FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Assignment of bachelor’s thesis

Title: Temporal Aspect Aware Graph Neural Network in Cybersecurity
Student: Anton Bushuiev

Supervisor: Ing. Pavel Prochazka, Ph.D.

Study program: Informatics

Branch / specialization: Knowledge Engineering
Department: Department of Applied Mathematics
Validity: until the end of summer semester 2021/2022

Instructions

The main goal of the thesis is to take advantage of natural data records origin inherently containing
both sequences of events

and the corresponding timestamps. Current approaches typically ignore the temporal information and
form a graph from the

records regardless of this information. The thesis should provide an overview of approaches regarding
taking gain from the temporal

information in graph neural networks. Based on this overview a proper method should be selected and
implemented on some

Cisco Cognitive maliciousness classification problem to demonstrate the temporal awareness
advances over simple baseline methods.

Electronically approved by Ing. Karel Klouda, Ph.D. on 11 December 2020 in Prague.

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Bachelor’s thesis

Temporal Aspect Aware Graph Neural
Network in Cybersecurity

Anton Bushuiev

Department of Applied Mathematics

Supervisor: Ing. Pavel Prochazka, Ph.D.

May 13, 2021

Acknowledgements

I thank Cisco, Cognitive Intelligence group and Ing. Pavel Prochazka, Ph.D.
for the opportunity to enjoy this interesting research.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No.121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Anton Bushuiev. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Bushuiev, Anton. Temporal Aspect Aware Graph Neural Network in Cyber-
security. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2021.

Abstrakt

Zit v dynamickém svété znamena Tesit casové zavislé ulohy. Avsak moderni
nastroje pro strojové uceni na grafech jsou predevsim navrzené pro statické
sité. Proto se v této zdvérecné praci detailné zabyvam problematikou stro-
jového uceni respektujicitho casovy aspekt pro grafové tlohy. Vysledkem to-
hoto teoretického vyzkumu je ndvrh dynamické grafové neuronové sité se
spojitym casem. Zamétuji se na problém Cisco Cognitive Intelligence malici-
ousness classification — tlohu odhaleni internetovych domén s bezpecnostnim
rizikem na zdkladé interakci mezi uzivateli a doménami. Ukazuji, ze tento
problém lze efektivné vytesit pouzitim rtznych pristupt strojového uceni,
vcetné navrzeného. Navic demonstruji, ze obecné zakonitosti bezpecnostniho
rizika domén nevykazuji dynamické vlastnosti v uvazovanych datech z realného
svéta.

Klicova slova uceni grafové reprezentace, grafové neuronova sit, dynamicky
graf, klasifikace zll, kyberneticka bezpecnost

vii

Abstract

Living in a dynamic world means dealing with time-dependent tasks. How-
ever, the modern toolbox for machine learning on graphs is mainly designed
for static networks. Therefore, in this thesis, I deepen into the problematics
of temporal-aware machine learning approaches for graph problems. The out-
come of this study is a proposal for the new continuous-time dynamic graph
neural network. I focus on the Cisco Cognitive Intelligence maliciousness clas-
sification problem — the task of malicious Internet domain exposure based on
user-domain interactions. I demonstrate that this problem can be efficiently
solved employing different approaches, including the proposed one. Moreover,
I show that general maliciousness patterns do not exhibit dynamic properties
in the considered real-world data.

Keywords graph representation learning, graph neural network, temporal
network, dynamic graph, node classification, maliciousness classification, cy-
bersecurity

viii

Contents

..................................

............................
Miscellaneousl o

(1

Machine learning on graphs|

[1.1 ~Graph representation learningf.
1.2 Laplacian eigenmaps|
[1.3 Shallow embedding|
[1.3.1 Laplacian eigenmaps based approaches|.
[L.3.2 Matrix factorizationl
[1.3.3 Neighborhood sampling|
[1.3.4 Summary|
1.4 Graph neural networks|

[1.4.2 Popular architectures|
(1.4.3 Summary|
1.5 Machine learning on bipartite graphs|
[1.5.1 TImplicit feedback|{

Machine learning on dynamic graphs|

2.1 Dynamic graph| oo oo
[2.2 Dynamic graph representation learning/.
[2.2.1 Temporal granularity|.
2.2.2 Timedecay|,
[2.2.3 Temporal smoothness
[2.3 Shallow embedding of dynamic graphs|
[2.3.1 Discrete-time approaches|

ix

10
12
13
14
15
16
17
19
20
21
22

[2.3.1.1 Snapshots aggregation|.

[2.3.1.2 Latent snapshots aggregation|

2.3.1.3 Explicit temporal smoothing|

2.3.1.4 Tensor factorizationl

[2.3.2 Continuous-time approaches|.
[2.3.2.1 Temporal neighborhood sampling|

2.4 Dynamic graph neural networks|.
[2.4.1 Discrete-time approaches]
[2.4.1.1 Stacked dynamic graph neural networks|

[2.4.1.2 Integrated dynamic graph neural networks| . .

[2.4.2 Continuous-time approaches|.

[2.5 Machine learning on dynamic bipartite graphs|.

B Time-serics CNN

A Probl [cFmitionl
4.1 Cisco Cognitive maliciousness classification problem|
4.1.1 Experience|

4.2 Related problems| 00000
4.2.1 Foreign customer classification problem|

[Experiments|

iConclusion|

|Bibliography|

41
41
43

45

48
49
50
50
51

53
93
53
93
o4
o4
95
58
99

69

71

|A Visualization of node embeddings on the foreign customer

| classification problem|

IB Acronyms|

IC_Contents of enclosed CDI

83

91

93

List of Figures

1.1 Laplacian eigenmaps| 0oL L. 10
[1.2 Cisco Cognitive maliciousness classification problem| 17
1.3 GNN computational graph| 18
2.1 Time decay| e 29
2.2 Temporal smoothness| 30
B.1 Time-series GNNI oo 42
4.1 Cisco Cognitive maliciousness classification problem| 49
[5.1 Taxonomy of the applied models| 55
[5.2 Influence of random walks length on the C'I'DNE validation per- |
[formancedo 57
5.3 Unsupervized node embeddings with Bayesian Personalized Rank- |
| ing (BPR) on the maliciousness classification task] 62
5.4 Unsupervized node embeddings with Alternating Least Squares |
| (ALS) on the maliciousness classification task| 63
5.5 Unsupervized node embeddings with node2vec on the malicious- |
[messclassification taskl o000 64
5.6 Supervized node embeddings with Graph convolutional neural net- |
| work (GCN) on the maliciousness classification taskl 65
5.7 Unsupervized node embeddings with TemporalNode2vec on the |
L maliciousness classification taskl 0000 66
5.8 Unsupervized node embeddings with CTDNE on the maliciousness |
L classification taskl. oo oo 67
5.9 Supervized node embeddings with Time-series GNN on the mali- |
[ciousness classification taskl o000 68
IA.1 Unsupervized node embeddings with Bayesian Personalized Rank- |
| ing (BPR) on the foreign customer classification task|. 84

xi

|A.2 Unsupervized node embeddings with Alternating Least Squares

| (ALS) on the foreign customer classification task| 85
IA.3 Unsupervized node embeddings with node2vec on the foreign cus- |
L tomer classification taskl, 86
|A.4 Supervized node embeddings with Graph convolutional neural net- |
| work (GCN) on the foreign customer classification taskl 87
[A.5 Unsupervized node embeddings with TemporalNode2vec on the |
| foreign customer classification task{ 88
|A.6 Unsupervized node embeddings with C'I'DNE on the foreign cus- |
[tomer classification taskl oo oL 89
|A.7 Supervized node embeddings with T'ime-series GNN on the foreign |
[customer classification taskl 90

xii

List of Tables

4.1 Quantitative characteristics of the Cisco Cognitive dataset|. 48
4.2 Quantitative characteristics of the preprocessed Cisco Cognitive

[datasefl 48
4.3 Quantitative characteristics of the preprocessed e-commerce dataset| 51
5.1 Models performance on the maliciousness classification task| 58
5.2 Models performance on the foreign customer classification taskl . . 58

xiii

Introduction

A human mind tends to analyze in terms of objects and relations between
them. As a result, many real-world tasks are often considered as problems in
the domain of graph theory. The rise of machine learning brought a number
of effective techniques to solve such problems. Modern so-called represen-
tation learning approaches such as graph neural networks provide solutions
for various tasks on graphs including, for example, node classification or link
prediction.

Mentioned approaches are designed for static graphs which do not change
over time, but obviously, in many real-world problems incorporating a tem-
poral aspect of data is crucial. Consider for example a mobility network of
the USA, i.e. a graph with nodes representing the US counties and labeled
edges representing human mobility between pairs of counties. Given county-
level dynamic COVID-19 statistics, i.e. node labels representing the numbers
of newly infected, our goal is to predict the next-day numbers of new cases
across the US counties based on the previous days. Obviously, described net-
work changes over time and it is critical to leverage graph dynamics in this
example. That is what Kapoor et al. [1I] show in their work. They use a
graph neural network on the constructed spatio-temporal graph to solve this
problem leveraging the dynamics of data.

Living in a dynamic world, we are surrounded by similar problems in
various domains from zoology [2] to e-commerce [3]. The goal of this thesis is to
deepen into the problematics of temporal-aspect-aware approaches designed to
tackle these problems. In this work, I focus on the Cisco Cognitive Intelligence
maliciousness classification problem — the task of malicious Internet domain
exposure based on user-domain interactions. Cisco, Cognitive Intelligence
group tracks site visits by users to secure them from cyber threats utilizing
the collected information. In this thesis, I study the influence of data temporal

INTRODUCTION

aspect consideration on the possible approaches and their efficiency regarding
the malicious domains detection.

This work involves several challenges. The most significant obstacle is the
nature of the obtained data. Machine learning arose from the great amount of
easy-of-access labeled data. However, tracking millions of domains we possess
valuable information only about a tiny fraction of them, and the rest remain
unknown. This fact makes challenging not only the leveraging of data dynam-
ics but also the application of machine learning in general, challenging. To
alleviate the lack of data there needed specialized techniques and approaches.
The second significant challenge is the immaturity of machine learning on dy-
namic graphs. Non-trivial state-of-the-art approaches are often task-driven,
while general techniques are typically incapable of capturing time at its finest
granularity.

Thesis structure

The thesis starts with two preliminary chapters. In [Chapter 1] I discuss the
elements of machine learning on graphs and in [Chapter 2| I aim to provide
an overview of state-of-the-art machine learning approaches trying to lever-
age graph dynamics. Based on this theoretical study, I propose a dynamic
graph neural network model in [Chapter 3] Further, the Cisco Cognitive Intel-
ligence maliciousness classification problem is formally defined and discussed
in Finally, in I describe the experiments conducted to
compare the performance of temporal-aspect-aware approaches and baseline
methods regarding the considered problem.

Notation

Linear algebra

In this work, R" (n € N) is used as a standard vector space over the field
R. The ith element (i € {0,n — 1}) of a vector a € R" is denoted as al[i].
Then, R™*™ is a set of corresponding matrices of m rows and n columns. The
element of a matrix M € R™*" placed at the ith row and the jth column
(i €{0,m —1},5 € {0,n — 1}) is denoted as Mz, j]. Similarly, M[i,:], M[:, j]
represent the ith row and the jth column respectively.

A standard inner product (-,-) : R™ x R™ — R is defined as

(a,b) ::nia[i]b[i]. (1)
i=0

Notation

With || - ||, : R — R is denoted the Ly,-norm, defined as

lally = 2 3 Jali]”. @
1=0

A binary operator @ : R” x R™ — R represents a vector concatenation:

a®b:= (al0],...,a[n —1],b[0],...,b[m — 1]). (3)
Miscellaneous
An Iverson bracket for a proposition P is defined as:

(4)

P = 1 eR if Pis true,
" l0eR otherwise.

Bold braces {, } are used to denote multisets contrary to sets denoted with

{: +

CHAPTER 1

Machine learning on graphs

Many real-world problems can be formulated in terms of a graph theory. For
example, a global computer network can be defined as a graph with nodes
representing computers, routers, switches, and other entities; and links repre-
senting connections between them.

Definition 1.0.1. A (simple undirected static) gmphE] is an ordered pair
G = (V,E), where V is a non-empty finite set of nodes or vertices and E C
{{u,v} |u,v € VAuF#v}is aset of edges or links.

Having such a network, we may be interested in finding a route between two
computers. This problem, called routing, can be efficiently formulated and
solved algorithmically with, for example, Dijkstra’s algorithm [5]. As a differ-
ent example, we may want to detect malicious entities in the described net-
work. Such a task cannot be easily formulated precisely due to the ambiguity
of the term “malicious”, which cannot be efficiently defined mathematically
in terms of a graph theory in real-world problems. In this case, malicious-
ness usually means the occurrence of certain patterns in graph topology or
its features. Understanding such a problem requires expert knowledge about
the network and the maliciousness. Extracting the knowledge from data and
simulating a human expert is a subject of study for machine learning. I as-
sume that the reader is familiar with this field of study, and, in this chapter,
I directly proceed to machine learning on graphs — a technique to solve such
problems.

The applications of machine learning on graphs can be found in various
fields. Some interesting examples include antibiotics discovery [6] and question
answering [7]. In the first example, the goal is to predict the properties of

!Sometimes I use term network instead of graph, especially when I refer to a specific,
real-world instance of defined abstract structure, consistently with Hamilton [4].

1. MACHINE LEARNING ON GRAPHS

molecules (extract the features of graphs), while in the second example, the
proposed technique is aimed to find the edge between the vertices of a single
graph which leads to a correct answer. We can see that in these applications,
the underlying graph problems are totally different. Applications on graphs
that require machine learning can be classified by the types of underlying
problems. Let’s take a look at two important examples of such problems:
node classification and link prediction.

A node classification is a standard machine learning classification task.
Consider a graph G = (V, E). Having a mapping 7 — L for a training set of
nodes 7 C V and a set of labels L, our goal is to find the mapping V\7 — L.
For example, malicious entity detection, described at the beginning of this
chapter, may fall under this class of problems. Having L = {0,1}, with 0 € L
and 1 € L representing beingness and maliciousness respectively, the goal is to
assign these labels to unknown nodes, having labels of the “training” nodes.

I return to the similar problem in and define it precisely.

A link prediction can be defined as an assignment of labels from {0,1} or
probabilities to the edges of a graph complement. Having a graph G = (V| E)
and its complement G¢ = (V, E), the task is to find a mapping E¢ — {0,1}
or E¢ — [0,1], indicating if the edges could/should be added to the graph G.

Definition 1.0.2. A graph G¢ = (V,EY) = (V, (‘2/) \ E) is called a comple-
ment of a graph G = (V, E). With (‘2/) are all subsets of V' of size 2 denoted,
i.e all possible edges on vertices V.

For example, having a social network G = (V, E') with V representing users
and F representing a friendship relation, we may want to offer possible friends
to users. Obviously, offering possible friends can be defined as link prediction
in G.

Thus, this chapter aims to provide a brief overview of state-of-the-art
approaches of machine learning on graphs to discuss the possible solutions of
mentioned tasks.

1.1 Graph representation learning

Many modern machine learning techniques are strongly based on linear alge-
bra. That is why dealing with non-numerical data often means representing
them as numerical. For example, images in computer vision tasks are usually
treated as matrices, or words in natural language processing problems are of-
ten converted to vectors. Similarly, having a numerical representation of a
graph or its elements enables us to use general machine learning methods to
solve graph problems. That is why in the rest of this chapter, I overview basic

6

1.1. Graph representation learning

ideas and chosen state-of-the-art models of graph representation learning — a
dominant paradigm in machine learning on graphs. A comprehensive overview
of this field of study can be found in the book by Hamilton [4] which is a basis
for this chapter.

Representation learning on graphs means extracting knowledge of interest
about a graph and representing it in so-called latent space — typically low
dimensiona]lﬂ vector space R%. We are usually interested in the representation
of graph nodes called node embeddings. Indeed, for example, embeddings of
edges can be obtained from nodes representation using binary vector opera-
tors, or we can aggregate a set of nodes embeddings to get a representation of
a whole graph. Then, having nodes represented as real vectors we are able to
use all the power of machine learning to solve tasks such as node classification
or link prediction — that is the main idea of graph representation learning.

However, what is the right way to place nodes in the latent space? Con-
sider, for example, a cycle grapkﬂ C5y. How should we properly arrange its
nodes on a plane R?? In the different ways of embedding are

shown. In the first case (Figure 1.1al), we are placing adjacent nodes (see
Definition 1.2)) close to each other, since in the [Figure 1.1b| we oppositely put

them far from each other. Of course, the choice of embedding depends on the
motivation to do it. The first method could be useful, for example, for visu-
alization, as in the picture we can clearly recognize a circle. But if we want
to find an approximation of a graph colom’ngﬁ problem solution, we may pro-
ceed as follows: (i) embed the nodes, (i7) find the clusters with, for example,
k—meansﬂ technique, (iii) associate clusters with distinct colors. Having the
adjacent nodes placed far from each other in the latent space, such a method
could provide decent results. That is why the second embedding
might be useful as well.

Generally, it is difficult to preserve all the information about a graph in the
latent space. That is why we usually want node embeddings only to preserve
some graph property — typically, graph features essential for a particular
problem, as in the examples above, or more generally, nodes similarity. In
the following sections, focusing on node embeddings, I briefly overview two
main categories of graph representation learning: shallow embedding and graph
neural networks. But I would firstly like to start with an example of the
node embedding technique that does not require machine learning — spectral
embedding.

2d< |V
3https://en.wikipedia.org/wiki/Cycle_graph
“https://en.wikipedia.org/wiki/Graph_coloring
Shttps://en.wikipedia.org/wiki/K-means_clustering

https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/K-means_clustering

1. MACHINE LEARNING ON GRAPHS

1.2 Laplacian eigenmaps

Laplacian eigenmaps (or spectral embedding) [§] is a vital predecessor of graph
representation learning. It inspired some node embedding models and has a
theoretical connection to some of the models discussed further. This technique
stems from a spectral graph theory — a field of study concerned with connec-
tions between graph properties and the properties of matrices associated with
graphs. The most important example of such a matrix is an adjacency matriz.

Definition 1.2.1. An adjacency matriz of a graph G = (V, E) is a matrix
A € RVIXIVI defined as Afu,v] == [{u,v} € E]ﬁ

Questioning on the connection between topological properties of a graph and
algebraic properties of its adjacency matrix, we might get some interesting
answers. For example, the powers of this matrix completely describe the
numbers of all the possible paths between nodes, or the algebraic multiplicity
of 0 as an eigenvalue of the adjacency matrix is a number of graph components
[9]. Another central object of the spectral graph theory is a Laplacian matriz.

Definition 1.2.2. A Laplacian of a graph G = (V, F) isa matrix L € RIVIXIVI
defined as:

deg(u) fu=wv
L{u,v] := ¢ -1 if {u,v} € £

0 otherwise.
Definition 1.2.3. For a graph G = (V, E) the degrees of nodes are defined
with a mapping deg : V — N:
deg(u) == [N (u)],

where A (u) is the set of direct neighbors of a node u. Precisely, N is the
mapping V — 2V, defined as:

Nw) ={veV |{unv}eE}

We say that the nodes a,b € V are adjacent if a € N(b).

This sophisticatedly defined matrix, similarly as an adjacency matrix, has
some interesting properties. Consider a graph G = (V, E), its Laplacian L

5To simplify the notation, graph nodes are used as matrix indices. It means that we
assume that nodes are natural numbers {0,...,|V| —1}. This assumption is not restrictive,
since V' is, by definition, a finite set and one-to-one encoding of nodes with natural numbers
always exists. This assumption holds for the rest of the text.

8

1.2. Laplacian eigenmaps

and the vector v € RIVI representing an assignment of some real values to
nodes. Then, multiplying L by a vector v we get the vector w: Lv = w. The
1th element of w equals to the sum of differences between the value assigned
to v and the values assigned to its direct neighbors:

wlil = > (vli] = v[j]. (1.1)

JEN(9)

Then, the quadratic form vI'Lv equals to the sum of squared differences be-
tween adjacent nodes values:

viLv = Z (v[i] — v[j])*. (1.2)

{i.jreEli<j}

It means that the introduced quadratic form expresses how close the adjacent
nodes are from the perspective of the assigned values v. Hence, finding the

argmin v’ Lv (1.3)
veRIVI

means finding the embedding of nodes to a 1-dimensional latent space R that
minimizes the distances between the nodes close in the graph. And vice versa,
maximizing the given quadratic form we can achieve the embedding that max-
imizes these distances. It can be proved that this quadratic form is minimized
if v is the eigenvector corresponding to the smallest eigenvalue of L, and
maximized if it corresponds to the largest eigenvalue ﬂ Considering only unit
vectors (||v|| = 1) and ignoring the trivial case — the smallest zero eigenvalue,
which is always present and leads to the embedding of all the nodes at the
same point, we can embed nodes into R taking d eigenvectors and using them
as coordinates for nodes. For example, if we are interested in placing adjacent
nodes close in the 3-dimensional latent space we choose the unit eigenvectors
va, Vg, v4 corresponding to the 2-nd, 3-rd and 4-th smallest eigenvalues and
embed a node i as a vector (vali],v3[i],v4[i])T. The illustration of such an
embedding can be seen in The details and skipped steps of this
analysis can be found in [10].

Of course, the Laplacian eigenmaps technique has its limitations. Notably,
the only criteria determining the positions of nodes in the latent space is their
direct adjacency. It means that this method captures only the local infor-
mation about nodes, and the deeper structural patterns cannot be utilized.
Let us now proceed to the machine learning models that try to overcome this
limitation.

"https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/matrices/
bounding-quadratic-form-using-eigenvalues.html

https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/matrices/bounding-quadratic-form-using-eigenvalues.html
https://sharmaeklavya2.github.io/theoremdep/nodes/linear-algebra/matrices/bounding-quadratic-form-using-eigenvalues.html

1. MACHINE LEARNING ON GRAPHS

0.3 A

0.2

0.1 A

0.0 4

3rd eigenvector

—0.14

3rd-largest eigenvector

—0.2

—0.34

-03 =02 -01 0.0 0.1 0.2 0.3 -03 =02 =01 0.0 0.1 0.2 0.3
2nd eigenvector 2nd-largest eigenvector

() (b)

0.31

0.21

0.14

0.0 4

2nd-largest eigenvector

-0.2 1

—0.3

-0.2 -0.1 0.0 0.1 0.2
1st-largest eigenvector

(©)

Figure 1.1: Spectral embedding of the cycle graph Cy = (V, E). Colored points
represent obtained vector representation of the nodes. The coordinates of a node
i € V are set to (a) (va[i],v3[i]), (b) (viv|=s[i],vjv|—2li]), (c) (Viv|-2[i], vjv|-1li]),
where vi(k € N) is a unit eigenvector corresponding to the kth smallest eigenvalue
of the graph’s Laplacian (or shortly kth eigenvector). The embeddings corresponing
to the adjacent nodes are connected with lines.

1.3 Shallow embedding

In this section, I want to sum up the idea delivered by spectral embedding and
extend it to machine learning. Having a graph and a defined machine learning
task, the most straightforward way is to “properly” place graph nodes into
the vector space and then use some general machine learning algorithm. For

10

1.3. Shallow embedding

example, having a node classification problem, we can use a classic k—NNﬂ or
Random foresﬂ classifier on the obtained embeddings. By saying “properly”, I
mean preserving a general graph topology, regardless of the task. In this case,
any task is reduced to obtaining node embeddings or encoding the nodes.
Formally, it’s defined as finding a mapping ENC: V — R? In the case of
Laplacian eigenmaps, this mapping is given by associating nodes with the
elements of eigenvectors.

Let us consider an example of the model that learns node embeddings of
a graph G = (V, E). We can start with initializing them with random values.
Since we are interested in embedding of a finite number of vertices |V|, the
ENC can be equivalently formulated as the matrix of embeddings Z € RIVI*4,
considering ENC(v) := Z[v,:]. Then, having a matrix of embeddings as a
variable, we minimize the loss function

L(Z):= Y |[ENC(u) — ENC(v)|f5 - Alu,v], (1.4)
u,veV

where A is an adjacency matrix of G.

Minimizing this loss function, we simply aim to place the embeddings of adja-
cent vertices close to each other in the sense of a squared Euclidean distance.
This strongly resembles the Laplacian eigenmaps technique, but the differ-
ence is that now we are directly optimizing the embeddings, which makes this
technique considered a machine learning model. I will return to this fact in

section 1.3.1] and let us now generalize such learning of embeddings.

The described model consists of three key parts: a chosen graph property
that we aim to preserve in the latent space — nodes adjacency, a chosen
way of decoding node embeddings — measuring the Euclidean distance, and
the used loss function to find the ENC. By changing these parts, we can
construct different models. An essential property of such models is that the
ENC function is learned as a “lookup table” Z for given nodes. That is why
such models, that learn embeddings only for specified nodes, are called shallow
embedding techniques. Importantly, it means that obtained node embeddings
can only be used in transductive applications — for solving tasks on the fixed
nodes, with no generalization to unseen nodes or, for example, new graphs.
In[Section 1.4]1 overview the popular class of models capable of generalization
— Graph neural networks. Let us now proceed to the formal definition of the
mentioned framework.

Shallow embedding can be better seen in terms of encoder and decoder
functions. As mentioned before, having a graph G = (V| E), encoder can be

Shttps://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Random_forest

11

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Random_forest

1. MACHINE LEARNING ON GRAPHS

defined as a function
ENC: V — R? (1.5)

or equivalently as a matrix Z € RIVI*? (ENC(v) := Z[v,:]) and represents
obtaining node embeddings. Further, the embedding of a node v is usually
denoted as a vector z, := ENC(v). The decoder can be an arbitrary function
associating embeddings with the output of interest. Usually, we want to en-
code some pairwise property of nodes — typically a chosen measure of node
similarity S: V x V — R. Then, decoder is a function decoding this property:

DEC: R? x R — R. (1.6)

The idea of such an approach is to train the ENC function having fixed DEC
to roughly hold

(Vu,v € V)(DEC(ENC(u), ENC(v)) =~ S(u,v)). (1.7)

This equation can be often achieved minimizing the loss function £ expressed
as a value of discrepancy between a decoded measure of nodes similarity and
an expected one — often as:

L(Z) = Z ((DEC(zy, 2y), S(u,v)), (1.8)

u,veV

having £: R x R — R as a pairwise measure of values discrepancy. This
goal function is typically minimized with Stochastic gradient descent (see for
example [I1]).

A number of various machine learning models can be defined under this
formalism. Models defined in this way are distinguished by the chosen DEC, S,
and L(or £) functions. The following two subsections contain a brief overview
of two main categories of shallow embedding techniques from this encoder-
decoder perspective.

1.3.1 Laplacian eigenmaps based approaches

In terms of the described framework, the model defined in the beginning of

[Section 1.3 can be defined as:

S(u,v) := Alu,v], (1.9)
DEC(zy, 2y) := ||y — 2|3, (1.10)
l(a,b) :==a-b. (1.11)

We can see that this model aims to preserve node adjacency, which is measured
as a squared Euclidean distance in the latent space. And the discrepancy be-
tween a true adjacency and a decoded one is measured simply by multiplying

12

1.3. Shallow embedding

these values. The resemblance of this model with the spectral embedding is
not a coincidence. Replacing the adjacency matrix with a Laplacian leads to
the same embedding, according to Hamilton [4]. So, inspired by this fact,
we can define a number of models with different matrices, including the ad-
jacency matrix. Such machine learning models are among the first emerged
approaches. In this work, I do not go into details of these models and proceed
to the state-of-the-art approaches.

1.3.2 Matrix factorization

Having data represented as a matrix M € R™ ™ in many applications it is
convenient to embed them using a matrix factorization in the following form:

M ~ UV, (1.12)

where U € R™? V € R¥™™ can be used as a low-dimensional representation
of M (assuming low d € N).

For example, having the images of faces represented as the rows of M, Non-
negative Matrix Factorization (NMF) [12] learns a parts-based representation
of faces, so that the d columns of U represent the so-called basis images and
V columns are the so-called encodings of original faces. The idea is that any
face is treated as a nonnegative linear combination of the basis faces, which
can be highly useful in, for example, face recognition tasks, and has psycho-
logical justifications. Similarly, for example, having n users and m movies, the
matrix M can be constructed so that M][i, j] := 1 if user ¢ watched the movie
j and MJi, j] := 0 otherwise. Then, some recommender systems [13], learn
embeddings of users and movies encoded in matrices U and V respectively.

Inspired by results of such approaches, a number of matrix factorization
models emerged in the domain of a graph representation learning. Probably,
the first one was the model by Ahmed et al. [14]. The idea of this model,
usually reffered to as Graph Factorization (GF), is to learn the matrix of node
embeddings Z € RIVI*4 of a graph G = (V, E) to hold

A~ 777, (1.13)

where A is an adjacency matrix of G. In terms of the encoder-decoder per-
spective it means using an adjacency matrix as a measure of similarity and
expressing it geometrically (decoding) with a standard inner product:

S(u,v) := Alu, v], (1.14)
DEC(zy, 2zy) 1= (Zu, Zy)- (1.15)
Then, the idea of the objective is:
1
L(Z) := 3 Z (Zu, 20) — Alu,v])%. (1.16)
u el

13

1. MACHINE LEARNING ON GRAPHS

Graph Factorization utilizes a linearly scalable algorithm for the loss function
minimization constructed based on the one given by [Equation 1.4

The authors of the GraRep model [I5] argue that the models like GF may
be inefficient since they only capture I-hop neighborhoods of nodes, using A
as a similarity measure. As mentioned at the beginning of powers
of A are related to the paths of different lengths in G. Inspired by this fact,
GraRep uses the powers of A instead of A to capture k-hop neighborhoods
of nodes (k € N). Moreover, it performs the factorization in a more so-
phisticated way basing on the Singular value decomposition (SVD)@ These
facts make this model potentially more powerful but unscalable and time-
consuming. From the perspective of an encoder-decoder framework, GraRep
uses the different powers of A as a similarity measure S and again is based
on the standard inner product decoder, implied by matrix factorization.

Definition 1.3.1. A walk of length n € Ny on graph G = (V, E) starting
from node vy is a tuple (v1,...,v,) € V™ if the following holds:

n>1) = (Mie{l,...,n—1})({vi,vix1} € E).

Definition 1.3.2. A path on graph G = (V, E) is a walk (vy,...,v,) if all
nodes v, ..., v, are distinct.

Definition 1.3.3. We say that a node v is reachable from the node u if the
path (u,...,v) exists. A k-hop neighborhood of a node u is a set of all the
nodes reachable from u with the paths of length at most k.

Similar models include HOPE [16], which offers a more flexible choice of
a similarity measure and is originally designed to extend the idea of matrix
factorization to directed graphs.

1.3.3 Neighborhood sampling

Assigning vector representations to graph nodes is similar to the popular idea
in NLP to assign vector representations to words. Considering an analogy

text corpus — graph, word — node, word context — node neighborhood

several successful machine learning techniques on graphs emerged. Models
based on the famous word2vec skip-gram model by Mikolov et al. [I7] achieved
especial success. This NLP model is designed to produce word embeddings.

Ohttps://en.wikipedia.org/wiki/Singular_value_decomposition

14

https://en.wikipedia.org/wiki/Singular_value_decomposition

1.3. Shallow embedding

The key idea behind word2vec is that similar words share contexts. This as-
sumption can be applied to graphs — similar nodes share contexts (or neigh-
borhoods). An ambiguity of the notion “nodes neighborhood” has induced the
emergence of various models. Formally, node neighborhoods can be defined
by any function N, : V — 2V associating nodes with their neighborhoods
according to sampling strategy s.

A model called node2vec [18] introduces a flexible way to sample node
neighborhoods using random walks. In this case N associates nodes with
specific random walks starting from them. Based on model hyperparameters,
which affect random walks, neighborhoods are generated more in BFS or DFS
manner. Generated walks are then used as training sentences for the skip-
gram model. In terms of encoder-decoder perspective it means training ENC
with S defined by empirical probabilities of nodes pairwise co-occurrence in
generated walks and DEC given as a reconstruction of these probabilities:

e<zuvzv>

DEC(2y, 2) = S e
ne

(1.17)

where inner product can be treated as a measure of similarity. Then £ can be
defined as

L(Z):= 3 —log(DEC(2,,2,))[v € Ny(u)]. (1.18)
u,veV

Similar models include DeepWalk [19], which differs mainly in random
walks sampling strategy, and LINE [20] which samples 1-hop and 2-hop neigh-
borhoods of nodes instead of generating walks. Node2vec emerged as an im-
provement of these models. Interestingly, Qiu et al. [21] show that these
models perform an implicit matrix factorization, as well as models described
in [Section 1.3.2]

1.3.4 Summary

The goal of this section was to briefly introduce the ideas of shallow embed-
ding. Many of these models are considered state-of-the-art of graph represen-
tation learning. Let us now consider the main limitations of this approach,
induced by their “shallowness”: representing ENC as a lookup table Z:

e Embeddings are learned only for specific nodes. It means that shal-
low embedding models can be applied only in transductive applications:
solving tasks on “seen” nodes, with no generalization to “unseen” nodes
or new graphs.

15

1. MACHINE LEARNING ON GRAPHS

e Embeddings do not share any parameters. It means that the memory
complexity of such approaches is at least O(|V]). Moreover, Hamilton
[4] states that the parameters sharing can act as a powerful form of a
model regularization.

Moreover, there are two more important facts:

e The majority of described models cannot utilize graph properties as node
features or edge features, which obviously, may be highly preferable in
many real-world tasks. Of course, there exist corresponding extensions,
but they are not necessarily natural.

e Mentioned models learn embeddings in an unsupervised manner regard-
less of the task, which can be as good as bad but remains the typical
property of shallow embedding.

1.4 Graph neural networks

In the previous section, I shortly described some well-known machine learning
models based mainly on either matrix factorization techniques or neighbor-
hood sampling approaches. The goal of the section, as its name suggests, is to
provide a brief introduction to the graph machine learning models based on
deep learning. The recent and ubiquitous success of this branch of machine
learning could not leave graph representation learning unaffected.

In computer vision, convolutional neural networks (CNNs) show impressive
results in various tasks. The idea of these models is to sequentially apply 2D
convolutional kernels (a filter) to transform the image by aggregating neigh-
boring pixels (see for example [22) Chapter 9]). Learning kernels enables to
efficiently solve computer vision tasks with O(1) parameters and is justified
by the analogy to the mammalian vision system.

The first graph neural networks (GNNs) are strongly inspired by CNNs
[23, 24]. An image can be treated as the special case of a graph: a fully-

connected grid graph (see [Figure 1.2b| (a)). Then, considering an analogy

image — graph, pixel — node features, neighboring pixels — node
neighborhood,

convolutional neural networks can be generalized to graphs. We do not need

any efforts to associate an image with a graph (as shown in [Figure 1.2b)), or
pixels with node features (since they both can be represented as real vectors),

16

1.4. Graph neural networks

| (;) (b)

Figure 1.2: A comparison of 2D convolution and graph convolution. (a) 2D con-
volution: each pixel can be treated as a graph node. Then, in CNNs convolution is
applied to the k-hop neighborhood of each node determined by the filter size; (b)
graph convolution: different from the image data, node neighborhoods are not ordered
and variable in size.

but an extension of the notion convolution to a graph domain is a cornerstone
of GNNs problematics.

A discrete convolution kernel “distinguishes” the input vector elements
by their positions. For example, in the case of CNNs, a 3 x 3 kernel of 2D
convolution is always applied to 3 x 3 subimages so that only the corresponding
elements are multiplied. It means that the input for convolution is always fixed
in size and ordered. Obviously, this statement does not hold in the graph
domain: nodes direct neighborhoods vary in size and cannot be naturally
ordered. It leads to the conclusion that the analogue of convolution on graphs
should be a multiset aggregator function. Namely, for a graph G = (V, E') and
some n € N:

AGGREGATE : 2{x0[veV} _ gr (1.19)

where x,, denotes the feature of a node v (see|Definition 1.4.1]) .Then, the differ-
ent GNN architectures are distinguished by the used AGGREGATE functions.
Let us firstly sum up this framework and then proceed to some well-known
architectures.

1.4.1 GNN framework

The goal of this section is to introduce a general framework of deep learning
on graphs — a graph neural network — regardless of the specific architecture
(the chosen AGGREGATE function). Consider a graph G = (V, E) and its
node features X.

17

1. MACHINE LEARNING ON GRAPHS

Definition 1.4.1. The node features of a graph G = (V| E) are a matrix
X € RIVI*" where n € N is a number of features. The features or a feature
vector of a node v € V is then a vector x, := X][v, :].

Then, to produce the embedding z, € R" of a node v € V, a Graph neural
network sequentially transforms its hidden embedding h, as follows:

(i) h© .= x, (1.20)
(ii) () .= AGGREGATE® ({b®) | u € N'(v) Uv}) (1.21)
(iil) 2, := hX for some K € N (1.22)

This iterative process is often referred to as a message passing, since at
each iteration nodes collect messages (hidden embeddings) from their direct
neighbors and pass their own message. See for the illustration.

AGGREGATE®*~Y

@ <+— AGGREGATE® 4—@ AGGREGATE®*Y

AGGREGATE")

AT

Figure 1.3: Illustration of how a single node A aggregates messages from its local
neighborhood. The visualization shows a computation graph of a two-layer version
of graph neural network model.

At the kth iteration of message passing, nodes collect information from
their whole k-hop neighborhoods, as seen in for 2 iterations. That
is why K represents a depth of the graph neural network and each iteration
(Equation represents a layer. In practical tasks, K is usually set to be
very low (2-3), since the diameterﬂ of real-world graphs is usually low [25].
Moreover, relevant to the nodes information is usually contained in their close
neighborhoods.

the length of the longest path

18

1.4. Graph neural networks

Assuming that AGGREGATE®) functions are parametric and differen-
tiable, we can construct different task-driven loss functions to learn their pa-
rameters. For example, having a binary node classification task, we can use a
binary crossentropy:

L= yslog(o(z,0)) + (1 —y,)log(1 — o (2, 0)), (1.23)
veED

where D C V is a training set of nodes, y, € {0,1} is a true label of a node
v and 6@ is a trainable vector of classification weights. Nevertheless, nodes
can also be embedded in an unsupervized manner using the appropriate loss
function (see for example [26]).

Note that by analogy to the shallow embedding models,
defines a way of decoding node embeddings encoded with the Graph neural
network. It means that GNNs are analogous to ENC functions defined in the
Under such a perspective, we can see a crucial difference between
shallow embedding techniques and Graph neural networks. In the first case,

the ENC is learned as a lookup table (Equation 1.5)), but in the case of GNNs,

it is learned as a function that maps any node along with its neighborhood to
a real vector. I return to this fact in the

1.4.2 Popular architectures

In this subsection, I want to introduce two well-known architectures of graph
neural networks.

GCN

Graph convolutional neural network (GCN) [24] layers are defined as follows:

B+ <w<k>

h{
MGN%U{U} N W)V (v)|> ’ (1.24)

where ¢ is an activation function such as ReLU(-) := max(0,-) and W®*) is a
trainable matrix. We can observe that in in this case the aggregation is based
on the normalized sum of the node neighborhood. This sum is then tran-
sofrmed with a linear operator and activated with a non-linear function, typi-
cally for deep learning models. Authors state that the choice of this specifical
normalization is based on the “localized first-order approximation of spectral
graph convolutions”; which is the concept related to spectral embedding (see
Section 1.2)) and can be considered a generalization of a discrete convolution.

19

1. MACHINE LEARNING ON GRAPHS

GraphSAGE

The GraphSAGHE [26] model has emerged as a generalization and improve-
ment of GCNs. It defines a more flexible layer:

B = g(ww AGG({hY) |ue N(0)}) @ BY . h§ﬁ>> L)

where o is again an activation function and W®*), B*) are the trainable ma-
trices. AGG can be an arbitrary multiset aggregator function. Authors of the
model propose multiple ones, including a simple mean aggregation and a more
sophisticated one based on training the LSTM Recurrent neural network [27]
with random permutations of multiset elements. Moreover, authors propose
to sample neighbors A (v) instead of using a full set at a time to effectively
trade off performance and runtime.

1.4.3 Summary

In this section, I introduced the elements of a powerful deep learning graph
framework: a graph neural network. Now I want to sum up the key properties
of GNNs comparing to other approaches (shallow embedding models). First
of all, as mentioned in using a GNN, the nodes are encoded
with a learned parameterized function, not with a lookup table. There are
two main effectdl] of this fact:

e Graph neural networks can be used in inductive applications. It means
that using a GNN, we are not restricted to training nodes or a training
graph. For example, after adding a new user to a social network, we do
not have to recompute embeddings for the whole graph, but only one
GNN inference is enough to obtain the embedding of a new user.

e Node embeddings are learned sharing the parameters. It means that the
number of model parameters does not depend on the input graph size
and can be possibly reduced to O(1).

Let us moreover consider two important facts:

e Graph neural networks inherently assume the presence of node features.
It can be a shortcoming of such an approach, but node features can

125 Ample and aggreGatE
13Note that not all the graph neural networks should necessarily have the following prop-
erties, however, they are a key factor of the GNN framework success.

20

1.5. Machine learning on bipartite graphs

always be generated according to graph topological properties. For ex-
ample, one could construct a feature vector for a node considering its
degree, local clustering coeﬂicien@ or any other topological feature.

e GNNs can be trained with an arbitrary loss function, and therefore can

be naturally used in a supervised manner, as shown in [Section 1.4.

These facts make graph neural networks considered the main representa-
tive of graph representation learning. Note also that the paper introducing
GCN [24], which is often considered a first GNN, was published quite recently,
in year 2016, According to Leskovec [25] (Autumn 2019)), the “Graph neural
network” keyword was as frequent as an entire “NLP” one in the ICLRE| 2019
keywords distribution, meaning the intense research in this area. GNN models
convolve with other branches of deep learning and produce new models. See
Zhou et al. [28] (2021) for the taxonomy of various GNN architectures.

1.5 Machine learning on bipartite graphs

Having a machine learning problem defined for bipartite graph, we can utilize
any model discussed in this chapter. However, having such significant insight
into the graph topology, it may be useful to utilize it. That is why there exist
machine learning models designed specifically for bipartite networks.

Definition 1.5.1. A graph G = (V| E) is bipartite if two disjoint sets U and
I exist, such that V. =UUI and E C {{u,i} |[u € UNi € I}. U and I are
said to be the partitionﬂ of a graph G.

Definition 1.5.2. An adjacency matriz of a bipartite graph G = (V, E) with
partitions U and V is a matrix A € RV defined as Afu,v] := [{u,v} € E].

The notion of the adjacency matrix of a bipartite graph is typically over-
ridden with the [Definition 1.5.2] Then, the direct application of some models
discussed above in this chapter to a bipartite graph with its newly defined
adjacency matrix leads to similar approaches as the ones invented for user-
item systems, not necessarily considered as graphs. In this work, I do not
dive into the problematics of such models but only overview two important
architectures designed for specific bipartite networks.

Yhttps://en.wikipedia.org/wiki/Clustering_coefficient

Bhttps: //en.wikipedia.org/wiki/International_Conference_on_Learning_
Representations

*°T use letters U and I to denote partitions since in this work dynamic bipartite networks
typically represent interactions between users and items.

21

https://en.wikipedia.org/wiki/Clustering_coefficient
https://en.wikipedia.org/wiki/International_Conference_on_Learning_Representations
https://en.wikipedia.org/wiki/International_Conference_on_Learning_Representations

1. MACHINE LEARNING ON GRAPHS

1.5.1 Implicit feedback

The term implicit feedback is used to describe specific relations in the user-item
systems. Contrary to explicit feedback which describes explicit user actions,
such as rating the movie or leaving a comment below the YouTube video,
implicit feedback describes “passive” preferences. For example, the fact that
the user watches the same movie every month can be treated as the user’s
positive feedback about the movie. Having a set of user U and a set of items
I, this idea is typically formalized as a matrix R € RIVIXUI where Ru, 1]
represents the number of times user u interacted with item 4 (e.g. a number
of purchases, clicks or views). Obviously, R can be treated as the adjacency
matrix of a graph representing user-item relations.

Alternating least squares

Alternating Least Squares (ALS) [29)] is an algorithm used with implicit feed-
back data. Having implicit feedback RIUIXII describing relations between
users U and items I, the idea of Alternating least squares application is to
learn user embeddings x, € R? for each user u € U and item embeddings
y; € RY for each item i € I minimizing the loss function

LEXY) = Y cuslpus — (xunyi))? + Al(S w3+ uyn@), (1.26)

uel iel uelU el

where d is a latent space dimensionality (or a number of factors), X € RIVIx4
and Y € RVl are the matrices of user and item embeddings: x,, = X[u, :]'7)
yi = Y[;,i], and A\; € R{ is a hyperparameter controlling the influence of Lo-
regularization@ A constant p,; € {0,1} represents the preference of a user u
for a product ¢ defined as follows:

(1.27)

1 if Rlu,i] > 0,
DPui = .
0 otherwise.

Next, cy; € R represents the confidence in the preference observation p,;. One
of the possible ways to define it is as

cui =14+ Ao - Rlu, 1, (1.28)

where Ay € R(}F is another hyperparameter. Note how this algorithm resembles
the models discussed in [Section 1.3.2

17Similarly as in U and I are assumed to be {0,1,...,|U| — 1} and
{0,1,...,|[I] — 1} for the notation simplicity.

18See Tikhonov regularization
https://en.wikipedia.org/wiki/Regularization_(mathematics)

22

https://en.wikipedia.org/wiki/Regularization_(mathematics)

1.5. Machine learning on bipartite graphs

Bayesian personalized ranking

Rendle et al. [30] argue that zero values of R should be treated as missing
ones. That is why they propose to consider implicit feedback in form of triples:

Ri={(ui,j) €UxIxI ‘ R[u,i] > 0 A R[u,j] = 0}. (1.29)

Entry (u,,7) € R represents that user u prefers item i to the item j. It means
that the only assumption made about data is that users prefer items that they
interacted with to items they did not.

Then, based on the probabilistic point of view on this assumption they
propose to maximize the following function:

LX,Y):= > Ino(duy) — A I0]3, (1.30)
(u,i,j)ER

where o is a sigmoid™| function and
fuij = ﬂ?m — ﬂAfuj = <Xu7Yi> — <Xu,yj>. (131)

Here, x,, € R? for each u € U and y; € R? for each i € I are the user and item
embeddings which can be the output of an arbitrary model. For example, one
can factorize the implicit feedback matrix similarly as in Then,
0 is a real vector representing the parameters of the chosen model, Ay €]R(J{
controls the Ly-regularization and d € N4 is a latent space dimensionality.

Yhttps://en.wikipedia.org/wiki/Sigmoid_function

23

https://en.wikipedia.org/wiki/Sigmoid_function

CHAPTER 2

Machine learning on dynamic
graphs

Approaches discussed in are designed for static graphs with fixed
nodes and edges (see [Definition 1.0.1]). However, a vast of real-world networks
change in time. For example, consider a social network with nodes represent-
ing users and edges representing a friendship relation. We may want to classify
users by some criteria [31], for example by their interests, or alternatively by
their behavioral roles [32]. Having an e-shop, users and items can be treated
as graph nodes, and purchases as edges. Then we may be interested in pre-
dicting the next user’s purchase [33, 34, [3], for example, to provide an e-shop
with personalized advertising. Having graph nodes representing researchers
and edges representing co-authorship, an interesting task is to predict the col-
laborations [35]. Moreover, for instance, tracking the contacts between the
attendees of a conference, our goal may be to analyze some spreading process,
for instance, a virus, passing from person to person [36]. Another interesting
example is a prediction of animal behavior: tracking interactions within a
group of baboons, and having four types of this group’s activities (sleeping,
hanging out, etc.), one may be interested in predicting the next-day activities
based on the past behavior [2]. Obviously, all these tasks require considering
the dynamics of data to solve them as efficiently as possible, since the under-
lying graphs change over time and data at different timepoints are dependent
on each other.

Note that in these examples not only the problems are totally different but
the graph dynamics are expressed differently as well. For example, in animal
behavior example, the interaction between two baboons represents an addition
or removal of the edge, while in a co-authorship network, edges are only added
as time passes which means that the graph only grows. Furthermore, the
interests of people change, which means that in a social network, classifying

25

2. MACHINE LEARNING ON DYNAMIC GRAPHS

the users based on their interests, we should consider that labels change in
time and thus classification should be performed for each timestamp. However,
a user’s behavioral role is a notion associated with the whole history of the
user’s activity and, in this case, the whole sequences are classified. The goal of
this chapter is to overview modern approaches to solve such problems utilizing
graph dynamics.

2.1 Dynamic graph

To discuss the machine learning approaches capable of capturing graph dy-
namics, we should firstly properly formalize the essence of a dynamic graph.
As stated at the beginning of this chapter, graph dynamics may be expressed
differently in different applications. Indeed, sometimes a constructed graph
only changes its topology as time passes, but in other applications, for ex-
ample, node or edge features may also evolve. That is why the notion of a
dynamic graph is usually defined differently, driven by the task.

There exist various approaches to formalize the concept of a dynamic graph
[37, 38, 39, [40]. Probably, the most general way to define it mathematically is
given by Casteigts et al. [37]. They propose to define a Time- Varying Graph as
follows. Consider a time span T C T, where T is assumed to be either N or RT.
Then, a Time-Varying Graph can be defined as a tuple G = (V, &, T, p,(, ¥,).
Here, V is a non-empty finite set of nodes and € CV xV x F is a set of edges,
similarly as in the static graph (see|Definition 1.0.1]). So far, the only difference
is an implicit definition of edge feature F that can be of any nature. Then:

e p:EXT — {0,1} is an edge presence function indicating whether a
given edge is present at a certain time point.

e (:EXT — Tis an edge latency function representing a time necessary
to “cross” the given edge at a certain time.

YV xT — {0,1} is a node presence function indicating whether a
given node is present at a certain time point.

e ¢:VxT — Tisa node latency function representing a time necessary
to “travel” by the given node at a certain time.

Using such a definition we can formalize the majority of (if not all) real-
world dynamic networks. But in many applications, we are not interested
in all of the possible temporal graph changes and thus we do not require
such a highly expressive model which may be overcomplicated. A big class of
problems, including the ones introduced at the beginning of this chapter, can
be defined using the [Definition 2.1.1]

26

2.2. Dynamic graph representation learning

Definition 2.1.1. Dynamic graph@is atuple G = (V,&,T), where V is a non-
empty finite set of nodes or vertices, € C { (u,v,t) |[u,v e VAu#vAteT}
is a set of edges, links, events or intemctionﬂ and 7 C T is a time span,
where T := Ra’r represents the temporal domain.

Note that with the dynamic graph defined in a such way we are restricted to
certain systems: we always assume the fixed entities which do not implicitly
change over time, and the instantaneous interactions between them. Mainly,
in the literature related to machine learning on dynamic graphs, exactly this
type of time-varying networks is considered, since they are highly important
and ubiquitous in the real world.

2.2 Dynamic graph representation learning

In[Chapter I}, I shortly described the main ideas of graph representation learn-
ing. This paradigm includes two main types of approaches: shallow embedding
and Graph neural networks. Being the state of the art of machine learning on
graphs, it serves as a basis for the majority of techniques for dealing with prob-
lems on dynamic graphs. In this section, I want firstly to introduce several
important concepts related to dynamic graph representation learning: tempo-
ral granularity, time decay and temporal smoothness, and then proceed to the
methods themselves.

2.2.1 Temporal granularity

Graph representation learning techniques that capture network dynamics are
typically classified by how they “treat” time, i.e for which dynamic graph
representation they are designed. There exist two main categories: discrete-
time approaches and continuous-time approaches.

Having a dynamic graph G = (V,&,T), the most straightforward way to
capture the network dynamics with the graph representation learning tech-
niques is to split the graph into T' € N static graphs, called snapshots:

GO g . gT-, (2.1)

20The naming of this structure is inconsistent across the literature. It may be referred
to with different word combinations, including the pairs from {dynamic, temporal, time-
varying, continuous-time dynamic} X {graph, network} and others. Further in this work,
whenever I use one of these combinations I mean the dynamic graph.

2INote that the edges are implicitly ordered. However, in this work this fact is typically
not significant and I usually assume that the direction is not important. I use this definition
of edges to be consistent with the literature.

27

2. MACHINE LEARNING ON DYNAMIC GRAPHS

This can be achieved by selecting T' + 1 timestamps tg,%t1,...,t7 € T and
defining the snapshots as follows:

Gr = (V,{{u,v} | (v,u,t) € EV (u,v,t) € E) A (tp <t <tp1)}). (2.2)

A machine learning model which operates with graph snapshots is said
to be a discrete-time |41}, [42], 43]. The motivation of such an approach is to
apply the standard graph representation learning techniques on snapshots and
use the results as input for the models designed for sequences processing, or
simply aggregate them if necessary. The number of snapshots is usually set
to be much lower than the cardinality of a graph time span 7T, due to the
computational complexity. It means that such models lose some temporal
information aggregating the events.

Contrary to discrete-time approaches, continuous-time approaches directly
process a dynamic graph. Such models have the maximal potential expres-
sivity since they do not lose temporal information. However, to build such
models based on the classic graph representation learning approaches, it is
necessary to modify them, which makes continuous-time approaches generally
more complex. Consequently, continuous-time approaches are far not as pop-
ular as the ones working with graph snapshots [42], [43]. T will describe some
of the models belonging to both classes further in this chapter.

2.2.2 Time decay

When dealing with temporal data it is often assumed that more recent records
have higher significance. This idea is typically realised via a time-decay func-
tion I' : T x T — R which associates pairs of timestamps with their weighted
distance. Some typical examples of I' [44] [33] include :

1. Passage time decay

1 if ’tl—t2| <o
T'(t1,t2) := 2.3
(t1,2) {0 otherwise (2:3)
2. Triangle time decay
1- =l g ¢y <o
T(t1,ts) = v 2.4
(t1,2) {0 otherwise (24)
3. Gaussian time decay
—(t1—t2)?
F(tl,tg) =e 202 (2.5)

Here, 0 € R, is a parameter controlling time decay. For the visualization see

28

2.3. Shallow embedding of dynamic graphs

I - .
'\:\ |I ——=Passage time decay
N . .
AN || —==Triangle time decay
N . .
0.8 1 NN \ ——— Gaussian time decay
N \ :
N\ i
"N 0.6 1 RS {
-~ AAY
-~ W 1
<5 Y 1
= 1
F~ 044 |I
1
1
1
0.2 1
1
]
\\‘k\
0.0 1 LERLCE
T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 2.1: Illustration of the time-decay functions. Here, o is set to 1.5.

2.2.3 Temporal smoothness

Many models try to capture network dynamics assuming the temporal smooth-
ness. Consider for example a dynamic graph G = (V, €, T) and a discrete-time

model that produces node embeddings zqgo),zg,l), e ,zq(,Tfl) for a node v € V

at each of the T' € N snapshots. Then the temporal smoothness means that
vectors zg,o), zgl), . ,zg,Tfl) form a trajectory in the latent space. Similarly,
for example, getting a vector representation of dynamic graph edges, assuming
the temporal smoothness, we may expect adjacent edges with similar times-

tamps to be close in the latent space. For the illustration see

2.3 Shallow embedding of dynamic graphs

This section aims to cover modern shallow embedding approaches designed
for dynamic graphs. I rely on the surveys by Kazemi et al. [41] (2020) and
Barros et al. [43] (2021), and the other, further mentioned, works I am aware
of. All the described approaches are strongly inspired by techniques discussed
in [Section T.3]and preserve the general framework. That is why at some points
I only describe the key parts of time-aware models, relying on their obvious

association with the ones described in [Chapter

2.3.1 Discrete-time approaches

As discussed in [Section 2.2.1], dealing with discrete time means working with

graph snapshots. That is why in this section, I consider shallow embedding
models designed for the snapshots G0, G ..

.,GT=1) of a dynamic graph
G=WET).

29

2. MACHINE LEARNING ON DYNAMIC GRAPHS

®
L]
e 200
[]
[]
[]

Figure 2.2: Example of temporal smoothness. Points in the plot represent 3-
dimensional edge embeddings of the real-world co-presence network [45]. Nodes V
of this network G = (W, &, T) represent the attendees of a scientific conference and
an edge (u,v,t) € &£ represents that the person w is in contact with the other at-
tendee v at time ¢. The picture shows embeddings obtained with weg2vec [36]. This
model aims to place adjacent edges close in the latent space and preserve temporal
smoothness.

2.3.1.1 Snapshots aggregation

The easiest way to directly apply classic shallow embedding techniques for
any downstream task on a dynamic network is to convert it to a single static
snapshot G. Then, any technique described in can be straight-
forwardly utilized. For example, Liben-Nowell and Kleinberg [46] follow this
idea while studying the link-prediction problem for social networks.

Some succeeding approaches try to capture more temporal information by
considering a matrix of weights W € RIVI*IVI

Wi, jl:= Y I(T,t)- AW, 4], (2.6)
=0

~

where A®) is an adjacency matrix of the graph G®, and T is an arbitrary

time-decay function (see [Section 2.2.2). For example, Ahmed et al. [47] set

[(T,t) := v~ for some v € [0,1] and then generate random walks on G
that are biased according to W. Similarly, Ibrahim and Chen [48] construct

30

2.3. Shallow embedding of dynamic graphs

the same weight matrix, but add “self-loops” Wi, i] := 1 for all i« € V and
use different node similarity measures S based on this matrix. The idea of
such approaches is that recent events carry more relevant information. The
described models can be useful, however they are clearly doomed to the loss
of temporal information.

2.3.1.2 Latent snapshots aggregation

Rather than aggregating snapshots to one graph in order to utilize static
shallow embedding techniques, we can apply them to each snapshot and then
aggregate the obtained embeddings. To get the embedding z, of a node v € V,
it means to obtain node embeddings zq()o),zq(jl), o ,zq(JTfl) for each of the T
snapshots and then aggregate them:

T-1
z, =Y D(T,t)- 2, (2.7)
t=0

where I' is a time-decay function. For example, Yao et al. [49] design the model
to learn static embeddings zg,o),zg,l), o ,zS,T_l) based on the node common
neighbors and then apply aggregation described above with the time decay

set to ['(T,t) := e—0(T—1),

Zhu et al. [50] use the similar idea and formulate the task of link prediction
as finding the graph G based on aggregation of the d-dimensional latent node
representations Z(©, ZW . ZT-1 ¢ RIVIXd gt each timestamp:

AT = (I)(Z(O)a Z(l)v [ERN] Z(T_l))7 (28)

T
where @ : RIVIXD" _ RIVIXIVI s some predictor function and Ap is an
adjacency matrix of Gp.

More specifically, node similarity measures S, M) . ST can be
constructed for each snapshot and then processed with some model designed
for time-series data. For example, to predict edges Giines et al. [51] firstly con-
struct simple similarity measures and then use them as an input for ARIMA
— the model designed for time-series forecasting.

2.3.1.3 Explicit temporal smoothing

A number of shallow embedding techniques designed for dynamic networks aim
to capture evolution of graph snapshots by preserving temporal smoothness

(see [Section 2.2.3). In this case, a model learns node embeddings for each

snapshot minimizing the additional term

T-2
> > Uzl z{t), (2.9)

veY t=0

31

2. MACHINE LEARNING ON DYNAMIC GRAPHS

where | : R? x R? — R is any reasonable measure of discrepancy, typically
based on the standard inner product.

For example, having snapshots G, GM ... GT=Y and corresponding
adjacency matrices A AM AT Zhu et al. [50] define the following
loss function:

£(z©,z0,.. 20V = 3 ZIIA u,v] = (2f), 2)) 3+

u,veY t=0

+A<Z Z (1—(z{",z t+1>>)>, (2.10)
veY t=0

where A\ € Rg is a hyperparameter. It can be observed that the proposed
model simply optimizes the adjacency matrix factorization (see [Section 1.3.2)
for each snapshot and aims to preserve a temporal smoothness across snap-
shots.

TemporalNode2vec [52] follows the same idea but applies node2vec to each
snapshot. As mentioned in the[Section 1.3.3] random walks approaches can be
equivalently defined as a matrix factorization. In this case, it can be achieved

with Positive Pointwise Mutual Information matrix PPMI € RIVI*IVI,

PPMI[i, j] := max (0, log (9 : W)) (2.11)

il - 1]

for all i # j € V. Here [i, |} is the number of times i and j co-appear in the
set of node2vec walks of G®) within a window of size w, |v|; is the number of
occurrences of v € V in the set of walks of G(), and 6 € R is a hyperparameter.
Then, the total loss function is defined as follows:

L2020, 20) i S S PPMIC] (a0

u,veY t=0

T—2

((t+1)>)> +
veY 0
-1

+)\2<Z

veEY t=0

ﬂaﬂ-

(2.12)

N

<

STS)
~

where A\, Ay € Rg are trainable hyperparameters. Ferreira et al. [53] define
the identical model inspired by DynamicWord2vec [54] — the model designed
to analyze evolution of word semantics.

2.3.1.4 Tensor factorization

A sequence of adjacency matrices A(@ A® . AT corresponding to snap-

shots GO, G ... GT=D can be stacked into a tensor A € RIVIXIVIXT of

32

2.3. Shallow embedding of dynamic graphs

order 3:
Ali,j.t] .= AW,). (2.13)

Then, inspired by adjacency matrix decomposion approaches (see[Section 1.3.2)),
tensor decomposion appraches for dynamic graphs emerged. They are based

on the idea to find the rank d € N tensor decomposition of A given as

d—1
A= Z)\kak ® by, ® cp, (2.14)
k=0

where \; € Ry and a;, by € RVl ¢, € RT for all k € {0,1,...d — 1}. Here,
term A\ia; ® b ® ¢ is deﬁne as a tensor from RIVI*IVIxT.

(Akar @ by @ ci)[i, j,t] := Arag[i] - br[j] - ck[t]. (2.15)

Then, the obtained vectors can be used to construct d-dimensional node or
edge embeddings. For example, Dunlavy et al. [55] utilize cj vectors for link
prediction. There exist other techniques to factorize the given tensor [56],
however, Barros et al. [43] state that exactly the described type of decom-
position is typical for dynamic graphs since it learns both topological and
temporal information with computational efficiency.

2.3.2 Continuous-time approaches

Contrary to discrete-time approaches discussed in the previous section, continuous-
time approaches are designed to directly process a dynamic graph G = (V, &, 7).
As mentioned in such techniques are far not as developed as the
discrete-time ones. In this section, I describe some of the existent continuous-

time approaches relevant for the problem defined in

2.3.2.1 Temporal neighborhood sampling

Nguyen et al. [57] propose a model named Continuous-Time Dynamic Network
Embeddings (CTDNE). The idea behind this approach is to generate temporal
walks on a dynamic graph G = (V,&,T).

Definition 2.3.1. A temporal walk of length n € Ny on a dynamic graph
G = (V,&,T) starting from the node v; € V is a tuple (v1,...,v,) € V" if
there exist t1 <9 < --- < t,—1 € T such that

(’I’L > 1) — (\V/Z € {1, N S 1})((v¢,vi+1,t@-) € 5)

22Qperator ® denotes the outer product. In order not to deepen into linear algebra, here
it is simply defined as a special syntax.

33

2. MACHINE LEARNING ON DYNAMIC GRAPHS

In the first step, CTDNE samples w € N walk starting edges e1,ea,...ey € €
according to the defined distribution. [Nguyen et al| propose three different
distributions to sample a random edge (u,v,t) € &:

1. Uniform. In this case each edge has the same probability of being se-
lected:

p((u,v,t)) := E (2.16)

2. Exponential. In this case random walks are biased to start from the
more recent edges:

et_tmin

Z etl —tmin ’

(u1,v1,t1)€E

p((u,v,t)) = (2.17)

Here tynip := min(7T).

3. Linear. Consider a function n : 7 — Ny mapping each timestamp to
its position in the linearly ordered set 7. For example, n(tmin) = 1 and
N(tmaz) = |T|. Then, linear distribution means the following definition
of sampling probability:

n(t)
> n(t)

(u1,v1,t1)€E

p((u,v,1)) == (2.18)

Similarly, as in the case of exponential distribution, more recent edges
are considered more relevant but at different time granularity.

Of course, this list is not exhaustive and one can define any distribution based
on an arbitrary time-decay function or any other strategy. After obtaining
the edges eq, €a, . . . ey, CTDNE proceeds to the generation of w random walks
of the fixed length | € N,. A first node v; of each walk is determined by
the corresponding starting edge. Then, the kth node v of each walk is sam-
pled from the temporal neighborhood Ni(vk_1) of the previous node for every
k € {2,...,l}, where t € T is fixed. For the purpose of sampling neighbors,
Nguyen et al.| propose distributions similar to the ones designed for starting
edge selection. The obtained walks are then processed with skip-gram archi-

tecture [17], following the approaches discussed in the [Section 1.3.3

Definition 2.3.2. Consider a dynamic graph G = (V,&,7T). Then, the set
Ni(u) == {(v,tn) | (u,v,t,) € EN t, >t} defines a direct temporal neighbor-
hood of a node u € V at time t € T.

34

2.3. Shallow embedding of dynamic graphs

A temporal random walk may be interpreted as a feasible route for a piece
of information through the dynamic network. For example, considering a net-
work representing interactions between people, random walks may represent
a virus propagation. Node embeddings that capture this information may
accurately describe dynamic graphs in many real-world applications.

Torricelli et al. [36] propose a different continuous-time approach. To em-
bed the edges of a dynamic graph they firstly convert G = (V,E,7) to a
directed (see [Definition 2.3.3) graph G’ = (€, E'), where E' C £ x £ is defined
as:

E' = {(Ubvl»tl)? (u2,v2,t2) € € % 5‘{U17U1} N {ug,v2} # DA [t2 —ta| < At}
(2.19)

with At € T. Moreover, edges E’ are associated with two types of weights
Wpath © E' — [0,1] and we, : E" — N:

1

S 2.20
14 |ta — t1] (2.20)

Wpath ((u1,v1,t1), (u2,v2,t2)) :

Weo((u1,v1,t1), (U2, v2,t2)) :=

H(ua,va,ta), (up, v, tp) € E'|uqg = w1 Avg = v1 Ay =ug Avp = 02}’- (2.21)

Here, wpqs, associates pairs of events with their time-decay-weighted temporal
distances and w, represents the number of co-occurrences of event pairs on
the same nodes. The obtained directed acyclic@ graph is called a weighted
event graph and represents the relation of causality on events. To obtain the
final graph authors also remove some specific edges: for a given event if it has
multiple future adjacent events with the same pair of nodes, only the earliest
one is considered.

Definition 2.3.3. A directed graph is an ordered pair G = (V, E), where V is
a non-empty finite set of nodes or vertices and E C { (u,v) € VXV |u#wv}
is a set of edges or links.

Definition 2.3.4. Consider a directed graph G = (V,E). Then, the set
N@w) ={ueV | (uv) € EV(v,u) € E} defines a direct neighborhood of a
node v € V.

Then, Torricelli et al.| to obtain the embeddings of events £, sample their
direct neighbors in G’ with the probability p(e;|er) of choosing the event e; €
N (eg) as a neighbor of e, € E' defined as:

plerler) = AF (wpatn (€, €1)) + (1 — X) F(weo(ex, €1)), (2.22)

*nttps://en.wikipedia.org/wiki/Directed_acyclic_graph

35

https://en.wikipedia.org/wiki/Directed_acyclic_graph

2. MACHINE LEARNING ON DYNAMIC GRAPHS

where X € [0, 1] is a hyperparameter and

w(eg, er)
Zne./\/'(ek) w(ek7 en)

F(w(eg,ep)) := (2.23)

normalizes the weights. The generated neighborhoods are then used as an
input for the skip-gram architecture [I7]. The obtained embeddings implicitly
preserve temporal smoothness and aim to capture the relation of causality
between events. For the illustration of the possible embeddings see
The described model is referred to as weg2vec [36].

2.4 Dynamic graph neural networks

Deep learning has proved to be a powerful tool for problems in different do-
mains. In the [Section 1.4 I described its embodiment on graphs — Graph
neural networks. In turn, Recurrent neural networks [22] Chapter 10] are
designed to solve tasks on sequences, specifically time series [58]. Modern
deep learning approaches designed for dynamic graphs try to combine these
paradigms. In this section, I briefly discuss such approaches — Dynamic graph
neural networks (DGNNs). I mainly rely on the survey by Skarding et al. [42]
(2020) covering the corresponding problematics.

2.4.1 Discrete-time approaches

Skarding et al. [42] distinguish two types of discrete-time Dynamic graph neu-
ral networks: stacked DGNNs and integrated DGNNs. In the following sub-
sections I introduce the representatives of both classes considering a dynamic
graph G = (V,&,T) and its snapshots GO, GV ..., GgT-1),

2.4.1.1 Stacked dynamic graph neural networks

A straightforward way to utilize the power of rraph neural networks on dy-
namic graphs is to apply GNN to each snapshot and then process the obtained
embeddings with some RNN architecture. It can be formalized as follows:

Z®) .= GNN(G®) (2.24)
S® .= RNN(S1, (), (2.25)

Here, GNN represents an arbitrary Graph neural network architecture that

produces node embeddings zgt),zgt), . ,z|(3|_1 € R% of graph snapshot at

time t given as a matrix Z(®) € RIVIX4 Then, RNN is any Recurrent neu-
ral network with S®) e RIVI*X9 representing a hidden state of RNN at time
t, S may be set to zero matirx. Numbers di,ds € Ny are the dimen-
sionalities of the RNN and GNN latent spaces. The final hidden states of

36

2.4. Dynamic graph neural networks

the model given by matrix S(T—1 can then be used as global node embed-
dings zo, 21, . ..,2jy|—1- Note that parameters of GNN are shared across the
snapshots. Similarly, a single RNN is used to handle each node.

Seo et al. [59] propose a Graph Convolutional Recurrent Network (GCRN),
which falls under the described framework. They use a GCN-like (see
Graph neural network and LSTM-based [27] Recurrent neural net-
work. Similar approaches include RgCNN [7] and DyGGNN [2] which can be
distinguished by the used graph and recurrent components. Manessi et al. [60]
propose slightly different architectures Waterfall Dynamic-GCN (WD-GCN)
and Concatenated Dynamic-GCN (CD-GCN) which are based on GCN and
LSTM, however, a different LSTM for each node is used.

2.4.1.2 Integrated dynamic graph neural networks

Another way to combine GNNs with RNNs is to directly integrate recurrence
into graph aggregation layers by introducing a recurrent dependence of GNN
parameters while processing consecutive snapshots. For example, considering
an L-layer GNN, with its layers denoted as GNN;, and any architecture of
RNN;, this idea can be realized as follows:

wO® .— RNN(H(”(“,W(W‘I)). (2.26)
HDO = GNNy(GO, HOO WO ®), (2.27)

Here, W(®) denotes GNN parameters (weights) at time ¢t and W*~1) should
be initialized explicitly. Next, HO®) ¢ RIVI*d represents hidden node embed-
dings at the kth layer of GNN at time ¢. Note that the parameters of GNN
layers are shared. The defined layer can then be used as the ones designed for

static graphs (see [Section 1.4.1)).

Pareja et al. [61] propose such an architecture referred to as EvolveGCN-
H. They use GCN and GRU [62] as a graph and recurrent modules. They also
propose a slightly different version of this architecture named EvolveGCN-O.
In this case, the LSTM is used and it does only process the GNN weights
regardless of the hidden embeddings. Chen et al. [63] propose GC-LSTM
which is also defined as an integrated layer.

2.4.2 Continuous-time approaches

Skarding et al. [42] (2020) state that there exist only two approaches to
continuous-time dynamic graph representation learning: RNN-bashed meth-
ods and the techniques based on temporal point processes. The former meth-
ods are task-driven. They include streaming graph neural networks [64] de-
signed for strictly evolving graphs (i. e. edges are only added) and JODIE [3]
designed for bipartite graphs. I describe the JODIE architecture in[Section 2.5

37

2. MACHINE LEARNING ON DYNAMIC GRAPHS

The approaches based on temporal point processes include DyREP[65] which
I do not discuss in this work.

2.5 Machine learning on dynamic bipartite graphs

In this section, I want to discuss some approaches designed specifically for
dynamic bipartite graphs.

Definition 2.5.1. A dynamic graph G = (V,&,7T) is bipartite if two disjoint
sets U and I exist such that V=UUJI and € CU x I xT. U and I are said
to be the partitions of a graph G.

Snapshots of a dynamic network can be conveniently defined as bipartite
graphs. Having a dynamic graph G = (V, &, T) with partitions U and V' and
its snapshots GO, GM) ... G(T=Y for some T € N, many models discussed in
this chapter can be used to utilize the topological-awareness by slight modifi-
cations. For example, Rafailidis and Nanopoulos [66] and Fang et al. [67] find
user and item embeddings factorizing the tensor A € RIVXIVIXT constructed

in the same way as discussed in [Section 2.3.1.4] in this case utilizing bipartite

adjacency matrices.

Nevertheless, there also exists a variety of machine learning models de-
signed specifically for dynamic bipartite networks. These models are typically
ad hoc for specific tasks. For example, Li et al. [33] for the time-aware prod-
uct recommendation firstly construct a product-product graph based on the
number of times products are purchased by the same users in terms of sep-
arate snapshots. After that, they apply LINE algorithm (see
on the constructed graph in order to obtain product embeddings. Users are
then placed in the same latent space with the simple calculations based on the
time-decayed embeddings of products they have purchased. Guo et al. [34] for
the session-based recommendations propose the TA-GNN architecture. The
idea of this approach is to construct two separate graphs for users and items
and then apply GNN and RNN technologies to produce separate embeddings
and then combine them for the final downstream task. In more detail, I want
to discuss the JODIE [3] model, highlighted by Skarding et al. [42] as one of
the few continuous-time dynamic graph neural networks.

JODIE

The idea of JODIEY is to use two mutually-recursive recurrent neural net-
works in order to capture the user-item interactions. Contrary to the other
discussed models, JODIE tries to learns user and item embeddings for each

24JOint Dynamic user-Item Embeddings

38

2.5. Machine learning on dynamic bipartite graphs

user u € U and item ¢ € I as continuous functions of time u : T — R%,
u: T — R? where d € R. I remind that T is a temporal domain of G. The
idea of this model is to capture the temporal smoothness of embeddings by
mutually training the following recurrent neural networks for each consecutive
interaction between v and ¢:

u(t) = O‘(W% ~u(t,)+ Wy -i(t,) + W5 - f+wy - Au>, (2.28)
it)=0 (Wﬁ Ci(t) 4+ Whu(ty) + Wh - f +wh - Ai>. (2.29)

Here, W% W% Wi Wi ¢ R4 WY Wi ¢ R wi w) € R? are train-
able parameters. ¢, denotes the previous time of u’s/i’s interaction with any
item/user. Next, f € R% is an optional interaction feature vector of the
currently processed interaction and A, =t —1t,, A; :=t —t;. Then, he
given recurrent neural networks are trained to preserve temporal smoothness
by trying to predict embeddings of a next processed interaction.

39

CHAPTER 3

Time-series GNN

Contrary to the nature of time, the prevailing majority of state-of-the-art
machine learning techniques for dynamic graphs consider time as a discrete
variable [42]. However, based on the conducted study, represented by Chapters
and [2, I find it natural to define a continuous-time dynamic graph neural
network in the way I propose in this chapter. First of all, I introduce a general
framework which I refer to as Time-series GNN, and then I describe a simple
example of its possible instance. For the explanation I use the notation built

in particularly in

3.1 Time-series GNN framework

Consideration of a general graph in [Section 1.4.1] — [GNN framework] led
to the conclusion that the graph message passing should be defined with a
multiset aggregator function. It was motivated by two reasons: (i) node
neighborhoods are not naturally ordered, (i) neighborhoods are variable in
size. However, considering a dynamic graph, edge timestamps introduce an
order on the neighborhoods: a node receives messages from the neighbors in
the certain order. This fact allows treating node neighborhoods as sequences.
Then, instead of a parameterized multiset aggregator function any sequence-
based deep-learning architecture such as a simple recurrent neural network
[22, Chapter 10], Gated recurrent unit, [62], Long short-term memory [27],
1D convolutional neural network [68] or Transformer [69] can be used. More
specifically, node neighborhoods define time series. Thus, any deep learn-
ing technique for time series processing [58] may be utilized. Conclusively,
it means that for a dynamic graph G = (V,&,7T), a GNN layer (see
tion (1.21)) can be generically defined as:

41

3. TIME-SERIES GNN

h(*+1) .— UPDATE (hg"f),AGGTS({(t, h(") | (t,u) e N (v)})), (3.1)

where UPDATE : R" x R” — R™ and AGGTS] ; 27x (i lueV} _y Re are
any (parameterized) differentiable functions. Next, N (v) is a neighborhood (or
alternatively a set of successors or predecessors) of v. Note that here AGGTS
is defined to be the most general possible aggregator and the notion of time
series is slightly more general than the usual one. For the illustration of the

described framework see

Definition 3.1.1. Consider a dynamic graph G = (V,&,T). Then, the set
Ns(u) := {(tn,v) | (u,v,t,) € £} is a set of successors of a node u € V. The
set Np(u) := {(tn,v) | (v,u,t,) € E} is similarly a set of its predecessors.
Finally, the set N (u) := Np(u) UNg(u) is a direct neighborhood of wu.

UPDATE

Time series

w
ot

@

)] [2]
= . @ 3
; —_— g 2.5 |:|, &)
S g <
2.0
1.59 —
1D CNN/ RNN

01 2 3 4 5 6 7 & 9 1011 12

Figure 3.1: Illustration of the Time-series GNN. The figure depicts an iteration of
the proposed message passing on a dynamic graph G = (V, €, T) to update the hidden
state h§?> = 4.6 of a node u € V. Next, figure illustrates the direct neighborhood
of u: N(u) = {(3’ ul)’ (47 ul)v (5a Ul), (1’ UQ)’ (27 u2)v (3a u2)a (9’ u2)v (107 u2)7 (57 U3),
(9,u3), (11,us3), (12,u3)}, where uj,us,us € ¥V and hSﬂ) = 1.37h1(f)2) = 2.1,h£()3) =
3.7. The idea of Time-series GNN is to treat the considered neighborhood as
time series {(3,1.3), (4,1.3), (5,1.3), (1,2.1), (2,2.1), (3,2.1), (9, 2.1), (10,2.1), (5, 3.7),
(9,3.7),(11,3.7),(12,3.7)}. The curve in the middle of the figure demonstrates the
given time series, preprocessed such that the messages at the same timepoints are
aggregated with their mean value. Note that this aggregation is not necessary and is
done only for the illustration. The obtained time series is used as an input for the
AGGTS function. Finally, the output of AGGTS is used to update the h'”) with the
UPDATE function.

25 AGGregate Time Series

42

3.2. Simple RNN-based Time-series GNN

3.2 Simple RNN-based Time-series GNN

In this subsection I want to give a simple straightforward example of a possible
instance of the discussed framework. Consider a node v € V of a dynamic
graph G = (V,&,T). Then its neighborhood (or alternatively a set of successors
or predecessors) N (v) defines a sequence of nodes vy, v1, . . ., V| (v)|—1 Such that
for the corresponding timestamps holds #p < {1, <, ..., < f|x/(y)|-1- Then, the

sequence of corresponding node hidden states h(()k), hgk), .. ’h|(J]\€}(v)|—1 can be

used as an input for the RNN architecture to update the hidden state hg,k) of
v:

s; := tanh (Wlhgk) + Woys;_1 + b), (3.2)

Here, hz(k) € R% is the ith node hidden state (or the message) and s; € R% is a
hidden state of the recurrent neural network while processing the ith message;
s_1 should be initialized. Next, tanh is a hyperbolic tangen@ non-linearity
function, W; € R%>xd1 W, € R%2%% and b € R% are trainable parameters.
Here, dy,d> € Ny are the dimensionalities of the GNN and RNN latent spaces
respectively. Then, the vector sy () -1 can be used as an updated hidden
state of v in GNN:

hq(]k—H) = S|N(fu)\—1' (3.3)

2nttps://en.wikipedia.org/wiki/Hyperbolic_functions#Hyperbolic_tangent

43

https://en.wikipedia.org/wiki/Hyperbolic_functions#Hyperbolic_tangent

CHAPTER 4

Problem definition

Nowadays, the Internet becomes more and more powerful and uncontrolled
tool. Every day fraudsters create websites to spread malware or steal private
information. For example, today, visiting a seemingly innocent domain like
covidl9doctors.com may be highly dangerous. Impressively, from January
1st 2020 through March 23rd 2020 at least 62000 of such COVID-19-related
malicious domains were spotted”| Fraudsters utilize such names to attract
traffic and then involve unaware users in their malicious activities. Typical
examples of such lawbreaking activities include phishz'ngEg] and turning the
attracted users’ machines into bots, which then silently listen to attacker’s
commands [70].

An in-time detection of such domains may prevent serious consequences.
Researchers have been developing different methods to reveal suspicious do-
mains among the millions of benign ones. Classic so-called knowledge-base
approaches [71] are based on human-expert insights. For example, Sato et al.
(2012)) [72] notice that some of the malicious domains tend to co-occur in
DNS traffic data. With this assumption, they propose a method to extend
the known blacklist of domains. However, the majority of modern approaches,
developed to detect malicious domains, are data-driven with machine-learning
algorithms at their core [71]. These approaches include techniques based on
the feature extraction from domain names and their behavior. For example,
Chiba et al. [73] exploit the so-called temporal variational patterns of domains
in DNS logs, which include information about how and when a domain name
has been listed in legitimate/popular and/or malicious domain name lists.
Other popular techniques for detecting “black” domains are based on graph
machine learning technologies [74].

2Thttps://www.domaintools.com/resources/blog/free-covid-19-threat-list-
domain-risk-assessments-for-coronavirus-threats
““https://en.wikipedia.org/wiki/Phishing

45

https://www.domaintools.com/resources/blog/free-covid-19-threat-list-domain-risk-assessments-for-coronavirus-threats
https://www.domaintools.com/resources/blog/free-covid-19-threat-list-domain-risk-assessments-for-coronavirus-threats
https://en.wikipedia.org/wiki/Phishing

4. PROBLEM DEFINITION

Arguably, the key challenge of using machine learning in the domain clas-
sification task is the nature of labeled data. Having a list of domains, we
would possibly like to associate each of them with a binary label indicating
that the domain is malicious or benign respectively. Then, we can apply some
supervised machine-learning models to learn the patterns necessary for distin-
guishing between the two types of domains. Nevertheless, such an approach
is infeasible in real-world applications.

First of all, having a domain, what is the proper way to decide on its
maliciousness? A common approach is to use reputable blacklists as the source
of ground truth. Despite the fact that blacklists such as PhishTank?| or Web
of Trus@ are generally considered as a reliable source, the obtained labels
cannot be completely truthful. Some works demonstrate a relatively high rate
of false-positive data in some recognized blacklists [71].

Using techniques such as voting based on several blacklists [75], one is
still able to assign relatively reliable positive labels to malicious domains.
However, assigning negative labels to benign ones is a far more challenging
problem. One cannot easily conclude that a given domain is malicious. In 2016
over 296 million second-level domainﬂ existed [73]. Obviously, this number
keeps growing rapidly and regular scanning of such an amount of domains
is computationally infeasible. Some approaches use top-k domains from the
services like Alexa Top Siteslﬂ as ground truth for domain benignness [71].
However, this service scores domains mainly based on their popularity and
statistics, but not on cybersecurity aspects, and cannot be generally considered
a reliable source for the described purposes. Stevanovic et al. [76] show a
relatively high false-positive rate of this system. In general, it is not possible to
obtain the labels for benign domains. It is only possible to use some heuristics
based on combinations of domain filtration and ranking services usage [71],
but in the best case, it leads to obtaining a small number of ground truth
data.

In such circumstances, the usage of machine learning techniques becomes
challenging. The facts described above mean dealing with noisy data and a
severe class imbalance between labeled and unlabeled data. Such conditions
require special approaches for domain classification. Some of the typical ap-
proaches include one-class classification [77] or a modified binary classification
with certain assumptions and corresponding evaluation metrics.

Described problematics and challenges outline the background for a formal

2%nttps://www.phishtank.com/

3%https://www.mywot.com/
3'https://en.wikipedia.org/wiki/Second-level _domain
32https://aws.amazon.com/alexa-top-sites/

46

https://www.phishtank.com/
https://www.mywot.com/
https://en.wikipedia.org/wiki/Second-level_domain
https://aws.amazon.com/alexa-top-sites/

4.1. Cisco Cognitive maliciousness classification problem

definition of the task studied in this thesis.

4.1 Cisco Cognitive maliciousness classification
problem

In this section, I introduce the Cisco Cognitive Intelligence maliciousness clas-

sification problem — the task of malicious domains detection in anonymized
real-world data provided by Cisco, Cognitive Intelligence group.

The given dataset is composed as an anonymized sample of the Cisco
Cognitive customers traffic. The dataset contains all traffic of users that at
least once visited a known high risk site. It contains 1 924 728 entries, each
represented with 6 features:

user_id Anonymized user IP address (123.45.678.91)

url_id Anonymized URL name
(https://en.wikipedia.org/wiki/URL)

hostname_id Anonymized hostname (en.wikipedia.org)

sld_id Anonymized second-level domain name (wikipedia.org)
timestamp Timestamp represented as a non-negative integer (23:59)
label Label. 1(labeled) if url.id is malicious and O(unlabeled)

otherwise (0)

Each entry represents a visit to a website by some user at a certain timepoint.
Examples in the brackets give an intuition of the possible original record.
There are in total of 179 malicious URLs and, consequently, 54 correspond-
ing malicious second-level domains, which is in high contrast with the total
number of URLs and domains, which are equal to 325 915 and 28 685 respec-
tively. The more detailed statistics are given in In terms of this
thesis, I focus on relations between users and second-level domains. Moreover,
I remove 80% of unlabeled second-level domains due to the limited computa-
tional capacity. The final statistics of the preprocessed dataset can be found

in [Table 4.2]

Let us now proceed to the formal definition of the machine learning task
studied in this thesis. Many machine learning problems can be conveniently
defined by three components: the experience that machine learning models
are allowed to have during the learning process, the task they aim to solve
based on the received experience, and the performance measure designed to

47

PROBLEM DEFINITION

unique values

unique values

user_id 83
url_id 325915
hostname_id 28685
sld_id 16931
timestamp 1433012

user_id 79
url_id 179
hostname_id 96
sld_id 54
timestamp 6923

(a) All interactions (1 924 728)

(b) Malicious interactions (7 051)

Table 4.1: Quantitative characteristics of the Cisco Cognitive dataset. The table
shows the numbers of unique values in (a) the whole dataset (b) in interactions with
malicious URLs (malicious interactions).

unique values unique values

user_id 83 user_id 79
sld_id 3440 sld_id 54
timestamp 464088 timestamp 6923

(a) All interactions (533 474) (b) Malicious interactions (7 051)

Table 4.2: Quantitative characteristics of the preprocessed Cisco Cognitive dataset.
The table shows numbers of unique values in (a) the whole dataset (b) in interactions
with malicious URLs (malicious interactions).

evaluate the models’ efficiency [22, Chapter 5]. In the following sections, I
describe each of these parts which holistically define the problem.

4.1.1 Experience

The described above dataset defines a graph structure. Considering unique
user_id and sld_id values, we can construct a set of users U = {ug, uq, ...,
um—1} and a set of second-level domains D = {dy,dy,...,dp—1} for some
m,n € Ny. Then, relations between users and domains can be modelled as
a dynamic bipartite graph (see [Definition 2.5.1) G = (V, &, T) with partitions
U and D, where (u,d,t) € £ represents an interaction between user u and
domain d at time t, given by the corresponding dataset entry. Additionally,
unique pairs of sld_id and label values define a mapping

¢:D—{0,1} (4.1)

that associates domains with their labels. For a domain d € D, ¢(v) = 1
means that v is malicious, while p(v) = 0 means that we do not posses any
information about the maliciousness or benignness of v. illustrates
the described dynamic graph.

48

4.1. Cisco Cognitive maliciousness classification problem

7 U D v

v v
v L
v v

(b)

Figure 4.1: An illustration of the Cisco Cognitive maliciousness classification prob-
lem: (a) initial dynamic graph, (b) inference.

During the learning process, a machine learning model is allowed to con-
sider the graph G and the ¢ values of the training set of labeled domains
D c{de D|p(d) =1} and all the unlabeled ones U := {d € D | ¢(d) = 0}.
Such a learning style is usually called learning with positive labels. From the
pure graph perspective, this learning may be referred to as semi-supervised,
since a model captures information about the whole graph, including all the
nodes, but considers labels only for some subset of the nodes [4].

4.1.2 Task

For a model, the goal of the learning process is to find a mapping;:
Y : D —[0,1] (4.2)

which associates domains with their scores. For a node d € D, its score 1)(d)
represents a probability that d is malicious.

Then, in practice, some fixed number of domains with the highest scores
can be claimed to be malicious. This task can be seen as an information
retrieval problem: having a collection of resources (domains), we aim to obtain
the relevant (malicious) ones. I refer to the process of associating domains with
their scores as inference. For the illustration of the described approach see

49

4. PROBLEM DEFINITION

4.1.3 Performance measure

In information retrieval tasks, typically used evaluation metrics include preci-
sion at k, defined as:

PQk :— [{relevant} N {retrieved}|

4.
{retrieved} (43)
Another possible metric is recall at k:
RQE — |{relevant} N {retrieved}|’ (4.4)

{relevant}

where {relevant} is a set of relevant resources and {retrieved} is a set of k
resources with the highest scores.

In terms of the considered task {relevant} := {d € D | ¢(d) = 1} is a
set of malicious domains, and {retrieved} C D is a set of k domains with the
highest scores given by 1. For the maliciousness classification task studied
in this thesis, PQFk is used as a performance criterion: having top-k domains
with the highest maliciousness probabilities, we are interested in how many of
them are indeed labeled as malicious.

In this work, I evaluate the models with PQk for different k& values chosen
based on the total number of malicious domains. More importantly, with the
same metrics, I evaluate the models’ generalization capacities. In this case
their precision is measured on the test set of domains 7 := D \ D. It means:
{relevant} := {d € T | p(d) = 1} and {retrieved} C D \ D is the set of top k

domains excluding the training ones.

Moreover, I additionally measure R@|7| on the test set to have a piece of
dual information about a model’s performance. This criterion represents how
many of the hidden, during the training, malicious domains are revealed by
the inference. Indeed, if all of the test domains are exposed then RQ|7| =
1. Regarding the considered task, this evaluation metric is auxiliary and
less significant than PQE, since we are mainly interested in the correct top-k
prediction and not in the exposure of as many domains as possible.

4.2 Related problems

The defined maliciousness classification problem is related to different do-
mains. First of all, the learning experience is defined as a dy-
namic graph. It means that this task is primarily related to the problematics
described in Chapters [I]and 2] More specifically, the given graph is bipartite.
There exist a range of works on machine learning with dynamic bipartite net-

works [3], B3, B4} [78, [79], [80], some of them as discussed in [Section 2.5, The

20

4.2. Related problems

prevailing majority of such works consider a graph representing interactions
between users and items, typically products, as mentioned in and
followed in [Section 2.5l

More specifically, we may treat the given interactions between users and
domains as implicit feedback (see . Having a bipartite dynamic
network G = (V,E&,T), considered in this chapter, with partitions U and I,
we can represent it as implicit feedback R € RIVI*I| in the following way:

Rlu,i] := [{(v1,v2,t) € Elvy =u A vy =i} (4.5)

It makes the maliciousness classification task related to the corresponding
problematics [29, 30, 81] as well. Implicit feedback representation may be con-
sidered equivalent to the bipartite network representation. However, consid-
ering the nature of relations may be favorable. For example, models discussed

in [Section 1.5.1frely on some special assumption about user-item connections.

Moreover, the maliciousness classification problem is related to the prob-
lematics of imbalanced learning [82] [77) [83] [84], due to the discussed origin
of data, and to the information retrieval domain [85], from the perspective of

defined task (Section 4.1.2|) and performance measure (Section 4.1.3|).

Despite the connections of the considered problem with the various fields,
I am not aware of other problems that can be reasonably defined in exactly
the same way. Moreover, despite the existence of extensive graph dataset
collections [86 [87], it is challenging to find bipartite dynamic graph data with
corresponding binary labels.

4.2.1 Foreign customer classification problem

unique values unique values

StockCode 200 StockCode 200

CustomerlID 4141 CustomerlID 415

InvoiceDate 17021 InvoiceDate 2049
(a) All purchases (128 334) (b) Purchases by foreigners (14 396)

Table 4.3: Quantitative characteristics of the preprocessed e-commerce dataset. The
table shows numbers of unique values in (a) the whole dataset (b) in interactions
involving foreign customers. StockCode and CustomerID represent the user and
product identifiers respectively and InvoiceDate defines timestamps.

Based on the overview of related tasks I construct a similar e-commerce-
related problem based on the open dataﬁ The obtained dataset contains

33https://www kaggle.com/carriel/ecommerce-data

51

https://www.kaggle.com/carrie1/ecommerce-data

4. PROBLEM DEFINITION

all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-
based and registered non-store online retail. It contains records about the
purchases from 37 countries, mainly from the United Kingdom. I preprocess
this dataset to define the analogous task of a foreign customer detection.
See for the statistics. This problem serves as an auxiliary task for
more objective experiments, however, is still distant from the maliciousness
classification problem.

02

CHAPTER 5

Experiments

In this chapter, I describe the experiments I conduct to demonstrate the pos-
sible solutions of the Cisco Cognitive maliciousness classification problem de-
fined in and show the influence of leveraging the temporal aspect
of data.

5.1 Workflow

In this work, I use Python 3 to implement the experimental framework and
machine learning models. Mainly, I rely on the following libraries: NumPy
[88] for numerical arrays handling, SciPy [89] for operations with linear alge-
bra objects, pandas [90] for datasets processing, scikit-learn [91] for general
machine learning tools, PyTorch [92] and PyTorch Geometric [93] for deep
learning models. Also I use Matplotlib [94] for visualizations.

5.2 Experimental framework

In this section, I describe how I set up the experimental framework to evaluate
the performance of machine learning models on the considered task . First of

all, I construct the training set D (see [Section 4.1.1)) with 60 % of randomly
chosen labeled domains. The rest of them define the test set 7. The following

sections cover the training, test and hyperparameter tuning methods. Note
that, as described in the set of unlabeled domains U is considered
by a model during both training and test.

5.2.1 Training

As described in Chapters[I]and 2] there are two leading approaches in machine
learning on (dynamic) graphs: shallow embedding and graph neural networks.

93

5. EXPERIMENTS

These types of techniques require different approaches to use them regarding

the considered problem: to obtain the mapping v (see [Section 5.2.1)).

To make an inference with a shallow embedding model, it is firstly trained
in an unsupervised manner to produce node embeddings z, 22, .. . zjy|_1. Then
the training pairs {(zq, ¢(d)) | d € D UU} are fed to the Random forest clas-
sifier. A mapping ¢ is then given by the probability predictions of Random
forest for each d € D. The choice of Random forest is motivated by its ro-
bustness against imbalanced data.

In case of graph neural networks, ¢ can be directly defined as

P(d) == o(f(2a)), (5.1)

where o is a sigmoid function and f: R™ — R is a 1-layer feedforward neural
network. Here z; € R™ denotes the embedding of a node d and n is the

dimension of the latent space (see [Section 1.4.1). Then, such a model can

be trained end-to-end in a supervised manner with mean squared error loss
MSE : 2PY% 3 R with additional weights, defined as:

MSE(B) = |;| S w(d)(o(d) — $(d))?, (5.2)

deB

where B C D UU is some batch of domains used for training. Here I add the
weights w : D — {0,1} defined as

Il stdeuy
w(d) =4 @ ! ’ (5.3)
1 otherwise

to alleviate the class imbalance. After the training, the values of ¢ for each
domain d € D are given by a forward pass of GNN.

5.2.2 Test
To test a shallow model, I repeat the training (see [Section 5.2.1)) with the

obtained embeddings 5 times. It means the repetition of the following proce-
dure: (7) choose the Random forest’s parameters using 2-fold cross-validation
(see [Section 5.2.3), (ii) train the Random forest, (i) make an inference and
obtain the metric scores. After that, I calculate the mean value for each met-
ric. In case of graph neural networks, I directly calculate metric scores on the
values given by a forward pass.

5.2.3 Hyperparameter tuning

To set a model’s hyperparameters for training I use 2-fold cross—validation@
It means that firstly the predefined half of training domains D is used to

3 nttps://en.wikipedia.org/wiki/Cross-validation_(statistics)

o4

https://en.wikipedia.org/wiki/Cross-validation_(statistics)

5.3. Applied models

train a model and then it is tested with the rest of D. I find the described
setup a trade-off between time complexity and efficiency, having a limited
computational capacity.

5.3 Applied models

In this section, I overview the machine learning models applied to the con-
sidered problems. The description of the underlying datasets and problem
details are discussed in All the applied models can be classified by
their topological and temporal awareness. See for the illustration of
the proposed taxonomy.

Temporal awareness

A
Implicit feedback 3
BPR ALS JODIE S

(Bipartite graph) 3
Z,

Q

=3

©

g

CTDNE g

B

Graph GCN node2vec TemporalNode2vec Time-series GNN 2

\ 4

Agnostic ~ Multiplicity-aware Discrete Continuous

Figure 5.1: Taxonomy of the applied models. Approaches belonging to different
classes “treat” a dynamic graph G = (W, &, T) differently. For example, Alternating
least squares is specifically designed for implicit feedback data (a special case of a
bipartite graph). However, from the perspective of dynamics, it captures only the
number of edges on the same vertices. Contrary, Time-series GNN is designed for a
general dynamic graph but is able to capture continuous time. In the picture, graph
neural networks are underlined.

I also want to mention the unfortunate attempts to apply some models
to the considered task. In terms of this thesis, I implement the weg2vec
(see model, however it turns out that the construction of a
weighted event graph is computationally infeasible due to the high density of
the considered dynamic graphs. Note that I implement this model preserving
its generality and do not employ any special steps to optimize it. Next, after
multiple attempts, I was unlucky to install the DynGEM [95] library providing
the implementation of several discrete-time graph machine learning models.

Further, I had no success with J ODIEﬂ (see |Section 2.5 application due to

the limited GPU capacity.

3%nttps://github.com/srijankr/jodie

95

https://github.com/srijankr/jodie

5. EXPERIMENTS

Bayesian personalized ranking

To apply the Bayesian personalized ranking (BPR, see [Section 1.5.1]), for each
dataset I construct the implicit feedback R, as described in I

employ the existent implementation of BPR from the Implici@ library and
run it with the default regularization parameter value \; = 0.01, and d = 15
for both tasks based on the cross validation.

Alternating least squares

I use Alternating least squares (see |[Section 1.5.1) implementation from Im-

plicit on the same constructed implicit feedback R. ALS demonstrates the
best performance with the same parameters as Bayesian personalized ranking.
Note that the used implementation assumes c¢,; := RJu, i].

Node2vec
I utilize the available node2vec (see [Section 1.3.3)) implementatiorm on the

constructed multigraphs
G := (V,{{u,v} | (u,v,t) € EV (v,u,t) € 5})7 (5.4)

to capture the multiplicities of interactions. This model shows higher perfor-
mance being set up to generate shorter random walks and use smaller sliding
window of skip-gram architecture. To obtain the test scores I set walk length
and window size to 2 with generating 200 walks per node for both tasks. The
dimensionality d of embeddings is set to 64.

GCN
To run the graph convolutional neural network (GCN, see [Section 1.4.2)) I

convert the dynamic graphs to single snapshots. I implement the model with
PyTorch Geometric. Based on the cross-validation, I set the latent space
dimensionality to 16, the number of layers to 1, and employ training with
the learning rate set to 0.001 for 30 and 100 epochs on the maliciousness
classification and foreign customer classification tasks respectively. Learning
is done with Adam optimizer [96] with 8; = 0.9, 2 = 0.999.

TemporalNode2vec

To run TemporalNode2vec (see [Section 2.3.1.3) I split the both dynamic
graphs into 100 snapshots. The construction of PPMI matrices for each
snapshot turns out to be too computationally expensive that is why I replace

36https://github.com/benfred/implicit
3Thttps://github.com/eliorc/node2vec

o6

https://github.com/benfred/implicit
https://github.com/eliorc/node2vec

5.3. Applied models

them with the implicit feedback matrices R for each snapshot. It may be jus-
tified as an estimation of PPMI matrices constructed based on the random
walks of length 2. I realize this model merging the mentioned implementation
of node2vec and the original code of DynamicWordQvec@ In this case I set
d = 50.

CTDNE
To apply CTDNE (see [Section 2.3.2.1|) T use the existent implementatiorm

Similarly as node2vec, on both tasks it achieves the best performance employ-
ing 2-nodes-long random walks. See for the illustration. The model
shows better results utilizing the linear neighborhood sampling distribution.
Thus, to test the model I finally set [= 2, w = 200, d = 64, exponen-
tial neighborhood sampling, and generation of 200 walks per node without
random sampling. The used implementation assumes ¢ to be the maximal
timestamp.

26 301 '
AN TS~
- LN 1 ~<
25 FAEAN 25 TNe--mmmm o
\
2.4 N)
X3 N\ Sk
fa) N f)
S 22 N _a S 15
— N T =
9 21 L4 & 104
2.0
1.9]
18 04
2 3 4 2 3 4
Random walks leneth Random walks leneth
(a) (b)

Figure 5.2: Influence of random walks length on the CTDNE validation performance
on (a) the maliciousness classification task, (b) the foreign customer classification
task. In both cases, the window length for skip-gram architecture is set to maximal.

Time-series GNIN

In terms of this thesis, I implement a simple RNN-based layer of Time-series
GNN (described at the end of [Section 3.2)), ad hoc for the considered problem,
and leave the further study and experiments as future work.

I use one-hot-encoded node features to initialize the first hidden state
of GNN. For the maliciousness classification task I set do = 30 and for the
foreign customer classification dy = 15. d; = |V/| is given by one-hot encoding.
Next, for both problems 1-layer-deep RNN shows the best validation scores,
which I use for the testing. I train the model with Adam optimizer [96]

38nttps://github.com/yifanOsun/DynamicWord2Vec
39nttps://github.com/urielsinger/CTDNE

o7

https://github.com/yifan0sun/DynamicWord2Vec
https://github.com/urielsinger/CTDNE

5. EXPERIMENTS

(61 = 0.9, B2 = 0.999) for both problems with learning rate equal to 0.001 and
100 epochs.

5.4 Results

All domains Test domains

pPas5 P@l0 P@100 bPa@l PaQ@5 PQ@10 PQ@100 RQ|T|
BPR 1.00 1.00 0.46 1.00 1.00 1.00 0.14 0.58
ALS 1.00 1.00 0.46 1.00 1.00 1.00 0.14 0.59
Node2vec 1.00 1.00 0.33 1.00 0.20 0.10 0.02 0.05
GCN 1.00 0.90 0.40 0.00 0.80 0.70 0.13 0.59
TemporalNode2vec 1.00 1.00 0.36 1.00 0.36 0.22 0.04 0.11
CTDNE 1.00 1.00 0.34 1.00 0.20 0.10 0.02 0.05
Time-series GNIN 1.00 1.00 0.45 1.00 1.00 1.00 0.13 0.59

Table 5.1: Models performance on the maliciousness classification task.

All customers Test customers

P@200 P@500 P@1l Pa@5 PQ10 PQ100 P@200 P@500 RQ|T|
BPR 1.00 0.75 1.00 1.00 1.00 0.93 0.59 0.28 0.68
ALS 1.00 0.76 1.00 1.00 1.00 0.94 0.64 0.29 0.75
Node2vec 1.00 0.80 1.00 1.00 1.00 1.00 0.74 0.31 0.87
GCN 1.00 0.65 1.00 1.00 1.00 0.94 0.59 0.30 0.89
TemporalNode2vec 1.00 0.64 1.00 0.88 0.82 0.46 0.33 0.19 0.34
CTDNE 1.00 0.80 1.00 1.00 1.00 1.00 0.74 0.31 0.87
Time-series GNN 1.00 0.76 1.00 1.00 1.00 0.97 0.66 0.28 0.83

Table 5.2: Models performance on the foreign customer classification task.

The results of experiments conducted on the considered problem (see

for the details) are summarized in Tables and Figures
depict the latent spaces of user and domain em-
beddings. For the visualizations of the customer and product embeddings see
The illustrated 2-dimensional vectors are obtained using dimen-
sionality reduction of higher-dimensional latent spaces. I emploﬂ UMAP [97]
to achieve this. Note also that the colored markers are rendered in the order
corresponding to their appearance in the legend. Consequently, for example,
the low number of visible yellow and red points means that they are clustered
well together. Remarkable are the clusters of malicious domains in the la-
tent spaces of the models that demonstrate high performance. Moreover, note
the difference between the embeddings produced in a two-step unsupervised
manner and the ones learned supervisely by graph neural networks.

First of all, results demonstrate that the Cisco Cognitive maliciousness

classification problem defined in can be solved quite efficiently.
BPR, ALS and Time-series GNN show P@10 = 1.00 = 100[%] on the test

“Onttps://umap-learn.readthedocs.io/en/latest/

o8

https://umap-learn.readthedocs.io/en/latest/

5.5. Discussion

domains. It means that these models, given a task to infer 10 malicious
domains based only on user connections, have chosen exactly some of the
22, hidden during the training, malicious domains out of 3364 candidates.
Moreover, BPR, ALS and Time-series GNN demonstrate RQ|7| = RQ|22| =
0.59 = 59[%], which means that 13 of 22 hidden malicious domains were in
top-22. Similar observations can be done regarding the performance of models
on the foreign customer classification task.

Next, we can observe the superior performance of implicit-feedback-based
models on the domain classification problem, and random-walks-based tech-
niques supremacy on the customer classification task. TemporalNode2vec
consistently shows the worst scores and GCN demonstrates decent results on
both problems. Time-series GNN demonstrates the stable second-best results,
which I find satisfactory considering the conclusions discussed below.

5.5 Discussion

Comparison of the different approaches efficiency on the maliciousness classi-
fication task leads to the following generalized conclusions:

1. Patterns determining the maliciousness of domains lie in their
1-hop neighborhoods.

Assume for example that malicious domains infect users. These users
are then utilized to employ a distributed denial-of-service attack (DDoS
attackEb. To capture this malevolent pattern, one has to consider at
least two-hop neighborhood of the attacker’s domain: the infected users
and the domains visited by these users. Another example of a deep
structural pattern may be the presence of a lateral movement @ — the
process of malware propagation through the network. In this case, it
is necessary to consider the temporal walks on a graph to express this
process.

Note that the CTDNE model described in [Section 2.3.2.1] is exactly
designed to accurately capture the processes of temporal information
propagation in dynamic networks. However, demonstrates
that the employment of longer temporal walks reduces the efficiency of
the malicious domain exposure. It means that at least the majority
of, present during the training, malicious domains are not identified by
the malevolent patterns described above or any other deeper topologi-
cal structures. This assumption is highly supported by the impressive
performance of BPR and ALS models which are designed to focus on

“Ihttps://en.wikipedia.org/wiki/Denial-of-service_attack
“’https://en.wikipedia.org/wiki/Network_Lateral_Movement

99

https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Network_Lateral_Movement

5. EXPERIMENTS

the direct user-item interactions. Moreover, GCN, being able to cap-
ture the node neighborhoods of arbitrary depth, demonstrates the best
validation score initialized to be 1-layer deep.

2. Patterns determining the maliciousness are not time-dependent.

Comparison of random-walk-based approaches leads to the interesting
observation: node2vec, employing time-agnostic random walks achieves
almost exactly the same performance as CTDNE that utilizes the walks
that respect the natural ordering of interactions. [Nguyen et al.| — the
authors of CTDNE — reasonably state that the time-agnostic walks are
invalid when considering a dynamic graph. The equivalence of temporal
and time-agnostic walks utilization means that the patterns identifying
maliciousness do not exhibit time-related properties. Again, this as-
sumption is significantly supported by the high performance of temporal-
unaware baseline approaches.

The direct combination of two points discussed above leads to the following
conclusion:

The maliciousness of a domain is determined by its visitors.

This conclusion is also supported by the experimental results of the foreign
customer classification. On this problem, CTDNE and node2vec achieve iden-
tical performance as well. However, in this case, these models are superior to
the other ones meaning that, regarding this task, the argument of temporal
patterns absence is even more convincing. Interestingly, manual analysis of
the considered e-commerce data shows that many foreign customers can be
determined by the purchases of a specific product: the postage. Consider-
ing that this problem was introduced as a task related to the maliciousness
classification, the fact that foreign customers are determined by the specific
products leads another way to the conclusion above.

Importantly, the drawn conclusions hold regarding the defined problem
and it is necessary to consider its possible important extensions which outline
the possible future steps. First of all, the term maliciousness can be captured
on its finer granularity, considering different types of threats. Probably, dis-
tinguishing between different kinds of maliciousness, one could observe the
incapability of time-agnostic baseline methods to expose certain types of dan-
gerous domains. However, in this case, the task becomes even more challenging
due to the low amount of labeled data. Next, I want to remind that in this
work I focused on the user-domain interactions, however it is also possible
to consider full URLs and/or hostnames as well (see [Table 4.1)). The fur-
ther important remark is given by the utilized data. In this work, I reduced

60

5.5. Discussion

the number of unlabeled domains due to the limited computational capacity.
Nevertheless, based on the discussed experimental results I assume that the
consideration of the whole dataset would not significantly affect the results.
Finally, I want to mention that it may be also important to study the other
possible ways to collect the data in order to efficiently utilize the intrinsic
dynamics of user-domain interactions.

61

Unsupervized node embeddings with Bayesian Personalized Ranking (BPR)

o |
N . F"‘,‘
e T Al .
R e ¥ s,
Ay " .
“:’AA ¢ +
. ahhy

Unlabeled domains (3386)
+ Users (83)
* Test malicious domains (22)

Training malicious domains (32)

Figure 5.3: Unsupervized node embeddings with Bayesian Personalized Ranking
(BPR) on the maliciousness classification task. Markers are rendered in the order
corresponding to their appearance in the legend.

62

Unsupervized node embeddings with Alternating least squares (ALS)

N . .
L] / .
. . \
3 .
.. 9 ;:‘ 7
’ v e e .
e o
B W R Y ‘A
] ~£ LA Al 4, o
* Lanhes SR
! e k%4 A Aaa N
» P “AA: wd ’
) . ALl a ¥
. W ‘;r
A3 2 R e 0
’ . .
™
. s
\-
7 PR
’ ,.“L - s
S R
\ © . L]
“\ ° ' -
4 ¢ .
‘ .
L /
\ "\

ver

¢
Unlabeled domains (3386)

Users (83)
Test malicious domains (22)

Training malicious domains (32)

Figure 5.4: Unsupervized node embeddings with Alternating Least Squares (ALS)
on the maliciousness classification task. Markers are rendered in the order corre-
sponding to their appearance in the legend.

63

Unsupervized node embeddings with Node2vec

»

<
A
‘M
A
o Mok tA
LN YCTCRE N
w R YYS
A A8
AAﬂh
. A‘M
. K] o V4
a0 e . ‘
py ~, "y "dl (- [13
. .o '
T Y T
Liggtuan b L "
R PR s
LB Ve L T «
. . . " . »
. R .
»
é
. S e’
Unlabeled domains (3386)
+ Users (83) &
.. . w
* Test malicious domains (22)
-
Training malicious domains (32)

Figure 5.5: Unsupervized node embeddings with node2vec on the maliciousness
classification task. Markers are rendered in the order corresponding to their appear-
ance in the legend.

64

Supervized node embeddings with GCN

>
>
>

- Unlabeled domains (3386)
» Users (83)
* Test malicious domains (22)

+ Training malicious domains (32)

o8
.05ty . N
34 Seteg? S5 O ce s
g 3 o st s o ? -’ o ‘o,
& e N LS, Came O %
. et

cho S
A Y

Figure 5.6: Supervized node embeddings with Graph convolutional neural network
(GCN) on the maliciousness classification task. Markers are rendered in the order
corresponding to their appearance in the legend.

65

Unsupervized node embeddings with TemporalNode2vec

A N A
A A
“ A
A a A
A
A
A
A A
A
A
A . N A
A A
A
A
: A
A
A N A L
A A
A a -
N A
A
A
R A
A A A
A
A A A A
N A A A A
A A
A
A A
A
N A A A
A
A
A

.

Unlabeled domains (3386)
+ Users (83)
* Test malicious domains (22)

¢ Training malicious domains (32)

Figure 5.7: Unsupervized node embeddings with TemporalNode2vec on the mali-
ciousness classification task. Markers are rendered in the order corresponding to their

appearance in the legend.

66

Unsupervized node embeddings with CTDNE

L .
.
N . e ‘;.’
* <
\\ \\:
» . Vs
Y B] .
L 4 R A &
. K & A
) A ad AL &
. . “'g A Ah
e v .
é . ‘.‘ LA
A aaa
.'“‘ s o 2 A'a'dAA“‘ 4
¥ '. L 3N [
LR S
e,
‘\'\ . o
: : %
A 4 g .
S e \
» ’
¢ el
2
® %

Unlabeled domains (3386)
Users (83)
Test malicious domains (22) ¥

Training malicious domains (32)

Figure 5.8: Unsupervized node embeddings with CTDNE on the maliciousness clas-
sification task. Markers are rendered in the order corresponding to their appearance
in the legend.

67

Supervized node embeddings with Time-series GNN

Unlabeled domains (3386)
L
e Test malicious domains (22)

Training malicious domains (32)

*
‘-
2
- \
N~ "4
] /’
o 7/
e o2 X
g SR G
. _:'*"ﬂ
. L
.
%
, ¥\
Y
\
e .]
. {
L]
LY

Figure 5.9: Supervized node embeddings with Time-series GNN on the malicious-
ness classification task. Markers are rendered in the order corresponding to their

appearance in the legend.

68

Conclusion

In this thesis, I studied the Cisco Cognitive Intelligence maliciousness clas-
sification problem — the task of malicious Internet domain exposure based
on the user-domain interactions — from the perspective of machine learning
on dynamic graphs. I find this thesis a solid groundwork for potential future
research and experiments.

In the first place, I conducted a study of the state of the art of machine
learning on dynamic graphs. The outcome of this work is embodied in the
proposed continuous-time dynamic graph neural network model. I believe that
the designed approach can be useful in many real-world applications, however,
the corresponding experiments and deeper research are out of the scope of this
thesis and I leave it as an intriguing future work.

The second part of this thesis is a study of the temporal aspect awareness
on the performance of machine learning models regarding the Cisco Cognitive
Intelligence maliciousness classification problem. In this work, I showed that
the considered task can be solved quite efficiently utilizing the different ma-
chine learning approaches, including the proposed continuous-time dynamic
graph neural network model. The used approaches demonstrate the capability
of revealing malicious domains and can be used in practice.

However, despite the intrinsic dynamics of user-domain interactions, the
comparison of efficiency of multiple time-agnostic and temporal-aware ap-
proaches demonstrates that the maliciousness, expressed in the currently ob-
tained data, does not exhibit dynamic properties. Thus, the utilization of
temporal aspect does not improve the efficiency of machine learning applica-
tions to the considered problem. This fact suggests the possible future steps:
(1) to study the used data collection process and conduct the experiments
on differently collected records, (ii) to study the maliciousness on its finer
granularity, considering, for instance different types of threats. I believe in
significance of considering the temporal aspect and that this work is a step
towards its efficient utilization.

69

Bibliography

Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin
Blais, and Shawn O’Banion. Examining covid-19 forecasting using spatio-
temporal graph neural networks. arXiv preprint arXiv:2007.03113, 2020.

Aynaz Taheri and Tanya Berger-Wolf. Predictive temporal embedding
of dynamic graphs. In Proceedings of the 2019 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Min-
ing, ASONAM °’19, page 5764, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450368681. doi: 10.1145/
3341161.3342872. URL https://doi.org/10.1145/3341161.3342872.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dy-
namic embedding trajectory in temporal interaction networks. volume
abs/1908.01207, 2019. URL http://arxiv.org/abs/1908.01207.

William L Hamilton. Graph representation learning. Synthesis Lectures
on Artifical Intelligence and Machine Learning, 14(3):1-159, 2020.

Nitin Gupta, Kapil Mangla, Anand Kumar Jha, and Md. Umar. Ap-
plying dijkstra’s algorithm in routing process. International Journal of
New Technology and Research (IJNTR), 2:1-159, 2016. URL https:
//www.ijntr.org/download_data/IJNTR02050040.pdf.

Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, An-
dres Cubillos-Ruiz, Nina M. Donghia, Craig R. MacNair, Shawn
French, Lindsey A. Carfrae, Zohar Bloom-Ackermann, Victoria M.
Tran, Anush Chiappino-Pepe, Ahmed H. Badran, Tan W. Andrews,
Emma J. Chory, George M. Church, Eric D. Brown, Tommi S. Jaakkola,
Regina Barzilay, and James J. Collins. A deep learning approach
to antibiotic discovery. Cell, 180(4):688-702.e13, 2020. ISSN 0092-

71

https://doi.org/10.1145/3341161.3342872
http://arxiv.org/abs/1908.01207
https://www.ijntr.org/download_data/IJNTR02050040.pdf
https://www.ijntr.org/download_data/IJNTR02050040.pdf

BIBLIOGRAPHY

[11]

[12]

[14]

[15]

72

8674. doi: https://doi.org/10.1016/j.cell.2020.01.021. URL https://
www.sciencedirect.com/science/article/pii/S0092867420301021.

Medhini Narasimhan, Svetlana Lazebnik, and Alexander G. Schwing. Out
of the box: Reasoning with graph convolution nets for factual visual
question answering, 2018.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Proceedings of the 14th In-
ternational Conference on Neural Information Processing Systems: Nat-
ural and Synthetic, NIPS’01, page 585-591, Cambridge, MA, USA, 2001.
MIT Press.

Michelle L Rittenhouse. Properties and recent applications in spectral
graph theory. Virginia Commonwealth University, 2008. URL https:
//scholarscompass.vcu.edu/etd/1126/.

Tim Roughgarden and Gregory Valiant. The modern algorithmic toolbox
lectures #11: Spectral graph theory, i. Stanford University, 2020. URL
https://web.stanford.edu/class/cs168/1/111.pdf.

Sebastian Ruder. An overview of gradient descent optimization algo-
rithms, 2017.

Daniel Lee and H. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401:788-91, 11 1999. doi: 10.1038/44565.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factoriza-
tion techniques for recommender systems. Computer, 42(8):30-37,
2009. URL https://datajobs.com/data-science-repo/Recommender-
Systems- [Netflix].pdf.

Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josi-
fovski, and Alexander J. Smola. Distributed large-scale natural graph fac-
torization. In Proceedings of the 22nd International Conference on World
Wide Web, WWW ’13, page 3748, New York, NY, USA, 2013. Asso-
ciation for Computing Machinery. ISBN 9781450320351. doi: 10.1145/
2488388.2488393. URL https://doi.org/10.1145/2488388.2488393.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph rep-
resentations with global structural information. In Proceedings of the
24th ACM International on Conference on Information and Knowledge
Management, CIKM ’15, page 891-900, New York, NY, USA, 2015. As-
sociation for Computing Machinery. ISBN 9781450337946. doi: 10.1145/
2806416.2806512. URL https://doi.org/10.1145/2806416.2806512.

https://www.sciencedirect.com/science/article/pii/S0092867420301021
https://www.sciencedirect.com/science/article/pii/S0092867420301021
https://scholarscompass.vcu.edu/etd/1126/
https://scholarscompass.vcu.edu/etd/1126/
https://web.stanford.edu/class/cs168/l/l11.pdf
https://datajobs.com/data-science-repo/Recommender-Systems-[Netflix].pdf
https://datajobs.com/data-science-repo/Recommender-Systems-[Netflix].pdf
https://doi.org/10.1145/2488388.2488393
https://doi.org/10.1145/2806416.2806512

Bibliography

[16]

[17]

18]

[22]

23]

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu.
Asymmetric transitivity preserving graph embedding. In Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, page 1105-1114, New
York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450342322. doi: 10.1145/2939672.2939751. URL https://doi.org/
10.1145/2939672.2939751.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space, 2013.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks, 2016.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk. Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, Aug 2014. doi: 10.1145/2623330.2623732.
URL http://dx.doi.org/10.1145/2623330.2623732.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. Line. Proceedings of the 24th International Conference on World
Wide Web, May 2015. doi: 10.1145/2736277.2741093. URL http://
dx.doi.org/10.1145/2736277.2741093.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie
Tang. Network embedding as matrix factorization: Unifying deepwalk,
line, pte, and node2vec. volume abs/1710.02971, 2017. URL http://
arxiv.org/abs/1710.02971.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203, 2013. URL https://arxiv.org/abs/1312.6203.

Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. CoRR, abs/1609.02907, 2016. URL http:
//arxiv.org/abs/1609.02907.

Jure Leskovec. Lecture 8 graph neural networks. Stanford
CS224W - Machine Learning with graphs - Fall 2019, Autumn
2019. URL https://www.youtube.com/watch?v=LdK9HzBAR8c&list=
PL-Y8zK4dwCr(QyASidb2mjj_itW2-YYx6-&index=8.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive represen-
tation learning on large graphs. arXiv preprint arXiv:1706.02216, 2017.

73

https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1145/2939672.2939751
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1145/2736277.2741093
http://arxiv.org/abs/1710.02971
http://arxiv.org/abs/1710.02971
http://www.deeplearningbook.org
https://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://www.youtube.com/watch?v=LdK9HzBAR8c&list=PL-Y8zK4dwCrQyASidb2mjj_itW2-YYx6-&index=8
https://www.youtube.com/watch?v=LdK9HzBAR8c&list=PL-Y8zK4dwCrQyASidb2mjj_itW2-YYx6-&index=8

BIBLIOGRAPHY

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

74

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term mem-
ory. Neural computation, 9:1735-80, 12 1997. doi: 10.1162/
neco.1997.9.8.1735.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
neural networks: A review of methods and applications. 2021.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEFE International Conference
on Data Mining, pages 263-272. Ieee, 2008. URL http://yifanhu.net/
PUB/cf.pdf.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars
Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feed-
back. arXiv preprint arXiv:1205.2618, 2012.

Yulong Pei, Jianpeng Zhang, GH Fletcher, and Mykola Pechenizkiy.
Node classification in dynamic social networks. Proceedings of AALTD,
page 54, 2016. URL https://kulak.kuleuven.be/benelearn/papers/
Benelearn_2016_paper_48.pdfl

Ryan Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson.
Modeling dynamic behavior in large evolving graphs. 02 2013. doi:
10.1145/2433396.2433479.

Yuqi Li, Weizheng Chen, and Hongfei Yan. Learning graph-based embed-
ding for time-aware product recommendation. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, CIKM
17, page 2163-2166, New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450349185. doi: 10.1145/3132847.3133060.
URL https://doi.org/10.1145/3132847.3133060.

Yupu Guo, Yanxiang Ling, and Honghui Chen. A time-aware graph neu-
ral network for session-based recommendation. IEFE Access, 8:167371—
167382, 2020. doi: 10.1109/ACCESS.2020.3023685.

Wenchao Yu, Charu C. Aggarwal, and Wei Wang. Temporally factor-
ized network modeling for evolutionary network analysis. In Proceedings
of the Tenth ACM International Conference on Web Search and Data
Mining, WSDM 17, page 455-464, New York, NY, USA, 2017. Associ-
ation for Computing Machinery. ISBN 9781450346757. doi: 10.1145/
3018661.3018669. URL https://doi.org/10.1145/3018661.3018669.

Maddalena Torricelli, Marton Karsai, and Laetitia Gauvin. weg2vec:
Event embedding for temporal networks, 2019.

http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
https://kulak.kuleuven.be/benelearn/papers/Benelearn_2016_paper_48.pdf
https://kulak.kuleuven.be/benelearn/papers/Benelearn_2016_paper_48.pdf
https://doi.org/10.1145/3132847.3133060
https://doi.org/10.1145/3018661.3018669

Bibliography

[37]

[38]

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola
Santoro. Time-varying graphs and dynamic networks. CoRR,
abs/1012.0009, 2010. URL http://arxiv.org/abs/1012.0009.

Barbara Guidi, Andrea Michienzi, Laura Ricci, Chrysanthi Iakovi-
dou, and Symeon Papadopoulos. Define a time-dependent social
graph. Networks, 4:2, 2019. URL https://helios-h2020.eu/wp-
content/uploads/2020/05/D4.2_Define-a-time-dependent-social-
graph.pdfl

Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs
and link streams for the modeling of interactions over time. CoRR,
abs/1710.04073, 2017. URL http://arxiv.org/abs/1710.04073.

F. Harary and G. Gupta. Dynamic graph models. Mathemati-
cal and Computer Modelling, 25(7):79-87, 1997. ISSN 0895-7177.
doi: https://doi.org/10.1016/S0895-7177(97)00050-2. URL https://
www.sciencedirect.com/science/article/pii/S0895717797000502.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay
Sethi, Peter Forsyth, and Pascal Poupart. Representation learning for
dynamic graphs: A survey. 2020.

Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations
and modelling of dynamic networks using dynamic graph neural networks:
A survey. CoRR, abs/2005.07496, 2020. URL https://arxiv.org/abs/
2005.07496.

Claudio DT Barros, Matheus RF Mendonga, Alex B Vieira, and Ar-
tur Ziviani. A survey on embedding dynamic graphs. arXiv preprint
arXiw:2101.01229, 2021.

Yuanhua Lv and ChengXiang Zhai. Positional language models for infor-
mation retrieval. In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval, pages
299-306, 20009.

Mathieu G’enois and Alain Barrat. Can co-location be used as a proxy for
face-to-face contacts? EPJ Data Science, 7(1):11, May 2018. ISSN 2193-
1127. doi: 10.1140/epjds/s13688-018-0140-1. URL https://doi.org/
10.1140/epjds/s13688-018-0140-1.

David Liben-Nowell and Jon Kleinberg. The link prediction problem for
social networks. page 556-559, 2003. doi: 10.1145/956863.956972. URL
https://doi.org/10.1145/956863.956972.

75

http://arxiv.org/abs/1012.0009
https://helios-h2020.eu/wp-content/uploads/2020/05/D4.2_Define-a-time-dependent-social-graph.pdf
https://helios-h2020.eu/wp-content/uploads/2020/05/D4.2_Define-a-time-dependent-social-graph.pdf
https://helios-h2020.eu/wp-content/uploads/2020/05/D4.2_Define-a-time-dependent-social-graph.pdf
http://arxiv.org/abs/1710.04073
https://www.sciencedirect.com/science/article/pii/S0895717797000502
https://www.sciencedirect.com/science/article/pii/S0895717797000502
https://arxiv.org/abs/2005.07496
https://arxiv.org/abs/2005.07496
https://doi.org/10.1140/epjds/s13688-018-0140-1
https://doi.org/10.1140/epjds/s13688-018-0140-1
https://doi.org/10.1145/956863.956972

BIBLIOGRAPHY

[47]

[52]

[53]

76

Nahla Mohamed Ahmed, Ling Chen, Yulong Wang, Bin Li, Yun Li,
and Wei Liu. Sampling-based algorithm for link prediction in tem-
poral networks. Inf. Sci., 374(C):1-14, December 2016. ISSN 0020-
0255. doi: 10.1016/j.ins.2016.09.029. URL https://doi.org/10.1016/
j.1ns.2016.09.029.

Nahla Mohamed Ibrahim and Ling Chen. Link prediction in dynamic
social networks by integrating different types of information. Applied
Intelligence, 42(4):738-750, June 2015. ISSN 0924-669X. doi: 10.1007/
$10489-014-0631-0. URL https://doi.org/10.1007/s10489-014-0631-
oL

Lin Yao, Luning Wang, Lv Pan, and Kai Yao. Link prediction based
on common-neighbors for dynamic social network. Procedia Computer
Science, 83:82-89, 12 2016. doi: 10.1016/j.procs.2016.04.102.

Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Gal-
styan. Scalable temporal latent space inference for link prediction in
dynamic social networks. IEEE Transactions on Knowledge and Data
Engineering, 28(10):2765-2777, 2016. doi: 10.1109/TKDE.2016.25910009.

Ismail Giines, Sule Gunduz Oguducu, and Zehra Cataltepe. Link predic-
tion using time series of neighborhood-based node similarity scores. Data
Mining and Knowledge Discovery, 30, 02 2015. doi: 10.1007/s10618-015-
0407-0.

Mounir Haddad, Cécile Bothorel, Philippe Lenca, and Dominique Bedart.
Temporalnode2vec: Temporal node embedding in temporal networks. In
Hocine Cherifi, Sabrina Gaito, José Fernendo Mendes, Esteban Moro, and
Luis Mateus Rocha, editors, Complex Networks and Their Applications
VIII, pages 891-902, Cham, 2020. Springer International Publishing.
URL https://hal.archives-ouvertes.fr/hal-02332080/document.

Carlos Henrique Gomes Ferreira, Fabricio Murai Ferreira, Breno
de Sousa Matos, and Jussara Marques de Almeida. Modeling dynamic
ideological behavior in political networks. The Journal of Web Science,
7, 2019.

Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and Hui Xiong. Dis-
covery of evolving semantics through dynamic word embedding learning.
volume abs/1703.00607, 2017. URL http://arxiv.org/abs/1703.00607.

Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar. Temporal link
prediction using matrix and tensor factorizations. ACM Trans. Knowl.
Discov. Data, 5(2), February 2011. ISSN 1556-4681. doi: 10.1145/
1921632.1921636. URL https://doi.org/10.1145/1921632.1921636.

https://doi.org/10.1016/j.ins.2016.09.029
https://doi.org/10.1016/j.ins.2016.09.029
https://doi.org/10.1007/s10489-014-0631-0
https://doi.org/10.1007/s10489-014-0631-0
https://hal.archives-ouvertes.fr/hal-02332080/document
http://arxiv.org/abs/1703.00607
https://doi.org/10.1145/1921632.1921636

Bibliography

[56]

[61]

[62]

[63]

[65]

Stephan Rabanser, Oleksandr Shchur, and Stephan Glnnemann. In-
troduction to tensor decompositions and their applications in machine
learning, 2017.

Giang Nguyen, John Lee, Ryan Rossi, Nesreen Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network embeddings. pages
969-976, 04 2018. doi: 10.1145/3184558.3191526.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane
Idoumghar, and Pierre-Alain Muller. Deep learning for time series
classification: a review. CoRR, abs/1809.04356, 2018. URL http:
//arxiv.org/abs/1809.04356.

Youngjoo Seo, Michaél Defferrard, Pierre Vandergheynst, and Xavier
Bresson. Structured sequence modeling with graph convolutional recur-
rent networks. 2016.

Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph
convolutional networks. Pattern Recognition, 97:107000, 2020. ISSN 0031-
3203. doi: https://doi.org/10.1016/j.patcog.2019.107000. URL https://
www.Sciencedirect.com/science/article/pii/S0031320319303036.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzu-
mura, Hiroki Kanezashi, Tim Kaler, and Charles E. Leiserson. Evolvegen:
Evolving graph convolutional networks for dynamic graphs. CoRR,
abs/1902.10191, 2019. URL http://arxiv.org/abs/1902.10191.

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

Jinyin Chen, Xuanheng Xu, Yangyang Wu, and Haibin Zheng. GC-
LSTM: graph convolution embedded LSTM for dynamic link prediction.
CoRR, abs/1812.04206, 2018. URL http://arxiv.org/abs/1812.04206.

Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin.
Streaming graph neural networks. SIGIR ’20, page 719-728, New
York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450380164. doi: 10.1145/3397271.3401092. URL https://doi.org/
10.1145/3397271.3401092.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan
Zha. Dyrep: Learning representations over dynamic graphs. In Inter-
national Conference on Learning Representations, 2019. URL https:
//par.nsf.gov/servlets/purl/10119521.

7

http://arxiv.org/abs/1809.04356
http://arxiv.org/abs/1809.04356
https://www.sciencedirect.com/science/article/pii/S0031320319303036
https://www.sciencedirect.com/science/article/pii/S0031320319303036
http://arxiv.org/abs/1902.10191
http://arxiv.org/abs/1812.04206
https://doi.org/10.1145/3397271.3401092
https://doi.org/10.1145/3397271.3401092
https://par.nsf.gov/servlets/purl/10119521
https://par.nsf.gov/servlets/purl/10119521

BIBLIOGRAPHY

[66]

[67]

[74]

[75]

78

Dimitrios Rafailidis and Alexandros Nanopoulos. Modeling the dynam-
ics of user preferences in coupled tensor factorization. RecSys '14, page
321-324, New York, NY, USA, 2014. Association for Computing Ma-
chinery. ISBN 9781450326681. doi: 10.1145/2645710.2645758. URL
https://doi.org/10.1145/2645710.2645758.

Xiaomin Fang, Rong Pan, Guoxiang Cao, Xiugiang He, and Wenyuan
Dai. Personalized tag recommendation through nonlinear tensor factor-
ization using gaussian kernel. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAT’'15, page 439-445. AAAI
Press, 2015. ISBN 0262511290.

Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef
Gabbouj, and Daniel J. Inman. 1d convolutional neural networks and
applications: A survey. 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. arXiv preprint arXiv:1706.03762, 2017.

Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. Ex-
posure: Finding malicious domains using passive dns analysis. In Ndss,
pages 1-17, 2011.

Yury Zhauniarovich, Issa Khalil, Ting Yu, and Marc Dacier. A sur-
vey on malicious domains detection through DNS data analysis. CoRR,
abs/1805.08426, 2018. URL http://arxiv.org/abs/1805.08426.

Kazumichi Sato, Keisuke Ishibashi, Tsuyoshi Toyono, and Nobuhisa
Miyake. Extending black domain name list by using co-occurrence re-
lation between dns queries. IFICE Transactions on Communications,
E95B:8-8, 03 2012. doi: 10.1587/transcom.E95.B.794.

Daiki Chiba, Takeshi Yagi, Mitsuaki Akiyama, Toshiki Shibahara,
Takeshi Yada, Tatsuya Mori, and Shigeki Goto. Domainprofiler: Discov-
ering domain names abused in future. In 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pages 491-502, 2016. doi: 10.1109/DSN.2016.51.

Futai Zou, Siyu Zhang, Weixiong Rao, and Ping yi. Detecting malware
based on dns graph mining. International Journal of Distributed Sensor
Networks, 2015:1-12, 10 2015. doi: 10.1155/2015/102687.

Nizar Kheir, Frédéric Tran, Pierre Caron, and Nicolas Deschamps. Men-
tor: Positive dns reputation to skim-off benign domains in botnet c&c
blacklists. In Nora Cuppens-Boulahia, Frédéric Cuppens, Sushil Jajodia,
Anas Abou El Kalam, and Thierry Sans, editors, ICT Systems Security

https://doi.org/10.1145/2645710.2645758
http://arxiv.org/abs/1805.08426

Bibliography

[76]

[81]

[82]

and Privacy Protection, pages 1-14, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg. ISBN 978-3-642-55415-5.

Matija Stevanovic, Jens Pedersen, Alessandro D’Alconzo, Stefan
Ruehrup, and Andreas Berger. On the ground truth problem of ma-
licious dns traffic analysis. Computers € Security, 55, 09 2015. doi:
10.1016/j.cose.2015.09.004.

Xuhong Wang, Baihong Jin, Ying Du, Ping Cui, and Yupu Yang. One-
class graph neural networks for anomaly detection in attributed networks.
arXiv preprint arXiv:2002.09594, 2020.

Xian Wu, Baoxu Shi, Yuxiao Dong, Chao Huang, and Nitesh V. Chawla.
Neural tensor factorization for temporal interaction learning. In Proceed-
ings of the Twelfth ACM International Conference on Web Search and
Data Mining, WSDM ’19, page 537-545, New York, NY, USA, 2019. As-
sociation for Computing Machinery. ISBN 9781450359405. doi: 10.1145/
3289600.3290998. URL https://doi.org/10.1145/3289600.3290998.

Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, and
Philip S Yu. Dynamic graph collaborative filtering. arXiv preprint
arXiv:2101.02844, 2020.

Esther Rodrigo Bonet, Duc Minh Nguyen, and Nikos Deligiannis. Tem-
poral collaborative filtering with graph convolutional neural networks.
arXiv preprint arXiv:2010.06425, 2020.

Karthik Raja Kalaiselvi Bhaskar, Deepa Kundur, and Yuri Lawryshyn.
Implicit feedback deep collaborative filtering product recommendation
system. arXiv preprint arXiv:2009.08950, 2020.

Guillaume Lemaitre, Fernando Nogueira, and Christos K Aridas.
Imbalanced-learn: A python toolbox to tackle the curse of imbalanced
datasets in machine learning. The Journal of Machine Learning Research,
18(1):559-563, 2017. URL https://www.jmlr.org/papers/volumel8/
16-365/16-365.pdf.

Justin Johnson and Taghi Khoshgoftaar. Survey on deep learning with
class imbalance. Journal of Big Data, 6:27, 03 2019. doi: 10.1186/s40537-
019-0192-5.

Shoujin Wang, Wei Liu, Jia Wu, Longbing Cao, Qinxue Meng, and Paul J.
Kennedy. Training deep neural networks on imbalanced data sets. In
2016 International Joint Conference on Neural Networks (IJCNN), pages
4368-4374, 2016. doi: 10.1109/IJCNN.2016.7727770.

79

https://doi.org/10.1145/3289600.3290998
https://www.jmlr.org/papers/volume18/16-365/16-365.pdf
https://www.jmlr.org/papers/volume18/16-365/16-365.pdf

BIBLIOGRAPHY

[85]

[36]

[87]

[33]

[90]

[91]

80

Roi Blanco and Christina Lioma. Graph-based term weighting for in-
formation retrieval. Inf. Retr., 15(1):54-92, February 2012. ISSN 1386-
4564. doi: 10.1007/s10791-011-9172-x. URL https://doi.org/10.1007/
s10791-011-9172-x%/|

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository
with interactive graph analytics and visualization. In AAAI 2015. URL
http://networkrepository.com.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernandez del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array program-
ming with NumPy. Nature, 585(7825):357-362, September 2020. doi:
10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-
020-2649-2.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-
ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, Ilhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perk-
told, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods, 17:261-272, 2020.
doi: 10.1038/s41592-019-0686-2.

The pandas development team. pandas-dev/pandas: Pandas, February
2020. URL https://doi.org/10.5281/zenodo.3509134.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

https://doi.org/10.1007/s10791-011-9172-x
https://doi.org/10.1007/s10791-011-9172-x
http://snap.stanford.edu/data
http://networkrepository.com
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3509134

Bibliography

[97]

Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32, pages 8024-8035. Curran Associates,
Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science €& Engineering, 9(3):90-95, 2007. doi: 10.1109/MCSE.2007.55.

Palash Goyal, Sujit Rokka Chhetri, Ninareh Mehrabi, Emilio Ferrara,
and Arquimedes Canedo. Dynamicgem: A library for dynamic graph
embedding methods. arXiv preprint arXiv:1811.10734, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Leland Mclnnes, John Healy, and James Melville. Umap: Uniform man-
ifold approximation and projection for dimension reduction, 2020. URL
https://umap-learn.readthedocs.io/en/latest/.

81

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1412.6980
https://umap-learn.readthedocs.io/en/latest/

APPENDIX A

Visualization of node
embeddings on the foreign
customer classification problem

83

Unsupervized node embeddings with Bayesian Personalized Ranking (BPR)

- Customers from UK (3726)

+ Products (200) “a
» Test foreign customers (166) ~
+ Training foreign customers (249) X

A

A

Figure A.1: Unsupervized node embeddings with Bayesian Personalized Ranking
(BPR) on the foreign customer classification task. Markers are rendered in the order
corresponding to their appearance in the legend.

84

Unsupervized node embeddings with Alternating Least Squares (ALS)

42%a

s

Customers from UK (3726)
Products (200)

Test foreign customers (166)
Training foreign customers (249)

Figure A.2: Unsupervized node embeddings with Alternating Least Squares (ALS)
on the foreign customer classification task. Markers are rendered in the order corre-

sponding to their appearance in the legend.

85

Unsupervized node embeddings with Node2vec

Customers from UK (3726)
Products (200)

Test foreign customers (166)
Training foreign customers (249)

MM
N
r
)
»
A A*
N N
A A
A 4
A A LT A
N aAA . A
»
A
i, A,
A
N 3
A N A
N AA A‘A .
A ahy Loa e r'N
4 A A
A Ad, P W
At A Aa A A A :
e Lo PR
A . A A
s da
Aa
Ak "
A A
R
e re

Figure A.3: Unsupervized node embeddings with node2vec on the foreign customer
classification task. Markers are rendered in the order corresponding to their appear-

ance in the legend.

86

Supervized node embeddings with GCN

ot

i /i
[] o g,
d { ¥
§)
% ¢ b
st o
o #
& ’

(XN
-~

Unlabeled domains (3726)
+ Users (200)
+ Test malicious domains (166)
< Training malicious domains (249)

Figure A.4: Supervized node embeddings with Graph convolutional neural network
(GCN) on the foreign customer classification task. Markers are rendered in the order
corresponding to their appearance in the legend.

87

Unsupervized node embeddings with DynamicNode2vec

Customers from UK (3726)
Products (200)

Test foreign customers (166) X R N
Training foreign customers (249) X R

A

A
A A A ~

Figure A.5: Unsupervized node embeddings with TemporalNode2vec on the foreign
customer classification task. Markers are rendered in the order corresponding to their
appearance in the legend.

88

Unsupervized node embeddings with CTDNE

Customers from UK (3726)
Products (200)

Test foreign customers (166)
Training foreign customers (249) o

A

Figure A.6: Unsupervized node embeddings with CTDNE on the foreign customer
classification task. Markers are rendered in the order corresponding to their appear-

ance in the legend.

89

Supervized node embeddings with GNN-RNN

Customers from UK (3726)
« Test foreign customers (166)
< Training foreign customers (249)

v,
s

Figure A.7: Supervized node embeddings with Time-series GNN on the foreign
customer classification task. Markers are rendered in the order corresponding to
their appearance in the legend.

90

APPENDIX B

Acronyms

ALS Alternating Least Squares

BFS Breadth First Search

BPR Bayesian Personalized Ranking

CNN Convolutional Neural Network

CTDNE Continuous-Time Dynamic Network Embedding model

DFS Depth First Search

DGNN Dynamic Graph Neural Network

GCN Graph Convolutional Neural Network
GNN Graph Neural Network

GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
NLP Natural Language Processing

RNN Recurrent Neural Network

91

APPENDIX C

Contents of enclosed CD

thesis .ovviiiiiieinnnn. the directory with contents of enclosed CD
experiments......... the directory with a source code of experiments
TOX o the directory of IXTEX source codes of the thesis
thesis.pdfol the text of the thesis in PDF format

	Introduction
	Thesis structure
	Notation
	Linear algebra
	Miscellaneous

	Machine learning on graphs
	Graph representation learning
	Laplacian eigenmaps
	Shallow embedding
	Laplacian eigenmaps based approaches
	Matrix factorization
	Neighborhood sampling
	Summary

	Graph neural networks
	GNN framework
	Popular architectures
	Summary

	Machine learning on bipartite graphs
	Implicit feedback

	Machine learning on dynamic graphs
	Dynamic graph
	Dynamic graph representation learning
	Temporal granularity
	Time decay
	Temporal smoothness

	Shallow embedding of dynamic graphs
	Discrete-time approaches
	Snapshots aggregation
	Latent snapshots aggregation
	Explicit temporal smoothing
	Tensor factorization

	Continuous-time approaches
	Temporal neighborhood sampling

	Dynamic graph neural networks
	Discrete-time approaches
	Stacked dynamic graph neural networks
	Integrated dynamic graph neural networks

	Continuous-time approaches

	Machine learning on dynamic bipartite graphs

	Time-series GNN
	Time-series GNN framework
	Simple RNN-based Time-series GNN

	Problem definition
	Cisco Cognitive maliciousness classification problem
	Experience
	Task
	Performance measure

	Related problems
	Foreign customer classification problem

	Experiments
	Workflow
	Experimental framework
	Training
	Test
	Hyperparameter tuning

	Applied models
	Results
	Discussion

	Conclusion
	Bibliography
	Visualization of node embeddings on the foreign customer classification problem
	Acronyms
	Contents of enclosed CD

