net/
https://graphql.org/
https://graphql.org/
https://www.javatpoint.com/graphql-advantages-and-disadvantages
https://www.javatpoint.com/graphql-advantages-and-disadvantages
https://yalantis.com/blog/single-page-apps-vs-multiple-page-apps/
https://yalantis.com/blog/single-page-apps-vs-multiple-page-apps/
https://reactjs.org/docs
https://nextjs.org/docs
https://www.typescriptlang.org/docs/
https://docs.docker.com/

Bibliography

[12] “The Docker Handbook – 2021 Edition”. In: Freecodecamp.org [online]
(2021). [cit. 2021-04-25]. url: https://www.freecodecamp.org/news/
the-docker-handbook/.

[13] Kernel Korner. “Unionfs: Bringing Filesystems Together”. In: Linuxjour-
nal.com [online] (2004). [cit. 2021-04-25]. url: https://www.linuxjournal.
com/article/7714.

[14] Chris Richardson. “Pattern: Microservice Architecture”. In: Microser-
vices.io [online] (2018). [cit. 2021-04-21]. url: https://microservices.
io/patterns/microservices.html.

[15] In: Diagrams.net [online] (2021). [cit. 2021-04-21]. url: https://app.
diagrams.net/.

[16] Ulf Eriksson. “Why is the difference between functional and Non-functional
requirements important?” In: Reqtest.com [online] (2012). [cit. 2021-04-
28]. url: https://reqtest.com/requirements-blog/functional-
vs-non-functional-requirements.

[17] Alex Brasetvik. “Elasticsearch from the Bottom Up, Part 1”. In: Elas-
tic.co [online] (2013). [cit. 2021-04-29]. url: https://www.elastic.
co/blog/found-elasticsearch-from-the-bottom-up.

[18] “DB-Engines Ranking of Search Engines”. In: Db-engines.com [online]
(2021). [cit. 2021-04-30]. url: https://db-engines.com/en/ranking/
search+engine.

[19] “Solr vs. Elasticsearch: Who’s The Leading Open Source Search En-
gine?” In: Logz.io [online] (2020). [cit. 2021-04-30]. url: https://logz.
io/blog/solr-vs-elasticsearch.

[20] “Elasticsearch documentation”. In: Elastic.co [online] (2021). [cit. 2021-
04-30]. url: https://www.elastic.co/guide/en/elasticsearch/
reference/current/.

[21] Bryan Ford. “Parsing Expression Grammars: A Recognition-Based Syn-
tactic Foundation”. In: pdos.csail.mit.edu [online] (2004). [cit. 2021-05-
01]. url: https://pdos.csail.mit.edu/papers/parsing:popl04.
pdf.

[22] Testim. “What Is the Best Unit Testing Framework for JavaScript?” In:
Testim.io [online] (2021). [cit. 2021-05-05]. url: https://www.testim.
io/blog/best-unit-testing-framework-for-javascript/.

40

https://www.freecodecamp.org/news/the-docker-handbook/
https://www.freecodecamp.org/news/the-docker-handbook/
https://www.linuxjournal.com/article/7714
https://www.linuxjournal.com/article/7714
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://app.diagrams.net/
https://app.diagrams.net/
https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements
https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements
https://www.elastic.co/blog/found-elasticsearch-from-the-bottom-up
https://www.elastic.co/blog/found-elasticsearch-from-the-bottom-up
https://db-engines.com/en/ranking/search+engine
https://db-engines.com/en/ranking/search+engine
https://logz.io/blog/solr-vs-elasticsearch
https://logz.io/blog/solr-vs-elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/current/
https://www.elastic.co/guide/en/elasticsearch/reference/current/
https://pdos.csail.mit.edu/papers/parsing:popl04.pdf
https://pdos.csail.mit.edu/papers/parsing:popl04.pdf
https://www.testim.io/blog/best-unit-testing-framework-for-javascript/
https://www.testim.io/blog/best-unit-testing-framework-for-javascript/

Appendix A
Acronyms

API Application programming interface

DRY Don’t repeat yourself

DSL Domain specific language

GUI Graphical user interface

HTML HyperText Markup Language

HTTP Hypertext transfer protocol

JSON JavaScript object notation

MVC Model-view-controller

ORM Object-relational mapping

RDBMS Relational database management system

REST Representational state transfer

SPA Single-page application

UI User interface

41

Appendix B
Contents of enclosed CD

readme.txt.............................the file with contents description
src...the directory of source codes

doc.......................the directory of user documentation sources
impl LearnShell implementation sources
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format
doc.pdf...................... the user documentation in PDF format

43

Appendix C
Figures

45

C. Figures

Figure C.1: Difference between SPA and traditional web page [7]

46

Figure C.2: LearnShell database diagram (Created in PyCharm)

47

Appendix D
Result examples

49

D. Result examples

Figure D.1: A basic query example

50

Figure D.2: A tooltip example for submission script that does not fit (same
works for assignment descriptions)

51

D. Result examples

Figure D.3: An example of specific field query and and operator

52

Figure D.4: An example of quoted query

53

D. Result examples

Figure D.5: An example of not operator and and operator

54

Appendix E
User documentation

55

E. User documentation

E.1 SmartSearch - User documentation
SmartSearch is Learnshell’s module to improve user experience whenever find-
ing some of the documents is necessary. It provides an easy to use search box
which returns the most suitable result set just as you type the query in real
time. All of its features with examples are explained in the following sections.

E.1.1 Authorization
The module has been developed with primarily teachers on mind, which can
search all of the document types. Students can only search their own submis-
sions.

E.1.2 Searchable documents
SmartSearch allows you to search users, submissions, assignments and exams.
Each document is searched using all its text and keyword fields. Based upon
the type, explained in the following section, the query is parsed, analyzed and
executed. Documents are returned sorted based upon how much the document
matches the query.

• Users

– username (Text field)
– first_name (Text field)
– last_name (Text field)
– email (Keyword field)
– is_admin (Boolean field)
– is_active (Boolean field)
– date_joined (Date field)

• Assignments

– name (Text field)
– description (Text field)

• Submissions

– assignment_name (Text field)
– submitted_script (Text field)
– submitter_username (Text field)
– correction (Object field)

∗ score (Integer field)
– created_at (Date field)

• Exams

– name (Text field)

56

E.1. SmartSearch - User documentation

E.1.3 Query types
The following query types are supported:

• Basic query - Is used as default query. It’s a string of arbitrary char-
acters including punctuation and white spaces. Except those keywords
and characters which modify the query as explained later: and, &, or,
|, not, ~. During the execution the query is split into terms and each
term except the last one must be included in any order in the document
to be matched. The last term is matched using its prefix.
Examples:

– Create two subdirectories. - Matches documents which con-
tains terms: create, two and subdirectories.

– forget the hidden fi - Matches documents which contains terms:
forget, hidden and any term with prefix fi. “The” is removed as it
is an english stop word.

• Quoted query - Arbitrary string enclosed in double quotes (”). It’s used
when the order of terms matter, unlike for basic queries or whenever you
want to have a term with special meaning (and, or, ...) as part of the
query. Backslash (\) can be used to escape embedded double quotes.
Examples:

– "files and directories in \"$PATH\"" - Looks for documents
with following phrase: files and directories in “$PATH”.

• Specific field query - It’s used when we want the field to have ex-
act value. The query must have the following format: <field_name>:
<zero_or_more_whitespaces> "<value>". Any field mentioned in the
Searchable documents section which it makes sense for can be used. Sub-
fields can be accessed using dot notation as shown in following examples.
Examples:

– is_admin:"true" - Returns all users with admin privilegs.
– correction.score: "1" - Returns submissions which have been

corrected and received 1 point.
– username: "user1337" - Returns user user1337.

E.1.4 Bool operators
Bool operators can be used to join or negate the meaning of several queries.
Nesting operators using parantheses is not supported, but might be added in
the future if found necessary.

Precedence: not > and > or

57

E. User documentation

Left association - and, or
Right association - not

• And operator - All queries must be matched by the document to be re-
turned. Format: <query1> <and, &> <query2> [<and|&> <query3>,
...]
Examples:

– file and directory & path - Three basic queries are created for
each term (file, directory, path) and all must be matched by the
document. The difference is that each term is used as prefix.
Whereas in corresponding basic query (file directory path) only
the last term would be used as prefix.

– "Assignment 2" and "variable modification" - Creates two quoted
queries and both must be matched by the document.

• Or operator - At least one of the queries must be matched by the doc-
ument to be returned. Format: <query1> <or, |> <query2> [<or,
|> <query3>, ...]
Examples:

– Assignment 2 | Assignment 3 or assignment 4 - Creates three
basic queries and at least one of them must be matched by the doc-
ument.

• Not operator - The query must not be matched by the document to
be returned. Format: <not, ~> <query>
Examples:

– ~ correction.score: "0" Negates the meaning of the quoted query.
Returns all document which have gained at least 1 point.

– not "Final Exam 3" and exam - Returns all exams except the fi-
nal exam 3.

– not count some numbers - Not can also be used with basic queries
if it is the first term in the query. Document must not be matched
by terms: count, some and prefix numbers.

58

	Introduction
	Goals

	LearnShell
	Tech stack
	Architecture
	Data model
	Searching functionality

	Analysis and design
	Requirements
	Full-text search
	Data storage
	Elasticsearch details
	Design

	Realization
	Back end
	Front end

	Testing
	Unit testing
	Python unit tests
	TypeScript unit tests
	React component unit tests

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	Figures
	Result examples
	User documentation
	SmartSearch - User documentation

