

Bachelor’s thesis

A module for detecting plagiarism in
LearnShell

Zbyněk Juřica

Department of Software Engineering
Supervisor: Ing. Jakub Žitný

May 13, 2021

Acknowledgements

I would like to thank my supervisor Ing. Jakub Žitný, for the patience, guid-
ance and all the helpful objections and advice that he has given to me. I
am also grateful to my family for supporting me and helping with anything I
needed, despite of their busy schedules.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Zbyněk Juřica. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Juřica, Zbyněk. A module for detecting plagiarism in LearnShell. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2021.

Abstrakt

Tato bakalářská práce ze zaměřuje na vylepšení stávajícího modulu pro de-
tekci plagiátorství v LearnShellu. Cílem této práce je vytvořit front-end React
aplikaci s důrazem na uživatelský prožitek, která pomůže učitelům zobrazo-
vat podezření na plagiátorství a jejich následné řešení. Další část této práce
se zaobírá vylepšením samotného algoritmu pro detekci plagiátů. Tato práce
popisuje celý proces takovéhoto vývoje od analýzy a praktických příkladů a
popisu implementace všech stanovených cílů, tak i další teoretické možnosti
pro budoucí vylepšení.

Klíčová slova Detekce plagiátorství, Django, Python, React, GraphQL, Ty-
peScript, Next.js, JavaScript, Vizualizace dat, Abstraktní syntaktický strom

vii

Abstract

This bachelor’s thesis focuses on improving the current module for detecting
plagiarism in LearnShell. The goal is to build a front-end React application
with an emphasis on user experience to allow teachers to inspect the plagiarism
suspicions and resolve them. Another part of this work aims to improve the
plagiarism detection algorithm itself. This work describes the whole process
of developing such application from analysis and practical examples and de-
scriptions of the implementation of all the laid down goals to some additional
theoretical options for future improvements.

Keywords Detection of plagiarism, Django, Python, React, GraphQL, Type-
Script, Next.js, JavaScript, Data visualization, Abstract syntax tree

viii

Contents

Introduction 1

1 Essential concepts and technologies 3
1.1 Theoretical concepts . 3

1.1.1 Plagiarism . 3
1.1.2 Graph theory . 4

1.1.2.1 Abstract syntax tree 5
1.1.3 Functional programming 6

1.2 Technologies . 7
1.2.1 Django . 7
1.2.2 API Architectures . 8

1.2.2.1 REST . 8
1.2.2.2 GraphQL . 9
1.2.2.3 GraphQL vs REST 10

1.2.3 TypeScript . 11
1.2.4 React . 12
1.2.5 Next.js . 12

2 Analysis 15
2.1 Existing solution . 15
2.2 Requirements . 16

2.2.1 F1 - Improving the detection algorithm 16
2.2.2 F2 - Display duplicate submissions 17
2.2.3 F3 - Display duplicate submissions of a particular student 17
2.2.4 F4 - Display duplicate submissions of a particular as-

signment . 17
2.2.5 F5 - Resolving suspicions 17
2.2.6 F6 - Exporting the data 17
2.2.7 F7 - Data visualization 17

ix

2.2.8 NF1 - Front-end extends on the existing solution 17
2.2.9 NF2 - Command-line detecting tool 17
2.2.10 NF3 - Responsivity . 17

2.3 Proposed solution . 18
2.4 Choosing a data visualization library 19

2.4.1 D3.js . 19
2.4.2 vis.js . 20
2.4.3 nivo . 21

3 Implementation 23
3.1 Detecting plagiarism . 23

3.1.1 Script modifiers . 25
3.1.2 Score decorators . 26
3.1.3 Detection algorithms . 27
3.1.4 Future improvements . 28

3.2 Displaying plagiats . 29
3.2.1 Resolving suspicions . 31
3.2.2 Table of culprits . 31
3.2.3 Most common coworkers 32
3.2.4 Filtering . 32

3.3 Data visualization . 33
3.3.1 Graph settings . 35
3.3.2 List of culprits . 36
3.3.3 Responsivity . 37

3.4 Data export . 38

4 Testing and documentation 41
4.1 Unit tests . 41
4.2 Unit Testing in React using JEST 42

4.2.1 Fixtures . 42
4.2.2 Testing the utility functions 42

4.3 Unit testing in Django using unittest 43
4.4 User documentation . 43

4.4.1 List of plagiats . 43
4.4.2 Graph of culprits . 44
4.4.3 Tables . 44

Conclusion 45

Bibliography 47

A Acronyms 51

B Contents of enclosed CD 53

x

C Culprits graph with a selected culprit 55

D Plagiarism page 57

E Plagiarism page with a selected culprit 59

xi

List of Figures

1.1 An example of a graph with 4 nodes and 4 edges. 5
1.2 An example of a tree with 5 nodes. 5
1.3 An example of a response from HackerNews REST API. 8
1.4 An example of a GraphQL query. 10
1.5 An example of part of the response the server gives after the pre-

vious request. 10

2.1 Interface schema of the LearnShell’s architecture. 15

3.1 Flowchart of the process of detecting plagiarism. 24
3.2 Graph of the implemented easing functions. 27
3.3 The end result of the design of the suspicions. 31
3.4 The final design of the network graph component. 38
3.5 The design of the export component. 39

xiii

Introduction

In this current time of Covid-19, many schools chose or were forced to teach
their students online, often with no way of any physical contact, not even
for assessing the student’s performance. With exams, homework and other
assignments being undertaken at home, it became more effortless than ever
to cheat on a test or copy someone else’s homework, and it is the school’s
responsibility to implement such measures to ensure that the conditions are
the same for everyone.

There are many ways to stop cheating but to ensure a level playing field
for everyone is to have multiple measures in place during the exam and then
to have the necessary tools to evaluate and catch culprits even after the as-
signment is already submitted.

This work is a part of the LearnShell web application, which is a system
for managing, entering and performing programming exams and assignments
in scripting languages. The application is made out of multiple modules. The
back-end module is built in Python, specifically with the framework Django
and offers a GraphQL API. The front-end module is built with TypeScript
using React.

The goal of this work is to create a tool to help teachers find plagiarism
among the solutions and the culprits responsible for them. It is also essential
to help teachers not only find plagiarism but also give them a bigger picture
of the situation. A lot of the time, the culprits do not just randomly copy
each other, but they often cooperate long term. Such information is crucial
in recognizing patterns and then reacting accordingly.

As this work is focused on detecting plagiarism in scripting language as-
signments such as Shell, which can be very short, or there could also be some
very obvious solution, the chances are that there will be some false positives.
Helping finding these false positives is also critical.

LearnShell has already implemented a very basic plagiarism detection al-
gorithm that can detect a 100% matching submissions. Even with such a basic
solution, this algorithm has caught many students cribbing their solution. The

1

Introduction

goal of this work is to improve this algorithm to catch students that try to
outsmart it.

In the end, the final result of this work should be a fully functional web
application with a focus on the user experience to help teachers do this work
effectively so that it does not distract them from the more important part of
the job, teaching.

2

Chapter 1
Essential concepts and

technologies

This chapter explains and defines the most vital concepts and technologies
that are used throughout this whole work. In some parts of this work, it
might be critical to understand these concepts at least on some fundamental
level to fully grasp the ideas and better understand why a particular solution
was chosen.

1.1 Theoretical concepts
This section defines some of the terms and concepts used in this work and also
explains their relevancy.

1.1.1 Plagiarism

“Plagiarism is presenting someone else’s work or ideas as your own, with or
without their consent, by incorporating it into your work without full acknowl-
edgement. All published and unpublished material, whether in manuscript,
printed or electronic form, is covered under this definition. Plagiarism may
be intentional or reckless, or unintentional. Under the regulations for exam-
inations, intentional or reckless plagiarism is a disciplinary offence” [1], that
is the definition from the University of Oxford. The forms of plagiarism can
take many forms.

Paraphrasing plagiarism is the first severe type of plagiarism. It means
that the author did not really copy the text itself but rather used the original
idea as his own. Often times the author will copy the text and then change the
structure, order of words or sentences, etc. and then present this as his own
work without citing the original author. A more extreme case of paraphrasing
plagiarism is verbatim plagiarism which means that the plagiarist copied
part of the original work word for word.

3

1. Essential concepts and technologies

Important to note that this does not mean that authors cannot use ideas
from other resources. It just means that authors need to give credit to others
that influenced their work by properly citing their work.

Citing works of other authors often times helps to strengthen the ideas,
concepts, principles and arguments by showing other additional resources fo-
cused on the same topic. It can assure the reader that the concepts that are
being explained are universal. It can also give the reader a reference to other
resources that focus on the same concepts to help them understand them
better.[1],[2]

Programming plagiarism works very similarly in the sense that cribbing
someone else’s code is against the rules. StackOverflow’s TOS say: “On Stack
Overflow all user content, including code snippets, is posted under a version of
the Creative Commons Attribution-ShareAlike license.” [3],[4]. This means that
one is free to share and change the content (even commercially) if you follow
the terms of this license - giving appropriate credit and if you are changing
the code or building upon it, you have to do so under the same license as the
original.[5]

What is, however, very important to understand is that plagiarism itself
has very little to do with licensing. That means that even if the author has
done everything right in terms of the license, he could have still committed
plagiarism. Plagiarism is more relevant to the university and the course, which
sets the rules of what is considered plagiarism. Generally, it is expected that
the student must be the exclusive author of the programs he submits, but if
the assignment is easy enough, this might be very hard to prove as it is very
likely that multiple students will come up with the same solution.

1.1.2 Graph theory

This work uses and discusses concepts of graph theory for visualization but
also for algorithms and data structures that can be used to create very sophis-
ticated solutions for detecting plagiarism.

A graph G is a finite, nonempty set V of nodes (also called points or
vertices) together with a set E of unordered pairs of distinct nodes of V. Each
pair e = {u, v} from E is a edge (also called an line or a link). Two distinct
edges are adjacent when they share a common node.[6] One can visualise
such graph as a set of nodes connected by edges, an example is in Figure 1.1.

A path is a set of distinct adjacent edges leading from point u to point
v. A cycle is a set of distinct adjacent edges leading from point u to the
same point u. There are some important properties that some graphs have.
A graph is connected if every pair of points is connected by a path. A graph
is acyclic if it has no cycles; otherwise, it is cyclic. A tree is a connected
acyclic graph. For example, the graph in the Figure 1.1 is connected because
there is a sequence of edges leading from each node to every other node and
has one cycle made out of nodes 2, 3 and 4.

4

1.1. Theoretical concepts

Figure 1.1: An example of a graph with 4 nodes and 4 edges.

One can then choose a single point and declare it as a root of the tree.
Trees are usually drawn with the root at the top; a child of a node is such
a node that is further from the root than the node itself (then this node is
a parent of its children).[6] The following example is a graph that is a tree
because it is connected, has no cycles and its root is the node numbered 1.

Figure 1.2: An example of a tree with 5 nodes.

1.1.2.1 Abstract syntax tree

An abstract syntax tree (AST) is a tree that represents the structure of a
source code written in some programming language. Each node represents a
construct used in the language and its children are parameters/operands of the
construct. ASTs are free of inessential information about the source code itself
- there is usually no punctuation and delimiters (braces, semicolons, etc.) or
whitespaces, all of these characters are discarded, but the idea of the program
is still preserved in the structure of the AST, for example, the meaning of a
semicolon that separated two commands from each other is still preserved in
the form of the two separate nodes in the AST.

ASTs are usually the result of syntax analysis. They are used in many dif-
ferent tools, such as compilers, but they are also used for static code analysis,

5

1. Essential concepts and technologies

where the tools can go through the AST and find errors or patterns without
executing the code itself.[7], [8]

1.1.3 Functional programming

Functional programming is a programming paradigm - a style of programming;
it introduces different concepts that can be used to make cleaner and more
manageable code. The main ideas of functional programming are to avoid
code with shared state, mutable data and side-effects.

Shared state is a variable that is declared in a shared scope or is being
passed between scopes. Functional programming avoids this by deriving new
data from the existing data.

Mutable object means that the object can be modified even after its cre-
ation, but functional programming allows only immutable objects that cannot
be modified after they are created.

Side effects are any changes that functions make that can be observed
outside of them other than their return value. A very obvious example is
pretty much any function that does not return anything. Such function either
does nothing meaningful or has side effects. An example of such function
could be very simple:

This function’s side effect is that it prints the text "Hello World" to the
console, which can be observed outside the function itself. It is clear that
in some cases, side-effects are unavoidable (e.g., storing data in a database).
Functional programming’s approach to these kinds of functions is to isolate
them and keep them separate from the program’s logic.

This is possible because of higher order functions - these are such func-
tions that take other functions as an argument, return a function, or both.
Such functions make the code very elegant, short and readable, but impor-
tantly it makes the code very reusable. An example of such function/method
is map() or filter() which are methods in JavaScript that can be called on
an array.

The map()method takes a function that describes how each element should
be changed, or in other words, what each element should be mapped to. The
result of the map() method is a new array with the mapped elements.

The filter method takes a predicate function (a function that returns a
boolean value). The result of this method is a new array with elements that

6

1.2. Technologies

satisfy the predicate function.
In the end, functional programming has some big advantages if done cor-

rectly. One of the advantages is apparent when dealing with concurrency and
parallel programming. With all of these guarantees that were mentioned, the
order of computations in most cases does not matter. It also prevents race
conditions and deadlocks. Another great advantage is that it saves time dur-
ing testing because it is much easier to test code written in a functional way
but more on that in the chapter about testing.[9]

1.2 Technologies

This section describes the front-end and the back-end technologies used in
LearnShell.

1.2.1 Django

“Django is a high-level Python Web framework that encourages rapid devel-
opment and clean, pragmatic design. Built by experienced developers, it takes
care of much of the hassle of Web development, so you can focus on writing
your app without needing to reinvent the wheel. It’s free and open source.” [10]

Django is not just a framework that helps developers build web appli-
cations, but it makes sure that the project has a certain structure that is
maintainable and expandable in the future.

Django is a very versatile framework as it allows developers to build any
type of web application that will cooperate with many different setups - it
can work with different client-side frameworks, deliver content in any format,
communicate with many different databases, etc.

The Django web applications are also secure as the framework implements
some security measures automatically - one example of this is that Django
stores the session information in the database and shares a key in cookies
rather than the entire session data, which is a common mistake developers
make. Another automatic security measure is storing a password hash in
the database instead of the raw password, which is another common security
mistake. Django also implements protection against many more vulnerabilities
such as SQL injection, cross-site scripting and many more.

Each part of the Django project is independent of the others, making the
code much more maintainable but also more scalable. Traffic across the whole
application can be tracked to determine which part of the application (caching
servers, database servers, application servers) needs more resources and then
provide it only to that module.[11]

7

1. Essential concepts and technologies

1.2.2 API Architectures

API (Application Programming Interface) is an interface that allows two soft-
ware applications to communicate. In the context of web applications, the
application that runs in the browser, also called the client, can communicate
with the server using the server’s API. This way, the client can, for example,
request data to display them, send a request to add a comment or delete one.
There are several architectonic styles to choose from.[12] The most common
one is REST, but in 2015, Facebook released GraphQL, which gained a lot of
popularity since then.[13]

1.2.2.1 REST

REST APIs are such APIs that also satisfy the rules of REST architectural
style. The most important rules are that requests to such API are made
through HTTP, and no client information is stored between requests. Each
resource is accessible by a unique identifier (e.g., URL), and there is a defined
way to manipulate the resource the way the client wants. The resource that
is then sent back as a response can be sent in many different forms such as
XML, HTML, Plain text, but the most common is JSON.[14]

An example of such API is one from hacker-news.com. Making a GET
HTTP request on the following URL: https://hacker-news.firebaseio.com/
v0/item/12345.json will result in a response from the server that will look
like this:

Figure 1.3: An example of a response from HackerNews REST API.

The result is an item with the idea of 12345 in the JSON format as specified

8

hacker-news.com
https://hacker-news.firebaseio.com/v0/item/12345.json
https://hacker-news.firebaseio.com/v0/item/12345.json

1.2. Technologies

in the URL. It is possible to change the operation the server should make. By
making a different type of HTTP request, such as a DELETE request, one can
indicate what kind of action the server should make. Now, as this is a public
API, this is obviously not supported, but the general idea is to distinguish the
separate CRUD operations by their respective HTTP requests:

• Create - POST

• Read - GET

• Update - PUT

• Delete - DELETE

An important thing to note, especially in the context of GraphQL, is that
the response from a REST API is fully determined by the type of the request
and the URL to which the request was sent to. This has big limitations as no
matter what the client’s intent is, the data is still sent the same way. Even if
the client only wants to display the title of the post, it is not possible to fetch
only the title; the server will always send the entire resource unless there is
an URL that specifically supports fetching only a specific information.[15]

1.2.2.2 GraphQL

“GraphQL is a query language for APIs and a runtime for fulfilling those
queries with your existing data. GraphQL provides a complete and under-
standable description of the data in your API, gives clients the power to ask
for exactly what they need and nothing more, makes it easier to evolve APIs
over time, and enables powerful developer tools.”[16]

GraphQL is essentially a new way of thinking about APIs. Its main idea is
to solve the problem of over-fetching or under-fetching by introducing a query
language and a server-side runtime for executing these queries. The API is
built by defining the data - what data should the API offer and what fields
and type fields the data have. To fetch the data, the client has to describe
what fields are needed, and GraphQL will send the response in that exact
structure[17]; an example of such communication can be found in the Figure
1.4 and 1.5.

Depending on how much information the server stores about each of the
countries, this can potentially save a lot of bandwidth and also save space for
the client.

9

1. Essential concepts and technologies

Figure 1.4: An example of a GraphQL query.

Figure 1.5: An example of part of the response the server gives after the
previous request.

1.2.2.3 GraphQL vs REST

The biggest advantages of GraphQL are very obvious as it was designed to
solve the issues of REST APIs - querying the data by exactly describing the
structure of the data the client wants solves both the over-fetching which
happens when the client only needs some of the information, but the server
sends more because it does not know what exactly the client wants. It also
solves under-fetching which happens when the client needs more data than
it received. This happens especially when fetching a list of items, and the
client needs to send additional requests to fetch all of the items it wants.[18]

Using GraphQL leads to much faster front-end development because it is
very flexible, but with REST, there might be changes on the front-end that
are not yet reflected on the back-end, and so the back-end does not support
sending the required information.[18]

Another advantage is versioning - GraphQL’s APIs usually do not have
to be versioned because the API only returns the data that is explicitly re-
quested, and new capabilities can be added through new types and fields
without breaking the previous solution. REST APIs, on the other hand, have
to be versioned because with every change to the API, the previous end-points

10

1.2. Technologies

might break. Even the hacker-news.com API (from the example in Figure
1.3) is ready for this as it already have the version of the API in the URL
(‘.../v0/...’).[19]

The main disadvantage when it comes to GraphQL is performance on
the server’s side. There is some overhead when it comes to parsing, validating
and then executing the query. The server has to parse the query into an AST
then validate it against the schema and then execute the AST starting from
the root - collecting all the data and returning the requested JSON. All of this
takes additional time, but on the other hand, the amount of requests is lower
with less data that needs to be transferred.[20]

1.2.3 TypeScript

TypeScript is an open-source language which is built on one of the most pop-
ular programming language - JavaScript. As the name suggests, TypeScript
adds types to JavaScript, which provides a way to describe objects and vari-
ables to help the productivity of the developers as they get better code vali-
dation.

There are no real downsides to using TypeScript because it is not needed to
write everything in TypeScript or rewrite already written code to TypeScript
as a valid JavaScript code is also a valid TypeScript code and will work the
same way. But obviously, by not using the features of TypeScript, one does
not gain any benefits. This also means that a project that does not currently
run on TypeScript can be slowly converted to a project that is unrecognizable
from one which was built on TypeScript from the beginning.[21]

One of the biggest advantages of TypeScript, as hinted above, is error
reporting that is provided by the compiler that has much more options to
check for errors with TypeScript code compared to JavaScript code. This
leads to errors being discovered earlier.

It also makes the code much more readable because static typing gives the
code more structure. The IDE also has much more information and so it can
give smarter hints, autocompletion, etc.

As already said, there are no real disadvantages to using TypeScript,
but there are things to be aware of. TypeScript’s types are only checked
at compile-time, and after the code is transformed into a regular JavaScript
code, the types get removed by this process.

Even though TypeScript helps to prevent some errors, it is not a replace-
ment for testing. Comprehensive testing is still needed as in any other lan-
guage, even if the code is less prone to bugs. Also, sometimes the code might
get a little messier by introducing types as there is more code to maintain and
also working with types, classes and interfaces might lead to over-engineered
code. Especially new team members and beginners might get lost, especially
if they have no previous experience with other statically-typed languages.[22]

11

hacker-news.com

1. Essential concepts and technologies

1.2.4 React

React is a declarative, efficient and flexible JavaScript library for building
web applications and user interfaces. It was released by Facebook in 2013, to
address the challenges of building large-scale, data-driven web applications.
Its primary goal is to minimize bugs that developers make when building user
interfaces. Possibly the main idea that React uses to achieve this goal is
using components. Components are self-contained, logical pieces of code that
describe one portion of the user interface. Furthermore, they are then used to
assemble the whole UI of the application. This makes the code very reusable
as one component can be used in many different parts of the application. Each
component can receive data from its parent component through props to make
the component even more customizable and versatile.

Components make the code more maintainable as each part of the appli-
cation is isolated, which also makes the development faster as the developer
can purely focus on just the one component and its functions and features
instead of the application as a whole.

React utilizes JSX which is an extension of the JavaScript language so
that JavaScript can work with HTML more directly[23], for example:

React will then take this JSX and compile it using Babel into a JavaScript
code, like this:

React is one of the most popular technologies for making web applications
as it is quite easy to learn and also easy to use, even more so now when there
are countless resources, books, articles and tutorials. But the React team did
create excellent documentation with examples and tutorials.[24], [25], [26]

1.2.5 Next.js

“Next.js gives you the best developer experience with all the features you need
for production: hybrid static & server rendering, TypeScript support, smart
bundling, route pre-fetching, and more. No config needed.” [27]

Next.js is a React framework that solves many common problems React
applications have in common, and it does so without any configuration
that needs to be set up by introducing a certain structure which also makes
the software more maintainable and clean in the future.

A big feature of Next.js is automatic routing - any files in the pages
folder will be automatically mapped to its URL based on their path in the
filesystem. This feature saves a lot of time otherwise spent on setting up the

12

1.2. Technologies

routes. Another time-saving feature is hot code reloading - when Next.js
detects any changes in the files, it will reload the page in the browser auto-
matically, which saves a lot of time, especially when the changes are frequent
and small.

Next.js also helps with performance in a few different ways. First of all,
it allows server-side rendering which means React components can be ren-
dered server-side and then sent as HTML to the client. Another feature is au-
tomatic code splitting which makes sure that only the code that is needed
for the particular page the user is requesting is sent to him, instead of send-
ing the whole application’s code at once. On the other hand, it supports
prefetching to automatically prefetch resources (including the code missing
due to code splitting) to other pages.

Ecosystem compatibility is also a big advantage to this framework as it
plays well with React by fixing some of the common problems React developers
have to face. The whole framework is written in TypeScript, which gives it
excellent TypeScript support. [28]

13

Chapter 2
Analysis

In order to build software that is going to be meaningful, intuitive and useful,
one needs to analyze the environment and the options available. This chapter
focuses on analyzing the previous solution, the context of the whole LearnShell
application and its modules and the available options that could be used and
why.

2.1 Existing solution

LearnShell is a web application that was built for helping to teach students
scripting languages. The main focus (especially for now) is on helping students
understand how to write shell scripts. The following schema describes the
architecture of the application:

Figure 2.1: Interface schema of the LearnShell’s architecture.

The whole application is split into a couple of modules. The most im-
portant module is the back-end built on Python and its framework called
Django, which communicates with other modules but also with the database.

15

2. Analysis

The other important module is the front-end web application which is built
on React and also utilizing the features of some modern frameworks such as
TypeScript. The HTTP endpoints are exposed using the Next.js framework,
which handles all the routing.

LearnShell has already got a working detection algorithm that can take
two scripts and compare them to each other, and if and only if there is a 100%
match, the algorithm will evaluate it as plagiarism. If only one character is
different, even if such character has no effect on the function of the script, it
is not going to get detected by this algorithm.

The results of the detection process are then stored in a JSON file in the
following structure:

The first field named script contains the solution that was detected as
a duplicate solution because at least two students submitted such solution.
Then there is the culprit_assignment_name field, which contains the name
of the assignment that the students were solving. The most important field is
the field named culprits which is the actual list of culprits that had the same
solution and the culprit_count field is the length of this list.

This JSON file is also the only way to access the results of the detection
algorithm as LearnShell does not offer any front-end application to view these
results in any other way. This makes it much harder for teachers to find their
way around the data and what it is actually saying. The teachers might want
to make some other analysis to understand the data, look for relationships
between the students, find patterns and also identify if the suspicion in the
data is a true positive or a false positive.

2.2 Requirements

This section contains all the functional and non-functional requirements for
the solution that this work should be able to satisfy.

2.2.1 F1 - Improving the detection algorithm

The detection algorithm should be able to detect cribbed submissions from
students even if they are not a 100% match.

16

2.2. Requirements

2.2.2 F2 - Display duplicate submissions

The plagiarism data should be able to be displayed on the front-end of the
application.

2.2.3 F3 - Display duplicate submissions of a particular
student

The front-end should be able to aggregate the data and show only the plagia-
rism data of a chosen student.

2.2.4 F4 - Display duplicate submissions of a particular
assignment

The front-end should be able to aggregate the data and show only the plagia-
rism data of a chosen assignment.

2.2.5 F5 - Resolving suspicions

The teacher should be able to resolve these suspicions.

2.2.6 F6 - Exporting the data

The data should be exportable into a CSV or a JSON file.

2.2.7 F7 - Data visualization

The front-end should be able to visualize the data to show the relations be-
tween the culprits.

2.2.8 NF1 - Front-end extends on the existing solution

The front-end should follow up on the already existing solution built on React
and Next.js.

2.2.9 NF2 - Command-line detecting tool

The detection tool should be built as a Django Command and be part of the
existing Django application.

2.2.10 NF3 - Responsivity

Although responsivity is not the main focus due to the lack of use cases in
which this feature is needed or even noticed, it is still a feature that is expected
in any modern web application. Also, it is important to note that responsivity
does not only mean desktop/mobile size support. It means that the web

17

2. Analysis

application can adapt to any screen size. In the context of this work, there
might be some use cases in which the application is not usable due to its lack
of responsivity.

The resolution of the screens in the classrooms might differ from one to
another. While the device used is still a desktop computer, the screen resolu-
tion might drastically change from an old HD monitor to a Full HD monitor
or even to a 4K monitor. Teachers might also change the size of the browser,
especially when comparing multiple scripts, users or assignments.

All of this leads to the necessity to make the whole solution fully responsive.

2.3 Proposed solution

Although the current detection algorithm works and has found many students
that had the same solution, it is obvious that it does not take much effort to
outsmart it. Simply adding one more whitespace is enough to go undetected
by this algorithm. On the other hand, if the algorithm does detect a cribbed
solution, it is very likely that it actually is a true positive because the solution
is just simply the same.

There are several ways to improve this algorithm with some advanced data
structures such as AST. Unfortunately, the tools available in this field are very
limited, especially in the context of Shell, and as this work is not only focused
on the detection algorithm, there will be no resources for us to implement a
fully working solution utilizing ASTs. For this reason, the whole detection
system must be very flexible and, most importantly, expandable for it to be
easily improved and built upon in the future.

The algorithm itself will not always be able to decide if the two scripts it
is comparing are really cribbed, especially when only a part of one script is
identical to a part of the second script. For this reason, the detection algorithm
should return the likelihood of these two scripts being cribbed rather than
returning a yes/no answer.

The main improvement that has to be done on the front-end is to add the
option for teachers to access these detection results and display them in such
a way that helps them decide better if the suspicions are true positives or not.

Having just the pure data displayed is not enough in this case, as the
patterns formed in the data will not be clearly visible. The solution must be
able to sort the data, filter and aggregate it in such a way that the teacher will
be able to find the patterns and be able to resolve these plagiarism suspicions
more effectively.

To see some additional patterns, we propose to display the data in a more
visual way than in just pure text to able to see patterns that might not be
obvious otherwise.

18

2.4. Choosing a data visualization library

2.4 Choosing a data visualization library

Data visualization is a key part of helping humans understand the data they
are working with. Modern technologies allow us to process a lot of data and
visualize them by using images, maps, charts, etc. One of the many vital parts
for data visualization to be useful is to choose the right type of visualization.
Choosing the wrong type of chart or configuring the chart poorly can lead to
the visualization being useless in the better case and being misleading in the
worse case.

We tried to find a solution for teachers to better understand the plagiarism
data that LearnShell detects. For teachers to do an effective job in resolving
suspicions, they need to know the relations between the culprits. Our goal
with this visualization is trying to show the teachers these relations and how
strong these relations are with respect to each other. Therefore we decided
that the best visualization tool is a network graph.

This structure can be used to represent a lot of types of data. We can
use it to visualize the relations (represented as edges) between the culprits
(represented as nodes), hoping to show not just the relations themselves but
also other types of information - changing the color, thickness and the border
can also display some additional information.

Out of all the possible libraries for displaying network graphs, surprisingly,
there are not that many of them that support changing the thickness of the
edges, which was one of our main requirements. Our other requirement was for
the library to be easily implemented into React. In the end, we were choosing
between D3.js, vis.js and nivo.

2.4.1 D3.js

“D3.js is a JavaScript library for manipulating documents based on data. D3
helps you bring data to life using HTML, SVG, and CSS. D3’s emphasis on
web standards gives you the full capabilities of modern browsers without tying
yourself to a proprietary framework, combining powerful visualization compo-
nents and a data-driven approach to DOM manipulation.” [29]

D3.js is a foundation for a lot of other libraries that are built upon it. In
most situations, it is better to use these libraries as they offer all the basic
features one would need; however, D3.js has its place when there is a need for
a very specific feature that other libraries do not offer on their own because

19

2. Analysis

D3.js is very flexible.

Pros:

• Flexibility

• Examples - this library is very widely used which makes finding examples
very easy

Cons:

• Steep learning curve

• Documentation is not clear

• Not initially intended for React

2.4.2 vis.js

“A dynamic, browser based visualization library. The library is designed to be
easy to use, to handle large amounts of dynamic data, and to enable manipu-
lation of and interaction with the data.” [30]

Vis.js is much easier to use than D3.js while preserving a lot of the flexibil-
ity as D3.js. While the design is not great out of the box, it can be customized
to look better. The biggest disadvantage of this library is the vis-react library
which should make it easier to connect up with React, but it is very poorly
documented, which makes it really hard to use.

Pros:

• Still remaining flexible

• Customizable

• Easier to use

Cons:

• Not initially intended for React

• Hard to use with React

• Documentation is very poor (espeacially on the React library)

20

2.4. Choosing a data visualization library

2.4.3 nivo

“Nivo provides a rich set of dataviz components, built on top of the awesome
d3 and Reactjs libraries.” [31]

We believe this to be the best option that we decided to use in the final
implementation as it offers the best of both worlds and is specifically built to
use with React. Also, the documentation is well made with some interactive
examples, which makes implementing a solution that does what is needed very
simple to do.

Pros:

• Offers all the needed features

• Is built for React

• Documentation

• Easy to use

Cons:

• Not as flexible

21

Chapter 3
Implementation

This chapter focuses on the implementation part of this work - what was
implemented and the pitfalls encountered during this process.

When implementing all the features, creating the components and design-
ing the codebase, the idea that we kept in the back of our minds was to
concentrate on building a solid foundation for future expansions and improve-
ments.

LearnShell uses GitLab for its Git repositories for version control, and the
repositories can be found here:

• Back-end: https://gitlab.fit.cvut.cz/learnshell-2.0/ls

• Front-end: https://gitlab.fit.cvut.cz/learnshell-2.0/ls-web

3.1 Detecting plagiarism

Keeping in mind the future improvements that can be done in this part of
the application, we decided to build a firm structure that could be easily
expandable in the future by adding more advanced algorithms for the detection
of plagiarism.

We decided to split the plagiarism detection into multiple steps. The first
step is to preprocess the input using algorithms to transform, reduce or process
the input in some way. There can be a list of these functions provided to do
multiple changes to the input. If no such functions are provided, then this
step is skipped, and the two scripts are used without any changes made.

The second step is to take the preprocessed input and run the detection
algorithm that compares the two inputs and returns an output that is a num-
ber describing the likelihood the two inputs are cribbed - 0 being the least
likely and 100 being the most likely.

The third step is to process this score by an additional function. This
could be used for an easing function to make lower scores even lower and

23

https://gitlab.fit.cvut.cz/learnshell-2.0/ls
https://gitlab.fit.cvut.cz/learnshell-2.0/ls-web

3. Implementation

higher scores higher. This score is then used to calculate the final score as a
percentage of the maximum score this scoring process can give.

Final Score = Score ·Max Score

100

Figure 3.1: Flowchart of the process of detecting plagiarism.

All of this is done by a decorator function that takes the max_score,
score_decorator and the list of input_modifiers as a parameter and uses
them in a wrapper function.

24

3.1. Detecting plagiarism

The code above is an example of such implementation. After providing the
necessary parameters to the decorate_score function it returns a function
that takes the detection_function which is then called with the 2 input
scripts.

To add even more flexibility to this solution, we decided to add multi-
scoring functionality - multiple detecting (scoring) functions will analyze the
inputs and return the score in the same way as described before. The whole
process will then output an array of scores that can give much more insight.
To evaluate two scripts as cribbed, one can then simply take the maximum
from the array and see if it exceeded a certain threshold. There is, however,
much more that can potentially be done with the array, as evaluating the
scores in a different way might be very beneficial.

This resulted in a class PlagiarismDetection that contains this array of
scoring functions. This class supports adding scoring functions by providing
all the necessary parameters. After everything is ready, the run_detection
method can be called to run all the scoring functions returning the array of
all the scores from the scoring functions.

It is also possible to run the detection functions one by one by specifying
the index of the function that should be called. This can enable a much more
sophisticated way of running the detection. This solution can also result in
faster evaluation as the detection can be stopped if it is clear that the two
scripts are cribbed and save time by not running more advanced detection
algorithms.

3.1.1 Script modifiers

Two modifiers have been implemented as a result of this work. The first one is
a function that removes all the spaces, newlines, tabs, etc., from the original
script and returns the script with them removed. It is important to note
that it removes all of them, not just the duplicate whitespaces (reducing 2 or
more consecutive whitespaces into only 1). This is intentional because of the

25

3. Implementation

following example. If a student were to crib another’s student assignment and
tried to cover this by adding non-meaningful spaces to make the script unique
enough without changing the functionality, and this modifier did not remove
all the whitespaces (and instead just used the reducing option), this attempt
could be successful. Let’s imagine the original script looks like this:

ls|sort␣-r|head␣-2

An attempt that would still be undetected by a standard string equality
algorithm would be to add spaces around the pipes:

ls␣␣|␣␣sort␣-r␣␣|␣␣head␣-2

These spaces would not get removed but only reduced to one space, and
as a result, the string forms of these two strings would not match.

The second function is a function that converts all the upper-cased letters
in the script to their lower-case equivalent; the rest of the characters remain
the same. This makes the whole future analysis case-insensitive.

3.1.2 Score decorators

We implemented 2 easing in functions and 3 easing in and out functions.
These functions could be used to make lower scores matter less, which might
be useful, especially when dealing with Shell scripts that can be quite similar
just by the nature of the structure of these scripts.

For example, when the assignment says to get the content of a file, ma-
nipulate it in some way and then sort the result, it is almost inevitable that
all the students will write very similar code to get the content of the file and
then to sort the result.

To reduce the final score of such solutions with these similarities, we can
use easing functions to diminish the impact of such small similarities. This
solution might be an elegant way of later avoiding going through lots of false-
positive suspicions that were caused by the fact that the approach to solving
at least part of the assignment was too obvious.

The implemented easing functions are:

• Ease in quadratic

• Ease in cubic

• Ease in and out quadratic

• Ease in and out cubic

• Ease in and out exponential

26

3.1. Detecting plagiarism

Figure 3.2: Graph of the implemented easing functions.

3.1.3 Detection algorithms

The most basic algorithm that we implemented is a simple string equality
algorithm that returns a score of 100 when the scripts are identical, and 0
if one or more characters are different. This solution is suddenly much more
powerful thanks to the previous step that the script has to go through. If the
previous preprocessing removed all the whitespaces and converted the script to
lower-case, the string equality algorithm suddenly becomes a case-insensitive
solution ignoring all whitespaces.

To make the algorithm even better, we decided to use the longest common
substring (LCS) algorithm. With this solution, we can find the biggest part
of the two scripts that they have in common and translate this length into the
score. This is done by calculating the ratio between the length of the LCS and
the length of the shorter script. This ratio is then scaled to be in the correct
range <0; 100>.

Score = LCS length

min{Script 1 length, Script 2 length}
· 100

As a result, this algorithm is an extension of the string equality algorithm
because if the two scripts are entirely the same, then the result of the LCS

27

3. Implementation

will be the full script, and the ratio will be equal to 1 as both the lengths are
the same, resulting in the score to be 100.

After testing the function, we made a second version to be more fitting
for the context of Shell scripts. The main flaw of the algorithm was apparent,
especially when dealing with shorter scripts (under 30 characters), as these
scripts were scoring quite high because of how common some constructs in
these scripts are.

A very simple example of this was when the students were asked to read the
contents of a file to then process. Pretty much every solution of every student
will start with a very similar or identical construct: cat <file> | and if the
scripts are short enough, such substring will make up a big percentage of the
final script.

To counteract this flaw, we decided to introduce a minimal length of the
substring that will nullify the results of the algorithm if the length is under
the threshold. The threshold is determined by the length of the scripts.

3.1.4 Future improvements

This work is supposed to be a solid foundation for any future improvements to
make the detecting algorithm even better. A really big step forward would be
to stop treating the scripts as strings. As mentioned several times in this work,
Shell scripts but any programming code has some constructs and structure.
Trying to find, extract and work with this structure would greatly improve
the possibilities for the detection algorithm.

Such structure is obtainable by doing a syntax analysis, and as a result, we
receive a syntactic tree. The advantage of turning scripts into syntactic trees
is that they perfectly describe the scripts without any redundant information.
But to fully tap into the potential of this solution, it is needed to use an
abstract syntax tree (AST) instead. The main difference is that ASTs describe
the meaning of the code independently of a particular syntax.

To compare these structures, we can use hashing by calculating a hash
for each AST node taking into consideration not only the node itself but also
its children. Such hash then describes not only the node itself but an entire
subtree. When we are then trying to find similarities in the code, we can
compare the hashes to find parts of the tree that are similar.

There are many possible improvements to this solution as well. One of
which might be to detect parts of the scripts that are common across many
solutions and ignore them when comparing the ASTs. Other improvements
could be made when creating the AST. The AST can be treated as an ordinary
tree, allowing us to use common graph algorithms. We can use tree shaking or
algorithms to minify or optimize the tree and compare these versions instead.

We believe a solution of this sort would be great to implement in the future
because it would be immune to any modifications such as renaming variables,

28

3.2. Displaying plagiats

condition/statement reordering, adding additional characters (whitespaces),
etc.[32]

3.2 Displaying plagiats

The apparent improvement on the front-end side of things is to build a better
user interface for displaying the data. The only way in the previous solution
was to look at the data directly in the JSON file. To make it more user-
friendly, we decided to display all the data in the front-end of the application
itself but improve the readability and accessibility.

To create a clear separation between each part of the front-end application,
every logical piece of the application will be in its own component. This
drastically improves the reusability of the code that is written because each
component can be placed in several parts of the application without writing
more code.

The first component is the list of suspicions that will contain all the sus-
picions that the detection algorithm found and display all of the information
about each one. To display all of the suspicions, we used the map() function
that has already been discussed in the chapter about functional programming.
Every item from the list is going to get mapped to JSX, which React can then
display. The basic implementation can look like this:

The JSX is very similar to HTML but has some additional features. One
of the examples of this is { data } - this will actually print the contents of
the variable data instead of what is literally written in the JSX. To display
the culprits, the same technique can be applied as the data about the culprits
is also an array.

Important to note, in JSX class is a keyword and cannot be used the
same way as in HTML. The equivalent in JSX to class is className.

29

3. Implementation

Outputting extensive lists of data like this could be chaotic; the list can
also overflow horizontally or be very long if there is only one item on one
line. To fix any issues like this, we found using flexbox was very useful in this
regard. Flexbox is a module of CSS3 that helps to align and distribute items
in space. There are many different properties one can be set but in this case,
setting it up is very simple – enable flexbox on the parent of the list, set the
direction to be row and enable wrapping when there is not enough horizontal
space:

There are also two ways to aggregate this data - by the student and by
the assignment. This process is straightforward to do because of components.
Components can take props where the data can be passed so the component
can be reused in different parts of the application with different data.

We can filter only the data containing the selected culprit or the suspicions
detected in relation to the selected assignment. After sending this filtered data
to the component, the component will just display it as usual.

To distinguish these types of views on the data, we decided to create 3
pages in Next.js. Next.js will determine the URLs that will be used to access
this page. It determines it by the file’s path. We decided on this structure:

plagiarism
index.tsxURL: /plagiarism/
assignment

[AssignmentPage].tsx.....URL: /plagiarism/assignment/[name]
user

[UserPage].tsxURL: /plagiarism/user/[email]
On the left side is the path within the project and on the right is the

routing that will be used by Next.js. Both the AssignmentPage and the
UserPage have one parameter (indicated in the URL by the square brackets).
We can then take this parameter and use it to filter the data. Or in the other
direction, we can create a link to a specific user’s page by concatenating their
email at the end of the URL.

Apart from the suspicions, another prop that is being passed is information
about what culprit should be highlighted. This is utilized on the page with
data being aggregated around a certain student. We can then highlight the
culprit to be more distinguishable among the other culprits.

30

3.2. Displaying plagiats

3.2.1 Resolving suspicions

At the bottom of every suspicion is a button to resolve that suspicion. The
button has a onClick event that will trigger the resolving process. This
process is isolated from the button itself to accommodate for more sources
to resolve the data. The isolation will help in the future to change how the
resolving is done by changing the resolving process in one place only without
breaking the functionality or creating inconsistencies.

The resolving process will find the suspicion in the dataset and add a tag
to it resolve: true to indicate that the suspicion has already been resolved.

We can then skip suspicions with this tag when displaying the data or
rendering them in a different way to distinguish them from the unresolved
cases. We decided to design a different solution for these suspicions to make
the application more versatile and ready for this situation. This functionality
can be easily changed not just by changing how these suspicions are rendered
but also by changing how the data is fetched. If we exclude the data with this
tag or filter them out at any stage before the render, we can achieve the same
end result but with more versatility as the front-end is still ready and capable
of rendering such suspicions.

Figure 3.3: The end result of the design of the suspicions.

3.2.2 Table of culprits

Table of culprits is another component that shows the teachers all the culprits
in the data and how many cribbed solution they share. This component makes
it much easier to recognize what students the teachers should focus on first. It
also serves as an index of the culprits, so teachers have an easier time accessing
the data aggregated around this particular student.

31

3. Implementation

To improve user experience, the table is sorted by the number of cribbed
solutions the student has made in descending order, but the ordering can be
reversed or even changed to sort by the username of the culprit. The other
user experience feature is pagination. Pagination is necessary because the
number of culprits can be over 100, and the table would be too long. This
is solved by pagination because there are only 10 culprits being displayed at
a time, and the teacher can access other pages using the arrows forward and
backward or by clicking the number of the page.

3.2.3 Most common coworkers

When the teacher aggregates the data by an individual culprit, the application
offers a table of the most common coworkers in relation to the main culprit.
This component helps teachers establish patterns in the data. The table offers
them a number of plagiarism the main culprit shares with the coworker as
well as how many percent of the main culprit’s cribbed solutions have they
cooperated on.

The table also offers different ordering and pagination the same way the
table of culprits does. Clicking on the username of the coworker leads to a new
aggregation based on the clicked user to furthermore examine the relations of
the culprits.

3.2.4 Filtering

Filtering is a great way to further enhance the user experience. The amount of
data can be overwhelming, and trying to find a particular student or clicking
through pages of suspicions could be very time-consuming and frustrating, ev-
ery component that displays some data has a way of filtering them or ordering
them. As every component can access the data through props it can also filter
the data separately to each other. The solution has to be effective as there
could be quite a lot of data to go through.

For example, to filter culprits based on their username, one can use the
ideas from the chapter about functional programming and come up with an
elegant solution like this:

Taking the searched term and storing it in inputValue variable and then
using the filter function to filter out the culprits whose username contains the
searched term. Both the username and the searched term are converted to
lower-case, which makes the searching case-insensitive. The question is when
to call this function as there are several approaches to this.

32

3.3. Data visualization

The first one is to call this function every time the user changes the value
in the search box. This is a user-friendly solution that saves the user time
because everything is automatic. The big problem with this solution is that
the filtering function will be called very frequently, even when the user does
not want to, which can also lead to performance issues. The majority of
the time, the filtering function will be called unnecessarily, and it can also
lead to the browser freezing for some brief moments causing the typing being
unresponsive.

The second approach is the obvious fix to this problem – adding a but-
ton to confirm that typing the searching term has been completed and the
filtering can begin. The problem with this solution is the decrease of the user
experience because there is suddenly an extra step that feels unnecessary and
can get repetitive and even annoying. Also, adding an extra button might
lead to compromises on the designing part as the design might lose structure
or be less responsive, especially when dealing with components that can have
limited space.

The third approach is improving the first solution by utilizing debounce.
Debounce is a function that takes another function func and a number t.
The debounce function calls func after the t milliseconds have passed since
the last call of the debounce function.[33] In practice, this means that the
user can type the search term without the debounce function triggering to
call the filtering function. After the user is done typing the search term and
the chosen time elapses, the filtering will be called, leaving the user satisfied
as he did not have to press any buttons and the application still did what it
is supposed to.

It is important to choose the debounce time carefully - if too low, the
debounce function will not have good enough of an effect, and it will be closer
to the first approach that was described. If the time is too high, the user will
have to wait and might get impatient or irritated by how slow the filtering is
or even might get confused on how to submit the search term as nothing is
happening.

3.3 Data visualization

It is very likely that there will be some obvious patterns formed in the data and
the relations between the plagiarists. It is essential to find the root cause for
why and how the plagiarists cribbed their solutions. There are many reasons
why these patterns should form, for example, the students might cooperate
because they are friends or have some connections, these groups of friends
might be the sizes of 2 or 3 people but can also get above the size of 10
or even bigger depending on the size of the course. Finding these patterns
between 2 or 3 people might not be that hard, but with this number getting
larger, it becomes much more difficult.

33

3. Implementation

Data visualization helps to combat this issue because — if done right —
these patterns should become very apparent. The chosen solution is to display
a network graph of all the culprits and their connections. There are two types
of objects that the graph is working with - nodes being the culprits and links
being the relations between them (having the same solution on at least one
assignment). In TypeScript, these two types of objects could be described like
this:

We can then iterate over all the suspicions, take all the culprits and find
all the combinations of the culprits. It is important because of performance
to truly find only the combinations and not permutations because if there is
a link from node u to node v a link from node v to node u does not provide
any additional information and might cause performance issues because every
link will get doubled.

To avoid this problem, we created a solution that checks if a link is already
included in the graph. If the link is already in the set, then its count gets
increased. This number is later used to calculate the thickness of the link.

To fully tap into the potential of using nivo’s network graph component,
additional information can be added to the graph by changing the appearance
of the nodes and links. Nivo’s network graph support changing:

• Node’s color

• Node’s radius

• Node’s border width

• Node’s border color

• Link’s thickness

• Link’s color

This can be used to display 6 different additional categories of information.
The two most important types of information that should be indicated in the
graph is the number of cribbed solutions a student has made, which we decided
to indicate by changing the node’s radius. The other important information is
the number of common cribbed solutions two students have, which is indicated

34

3.3. Data visualization

by the thickness of the link between them. We believe this is a very natural
decision and that the information is going to get understood at first glance.

The graph is displayed on the page with all the plagiarism as well as on
the culprit’s plagiarism page (page with the data aggregated by a particular
student), where this main culprit will be highlighted by a different color. In
this mode, the user can set a depth in which the algorithm will look for other
coworkers transitively - e.g., with depth set to 1, the graph will only show the
direct coworkers of the main culprit, but with depth set to 2, the graph will
also show the coworkers of the coworkers already in the graph.

This is accomplished by an algorithm that finds all the coworkers of the
main culprit. The algorithm then does the same thing for all the new culprits
found in the previous depth until it is at the wanted depth.

Tooltip is another place where even more information can be displayed. A
big drawback of using a tooltip is that it is not visible until the user hovers
over a node; therefore, the user cannot access the information stored in the
tooltip just by looking at the graph. This is why we decided that this is
the place to put the information that would otherwise clutter the graph if
displayed directly there – the username of the culprit that is represented by
this node as well as the number of cribbed solutions.

3.3.1 Graph settings

Graph settings is a component that makes the graph much more flexible. First
of all, the user can change the depth as discussed before but also disable both
the dynamic thickness of the links based on the number of common cribbed
solutions as well as the dynamic radius of the nodes. Another possibility is to
enable the animations to see more clearly how the graph is transforming or
disable them to improve performance.

The user can also manually override the repulsivity between the nodes
– how much should the nodes repel themselves. Sometimes the graph can
overflow, and this is a safety measure, so the user has full control to fix this
issue if it happens.

To make this component maintainable and also expandable in the future,
the configuration is stored in an object like this:

35

3. Implementation

And then, just by setting the func to a different function that can take,
for example, the node and calculate the radius for that specific node, we
can completely change the way the graph is being rendered. To allow the
user to change the settings, we can use the features of React such as the
useState() hook to make a reactive variables that keep the information about
the user’s configuration and based on these variables, the settings can be
changed accordingly.

3.3.2 List of culprits

Unfortunately, nivo’s network graph does not support any other interactivity
with the graph other than the tooltip. A feature that would make moving
from one student to another much easier is an onClick event that would be
attached to each of the nodes and would take the teacher to the page with
this user’s plagiarism data. This feature is requested by the nivo’s community
but not yet implemented.

It would make some sense to move this link to the tooltip, but this is also
not possible due to the design of the tooltip. It is impossible to hover over
the tooltip and click on the link as the tooltip’s position is moving along with
the cursor.

This forced us to add another sub-component to the graph. The sole
purpose of this component is for the teachers to quickly find the student and
get taken to the page with this particular student’s plagiarism data after
clicking on the student. This component also supports a quick search box to
make this process faster.

36

3.3. Data visualization

3.3.3 Responsivity

To make this graph component fully responsive, we can make use of the flexbox
solution again, but this time it is not ideal. The problem is that the 3 compo-
nents on the screen are by default sorted (from left to right) like this: Settings
- Graph - List of culprits and after the user makes the screen smaller
the last component will get separated: Settings - Graph and below that:
List of culprits. This flexbox solution is very practical when dealing with
lists of data that will automatically get aligned, but with just 3 components,
this solution lacks the flexibility needed to create the perfect user experience.

To make the solution truly flexible, we used CSS’s grid which allows us to
set the areas for each of the components. To set up the grid, the components
need to be wrapped in a common parent. The parent can get the class of
wrapper to be later referenced in the CSS file.

The code above will create 3 areas named settings, graph and culprits
and set the width of both the settings and the culprits area to be at least
160px and at most 15% of the whole width of the wrapper. The graph area
will take up the rest of the width remaining.

In other words, both the settings and the culprits areas will be at 15%
of the width of the wrapper, but if the width of the wrapper gets too small,
they will not shrink under 160px, and the graph area will start shrinking
instead.

To change the layout when the width of the browser is too small, we can
use media queries that will restrict the CSS code within them to be only
applicable when the width of the screen is in a certain range.

In this example, the rules inside the media query will only be used if the

37

3. Implementation

width of the screen is at least 1000px and at most 1500px. If this condition
is true, the areas will be in two rows – settings area will be in the first row,
and the graph and culprits areas will be in the second row.

The first row’s height will be determined by the height of the content inside
of it (by the content of the Settings component). The second’s row height
will be at least 500px and more.

Then by assigning the area to each of the components using the grid-area:
<name> rule, the component will be fitted into the assigned area.

This solution is very flexible as by changing the placement of the areas in
the wrapper, one can change the whole design of the component or potentially
the whole page.

Because the list of culprits component can get very long, we decided to
restrict the height of this component, and any elements overflowing vertically
are then hidden but still accessible using the scrollbar that is specific to the
component.

Figure 3.4: The final design of the network graph component.

3.4 Data export
The application also offers the option to export the data. There are 3 options
to choose from:

• CSV

• JSON minified - valid JSON file that has been compressed by removing
all the unnecessary information (tabs, whitespaces, etc.)

• JSON pretty - formatted JSON file to improve human-readability

38

3.4. Data export

The format can be selected from a dropdown selection menu, and after
clicking the download button, the user will receive the file containing the data
in the selected format.

By creating a reactive variable using the useState() hook, we can track
which format the user has chosen and after onClick event is called on the
download button, we can convert the data to the selected format and send it
to the user.

It is implemented as a React component which makes this solution reusable.
This component can potentially be placed in different parts of the application,
beyond just the plagiarism part, to export data for the user.

Figure 3.5: The design of the export component.

39

Chapter 4
Testing and documentation

“Testing is the process of executing a program with the intent of finding er-
rors.” [34] Every software has to go through at least some form of testing. The
most basic form of testing is manual testing which is also the most primitive
one but also used the most. Manually trying, what the program does after a
certain input is given, is very time-consuming, which also demotivates devel-
opers and testers to test the functionality thoroughly enough. But there are
much better ways to test software using automation and writing some addi-
tional code that will test the functionality in-depth, and it takes much less
time to do so than manual testing would.

The most common types of tests are:

• Unit testing - testing individual classes, functions, . . .

• Integration testing - testing interactions between components

• System testing - testing the system as a whole and if it satisfies the
specified requirements

We also made sure that the code is clean and self-documenting by hav-
ing a uniform naming system. The code is also commented inside the code
using Python’s docstring comments and using JavaScript’s JSDoc but also
commenting on the important parts of the code.

4.1 Unit tests
As said above, unit tests usually test a singular part of the application. The
main idea of unit tests is that they should be fast and isolated. Unit tests
should be ran very frequently to check that the most basic logic is still func-
tional and works as intended. The isolation is important because if a unit
test fails, the isolation of that unit test makes sure that the deficit is within

41

4. Testing and documentation

that one individual part of the application, making finding and fixing the issue
much quicker as the developer knows exactly in which part of the application
the issue is.

4.2 Unit Testing in React using JEST

“Jest is a delightful JavaScript Testing Framework with a focus on simplicity.
It works with projects using: Babel, TypeScript, Node, React, Angular, Vue
and more!” [35]

As React is built by Facebook, the obvious tool for testing (not only)
React applications is Jest that is also developed by Facebook. Jest offers
good documentation, and there are a lot of resources as it is one of the most
used tools for testing JavaScript and makes testing it very easy while providing
very clear messages after the testing is done, which makes it effortless to find
which part of the application is not working.

4.2.1 Fixtures

“A test fixture is a fixed state of a set of objects used as a baseline for running
tests. The purpose of a test fixture is to ensure that there is a well known and
fixed environment in which tests are run so that results are repeatable.” [36]

To create these fixtures, we used some real data that the previous version
of the LearnShell’s plagiarism detection algorithm got. Keeping in mind that
unit tests should be compact and also later they could be used as a secondary
documentation to the code, we picked only a few records from the dataset,
which makes it much easier for a human to check what the tested functions
do by glancing at the input and the output.

4.2.2 Testing the utility functions

We focused mainly on testing the utility functions mainly because they contain
a big majority of the logic of this work. As mentioned in previous chapters
trying to write code in a more functional way is very beneficial. Functional
code has no inner state, meaning that testing such code requires a lot fewer
tests, and the code itself is much less prone to errors. Simply testing the
input against the expected output is all one has to do to test such functions,
whereas testing code that has some inner state is not as simple. Such function
can change its state from one to another several times until the error in the
code shows itself resulting in an unexpected result. That is why all the utility
functions are stateless and immutability was a priority.

42

4.3. Unit testing in Django using unittest

4.3 Unit testing in Django using unittest

The preferred way to test Django code is using unittest, which we ultimately
decided to use because of how natural choice it is as it is a module of the
Python’s standard library.

Unittest uses the class-based approach to writing tests. Each test class
can have many different methods that together make up the test suite to test
the chosen part of the application.

We focused mainly on testing the utility functions as they have a clear in-
put/output relation that can be easily tested. These functions also make up a
big part of the logic behind the detection algorithm, so focusing on thoroughly
testing, for example, the LCS algorithm was crucial to the correctness of the
results returned by the detection algorithm as a whole.

Testing the code was again much more simple by adhering to the principles
introduced in the previous section.

4.4 User documentation

The front-end part of this work is available to the teachers as part of the
LearnShell web application with the URL suffix /plagiarism. This is the
main page, where all the plagiarism data is displayed. Data from this page
can be exported by first selecting a format and then clicking the Download
button.

The second important page is /plagiarism/user/[email] – a page with
plagiarism data of a user-specified by their email. This page can be accessed
by clicking on a username in any component of the plagiarism module.

The /plagiarism/assignment/[name] can be used to display the suspi-
cion detected in the context of a specified assignment.

4.4.1 List of plagiats

The list of plagiats displays all the culprits with a shared solution. At the
bottom of every suspicion is a Resolve button to resolve the suspicion.

The data can be filtered by typing a name of an assignment or a username
in the search field. There are also 4 sorting options in the selection menu:

• Culprits count ascending

• Culprits count descending

• Assignment name ascending

• Assignment name descending

43

4. Testing and documentation

4.4.2 Graph of culprits

The most dominant part of the page is the graph of culprits, which shows the
relations between all the culprits. By default, the bigger the node is, the more
cribbed solutions the student has, and the thicker the line between the nodes
is, the stronger the relationship between the two culprits.

More information is accessible by hovering the cursor over a node. This
will trigger the tooltip, which can be used to display the email of the culprit,
the number of cribbed solutions and the depth.

The graph displays all the culprits when on the main page, but it will
display only the direct coworkers when a particular student is selected. The
main student will be displayed in a different color and will have a depth of 0.
The direct coworkers will have a depth of 1. There is a slider in the settings
area to increase this depth to show more students.

The nodes area can be used to go to the page of a particular student.
Typing a part of the username in the search box can speed up searching for a
specific user.

There are more settings that can be changed in the settings area.
The first setting is for enabling manual repulsivity. When manual repul-

sivity is enabled, a slider appears for setting the value. If the number is high,
the nodes will repel each other more, resulting in the graph to be more sparse.
If the number is low, the nodes will be closer to each other, and the graph will
be denser. This feature is very useful when the automatic repulsivity fails to
display the graph correctly, and the graph overflows and part of it is hidden.

The other two options are to disable the dynamic radius of the nodes and
the dynamic thickness of the links. This is useful when nodes or links are too
big and are covering up part of the graph.

The last option is to enable to see how the graph is changing, which is
especially helpful when adjusting the depth. This option is recommended to
be disabled when having performance issues.

It is needed to click on the Apply button for the changes to have any effect.

4.4.3 Tables

Any table with data can be sorted by clicking on the column. There are 3
stages that are indicated by an arrow in which the column is:

• Sorting ascending – Arrow up

• Sorting descending – Arrow down

• Not sorting – No arrow

The tables only display 10 rows at a time. The pagination below the table
can be used to switch to a different page by either clicking the arrows to move
by 1 page or by clicking a number to move to the specified page.

44

Conclusion

The goal of this work was to design and implement a working user interface
for teachers to inspect, analyze and resolve plagiarism suspicions and improve
the detection algorithm.

Such solution was implemented and described in this bachelor thesis. This
solution is ready to be deployed in the live version of LearnShell for the next
semester. Deploying it should be a very simple task as the whole solution is
built on top of all the already existing LearnShell’s modules. This solution
works and satisfies all of the requirements. Teachers can aggregate suspicions
by assignments, students or inspect all the suspicions at once. There are
several useful statistics extracted from the data that teachers can display
as well as a visualization using nivo’s network graph for teachers to see the
clusters of culprits and recognize patterns.

The detection algorithm was improved to process and assign numerical
values to any two scripts. The whole detection algorithm is very flexible, and
we think spending extra time on crafting such a flexible solution that can be
easily expanded upon is well worth it. We believe this time is not wasted as
someone will surely appreciate this flexibility in the future while improving
the algorithm furthermore, using the suggestions provided in this work.

In the end, this work built up a solid foundation for any LearnShell’s
future improvements that can be made both on the front-end and the detection
algorithm.

45

Bibliography

[1] University of Oxford. Plagiarism. [online], 2021, [accessed: 2021-04-21].
Available from: https://www.ox.ac.uk/students/academic/guidance/
skills/plagiarism

[2] Streefkerk, R. Types of plagiarism. [online], [accessed: 2021-04-
21]. Available from: https://www.scribbr.com/plagiarism/types-of-
plagiarism/

[3] xenteros; Laurel. Plagiarism and using/copying code from Stack Overflow
and submitting it in an assignment. [online], December 2016, [accessed:
2021-04-21]. Available from: https://meta.stackoverflow.com/
questions/339152/plagiarism-and-using-copying-code-from-
stack-overflow-and-submitting-it-in-an-as

[4] StackOverflow, Inc. Public Network Terms of Service. [online], May 2020,
[accessed: 2021-04-21]. Available from: https://stackoverflow.com/
legal/terms-of-service#licensing

[5] Commons, C. Attribution-ShareAlike 4.0 International (CC BY-SA
4.0). [online], [accessed: 2021-04-21]. Available from: https://
creativecommons.org/licenses/by-sa/4.0/

[6] Harary, F. Graph Theory. Addison-Wesley, 1969, ISBN 0201027879.

[7] Abstract Syntax Tree. [online], [accessed: 2021-04-24]. Available from:
https://deepsource.io/glossary/ast/

[8] Wikimedia Foundation, Inc. Abstract syntax tree. [online], [ac-
cessed: 2021-05-02]. Available from: https://en.wikipedia.org/wiki/
Abstract_syntax_tree

[9] Elliott, E. Composing Software: An Exploration of Functional Program-
ming and Object Composition in JavaScript. Independently Published,
2018, ISBN 9781661212568.

47

https://www.ox.ac.uk/students/academic/guidance/skills/plagiarism
https://www.ox.ac.uk/students/academic/guidance/skills/plagiarism
https://www.scribbr.com/plagiarism/types-of-plagiarism/
https://www.scribbr.com/plagiarism/types-of-plagiarism/
https://meta.stackoverflow.com/questions/339152/plagiarism-and-using-copying-code-from-stack-overflow-and-submitting-it-in-an-as
https://meta.stackoverflow.com/questions/339152/plagiarism-and-using-copying-code-from-stack-overflow-and-submitting-it-in-an-as
https://meta.stackoverflow.com/questions/339152/plagiarism-and-using-copying-code-from-stack-overflow-and-submitting-it-in-an-as
https://stackoverflow.com/legal/terms-of-service#licensing
https://stackoverflow.com/legal/terms-of-service#licensing
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://deepsource.io/glossary/ast/
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree

Bibliography

[10] Django Software Foundation. Meet Django. [online], [accessed: 2021-04-
22]. Available from: https://www.djangoproject.com/

[11] MDN contributors. Django introduction. [online], [accessed: 2021-04-22].
Available from: https://developer.mozilla.org/en-US/docs/Learn/
Server-side/Django/Introduction

[12] MDN contributors. Introduction to web APIs. [online], [accessed: 2021-
04-22]. Available from: https://developer.mozilla.org/en-US/docs/
Learn/JavaScript/Client-side_web_APIs/Introduction

[13] Opidi, A. GraphQL vs. REST: A Comprehensive Comparison. [online],
[accessed: 2021-04-22]. Available from: https://blog.api.rakuten.net/
graphql-vs-rest/

[14] Red Hat, Inc. What is a REST API? [online], [accessed: 2021-04-22].
Available from: https://www.redhat.com/en/topics/api/what-is-a-
rest-api

[15] Stubailo, S. GraphQL vs. REST. [online], [accessed: 2021-04-22]. Avail-
able from: https://www.apollographql.com/blog/graphql-vs-rest-
5d425123e34b/

[16] The GraphQL Foundation. A query language for your API. [online], [ac-
cessed: 2021-04-22]. Available from: https://graphql.org/

[17] The GraphQL Foundation. Introduction to GraphQL. [online], [accessed:
2021-04-22]. Available from: https://graphql.org/learn/

[18] howtographql.com. GraphQL is the better REST. [online], [accessed:
2021-04-22]. Available from: https://www.howtographql.com/basics/
1-graphql-is-the-better-rest/

[19] The GraphQL Foundation. GraphQL Best Practices. [online], [ac-
cessed: 2021-04-22]. Available from: https://graphql.org/learn/
best-practices/

[20] Trocki, W. GraphQL performance explained. [online], [accessed: 2021-04-
22]. Available from: https://medium.com/@wtr/graphql-performance-
explained-cb4b43412fb4

[21] Microsoft. What is TypeScript? [online], [accessed: 2021-04-23]. Available
from: https://www.typescriptlang.org/

[22] MDN contributors. TypeScript support in Svelte. [online], [accessed:
2021-04-23]. Available from: https://developer.mozilla.org/en-
US/docs/Learn/Tools_and_testing/Client-side_JavaScript_
frameworks/Svelte_TypeScript

48

https://www.djangoproject.com/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://blog.api.rakuten.net/graphql-vs-rest/
https://blog.api.rakuten.net/graphql-vs-rest/
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.apollographql.com/blog/graphql-vs-rest-5d425123e34b/
https://www.apollographql.com/blog/graphql-vs-rest-5d425123e34b/
https://graphql.org/
https://graphql.org/learn/
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
https://graphql.org/learn/best-practices/
https://graphql.org/learn/best-practices/
https://medium.com/@wtr/graphql-performance-explained-cb4b43412fb4
https://medium.com/@wtr/graphql-performance-explained-cb4b43412fb4
https://www.typescriptlang.org/
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Svelte_TypeScript
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Svelte_TypeScript
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Svelte_TypeScript

Bibliography

[23] MDN contributors. Getting Started. [online], [accessed: 2021-04-23].
Available from: https://developer.mozilla.org/en-US/docs/Learn/
Tools_and_testing/Client-side_JavaScript_frameworks/React_
getting_started

[24] Facebook, Inc. A JavaScript library for building user interfaces. [online],
[accessed: 2021-04-23]. Available from: https://reactjs.org/

[25] Facebook, Inc. Getting Started. [online], [accessed: 2021-04-23]. Available
from: https://reactjs.org/docs/getting-started.html

[26] Banks, A.; Porcello, E. Learning React: Functional Web Development
with React and Redux. O’Reilly Media, Inc., first edition, 2017, ISBN
1491954620.

[27] Vercel, Inc. The React Framework for Production. [online], [accessed:
2021-05-01]. Available from: https://nextjs.org/

[28] Coper, F. The Next.js handbook. 2019, https://flaviocopes.com/page/
nextjs-handbook/(visited 2021-04-20).

[29] Bostock, M. D3.js. [online], [accessed: 2021-04-20]. Available from:
https://d3js.org/

[30] vis.js community. vis.js. [online], [accessed: 2021-04-20]. Available from:
https://visjs.org/

[31] Benitte, R. nivo. [online], [accessed: 2021-04-20]. Available from: https:
//nivo.rocks/

[32] Ďuračík, M.; Krsak, E.; et al. Using concepts of text based plagiarism
detection in source code plagiarism analysis. 2017.

[33] veksenn; zthall. Debounce. [online], [accessed: 2021-04-29]. Available
from: https://lodash.com/docs/#debounce

[34] Myers, G. J. The art of software testing (2. ed.). Wiley, 2004, ISBN 978-
0-471-46912-4.

[35] Facebook, Inc. Jest. [online], 2021, [accessed: 2021-04-20]. Available from:
https://jestjs.io/

[36] Hawks, P. Test fixtures. [online], June 2017, [accessed: 2021-04-20].
Available from: https://github.com/junit-team/junit4/wiki/test-
fixtures

49

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/React_getting_started
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/React_getting_started
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/React_getting_started
https://reactjs.org/
https://reactjs.org/docs/getting-started.html
https://nextjs.org/
https://flaviocopes.com/page/nextjs-handbook/
https://flaviocopes.com/page/nextjs-handbook/
https://d3js.org/
https://visjs.org/
https://nivo.rocks/
https://nivo.rocks/
https://lodash.com/docs/#debounce
https://jestjs.io/
https://github.com/junit-team/junit4/wiki/test-fixtures
https://github.com/junit-team/junit4/wiki/test-fixtures

Appendix A
Acronyms

AST Abstract syntax tree

CSV Comma separated values

HTTP Hypertext transfer protocol

IDE Integrated development environment

JSON JavaScript object notation

JSX JavaScript XML

LCS Longest common string

REST Representational state transfer

TOS Terms of service

UI User interface

URL Uniform resource locator

UX User experience

51

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format

53

Appendix C
Culprits graph with a selected

culprit

55

Appendix D
Plagiarism page

57

Appendix E
Plagiarism page with a selected

culprit

59

	Introduction
	Essential concepts and technologies
	Theoretical concepts
	Plagiarism
	Graph theory
	Abstract syntax tree

	Functional programming

	Technologies
	Django
	API Architectures
	REST
	GraphQL
	GraphQL vs REST

	TypeScript
	React
	Next.js

	Analysis
	Existing solution
	Requirements
	F1 - Improving the detection algorithm
	F2 - Display duplicate submissions
	F3 - Display duplicate submissions of a particular student
	F4 - Display duplicate submissions of a particular assignment
	F5 - Resolving suspicions
	F6 - Exporting the data
	F7 - Data visualization
	NF1 - Front-end extends on the existing solution
	NF2 - Command-line detecting tool
	NF3 - Responsivity

	Proposed solution
	Choosing a data visualization library
	D3.js
	vis.js
	nivo

	Implementation
	Detecting plagiarism
	Script modifiers
	Score decorators
	Detection algorithms
	Future improvements

	Displaying plagiats
	Resolving suspicions
	Table of culprits
	Most common coworkers
	Filtering

	Data visualization
	Graph settings
	List of culprits
	Responsivity

	Data export

	Testing and documentation
	Unit tests
	Unit Testing in React using JEST
	Fixtures
	Testing the utility functions

	Unit testing in Django using unittest
	User documentation
	List of plagiats
	Graph of culprits
	Tables

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	Culprits graph with a selected culprit
	Plagiarism page
	Plagiarism page with a selected culprit

