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Abstrakt

Tato práce se zabývá analýzou národních časových řad denního počtu nově nakažených
virem COVID-19. Data jsou převzatá ze Světové zdravotnické organizace. Ve fázi
předzpracování dat jsou národní řady přeškálovány na počet obyvatel v dané zemi.
Datům je snížena dimenzi s pomocí metody Piecewise aggregate approximation a jsou
odstraněny všechny složky časových řad s vyjímkou trendu. V práci jsou definovány čtyři
metody porovnání časových řad jako Dynamic Time Warping (DTW ), Edit Distance
With Real Penalty (ERP), Longest Common Subsequence Similarity (LCSS ) a Diskrétní
Fréchetova vzdálenost. V další fázi je na předzpracovaná data aplikován algoritmus
aglomerativního hierarchického shlukování s použitím průměrné párové vzdálenosti a
využitím předchozích metrik. V poslední fázi jsou zvoleny výsledné počety shluků pro
všechny metriky s využitím dendrogramu. V závěru práce se nachází vykreslené shluky,
které jsou diskutovány spolu s vlastnostmi použitých metod měření vzdálenosti.

Klíčová slova časová řada, COVID-19, měření podobnosti/vzdálenosti časových řad,
DTW, ERP, LCSS, Fréchetova vzdálenost, hierarchické shlukování, Piecewise aggregate
approximation

Abstract

This thesis analyses the national time series of newly infected people by COVID-19.
The data are taken from the World Health Organization. In the preprocessing phase
are the national time series scaled to respect the size of the population. The dimension
is reduced using the Piecewise aggregate approximation and just the trend component
of the time series is taken into account. In the thesis, there are defined four measures
of time series (dis)similarity like Dynamic Time Warping (DTW ), Edit Distance With
Real Penalty (ERP), Longest Common Subsequence Similarity (LCSS ), and Discrete
Fréchet distance. In the following phase, the preprocessed data are clustered using the
agglomerative hierarchical clustering algorithm with the use of the average linkage that
exploits the defined measures. In the last phase, the resulting count of clusters is chosen
for each metric using the dendrogram. In the conclusion of this thesis, there are the
resulting plots, which are further discussed together with the properties of the distance
measures.

Keywords time series, COVID-19, (Dis)similarity measure of time series, DTW, ERP,
LCSS, Fréchet distance, hierarchical clustering, Piecewise aggregate approximation
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Chapter 1

Introduction

Since the year 2019, we face a new type of coronavirus called COVID-19 (COrona VIrus
Disease 2019). COVID-19 is very infectious, so it has quickly influenced our lives. World
Health Organization declared the outbreak a pandemic in March 2020. The first case
registered was in December 2019 in Wuhan, China.

The virus spreads through aerosols or tiny liquid droplets in the air. As of 16 March,
there are over 120 million confirmed cases and about 2.6 million deaths, which causes
the pandemic to be one of the deadliest of all time. The majority have mild symptoms,
but there are groups with severe symptoms, especially older people. Symptoms onset
in one to fourteen days after infection, but some individuals have no symptoms at all.
Some of those that do not have noticeable symptoms yet can still be infectious. The
transmission of COVID-19 differs from nation to nation because of different conditions
for the virus.

Governments introduced measures to mitigate the outbreak, but they vary between
states a lot. These measures include wearing a face mask, social distancing, movement
restriction, quarantine, and so on.

There is a large amount of national data concerning this topic like daily new cases,
deaths, recoveries, tested people, vaccine utilization, etc.

This thesis aims to compare the national time series using some (dis)similarity mea-
sures and then discuss the similarities and differences of the results and eventually the
appropriateness of the measures. To achieve the task, we use time series clustering to
compare the time series and then we do a comparison on the resulting clusters and/or a
tree called dendrogram.

The aim is to do just the technical analysis and not to interpret the results from the
perspective of geography, sociology, and so on… The interpretation requires additional
knowledge.

This work can help governments to compare other states and adapt their measures.
Results could also be used as a basis for future research on this topic.

The structure of this thesis is divided into the following 3 chapters: Theory and
methods, Application to COVID-19 time series, and Discussion and conclusion. In the
first one, we define all distance measures and some other methods. In the Application
to COVID time series, we apply the defined methods to the time series, and in the last
chapter, we discuss the results.

1



2 Chapter 1. Introduction

In the rest of this chapter, we present some existing work concerning this topic, and
then we introduce the data source.

1.1 Related work
There is a lot of research concerning the time series data analysis of COVID-19. A
big part of the research is dedicated to forecasting some variables like daily new cases,
deaths, filled hospital beds, etc. [1],[2],[3],[4],[5] Some try to find some correlation with
other variables such as air temperature, humidity, air pollution, etc. [6],[7],[8],[9] The
majority devotes just to a specific region rather than to the whole world or a continent.
Just a few of the most similar are discussed.

The first one [10] takes data from Johns Hopkins University [11] just for the USA.
Every time series contains data from the day when the 5th case was confirmed until
June 21st, 2020, and contains daily new cases and daily death counts. The time series
are clustered using the Dynamic Time Warping distance measure, which can handle
different time series lengths. A parametric approach is proposed that considers daily
new cases and the daily death toll together in one distance measure. The hierarchical
clustering algorithm created clusters using the single linkage method. Nine clusters were
obtained using the Calinski-Harabasz criterion. 2 big clusters had 18 and 14 countries,
and 3 clusters had just a single country that had unique behavior. Different behavior
was observed in the eastern and western parts of the USA. A representative from each
cluster was selected, and a prediction was made using the Logistic, Gompertz, and SIR
mathematical models.

The second one [12] took data of United States of America, Spain, Italy, Germany,
United Kingdom, France, and Iran. The data source was the World Health Organization
and contained daily new cases and death counts. Time series for each country recorded
data from 22 February 2020 up to 18 April 2020. First of all, they studied the correlation
between confirmed cases, total deaths, and population size. They found that there is
a strong positive correlation. Based on previous observation, the data were rescaled to
the population size of the USA. The fuzzy clustering was applied to the preprocessed
data. The clustering results indicated that Italy and Spain’s outbreak was very similar
and different from other countries.

The third one [13] used data of 191 countries from the Our World In Data [14]. For
each country, a time series was formed containing daily new cases of 100 days starting
from the day when the 10th case was confirmed. Data are smoothed using a moving
average. The paper used the Pearson correlation coefficient transformed to the correla-
tion distance that forms a metric space. A distance matrix containing the distance for
each pair of time series was created. They used graph theory to cluster the data. The
problem was represented as a complete graph where the time series were nodes, and each
edge from node a to node b has a cost assigned according to the distance measure. Then
the Kruskal’s algorithm was applied to get the minimal spanning tree (MST) of the
graph. Based on the MST, a new distance metric was defined called “the subdominant
ultrametric distance”. This metric was used to cluster the data using the hierarchical
algorithm. According to the stopping rules for the clustering algorithm, four clusters
were obtained. Cluster 1 had 104 members and tended to continue to grow. One of the
reasons stated was a higher level of poverty. Cluster 2 had 43 countries and was the
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first to reach the peak of daily infections and quickly entered into a decline phase. This
cluster was composed of small countries and islands, and thus the authors highlight the
importance of geography as a key factor. Cluster 3 had 43 countries, and after a steep
increase, it started to decline. This cluster also had the highest number of deaths and
the oldest age group, and thus the authors underline the importance of protecting people
in risk factor groups. The last cluster was formed just by Mongolia and a special time
series that was the average of all countries.

The fourth one [15] used data of daily new cases in the USA from the Johns Hopkins
University [11]. The data were from March 22, 2020 to July 25, 2020. First of all, the
time series were smoothed using the 7–day moving average, then they represented the
data as a matrix X of dimension n ×m, where n was the number of observations (49
in this case) and m was the number of days (126 in this case). Then the matrix was
represented as X ≈WH where W is a matrix of coefficients in rows with dimension n×r
and H is a matrix of basis vectors in columns r×m, r was selected using cross validation
as 12. The “weighted nonnegative factorization” algorithm was used to get the matrices
W and H. Based on the previous procedure, the k-means algorithm was used and the
coefficient matrix W was passed as an input. The hyperparameter k was selected using
the elbow method as 7. Arizona and Louisiana were singletons in their clusters and there
were two big clusters with 13 and 21 states. Compared to the [10] article, the structure
of the clusters seems quite the same, as there are two big clusters and a few singletons.
On the other hand, the clusters’ content is fairly different, which may be because this
work did not take daily death counts into account compared to the other one. They
also applied previous procedures to each week starting from March 22, 2020, separately
to determine if there is a significant change in the clusters’ structure over weeks. They
found a structural change in the period before and after May 30. They concluded that
this change of structure could be due to business reopening in most states.

1.2 Data

Data are taken from the World Health Organization [16] on 14 April 2021. There are
multiple data sets: daily new cases and deaths, latest reported counts, and vaccination.
The daily new cases and deaths data set is used for analysis, and the latest reported
counts data set is used to get the population size for each country. These data sets
contain data for countries from all over the world. The structure of the data is in tables
1.1 and 1.2. The reported dates of cases represent case detection as opposed to symptom
onset. As they say, the data may not always be accurate: [16]

“Case detection, definitions, testing strategies, reporting practice and lag times
(e.g., time to case notification, and time to reporting of deaths) differ between
countries, territories and areas. These factors, amongst others, influence the
counts presented with variable under or overestimation of true case and death
counts, and variable delays to reflecting these data at a global level. Due to
differences in reporting methods, cut-off times, retrospective data consolidation,
and reporting delays, the number of new cases may not always reflect daily totals
published by individual countries, territories, or areas. Cases and deaths re-
ported from international conveyances, included in global totals but not reflected
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Table 1.1 Structure of the WHO daily new cases and deaths data set [16]

Field name Description
Date_reported Date of reporting
Country_code ISO Alpha-2 country code
Country Name of country
WHO_region WHO regional offices
New_cases Count of new cases for this date
Cumulative_cases Sum of all cases to this date
New_deaths Count of new deaths for this date
Cumulative_deaths Sum of all deaths to this date

Table 1.2 Structure of the WHO latest reported counts data set [16]

Field name Description
Name Country, territory, area
Cases - cumulative total Total cases reported to current date
Cases - cumulative total per 100000 pop-
ulation

The previous one scaled

…

in epidemiological curves as not associated with a country or region.”

Counts include both domestic deaths and deaths of foreigners that died in that country.
In this work, all of these distortions are assumed to be insignificant, so they are ignored
for simplicity. Additionally, the tests do not have sensitivity and specificity equal to
100%, so we will also do not consider it.

There are some cases when a country has reported daily new cases and deaths due
to COVID-19, and then after some time, the data was invalidated. For example, when
a country reports some newly infected people and then finds out that the tests were
wrong. As a result of the updates, there are some records with negative daily new cases
and deaths.



Chapter 2

Theory and methods

In this chapter, we start with defining a time series. Then we define the used measures
of (dis)similarity. We also introduce the data clustering and a clustering algorithm.
Finally, we show a dimensionality reduction technique for time series and the average
time series of unequal lengths.

2.1 Time series

Time series is a set of observations in time, more formally [17]:

▶ Definition 2.1. Let (Ω,F , P ) be a probability space and T a set of indices interpreted
as time. Time series is a set {Xt, t ∈ T}, where Xt is a random variable from (Ω,F , P )
for every t.

In this thesis, we will use just Xt ∈ N0 for every t from T ⊆ Z.
Time series has the following properties [17]:

Trend component: defined as a long-term evolution of the mean value

Seasonal component: periodically repeating pattern in the time series with a rela-
tively regular period

Cyclic component: fluctuations that do not have a fixed period

Remainder component: noise that the previous components can not describe

This definition is quite vague because the cyclic or even seasonal components can be
confused with the trend in a shorter time section.

Time series can be decomposed in the previous components and expressed with the
following models:

Additive model: Yt = Tt + St + Ct +Rt

Multiplicative model: Yt = Tt · St · Ct ·Rt

5
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Figure 2.1 Components of the multiplicative model of a time series

Where Yt, Tt, St, Ct and Rt are the values of the time series, the trend component, the
seasonal component, the cyclic component, and the remainder component in the time t
respectively. The trend and cyclic components are often merged [17],[18]. In Figure 2.1
is a time series decomposition of the multiplicative model using moving averages. The
trend and cyclic components are merged into one.

One way to decompose the time series is to use the moving average method [18],
but there is an assumption that the seasonality period has a constant length. In this
method, the trend and cycle components are merged into trend–cycle component. We
define the moving average in a little different way than in [18] because it is handy in
another section. A moving average MAm of size m for a time series X = x1, x2, . . . , xn
of length n is defined as:

MAm
i =

1

m

i+m−1∑
j=i

xj .

The moving average is defined just if the time series has a length of at least m and just
for 1 ≤ i ≤ n−m+1. The moving average is shifted to the left compared to the original
definition, but it is not a problem for us. The shift can be seen in Figure 2.2 where is a
MA5 of a time series.

Using the moving average, we can get the trend–cycle component. At first, we need to
determine the size m of the period of the seasonality component. We will call seasonality
elements the elements that form the period. We can estimate the m, for example, from a
chart. When we get the m then we compute the MAm of the time series. We know that
there are m seasonality elements, and the MAm

i contains each exactly once, so we will
presume that the seasonality and remainder variances are averaged out. The blue curve
in Figure 2.2 is the sinus function with distortions generated by a uniform distribution
in the range from -0.5 to 0.5. We can see that the black curve has a shape close to the
sinus function with shortened ends.
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2.2 (Dis)similarity measure
To compare two time series, we need a function that takes 2 time series as arguments
and outputs a number that can be interpreted as a measure of similarity or dissimilarity.
We will define these 2 types of (dis)similarity measures. The first one that measures
an actual similarity returns for two alike time series a higher number, we will call it
a similarity measure. On the other hand, the second one that measures dissimilarity
returns for two alike time series a lower number, we will call it dissimilarity measure
(sometimes it is called a distance measure).

The distance measure usually has some specific properties. When a distance measure
holds the following three axioms, then we call it a metric.

▶ Definition 2.2 (Metric). A metric on a set X is a function d: X × X → R and
satisfies these axioms for every x, y, z ∈ X [19]:

Positive definiteness: d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y

Symmetry: d(x, y) = d(y, x)

Triangular inequality: d(x, y) + d(y, z) ≥ d(x, z)

Tuple (d,X ) forms a metric space.

For example, the Euclidean distance and the Euclidean space form a metric space. When
the triangular inequality does not hold, then the function is called a semi-metric [20].

This is a general definition of a metric space. In this thesis, our set X will be all
time series of finite length.

We will use 4 different (dis)similarity measures which we will discuss in this section.
The measures must accept 2 time series of possibly different lengths, so we need an
elastic measure rather than a locked step measure.
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A locked step measure for two time series X and Y always compares ith element of
X with ith element of Y . On the other side, an elastic measure does not have this fixed
step limitation (but could have some others). This is specific for our domain because
the date of the first confirmed case (the first record in a time series) varies between
countries, so the time series lengths differ from country to country. We also want to be
able to compute it in a reasonable time.

The selected distance measure depends on the kind of similarity we are interested in.
It always depends on the domain. It could be any function that satisfies the investigators
purpose. The selected measures are one of the most used to compare time series. We do
not want to select the “best” one, but we want to observe how they behave on COVID-19
time series and compare the results.

For each measure, first we define it, then we provide a recursive formula. We show
that the recursive formula calculates the measure. Finally, based on the formula, we
introduce a dynamic programming algorithm.

In the future sections, let X and Y be some time series X = x1, x2, . . . , xn and
Y = y1, y2, . . . , ym of lengths n and m respectively.

2.2.1 Dynamic time warping
The Dynamic Time Warping (DTW ) is an elastic distance measure that has been used
initially to compare speech data [21]. One feature is it can cope with different time
scalings of time series. When we say “Hello” slowly and then fast or when we have the
same trajectory of a fast and slow moving objects, this measure finds both time series
similar. It is a dissimilarity measure, therefore the lower number, the more alike the
time series are. The DTW does not fulfill the triangular inequality, so it is not a metric.

A warping path W is a mapping between points in time series X and Y , let (i, j)
denote mapping between points xi and yi. We can denote a warping path between 2
time series as W = w1, w2, . . . , wl, where wk = (i, j) is the kth element of W and l is the
length of W . The DTW path has some constraints [22]:

Boundary condition: w1 = (1, 1) and wl = (n,m). It means that the first points of
both time series are mapped together as well as the last points.

Continuity: If wk = (i, j) then wk+1 = (i
′
, j

′
), i′ − i ≤ 1 and j

′ − j ≤ 1 for 1 ≤ k < l.
This means we can shift at most by one index to positive numbers (in both series)
in the subsequent mapping.

Monotonicity: If wk = (i, j) then wk+1 = (i
′
, j

′
), i′−i ≥ 0 and j

′−j ≥ 0 for 1 ≤ k < l.
In other words, we can just increase the index in the subsequent mapping.

▶ Definition 2.3. The DTW distance between time series X and Y is

DTW (X,Y ) = min

 ∑
(i,j)∈W

d(xi, yj)

∣∣∣∣W is a DTW warping path

 .

In Figure 2.3 we can see two time series (red and blue) and the optimal DTW path.
A mapping (i, j) is denoted with a black dashed line.
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Figure 2.3 A DTW path between 2 time series

To calculate the distance, we introduce a new matrix D of size n×m and every cell
Dij = d(xi, yj) and represents also a mapping (i, j), we will call it a DTW matrix for
some X and Y . We show that W corresponds to a special path in the matrix D, and
based on this, we calculate the distance.

In the following lemma, we call a “path through a matrix” a sequence of elements of
a matrix. An element in ith row and jth column is denoted as (i, j).

▶ Lemma 2.4. Let P = p1, p2, . . . , pl be a path of length l through the DTW matrix
D called D-path. D-path fulfills p1 = (1, 1), pl = (n,m), and if pk = (i, j) then
pk+1 ∈ {(i + 1, j), (i, j + 1), (i + 1, j + 1)} for every 1 ≤ k < l (shift constraint). Let
Q ⊆ {(i, j)|1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}. Q is a D-path ⇐⇒ Q is a DTW path.

Proof. We need to show that: Q is a D-path =⇒ Q is a DTW path ∧ Q is a DTW
path =⇒ Q is a D-path. Both D-path and DTW path are subsets of

{(i, j)|1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}.

Therefore, it is sufficient just to show that the constrains are equivalent.

The boundary conditions are the same by definition.

Shift constraint implies continuity. If pk = (i, j) then (i
′
, j

′
) = pk+1 ∈ {(i+1, j), (i, j+

1), (i+ 1, j + 1)} (shift constraint), then i
′ − i ≤ 1 and j

′ − j ≤ 1 for 1 ≤ k < l, thus
the continuity holds.

Shift constraint implies monotonicity. If pk = (i, j) then (i
′
, j

′
) = pk+1 ∈ {(i +

1, j), (i, j + 1), (i + 1, j + 1)} (shift constraint), then i
′ − i ≥ 0 and j

′ − j ≥ 0 for
1 ≤ k < l, so the monotonicity holds.

Continuity and monotonicity implies the shift constraint. If wk+1 = (i, j) then
wk = (i

′
, j

′
), and 0 ≤ i

′ − i ≤ 1 and 0 ≤ j
′ − j ≤ 1 for l > k ≥ 1 (Continuity
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Figure 2.4 A D-path of two time series

and monotonicity). This implies that the available options are i
′ ∈ {i, i + 1} and

j
′ ∈ {j, j + 1}, therefore (i

′
, j

′
) ∈ {(i+ 1, j), (i, j + 1), (i+ 1, j + 1)}. Thus, the shift

constraint holds.

◀

In the Figure 2.4 is a D-path (the black line) of two time series, we can see that it
starts in (0, 0) and ends in the opposite corner. The shift condition is also satisfied. The
color of (i, j) indicates the sum of the minimal D−path to the (i, j). The lower number,
the darker color is on (i, j). We can see that the D-path goes through the darkest area.
The 2.4 Lemma showed that we can calculate the minimal DTW path using a D-path
because they are equivalent and also the costs of the mappings (i, j) are the same. We
mean the value of D-path as the sum of all elements on the path through the matrix M .
The determination of the minimal D-path is straightforward. The only possible moves
to (i, j) are from (i − 1, j), (i, j − 1), (i − 1, j − 1). To figure out the optimal (i, j) it
is sufficient to get the minimum of the predecessors. When one of the time series has a
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length equal to 0, and the other is nonempty, we define the distance as infinity [23].

DTW (X,Y ) =



0 if m = n = 0,

∞ if m = 0 or n = 0,

d(x1, y1) + min


DTW (X, tail(Y )),

DTW (tail(X), Y ),

DTW (tail(X), tail(Y ))

otherwise,

where tail(X) is a function that takes a time series and returns the same time series
without the first element. The DTW (X, tail(Y )), etc., can be envisioned as possible
predecessors.

We show that this is the minimal distance denoted as s. For contradiction, we assume
that there is another DTW (X,Y ) = z < s. Without loss of generality, we suppose that
the predecessor of the last element (i, j) is (i, j − 1) in z. If we remove the last element
from z we get z−d(x1, y1) < DTW (X, tail(Y )) and it is a contradiction. The arguments
are the same for other predecessors. It implies that s is the minimal one.

Algorithm 1: DTW

Input : Time series X = x1, x2, . . . , xn, X = y1, y2, . . . , ym
Output: Dynamic time warping distance between X and Y
M = matrix (n+ 1)× (m+ 1) full of infinities;
M[1,1] = 0;
if n = 0 and m = 0 then

return 0;
end
if n = 0 or m = 0 then

return ∞;
end
for i← 2 to n+ 1 do

for j ← 2 to m+ 1 do
M [i, j] = min{M [i− 1, j],M [i, j − 1],M [i− 1, j − 1) + d(xi−1, xj−1};

end
end
return M[n+1, m+1];
The infinities in the first row and the first column guarantee that the values will not

be used in the min.

2.2.2 Longest common subsequence similarity
The longest common subsequence similarity (LCSS ) is widely used on strings to measure
string similarity. The LCSS is a similarity measure, so the higher number, the more alike
are the time series. The basic idea is to find time series subsequences that are similar.
This allows (unlike the DTW ) some points not to be mapped to any other (e.g., outliers),
so it is more robust to an outlier element in a time series. Every point is mapped at
most once to another point, so the upper bound of the similarity value is the length of
the shorter time series. At first, we define the longest common subsequence (LCS ) for
strings.
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▶ Definition 2.5 (LCS for strings). A subsequence SG of a string G = g1, g2, . . . , gn
of length n is a sequence gp1 , gp2 , . . . , gpl of length l, where every pi ∈ {1, . . . , n} and
p1 < p2 < . . . < pl. In other words, a subsequence SG of G can be obtained by deleting
some elements in G and preserving the order of the others. Let A = a1, a2, . . . , an and
B = b1, b2, . . . , bm be strings of lengths n and m respectively and let Σ be an alphabet,
ai, bj ∈ Σ for every 1 ≤ i ≤ n, 1 ≤ j ≤ m. The LCSS of strings A and B is the longest
subsequence SA of A that is also subsequence of B [24].

For example, let A = “BCDAACD” and B = “ACDBAC”, then common subse-
quences are “BC”, “AAC”, “DAC”, “CDAC”, etc. The longest common subsequence is
“CDAC”.

Although time series, in general, can not be imagined as strings (discrete data indexed
by N) we can apply the LCSS to the time series. Although it would work (even for
R), it is handy to introduce a threshold ϵ and consider two values x1, x2 similar when
|x1 − x2| ≤ ϵ. To define the LCSS for time series, we first introduce a subsequence of
time series and an ϵ-match.

▶ Definition 2.6. Subsequence of a time series X = x1, x2, . . . , xn with length of n is
SX = xp1 , xp2 , . . . , xpl of length l where every pi ∈ {1, . . . , n} and p1 < p2 < . . . < pl.

▶ Definition 2.7. Time series X = x1, x2, ..., xn and Y = y1, y2, . . . , yn of the same
length n have a ϵ-match if and only if |xi − yi| ≤ ϵ for every 1 ≤ i ≤ n.

▶ Definition 2.8. The LCSS similarity between time series X and Y is

LCSS (X,Y ) = |LCS (X,Y )|,

where LCS (X,Y ) = sp1 , sp2 , . . . , spl is a subsequence of X of length l that has a ϵ-match
with a subsequence of Y of the same length l (we will call it CS) that is also the longest
one. Function | · | : Σ∗ → N0 returns length of given string. Σ∗ is a set of all finite string
on alphabet Σ.

We need to find the longest one for a given threshold ϵ, first, we need a lemma to
introduce the algorithm.

▶ Lemma 2.9. Let X = x1, x2, . . . , xn and Y = y1, y2, . . . , ym be time series of lengths
n,m respectively and S = s1, s2, . . . , sl be a LCS (X,Y ). [25]

1. if |x1 − y1| ≤ ϵ then s1 = x1,

2. if |x1 − y1| > ϵ then |S| = max{LCSS (tail(X), Y ),LCSS (X, tail(Y ))}.

Proof. 1. Assume for the purpose of contradiction that s1 ̸= x1 then we can prepend
x1 to S and get a longer subsequence. It is not possible since S is a LCS .

2. If we add entries to X or Y at certain positions and retain the order then the LCSS
cannot decrease, therefore

|S| ≥ max{LCSS (tail(X), Y ),LCSS (X, tail(Y ))}.
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There is no mapping between x1 and y1 thus, the only possibilities are mappings
X ↔ tail(Y ) and tail(X)↔ Y , so

|S| ≤ max{LCSS (tail(X), Y ),LCSS (X, tail(Y ))}.

◀

For 2 time series where at least one of them has length 0, then the LCSS is 0. If
we have a time series X and Y of length n,m respectively and we have calculated
LCSS (tail(X), Y ), LCSS (X, tail(Y )) and LCSS (tail(X), tail(Y )), then we can calculate
LCSS (X,Y ).

1. if |x1 − y1| ≤ ϵ then LCSS (X,Y ) = LCSS (tail(X), tail(Y )) + 1. We have con-
structed a CS of X and Y with length LCSS (tail(X), tail(Y )) + 1 by prepending
x1 to the LCS (X,Y ). We must show that it is a LCSS (X,Y ). For the purpose
of contradiction, we assume that there is another CS Z of X and Y with length
|Z| > LCSS (tail(X), tail(Y )) + 1. When we remove x1 from Z (it is there, accord-
ing to Lemma 1), then we get a CS of tail(X) and tail(Y) that is longer than the
LCSS (tail(X), tail(Y )): LCSS (tail(X), tail(Y )) < |Z| − 1. This is not possible.

2. if |x1 − y1| > ϵ then LCSS (X,Y ) = max{LCSS (X, tail(Y )),LCSS (tail(X), Y )}.
Consequence of the Lemma 2.

Therefore, the recursive formula is:

LCSS (X,Y ) =


0 if n = 0 or m = 0,

LCSS (tail(X), tail(Y )) + 1 |x1 − y1| ≤ ϵ,

max{LCSS (X, tail(Y )),LCSS (tail(X), Y )} |x1 − y1| > ϵ.

Algorithm 2: LCSS
Input : Time series X = x1, x2, . . . , xn, X = y1, y2, . . . , ym
Output: Longest common subsequence of X and Y
M = matrix (n+ 1)× (m+ 1) full of zeros;
M[1,1] = 0;
if n = 0 or m = 0 then

return 0;
end
for i← 2 to n+ 1 do

for j ← 2 to m+ 1 do
if |x1 − y1| ≤ ϵ then

M [i, j] = M [i− 1, j − 1] + 1;
else

M [i, j] = max{M [i− 1, j],M [i, j − 1]};
end

end
end
return M[n+1, m+1];
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In the future sections, we will use an algorithm that requires a distance measure.
Therefore, the LCSS can not be used at least with the current definition. We will define
the longest common subsequence distance LCSD with the LCSS definition for X and Y
as follows:

LCSD = 1− LCSS (X,Y )

min{n,m}
.

The triangular inequality does not hold for the LCSD , thus it is not a metric. The
equivalence in the positive definiteness axiom is also not satisfied due the presence of
the ϵ. We can have two time series of length n and the LCSD equal to zero, but the
time series are not the same. The last symmetry axiom holds. We can see that for
two time series with high longest common subsequence similarity, the longest common
subsequence distance is low and vice versa.

2.2.3 Edit distance with real penalty
The Edit distance with a real penalty (ERP) was originally defined in this paper [26]
as a combination of multiple distance measures to get the best of each. The ERP
is a dissimilarity measure and the first one presented fulfills the positive definiteness,
symmetry, and triangular inequality, thus it is a metric. Like the LCSS , the ERP is also
based on a string dissimilarity measure called the Edit distance (ED), sometimes called
the Levenshtein distance. To define the ERP , we first define the ED.

▶ Definition 2.10 (Edit distance for strings). Let A = a1, a2, . . . , an, B = b1, b2, . . . , bm
be strings of lengths n and m respectively and let Σ be an alphabet, ai, bj ∈ Σ for every
1 ≤ i ≤ n, 1 ≤ j ≤ m. Edit distance between A and B is the minimal number of insert,
delete, and change symbol operations needed to make string B from string A. We denote
it as ED(A,B).

For example, the edit distance between strings KITTEN and SITTING is 3. The
operations are change, change, and insert:

KITTEN → SITTEN → SITT IN → SITTING.

The operations have equal cost, namely, 1. This feature fits to strings because we
are usually not interested in how similar are the symbols a and b. When working with
time series it is different, we normally are interested in how similar are the time series
entries x and y. The ERP takes this into account in contrast to the string ED.

▶ Definition 2.11. Let X and Y be time series and an operation o is a function that
takes a time series and returns the time series after the operation. Possible operations
are insert, delete, and change of an entry. Let C be a function that takes an operation o
and returns a cost. If the operation o is delete or insert of an element x, then C(o) = |x|,
when the operation is change of x to y then C(o) = |x − y|. The ERP between X and
Y is:

ERP(X,Y ) = min

{∑
o∈O

C(o)

∣∣∣∣O is a sequence of operations that transforms X to Y

}
.
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At first, we create a recursive function and show that it computes the ERP , and based
on this recurrence, we introduce the dynamic programming algorithm that computes the
ERP .
▶ Observation 2.12. Operations are applied to an entry independently of others. There
is always a smallest ERP that applies at most one operation to an entry [27].

Based on this observation, we can apply the operations from left to right, thus there
is always the last operation on the left, that is, one of insert, delete, or change.

If we have 2 time series and at least one of them has length 0, then the ERP is
the sum of all entries in the other one (inserting, resp., deleting all elements). Sup-
pose time series X, Y , and we have calculated the ERP(X, tail(Y )), ERP(tail(X), Y ),
ERP(tail(X), tail(Y ))). The recursive function is:

ERP(X,Y ) =



n∑
i=0

|xi| if m = 0,

m∑
i=0

|yi| if n = 0,

min


ERP(tail(X), Y ) + |x1|,
ERP(X, tail(Y )) + |y1|,
ERP(tail(X), tail(Y )) + |x1 − y1|

otherwise.

We need to show that it is the minimal one (so it is the ERP), denote our result
as s. We assume that there is another ERP(X,Y ) = z < s. In z there is also the
last operation, at first, we assume it is a delete. When we remove the delete operation,
we get z − |x1| < ERP(X, tail(Y )) and it is not possible. For other operations, the
argumentation is the same. Thus ERP(X,Y ) = s.

Algorithm 3: ERP
Input : Time series X = x1, x2, . . . , xn, X = y1, y2, . . . , ym
Output: Edit distance with real penalty between X and Y
M = matrix (n+ 1)× (m+ 1) full of infinities;
M[1,1] = 0;
M[1,2] = 0;
M[2,1] = 0;
if n = 0 then

return
∑m

i=1 |yi|;
end
if m = 0 then

return
∑n

i=1 |xi|;
end
for i← 2 to n+ 1 do

for j ← 2 to m+ 1 do
M [i, j] =
min{M [i−1, j]+ |xi−1|,M [i, j−1]+ |yj−1|,M [i−1, j−1]+ |xi−1−yj−1|};

end
end
return M[n+1, m+1];
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The infinities in the first row and the first column guarantee that the values will not
be used in the min.

2.2.4 Discrete Fréchet distance
The Discrete Fréchet distance (DFD) is a distance measure based on the (nondiscrete)
Fréchet distance. It is a metric, so it satisfies all of the 3 axioms. The intuitive definition
of the distance is that a man is walking a dog on a leash. The dog and the man have their
own curves. Both can go only forward, and their speed may vary, but neither can go
backward. The distance is the length of the shortest leash necessary for the man to walk
the dog from the starting points to the end points of the curves [28]. The discrete variant
considers just a finite set of points on the curve. Thus the formulation is different: How
to walk a frog if you are a frog yourself [29].

▶ Definition 2.13. [28] Let X and Y be time series of lengths n resp. m and let
M ⊆ {(i, j)|xi ∈ X, yj ∈ Y }. M fulfills:

1. If (i, j) ∈M then (p, q) /∈M for i < p ∧ q < j or for i > p ∧ q > j.

2. For every i, 1 ≤ i ≤ n (resp. j, 1 ≤ j ≤ m) there is a (i, z) ∈M (resp. (z, j) ∈M).

The Discrete Fréchet distance is [28]:

DFD(X,Y ) = min
M

max
(i,j)∈M

|xi − yj |.

The first condition in Definition 2.13 ensures that the man, nor the dog, can not go
backward. The second one says that both must go through all points in their path.

In Figure 2.5 is an illustration of one element (i, j) of the M set. There are two time
series X and Y , a leash between indexes i and j is denoted with a black dashed line,
but the length of the leash is just the absolute value of the difference of y coordinates,
and this is denoted with the orange line.

We will create a recursive formula, and based on the formula, we introduce an al-
gorithm. At first, the base case: we define the dissimilarity measure just for nonempty
time series. Let X = x1 be a time series of length 1 and Y of length m. The distance is
then maxyi∈Y |x1 − yi|. The arguments for the induction step are similar to the ERP .
Suppose two time series X and Y of lengths n and m respectively and we have calcu-
lated the DFD(X,Y ), so we know the optimal moves on the curves. The last move to
the state when both are in the end points (i, j) can be just one of: (i− 1, j), (i, j − 1),
and (i − 1, j − 1). Therefore, if we assume we have calculated the DFD(X, tail(Y )),
DFD(tail(X), Y ), DFD(tail(X), tail(Y ))) we can calculate:

DFD(X,Y ) =



max
xi∈X

|xi − y1| if m = 1,

max
yi∈Y

|x1 − yi| if n = 1,

max

{
d(x1, y1),min


DFD(X, tail(Y )),

DFD(tail(X), Y ),

DFD(tail(X), tail(Y )))

}
otherwise.
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Figure 2.5 An illustration of a state when calculating the Fréchet distance

We have to show that it is the minimal one and therefore the DFD , we denote our result
as s. We assume, for the purpose of contradiction, that there is a z = DFD(X,Y ) < s.
In z there is the last move, and if we remove the last move, then we get a lower distance
than in the assumptions, and it is a contradiction. It implies that s = DFD(X,Y ). This
recursive formula gives us a dynamic programming algorithm:

Algorithm 4: DFD

Input : Nonempty Time series X = x1, x2, . . . , xn, X = y1, y2, . . . , ym
Output: Discrete Fréchet distance between X and Y
M = matrix (n+ 1)× (m+ 1) full of infinities;
M[1,1] = 0;
for i← 2 to n+ 1 do

for j ← 2 to m+ 1 do
M [i, j] = max{d(xi, yi),min{M [i− 1, j],M [i, j − 1],M [i− 1, j − 1]}};

end
end
return M[n+1, m+1];

The infinities in the first row and the first column guarantee that the values will not
be used in the min.

All of these algorithms try all combinations, and some of them are not interesting
for us. For example, a mapping (1, i), 1 ≤ m and (i,m), 1 < i ≤ n in the DTW
when mapping time series X and Y of lengths n and m respectively. We can use
this observation to speed up the computation by limiting some of the mappings. The
most known options are the Sakoe-Chiba band and Itakura parallelogram [30] shown
in Figure 2.6. There is a square matrix of size 64 (thus for two time series of length
64) representing the dynamic programming matrix when calculating the measures. The
black area in the figures represents the options that the algorithms try. They introduce a
new hyperparameter r that prunes some of the options. These options are primarily used
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Figure 2.6 Constrains of measures

when calculating the DTW but can also be used in calculating other distance measures.
There is a trade-off between the optimal result and speed, and it is not always easy to
choose the right r. We decide not to use these constraints because when we lower the
dimension of the time series with the PAA (introduced in another section in this chapter),
then the speed is not a major issue for us. We mention it here just for completeness.

2.3 Time series clustering
The data clustering is one of the main machine learning disciplines. When we have a data
set D of points in a space, then the data points are usually not uniformly distributed
in the space of all possible values. There are some regions where there is a higher
probability of point occurrence, this information is valuable for us because it reveals the
inner structure of the data. Clustering of data works with this observation. The task
is to split the data set D into k disjoint clusters, and an element is as much as possibly
similar to elements in the same cluster and distinct to other elements in different clusters,
more formally [19]:

C = C1, C2, . . . , Ck is a set of mutually disjoint and is fulfilled that:
k⋃

i=1

Ci = D.

The data clustering is an unsupervised learning method where we do not know how to
assess the output. We just want to get some information about the inner structure of
the data distribution. To determine how similar are two points x, y ∈ D, we need a
distance measure defined in Section 2.2. Clustering time series is just a special type of
data clustering, we need just a corresponding distance measure. To summarize what is
a clustering algorithm [19]:

Input: Data set D and a distance measure d, sometimes number of clusters k.
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Figure 2.7 A dendrogram that shows a run of a hierarchical algorithm

Output: A label i for each x ∈ Ci, where C = C1, C2, . . . , Ck is a set of pairwise disjoint
clusters that satisfies

⋃k
i=1Ci = D

We will use the agglomerative hierarchical clustering algorithm. The output of this
algorithm is a clustering when we specify a stop condition like a number of clusters or
a distance upper bound for merging. The process of merging clusters can be visualized
using a graph called a dendrogram. It can be seen in Figure 2.7. The graph is a tree
and each node represents a cluster. The leafs are the original points in the data set D,
and each inner node represents a union of two clusters. The y axis shows a dissimilar-
ity value. The height of a horizontal line represents the distance between two merged
clusters. Some nonsingleton clusters that are under a certain threshold are colored. If
a nonsingleton node k is directly under the threshold t, then all of its descendants are
colored with the same color. All nodes above t have the same color, also including
singleton clusters. In Figure 2.7 the threshold can be for example 15. Two vertical
lines show which clusters are merged. There is a pseudo code of the algorithm [19]:
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Algorithm 5: AgglomerativeHierarchicalCluster
Input : Data set D of length n, a distance measure d, and number of clusters

k > 0
Output: A dendrogram
Insert each element i in D as a singleton cluster with 1 member into C as Ci;
for i← 1 to n− k do

Find clusters Ck, Cl ∈ C, k ̸= l that are the closest by the distance measure d;
Merge Ck, Cl into new cluster Cn+i;
Remove Ck, Cl from C;
Insert Cn+i to C;

end
return Dendrogram from the run of the for loop and the clustering C;
We are searching for the closest clusters in the algorithm, but we have just defined

some distances between cluster elements. There are multiple ways how we can define a
distance between clusters [19].

Let A,B be two nonempty clusters of time series, and D(A,B) is a distance between
clusters A and B. There are some examples [19]:

Single linkage: The distance between the closest time series in different clusters. Gen-
erates clusters that look like long chains

D(A,B) = min
x∈A,y∈B

d(x, y).

We can see in Figure 2.8 on the left side some data points in 2 dimensional Euclidean
space and on the right side a dendrogram of the agglomerative hierarchical clustering
algorithm that uses the single linkage method. The points on the lines are equally
spaced, therefore we can see in the dendrogram that the two clusters are formed at
a constant distance of 2 and then merged at a distance 5.

Complete linkage: The distance between the most distant time series in different clus-
ters. Tries to minimize the diameter at each step, therefore it generates compact
clusters.

D(A,B) = max
x∈A,y∈B

d(x, y).

In Figure 2.9 we can see the same data points as in Figure 2.8. The dendrogram
shows that the clusters are merged by 2, then by 4,…

Average linkage: A compromise of single and complete linkage

D(A,B) =
1

|A||B|
∑

x∈A,y∈B
d(x, y).

Centroid linkage: Distance between the centers of clusters

D(A,B) = d(x̃, ỹ).
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Figure 2.8 An illustration of the hierarchical clustering of data using the single linkage method
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Figure 2.9 An illustration of the hierarchical clustering of data using the complete linkage
method

Ward’s method: Minimizes the sum of all cluster variances

D(A,B) =
∑

x∈A∪B
||x− x̃A∪B|| −

∑
x∈A
||x− x̃A|| −

∑
x∈B
||x− x̃B||.

where x̃ is the center of a cluster X defined as:

x̃ =
1

|X|
∑
x∈X

x.

When we envision a time series as a vector, then the cluster center makes sense,
but just for time series of equal lengths. The sum of vectors with different lengths is ill
defined. Different length of time series is our case, so we can not use the centroid linkage
and Ward’s method, at least with the current definitions.

Selecting the correct linkage is not clear, and it depends on what we want to get. We
want the trend evolution of the time series in a cluster to be as much similar as possible
(in a way defined by the time series dis/similarity measure). This requirement may not
be satisfied for the single linkage as it can create long chains, the criterion is local. On
the other hand, the complete linkage is global but very sensitive to outliers [31]. We will
use the average linkage because it is something in between, all elements take part in the
resulting distance.
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We must define what kind of time series (dis)similarity measure the average linkage
and thus the algorithm needs. The process just merges the closest clusters at each step.
Every function that returns a number for two time series would return a clustering, but
the result would be meaningless.

To get a meaningful result, the linkage needs a “distance” measure, therefore a
function that for two similar elements returns a small value. On the other hand, for two
different elements a large value. The distance measure has to be symmetric to calculate
the distance just in one direction (e.g., for two elements x, y just d(x, y) not d(y, x)).
The triangular inequality and positive definiteness are not required by the linkage and
algorithm, although the positive definiteness is quite natural for a distance measure.

2.4 Dimensionality reduction
Time series data have high dimensionality by nature because in one time series there
are usually many entries. There are time series databases that are really big and they
still grow. When working with big data sets, it is often possible to transform the data
to something a lot smaller without losing too much information, it is called dimension-
ality reduction. For time series, there are plenty of techniques that reduce time series
dimensionality like the Discrete wavelet transformation (DWT), Singular value decom-
position (SVD), Discrete Fourier transformation (DFT), Adaptive Piecewise Constant
Approximation (APCA), Piecewise Aggregate Approximation (PAA), etc. We will use
a slightly different version of the PPA. We use the PPA because it is fast to compute,
easy to implement, competitive with other approaches, and allows us to use the metrics
defined in Section 2.2 compared to, for example, the APCA [32].

The PPA transforms a time series X = x1, x2, . . . , xn of length n into another time
series X̄ = x̄1, x̄2, . . . , x̄N of length N , where 1 ≤ N ≤ n with the following equation:

x̄i =
1

S

i·S∑
j=(i−1)·S+1

xj , for 1 ≤ i ≤ N,

where S = n
N is the length of a single segment. In other words, the time series X is

divided into N segments, and each consists of S elements, the resulting time series X̄
consists of the means of the segments. This notation assumes that n is multiple of N ,
when it is not, we must take care of this problem.

We will use a slightly different version, instead of specifying the count of segments
N , we specify a number of elements in one segment S. If n is not a multiply of S, then
we create the last segment as the mean of the rest. For example, when we have n = 36
and S = 8, then we have 4 segments of 8 elements and 4 as a remainder. We create a
X̄ = x̄1, x̄2, x̄3, x̄4, where x̄1, x̄2, x̄3 are the means of the complete segments and x4 is
the mean of the remainder with 4 elements. Therefore, the new formula is (just if n is
a multiply of N):

x̄i =
1

S

i·S∑
j=S·(i−1)+1

xj , for 1 ≤ i ≤ N.

In figure 2.10 we can see an approximation with the PAA of a time series of length
25 and segment size S = 3.
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Figure 2.10 A time series of length 25 approximated with the PPA method with segment size
of S = 3

We will call this modified version as the PAA in the future sections, and the PAA
of X is noted as X̄. This change of the PAA will help us to work with X̄ of constant
segment size. Suppose we have a time series X of length 50 and another one Y that has
length 500, it is helpful because when we specify the number of segments N = 10, then
X loses much more information than Y . On the other hand, the original definition of
the PAA would help us with time series of different lengths.

2.5 Selecting the number of clusters

There is no automated way to select the number of clusters k for us, but some methods
can give us a hint. There are cases where there are more choices on how to select a
“good” k or there are data sets where the data does not make any cluster, so it is not
always possible to select the “right” k.

The Silhouette score was tried but did not give much information. The score was
increasing when we were decreasing the number of clusters and the growth was very
smooth. The biggest number was for 2 clusters.

On the other hand, the output of the hierarchical clustering is a dendrogram, there-
fore we can get some hint of cluster count based on the dendrogram. We will use just
the dendrogram to choose.

There are a lot of others like the Calinski-Harabasz criterion and Davies-Bouldin
Index, etc. However, some of them require a centroid for a cluster, but it is ill defined
in our space.
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2.6 Average time series
When we have a cluster of some time series, we want to get a representative time series
that shows the basic behavior of the cluster. We will use the average time series defined
as follows:

▶ Definition 2.14. Let S = X1, X2, . . . , X l be some time series of lengths n1, n2, . . . , nl

respectively and let m be the length of the longest time series. Let Cm−i+1 denote all the
time series that has length at least i for all i ≥ 1:

Cm−i+1 = {Xj |Xj ∈ S, nj ≥ i}.

We define the average time series AVG(S) = a1, a2, . . . , am of S as:

ai =
1

|Ci|
∑

Xj∈Ci

Xj
nj−m+i,

for every 1 ≤ i ≤ m.

We can envision the average time series as aligning the time series to the right and
summing the columns and dividing by the count of rows, for example, for S = S1, S2, S3:

S1 = 1, 3, 3, 4 1, 3, 3, 4

S2 = 5, 7, 7 5, 7, 7

S3 = 7 7

AVG(S) =
1

1
,
3 + 5

2
,
3 + 7

2
,
4 + 7 + 7

3
= 1, 4, 5, 6.



Chapter 3

Application to COVID time series

In this section, we will apply all the previous methods to the COVID-19 time series. We
start with data preprocessing.

3.1 Data preprocessing

In this thesis, we will only consider the daily new infected people. Thus, we are not
interested in deaths and cumulative counts. The New_cases and Data_reported columns
in Table 1.1 together form a time series.

As said in Section 1.2, the data may be updated retrospectively and are completed
at the end of the day. The data we use are taken on 14 April 2021. For simplicity and
to get rid of the incomplete data, we consider just the records before Sunday, 11 April,
2021. The last day is included.

We are not interested in how long did it take for a country from the first COVID-19
report to the first infected person. We are interested in the diverse spread of the disease
in time. Therefore, we do not want to have a time series that starts with any leading
zeros. In the first step, we delete all records that have cumulative cases equal to zero. It
means that we delete records before the first confirmed case. This also deletes countries
with zero reported COVID-19 infections. The deleted countries are American Samoa,
Cook Islands, Democratic Peoples Republic of Korea, Kiribati, Micronesia (Federated
States of), Nauru, Niue, Palau, Pitcairn Islands, Tokelau, Tonga, Turkmenistan, Tuvalu.
It contains small states where there are no infected people and countries that do not
report any cases.

The records with negative new case counts described in Section 1.2 are considered
insignificant and replaced with zeros with 1 exception. Puerto Rico had 37567 total
cases and removed 32952 of them on 8 November 2020. We will not take this country
into account as it has inaccurate data.

Subsequently, we delete all countries that have less than 100 000 inhabitants. Due
to their small population, the countries with less than 100,000 inhabitants are not con-
sidered in the analyses for their insufficient statistical conclusiveness.

There is a record for a state called “Other”. We will not consider it. The resulting
data set contains 189 countries out of 236.

25
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We need the data to have the same scale to be comparable. For example, when we
have a daily infected person count in the USA and the Czech Republic, then the number
in the USA is much higher, but it does not mean that the pandemic is much worse than
in the Czech Republic. In the USA, there are just many more people, so there are more
chances for the virus.

Generally speaking, we want to say how good or bad is a “state of the outbreak”
at a given time for a country compared to another. What is a “state of the outbreak”
and if it is good or bad depends a lot on an investigator’s purpose and interest. We will
suppose that our “state of the outbreak” is the count of infected people divided by the
population size of a country in a given time. We represent the comparison, how it is
good or bad, by a difference of these numbers. There are many other options that could
be interesting like dividing by population density or surface area, daily deaths with some
scaling, and some completely different.

At a certain time, there are some people that are infected and some that are not. We
do not have this information, we know just the daily positive tests. We do not consider
the reliability of COVID-19 tests, thus we suppose the tests are totally reliable. If we were
to test the whole population, then we would get the real infected people count, but the
tests are conducted just on a subset of the country population since there are not enough
tests. If we test randomly selected individuals, we can get a good estimate after dividing
by the number of tests performed. The tests are not conducted on a randomized sample,
the tests are conducted on people that come to test themselves. These individuals are
more likely to have the virus than those uniformly randomly selected. Therefore, this
estimate has a bias after the division. It is hard to estimate how big is the bias, so we
will not consider the bias and divide just by the population size.

We scale the data, so we have daily new cases per 100 000 people. We get the
size of the population from the latest reported counts data set and the columns Cases -
cumulative total per 100000 population and Cases - cumulative total denoted as Sscaled

and S respectively, by the following formula:

population size =
S · 100 000

Sscaled
.

Finally, the piecewise aggregate approximation is applied to the time series to get a
time series of lower dimension and to extract the trend. We have to select the segment
size S. For the majority of the data, there is a weekly period. It makes sense since people
are not tested uniformly during the week. The Figure 3.1 shows time series of the last 28
days before Sunday, 11 April 2021, in the USA and Czech Republic, the data are scaled.
When comparing the time series, we are not interested in the other components, we are
just interested in the evolution of the trend. Therefore, we can remove the other parts.
We know that the period of seasonality is 7. The PAA is similar to the moving averages
in the way that it takes an average of neighbor elements. When we use the MA7 on a
time series X, and then we take every element MAm

i , where i− 1 is a multiply of 7, we
get the PAA approximation with segnemst size S = 7. Based on this observation, we can
view the PAA as the trend–cycle component of the time series X of a lower dimension.

The COVID-19 time series contains a lot of distortion. For example, a significant
increase in conducted tests in one day may likely result in an increase of the number of
positive tests on that day. It could be caused by an area testing. This increase is an
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Figure 3.1 Seasonality of the USA and Czech republic

outlier entry in a time series since it is very distant to neighbors. The PAA can partly
help with these outlier values since it takes the average of a range, thus the outlier is
not as significant.

3.2 Choosing the number of clusters

In the following sections, we will choose the number of clusters for each distance measure.
We will use just a dendrogram to select the number of groups since it shows the process of
the agglomerative algorithm. The Silhouette score was tried but with a poor information
value. Any other techniques are not used since the output is not significantly better than
the hand tuned and the choice of the number of clusters depends also on the purpose
and interest.

The dendrogram coloring is adjusted to the resulting number of clusters. The x
axis contains the original observations, but the names are omitted for the sake of better
readability. The detailed clusters (with the names) are included in the Appendix. The
time series curves of a single cluster are in a final cluster plot.

In the data set, there are many outlier time series that have a very distinct trend
compared to others. We will not delete them, but we will increase the number of clusters
to get a more verbose result. The outliers will consume 1 cluster since the distance to
others is significant. If we did not enlarge the cluster count, we would end up with
one big group, and the rest would be singleton clusters that contain the outlier. The
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Figure 3.2 The DTW dendrogram

resulting plot of the clustering is in the following chapter.
The ϵ = 20 for the LCSD was hand-tuned to differentiate the elements well.

3.2.1 DTW
The dendrogram for the DTW is in Figure 3.2. When we start from the bottom, we
can see that some clusters on the left side are merged at shallow values compared to the
others. There are just a few other clusters that are formed at the same dissimilarity.
When we go a little higher, we can see around the dissimilarity of 200 that the large
cluster is merged with a medium size cluster. On the right side, there are relatively
many clusters that are linked around the dissimilarity of 150, and then the joins are
quite uniformly distributed over the values up to 700. At the level of 700, two significant
clusters are merged and at the level of around 1200 is the last merge of a small group
and the rest.

We have to find a value of dissimilarity that cuts the dendrogram, and we get the
resulting clusters. The green clusters are very similar to each other but very different
from the others on the right. Therefore, it would make sense to place them into another
group and not divide them. Making this observation on the clusters to the right of the
green one is not so straightforward because the joins are distributed uniformly. It would
be good to have the red and purple sets alone, so the cut value should be below the
join. It seems that the best hand tuned value is 356, which yields 15 clusters that are
in Figure 4.5.

3.2.2 ERP
The situation in Figure 3.3 is quite the same as in the previous section, but the orange
groups are too joined at rather uniformly distributed values over the range. Therefore,
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Figure 3.3 The ERP dendrogram

selecting the number of clusters is not clear. It would be good to separate the orange
cluster to get a more verbose result, but that would yield too many clusters with a lot
of singletons. We want the sets merged around the value 800 to be separated because
the value is relatively large. However, there are multiple choices on how to select the cut
below this upper bound. We choose to keep the blue, orange (on the right), and green
clusters separated, so we will select the cut as 493. We get 20 sets that are plotted in
Figure 4.6

3.2.3 DFD
On the left side of the Figure 3.4 majority of the time series are merged at values close
to 0. Most of the values on the right are linked somewhere around 15. The merges are
getting sparse very fast as the dissimilarity is increasing. We decide to take the smallest
value where most of the clusters are merged, and the joins are relatively rare. We select
the value 27 that yields 18 groups that are in Figure 3.4.

3.2.4 LCSD
The dendrogram for the LCSD is in Figure 3.5. The biggest yellowish group is very
homogeneous compared to the others. On the left side, it is common that a big group
is merged with a small one, which means the clusters have unique behavior. We want
the yellowish and blue colored clusters alone, otherwise the merged cluster is too rough.
It is also good to keep the blue clusters linked together because we would otherwise get
another small group of elements which looks similar to another cluster. We do not want
to have the result too verbose. Based on the requirement, we have just a small interval
of values we will pick, for example, 0.06. It yields 28 clusters. The resulting clusters are
in Figure 4.8
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Chapter 4

Discussion and conclusion

This chapter first describes and then discusses and concludes the results of the previous
chapter.

4.1 Results
In the following 4 sections, we describe and comment the most significant clusters. There
are plots just for these described clusters, plots for the rest are at the end of this chapter
with the cluster tables. The clusters in the plots that contain the overall clusters are
numbered from 1, starting left to right and then from top to bottom. The cluster
numbers can be found in the left column of the tables.

4.1.1 DTW
We can see the result in Figure 4.1. The biggest green cluster has 115 time series. Most
of the elements in the cluster are linked with a dissimilarity close to zero as we can see
in Figure 3.2, so the cluster is very homogeneous. The average line for the group is very
close to zero, but there are a lot of time series with some deviations. The outbreak for
this cluster was very moderate with some peaks. There are for example China, Finland,
Norway, India, Japan and Russian Federation.

The next biggest cluster is the red one with 23 countries, some of them are Canada,
Germany, and Greece. The outbreak was a little worse than for the green cluster but
still quite mild. There is a tiny wavelet in the average time series with two peaks and the
second one seems still increasing. The peaks could indicate the first and second wave.
There are also quite a lot of deviations.

The purple cluster has 19 elements like Austria, France, Italy, Netherlands, Poland
and Slovakia. The black time series has a much more significant wavelet than the red
cluster. The start of the outbreak seems slow but then there is a steep increase that
looks like exponential. After the first peak there is a decline of infected people and after
some time there is a second wave that is not as steep as the last one. The wave looks
decreasing at the end.

The subsequent cluster is the one with yellowish color and 12 elements. There are
a lot of deviations that are distinct from the average time series. We can also see from

31
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the dendrogram that the clusters are formed at higher values on average compared to
the previous groups. The black time series has a slow increase to the highest value, that
is constant for relatively long. Then there is a decline in daily infected people. There
are two countries that have peaks that are relatively very distant from the average, both
peak values are over 100. The peak earlier in time is French Polynesia and the other one
is Portugal. This cluster contains for example Denmark, Spain, United Kingdom and
United States.

The last cluster that has more than 3 elements is gray. This group is made of
Armenia, Switzerland, Georgia, Croatia, Lithuania and Qatar. We can see a small wave
close to the beginning of the average time series. Before and after the wave, there are
almost no infected people until the second wave that is a lot bigger than the first one.
There is a steep decline at the end of the second wave and the values come again close
to zero. The end starts to increase.

The other clusters contain at most 3 time series. The clusters have a small number
of elements since they have a unique behaviour. For these clusters, it is common to have
some relatively high peaks compared to the more numerous groups. The peaks may be
caused by a fast spread of the virus but also by a rise of tested people.

The clustered country names can be seen in Table 4.1



4.1. Results 33

0

100

200

11-04-2021

18-12-2020

21-08-2020

24-04-2020
0

100

200

11-04-2021

18-12-2020

21-08-2020

24-04-2020

Figure 4.2 The four biggest clusters of the ERP

4.1.2 ERP
In the dendrogram in Figure 3.3 on the right side, we can see that it is common to merge
a big cluster with a small one at relatively large values. This shows that the individual
clusters are very different from the rest.

The orange group in Figure 4.2 has daily infected people close to zero on average,
but there is a big amount of significant deviations. The set contains 127 members, that
is, roughly two thirds. The last high peak is Martinique. Then there are two very similar
close to the date 18-12-2020, the left one is Belize and on the right is Jersey. The most
significant states are for example Canada, China, Norway, Russia and Greece.

The second biggest cluster has 18 time series, some of them are, for example, Ger-
many and Denmark. We can see that there is a small wavelet with two peaks, the second
wave seems to be still increasing. The differences from the black line look smaller than
for the orange group. The average time series for these two clusters is moderate.

The orange cluster is very similar to the blue cluster since it has a wavelet, but the
wavelet’s peaks are higher. The difference is also that the orange cluster seems to decline
at the end. The cluster has 11 elements like Austria, France, Italy and Poland.

The last green group with 6 time series has a steep growth, but then it remains
constant for some time with some little divergences. There are for example Netherlands,
Sweden, and Slovakia.

This metric deems two thirds of the data set relatively alike but a lot of time series
from the rest as very distinct from each other. We have 24 clusters and 16 of them with
less than 5 members. It is again common for small groups to have high peaks. The tops
also often emerge earlier in the time series.

The cluster members are in Table 4.2

4.1.3 DFD
For the Discrete Fréchet distance, we have 18 clusters. Four of them are in Figure 4.3.
The majority of the links in Figure 3.4 are below the dissimilarity of 20, then the merges



34 Chapter 4. Discussion and conclusion

0

100

200

11-04-2021

18-12-2020

21-08-2020

24-04-2020
0

100

200

11-04-2021

18-12-2020

21-08-2020

24-04-2020
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are relatively sparse.
We have again a big cluster that has the average time series very close to zero, but

the deviations are quite small. The group has 113 members, that is, more than half.
The most significant countries are, for example, China, Finland, and Russia.

The second most numerous group is the green one with 21 time series like Canada,
Germany, and Greece. We can see that there is a wavelet and the second peak is still
increasing. The tops are not so significant. This cluster is similar to the orange one
because they have a common direct predecessor in the dendrogram.

When we look at the group with a yellowish color, we can see that there is a lot of
divergence compared to the average time series. This may be because the time series
have peaks at different times and they are misaligned. The time series in this cluster
have a few steep tops, but the outbreak outside of the tops is mild. This set contains
17 members. There are for example Austria, Denmark, Spain, United Kingdom, Italy,
Slovakia and United States.

The next is the purple cluster with 15 time series. The contained countries are for
example France, Netherlands, and Sweden. The differences from the black time series
are big, the reason may be the same as for the yellowish cluster. The elements in this
group reach high peaks as well, but a little less than the yellowish ones.

There are 14 groups out of 20 with just a few elements. The members in one cluster
tend to have the same number of tops with the same height and for the same time
interval. The countries are in Table 4.3

4.1.4 LCSD
We can see the dendrogram in Figure 3.5 and some of the cluster plots in Figure 4.4.

As in all previous dendrograms, there is a big group that has the majority of the
elements in the data set. This group contains for example Canada, China, Finland,
Greece and Russia. The average time series has again little to no daily infections. All
elements in the green set have values close to zero with some thin and low peaks.

There are two clusters with 18 members. We start with the orange one that has for
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example Austria, Belgium, France, Italy, and Poland. The average curve is still relatively
close to zero and there are some waves, but the tops are insignificant. The time series
are quite close to the black one with some exceptions. There are a few outlier entries
that are relatively distant to the other values. The highest outlier peak is Ireland. The
peak at the end is in Martinique time series.

The other cluster with the same number of elements is the pink one. The average
time series starts slowly, but then the curve looks exponential. There is a linear decline
after the first top and then another wave. The second peak seems to start to decrease.
The cluster is again quite homogeneous but there are some outlier entries. The highest
peak in this cluster is Belgium.

The blue set has 11 members. The peak of the average curve is quite thick but low. It
looks that there is a linear increase and decrease. The blue curves are homogeneous until
the top, but then there are some serious deviations. There are for example Germany,
Denmark, and United Kingdom.

We have 28 clusters and 24 of them contain less than 4 elements. Some clusters have
time series with an outlier entry. The clusters look very homogeneous. The named time
series in each cluster are in Table 4.4.

4.2 Conclusion

All used distance measures have a large cluster that has the majority of the elements.
Most of the subclusters in the big one are formed at low dissimilarity values in the
dendrograms. The average curves in the plots are very close to zero with no wavelets.
Differences between the black line and the time series are quite small, but the ERP dis-
tance measure is an exception. The states in this cluster had a quite moderate outbreak.

When we have a time series X with a trend, time series Y with the same trend but
with a few significant but short time interval deviations and a last curve Z with the
same trend but shifted on the y axis. The ERP distance seems to tend to find X more
similar to Y than X to Z compared to the other distance measures. It is the reason
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we have a lot of deviations in the large cluster using the ERP . There are time series
that are close to zero with some significant peaks and some are just close to zero. This
observation can be made with multiple the ERP clusters.

There are also 2 clusters with 2 waves on the average time series for each method.
The clusters differ in the heights of the waves. For example, the red and purple one for
the DTW , the blue and the less numerous orange one for the ERP . For the DFD , it is
questionable since the are a lot of deviations and the peaks are not aligned in the same
time. These clusters contain states with 2 waves of the outbreak and one cluster has
those with a more severe epidemic.

The differences from the average time series for the DFD may be caused by the
misalignment of the peaks. The distance takes just the y axis into account and thus is
not sensitive to the position of the peaks in time. It means that if we have 2 time series
with the same wave and out of the wave the values are constant but the waves are in
different positions in time, the DFD is not sensitive to the positions of the wave. This
can be observed in the more numerous clusters for the distance measure.

There are a few sporadic entries that are very distant to the other values and the
average line in the LCSD measure. The longest common subsequence is able to skip a
value that does not participate in the final subsequence. Therefore, the LCSD distance
is not sensitive to an exceptional outlier entry. For comparison, the DTW and ERP
distance measures always incorporate an entry in a way into the final distance.

For the measures, we have discussed the biggest cluster and the 2 others with 2
waves. There is one other more numerous cluster (the DTW has 2), but it does not
seem that they have a common pattern or behaviour. We move to clusters with just few
elements.

Majority of the clusters are those with just little elements. They are unique in the
eyes of the distance measure. The outliers are mostly the ones with relatively high peaks
and/or the peaks occurred in different time. For example, the last row in Figure 4.5.
The DFD measure is less sensitive to the positions of peaks in time, so the majority of
outliers are with high and/or thick peaks. There are some countries that are outliers in
the perspective of all measures like Israel, Czechia, and Aruba.

The countries that are singletons often have a small population. When the outbreak
hits, the peaks are very high due to the scaling with low number of people.

4.3 Further work
It would be interesting to do a similar comparison with the daily death counts time
series. This work used almost all countries from the WHO data set that contained a lot
of outliers, some specific area analysis could yield some more detailed information.

A better data would give more precise results. Consistent testing strategies and
reporting practices over all countries with randomized population samples.

The outputs from this thesis can be further interpreted by someone that has some
additional knowledge like a social geographer, epidemiologist, or by someone that knows
the introduced measures.



4.3. Further work 37

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

11-04-2021

18-12-2020

21-08-2020

24-04-2020
0

50

100

150

200

11-04-2021

18-12-2020

21-08-2020

24-04-2020

11-04-2021

18-12-2020

21-08-2020

24-04-2020

Estonia; Montenegro; Slovenia Serbia Czechia

Curaçao Uruguay

Belgium; Luxembourg

Ireland; Mayotte

French Guiana Israel Aruba

Figure 4.5 The DTW cluster plots



38 Chapter 4. Discussion and conclusion

Table 4.1 Clusters for the DTW

4 Afghanistan; Angola; Australia; Barbados; Bangladesh; Burkina Faso; Bu-
rundi; Benin; Brunei Darussalam; Bolivia, Plurinational State of; Bahamas;
Bhutan; Botswana; Belarus; Congo, The Democratic Republic of the; Central
African Republic; Congo; Côte d’Ivoire; Cameroon; China; Cuba; Djibouti; Do-
minican Republic; Algeria; Ecuador; Egypt; Eritrea; Ethiopia; Finland; Fiji;
Gabon; Grenada; Ghana; Gambia; Guinea; Equatorial Guinea; Guatemala;
Guinea-Bissau; Guyana; Honduras; Haiti; Indonesia; India; Iraq; Iceland; Ja-
maica; Japan; Kenya; Kyrgyzstan; Cambodia; Comoros; Korea, Republic of;
Kazakhstan; Lao People’s Democratic Republic; Sri Lanka; Liberia; Lesotho;
Libya; Morocco; Madagascar; Mali; Myanmar; Mongolia; Mauritania; Mauri-
tius; Malawi; Mexico; Malaysia; Mozambique; New Caledonia; Niger; Nigeria;
Nicaragua; Norway; Nepal; New Zealand; Papua New Guinea; Philippines; Pak-
istan; Réunion; Russian Federation; Rwanda; Saudi Arabia; Solomon Islands;
Sudan; Singapore; Sierra Leone; Senegal; Somalia; Suriname; South Sudan; Sao
Tome and Principe; El Salvador; Syrian Arab Republic; Eswatini; Chad; Togo;
Thailand; Tajikistan; Timor-Leste; Tunisia; Trinidad and Tobago; Tanzania,
United Republic of; Uganda; Uzbekistan; Saint Vincent and the Grenadines;
Venezuela, Bolivarian Republic of; Virgin Islands, U.S.; Viet Nam; Vanuatu;
Samoa; Yemen; South Africa; Zambia; Zimbabwe

7 United Arab Emirates; Albania; Argentina; Azerbaijan; Brazil; Canada; Chile;
Colombia; Costa Rica; Cabo Verde; Germany; Guadeloupe; Greece; Iran, Islamic
Republic of; Kuwait; Moldova, Republic of; Martinique; Maldives; Oman; Peru;
Paraguay; Romania; Ukraine

8 Austria; Bosnia and Herzegovina; Bulgaria; Bahrain; Cyprus; France; Hungary;
Italy; Jordan; Lebanon; Latvia; North Macedonia; Netherlands; Poland; Pales-
tine, State of; Sweden; Slovakia; Turkey; Kosovo

12 Belize; Denmark; Spain; United Kingdom; Guam; Jersey; Saint Lucia; Malta;
Panama; French Polynesia; Portugal; United States

11 Armenia; Switzerland; Georgia; Croatia; Lithuania; Qatar
1 Estonia; Montenegro; Slovenia
9 Belgium; Luxembourg
10 Ireland; Mayotte
2 Serbia
3 Czechia
5 Curaçao
6 Uruguay
13 French Guiana
14 Israel
15 Aruba
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Table 4.2 Clusters for the ERP

1 Afghanistan; Angola; Australia; Azerbaijan; Barbados; Bangladesh; Burkina
Faso; Burundi; Benin; Brunei Darussalam; Bolivia, Plurinational State of; Ba-
hamas; Bhutan; Botswana; Belarus; Belize; Canada; Congo, The Democratic Re-
public of the; Central African Republic; Congo; Côte d’Ivoire; Cameroon; China;
Cuba; Cabo Verde; Djibouti; Dominican Republic; Algeria; Ecuador; Egypt; Er-
itrea; Ethiopia; Finland; Fiji; Gabon; Grenada; Ghana; Gambia; Guinea; Guade-
loupe; Equatorial Guinea; Greece; Guatemala; Guinea-Bissau; Guyana; Hon-
duras; Haiti; Indonesia; India; Iraq; Iran, Islamic Republic of; Iceland; Jersey;
Jamaica; Japan; Kenya; Kyrgyzstan; Cambodia; Comoros; Korea, Republic of;
Kazakhstan; Lao People’s Democratic Republic; Saint Lucia; Sri Lanka; Liberia;
Lesotho; Libya; Morocco; Madagascar; Mali; Myanmar; Mongolia; Martinique;
Mauritania; Mauritius; Malawi; Mexico; Malaysia; Mozambique; New Caledo-
nia; Niger; Nigeria; Nicaragua; Norway; Nepal; New Zealand; Oman; Papua New
Guinea; Philippines; Pakistan; Paraguay; Réunion; Russian Federation; Rwanda;
Saudi Arabia; Solomon Islands; Sudan; Singapore; Sierra Leone; Senegal; Soma-
lia; Suriname; South Sudan; Sao Tome and Principe; El Salvador; Syrian Arab
Republic; Eswatini; Chad; Togo; Thailand; Tajikistan; Timor-Leste; Tunisia;
Trinidad and Tobago; Tanzania, United Republic of; Uganda; Uzbekistan; Saint
Vincent and the Grenadines; Venezuela, Bolivarian Republic of; Virgin Islands,
U.S.; Viet Nam; Vanuatu; Samoa; Yemen; South Africa; Zambia; Zimbabwe

13 United Arab Emirates; Albania; Argentina; Brazil; Chile; Colombia; Costa Rica;
Germany; Denmark; Kuwait; Moldova, Republic of; Malta; Maldives; Peru;
Palestine, State of; Romania; Turkey; Ukraine

14 Austria; Bosnia and Herzegovina; Bulgaria; Cyprus; France; Hungary; Italy;
Jordan; North Macedonia; Poland; Kosovo

15 Armenia; Lebanon; Latvia; Netherlands; Sweden; Slovakia
7 Georgia; Croatia; Lithuania; French Polynesia
12 Spain; United Kingdom; Guam; Ireland
2 Curaçao; Uruguay
4 Panama; United States
5 Estonia; Portugal
8 Belgium; Switzerland
11 French Guiana; Qatar
3 Mayotte
6 Israel
9 Luxembourg
10 Serbia
16 Bahrain
17 Aruba
18 Slovenia
19 Czechia
20 Montenegro
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Table 4.3 Clusters for the DFD

1 Afghanistan; Angola; Australia; Barbados; Bangladesh; Burkina Faso; Bu-
rundi; Benin; Brunei Darussalam; Bolivia, Plurinational State of; Bahamas;
Bhutan; Botswana; Belarus; Congo, The Democratic Republic of the; Central
African Republic; Congo; Côte d’Ivoire; Cameroon; China; Cuba; Djibouti; Do-
minican Republic; Algeria; Ecuador; Egypt; Eritrea; Ethiopia; Finland; Fiji;
Gabon; Grenada; Ghana; Gambia; Guinea; Equatorial Guinea; Guatemala;
Guinea-Bissau; Guyana; Honduras; Haiti; Indonesia; India; Iraq; Iceland; Ja-
maica; Japan; Kenya; Kyrgyzstan; Cambodia; Comoros; Korea, Republic of;
Kazakhstan; Lao People’s Democratic Republic; Sri Lanka; Liberia; Lesotho;
Libya; Morocco; Madagascar; Mali; Myanmar; Mongolia; Mauritania; Mauri-
tius; Malawi; Mexico; Malaysia; Mozambique; New Caledonia; Niger; Nigeria;
Nicaragua; Norway; Nepal; New Zealand; Papua New Guinea; Philippines; Pak-
istan; Réunion; Russian Federation; Rwanda; Saudi Arabia; Solomon Islands;
Sudan; Singapore; Sierra Leone; Senegal; Somalia; Suriname; South Sudan; Sao
Tome and Principe; El Salvador; Syrian Arab Republic; Eswatini; Chad; Togo;
Thailand; Tajikistan; Timor-Leste; Trinidad and Tobago; Tanzania, United Re-
public of; Uganda; Uzbekistan; Venezuela, Bolivarian Republic of; Virgin Islands,
U.S.; Viet Nam; Vanuatu; Samoa; Yemen; South Africa; Zambia; Zimbabwe

2 United Arab Emirates; Albania; Azerbaijan; Bulgaria; Brazil; Canada; Colom-
bia; Cabo Verde; Germany; Greece; Iran, Islamic Republic of; Kuwait; Moldova,
Republic of; Maldives; Oman; Peru; Paraguay; Romania; Tunisia; Ukraine; Saint
Vincent and the Grenadines

9 Armenia; Austria; Belize; Denmark; Spain; United Kingdom; French Guiana;
Guam; Italy; Jersey; Saint Lucia; Latvia; Malta; Panama; Qatar; Slovakia;
United States

4 Argentina; Bosnia and Herzegovina; Bahrain; Chile; Costa Rica; Cyprus; France;
Guadeloupe; Lebanon; North Macedonia; Netherlands; Palestine, State of; Swe-
den; Turkey; Kosovo

6 Switzerland; Georgia; Lithuania; Luxembourg
3 Hungary; Jordan; Poland
5 Estonia; Montenegro; Slovenia
7 Croatia; Serbia
11 French Polynesia; Portugal
8 Aruba
10 Israel
12 Belgium
13 Mayotte
14 Ireland
15 Czechia
16 Martinique
17 Curaçao
18 Uruguay
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Table 4.4 Clusters for the LCSD

18 Afghanistan; Angola; Australia; Barbados; Bangladesh; Burkina Faso; Burundi;
Benin; Brunei Darussalam; Bolivia, Plurinational State of; Bhutan; Botswana;
Belarus; Canada; Congo, The Democratic Republic of the; Central African Re-
public; Congo; Côte d’Ivoire; Cameroon; China; Cuba; Djibouti; Dominican
Republic; Algeria; Ecuador; Egypt; Eritrea; Ethiopia; Finland; Fiji; Gabon;
Grenada; Ghana; Gambia; Guinea; Equatorial Guinea; Greece; Guatemala;
Guinea-Bissau; Guyana; Honduras; Haiti; Indonesia; India; Iraq; Iran, Islamic
Republic of; Iceland; Jamaica; Japan; Kenya; Kyrgyzstan; Cambodia; Korea,
Republic of; Kazakhstan; Lao People’s Democratic Republic; Sri Lanka; Liberia;
Libya; Morocco; Madagascar; Mali; Myanmar; Mongolia; Mauritania; Mauri-
tius; Malawi; Mexico; Malaysia; Mozambique; New Caledonia; Niger; Nigeria;
Nicaragua; Norway; Nepal; New Zealand; Papua New Guinea; Philippines; Pak-
istan; Paraguay; Russian Federation; Rwanda; Saudi Arabia; Sudan; Singapore;
Sierra Leone; Senegal; Somalia; Suriname; South Sudan; Sao Tome and Principe;
El Salvador; Syrian Arab Republic; Eswatini; Chad; Togo; Thailand; Timor-
Leste; Tunisia; Trinidad and Tobago; Tanzania, United Republic of; Uganda;
Uzbekistan; Venezuela, Bolivarian Republic of; Viet Nam; Yemen; South Africa;
Zambia; Zimbabwe

12 Armenia; Austria; Bosnia and Herzegovina; Belgium; Bulgaria; Cyprus; France;
Italy; Moldova, Republic of; North Macedonia; Poland; Palestine, State of; Ro-
mania; Turkey; Ukraine; Vanuatu; Samoa; Kosovo

20 United Arab Emirates; Albania; Argentina; Brazil; Bahamas; Chile; Colombia;
Costa Rica; Cabo Verde; Ireland; Kuwait; Martinique; Maldives; Oman; Peru;
Réunion; Solomon Islands; Virgin Islands, U.S.

19 Azerbaijan; Belize; Germany; Denmark; United Kingdom; Jersey; Comoros;
Saint Lucia; Lesotho; Tajikistan; Saint Vincent and the Grenadines

8 Lebanon; Latvia; Sweden
11 Georgia; Croatia; Lithuania
13 Curaçao; Hungary; Jordan
3 Panama; United States
7 Netherlands; Slovakia
10 Spain; Portugal
1 Estonia
2 Serbia
4 Israel
5 Switzerland
6 Luxembourg
9 Malta
14 French Guiana
15 Aruba
16 Guam
17 French Polynesia
21 Guadeloupe
22 Uruguay
23 Qatar
24 Mayotte
25 Czechia
26 Montenegro
27 Slovenia
28 Bahrain
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