




Bachelor’s thesis

Real-time Facial Expression Recognition in
the Wild

Martin Vadlejch

Department of Theoretical Computer Science
Supervisor: doc. Ing. Patrik Kut́ılek, MSc., Ph.D.

May 12, 2021





Acknowledgements

I wish to express my deepest gratitude to my family and friends, for they
have always been very supportive of me and helping me achieve my goals.
I also wish to express my sincere appreciation to my consultant Ing. Jan
Hejda, Ph.D., for his persistent help and insight.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 12, 2021 . . .. . .. . .. . .. . .. . .. . .



Czech Technical University in Prague
Faculty of Information Technology
© 2021 Martin Vadlejch. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Vadlejch, Martin. Real-time Facial Expression Recognition in the Wild. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.



Abstrakt

Strojové rozpoznáváńı emoćı či výraz̊u tváře je technologie, se kterou se zat́ım
běžně nesetkáváme přesto, že by mohla naj́ıt mnohé využit́ı. Jedńım z d̊uvod̊u
může být výpočetńı náročnost současných konvolučńıch neuronových śıt́ı, které
byly pro tento problém dosavadně použité. V této práci najdeme vhodnou ma-
lou a rychlou konvolučńı neuronovou śıt’, která je schopná rozpoznat výrazy z
tváře v reálném čase, a to i na mobilńıch zař́ızeńıch. Pro učeńı śıtě použijeme
databázi AffectNet, v současnosti největš́ı databázi výraz̊u tváře v přirozených
podmı́nkách, a pro následnou validaci anotujeme daľśıch 160 sńımk̊u, na kterých
vyhodnot́ıme úspěšnost modelu. Naše śıt’ dosahuje téměř state-of-the-art výsledk̊u,
zároveň je zhruba desetkrát menš́ı než ostatńı použité neuronové śıtě, a na
Raspberry Pi 4 dokáže klasifikovat výrazy z tváře s až pěti sńımky za vteřinu.

Kĺıčová slova detekce tváře, rozpoznáńı výrazu tváře, reálný čas, přirozené
podmı́nky, databáze výraz̊u tváře, konvolučńı neuronové śıtě, porovnáńı ar-
chitektur CNN, mobilńı zař́ızeńı, Raspberry Pi 4
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Abstract

Machine emotion recognition or facial expression recognition is a technology
that we do not often see just yet, despite its many possible uses. One reason
could be the use of computationally demanding convolutional neural networks
in current state-of-the-art models. In this work, we find a suitable lightweight
and fast convolutional neural network capable of facial expression recognition
in real-time, even on mobile devices. The network is trained on the AffectNet
database, currently the largest facial expression database in the wild setting,
and to further validate our results, we collect and annotate 160 additional
images, on which we evaluate the model performance. Our network achieves
near state-of-the-art accuracy while being almost ten times smaller than pre-
vious approaches and can recognize and classify facial expressions with up to
five frames per second on the Raspberry Pi 4.

Keywords facial detection, facial expression recognition, real-time, in the
wild, facial expression database, convolutional neural networks, CNN archi-
tecture comparison, mobile devices, Raspberry Pi 4
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Introduction

As we seek new ways to better our lives with computers, we strive to make
them better understand us, our habits, our physiological and psychological
state. Affective computing is a field of study exploring how machines can
recognize and interpret human emotions and utilize them for more effective
human-computer interaction (HCI). Such technologies could find many appli-
cations – augmented reality biofeedback devices, social robots, possibly even
surveillance cameras [1].

Facial expression is one of many nonverbal communication channels and
is an essential part of our interaction with the world, as it conveys real emo-
tions based on facial features and their relative positions, like raised eyebrows,
corners of the mouth, dilated pupils, and more [2]. When perceived by an
observer, this information is processed by the amygdala, where the facial ex-
pression is recognized [3]. As computers do not have amygdalae, we turn to
artificial neural networks, for they have been shown to outperform conven-
tional algorithms in facial expression recognition (FER) [4].

As great as convolutional neural networks (CNN) are for computer vi-
sion, they are computationally expensive. Some current state-of-the-art image
recognition models have upwards of a hundred million parameters and require
tens of GFLOPs1 for inference, making them unsuitable for both mobile de-
vices and real-time classification.

In this work, our goal is to explore the models of emotion representation,
the current state of the art in FER, and determine whether CNN architec-
tures with smaller memory footprints and faster inference times can achieve
acceptable classification accuracy to be used in real-world applications.

1FLOPs = Floating-point Operations
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Chapter 1
Definition of Facial Expression

Facial expression is the current state of facial muscles, the movement of eyes,
eyebrows, mouth, chin, cheeks, and this altogether conveys the emotion, which
is the psychological state itself [2]. For us humans, FER is so instinctive and
intuitive that we automatically do it at all times, as if one could not look
at a face without immediately trying to determine the expression. It is our
inherent nature.

There is a wide variety of human feelings, and those can be projected
into facial expressions in different ways. Some are common, others could be
culturally or context-specific, thus multiple observers could describe the same
expression in various ways [5].

For those reasons, we need a model to classify facial expressions and their
underlying emotions. Such a model should be universal, easy to understand
and interpret, and easy to represent numerically. There are many models of
emotion classification, some more suitable for our task than others.

1.1 Discrete Emotion Space

Discrete emotion space is such space in which we have distinct, separate cat-
egories. There are two widely used models to describe facial expressions –
affective categories and the Facial Action Coding System.

1.1.1 Affective Categories

The simplest model categorizes facial expressions as a finite number of classes
based on the emotions they represent. Such a model would use categories
like joy, fear, sadness, disgust, anger, and surprise to classify facial expres-
sions [5]. This approach’s problem arises when an expression with no directly
corresponding class (e.g., tiredness) is to be classified. At that moment, the
model is not descriptive enough, and another class would have to be added.

3



1. Definition of Facial Expression

1.1.2 Facial Action Coding System

The Facial Action Coding System (FACS) [6] is based on contractions and
relaxations of individual facial muscles. Those individual muscle contractions
are described by their corresponding action units (AUs) and intensity scores,
which range from A–E with increasing intensity. The actions of muscle groups
can be described using action descriptors (ADs). Both of those units can
further be specified either as unilateral or single side only.

FACS is a complex system to describe facial expressions, but interpreting
those and assigning them their corresponding emotions requires a dictionary,
such as EMFACS [7].

Figure 1.1: FACS Action Units with examples for basic emotions, as described
in [8].

1.2 Continuous Emotion Space

Continuous emotion space describes the emotions as a dimensional model, in
which the classification accuracy is the only limiting factor, as even very simi-
lar expressions can be distinguished by slight differences in the corresponding
continuous dimensions. Examples include Russel’s circumplex model [9], Pos-
itive activation – Negative activation (PANA) model [10], Pleasure – Arousal
– Dominance (PAD) model [11], and Plutchik’s model [12].

Both PANA and Russel’s circumplex model describe the emotion space
with two values, Russel’s model with valence and arousal (VA) axes, whereas
PANA’s axes are rotated by 45 degrees from VA. In the PAD model, an
extra dimension – dominance – is added to VA (pleasure axis is equivalent

4



1.2. Continuous Emotion Space

to valence in VA). Plutchik’s model is a surface of a 3D cone, often also
represented as unfolded cone, called the Plutchik’s wheel. The circular plane
surface is divided into eight segments representing basic emotions adjacent
based on similarity. Those basic emotions combine into emotional dyads with
decreasing intensity with distance from the center.

Russel’s circumplex model seems to be the most common dimensional
model used for FER database annotations [4].

1.2.1 Russel’s Circumplex Model

Developed by James Russell in 1980, the circumplex model describes all emo-
tions by their valence (horizontal axis) and arousal (vertical axis). Valence
represents how positive or negative the emotion is, whereas arousal determines
the overall intensity. All discrete emotions can be mapped onto the circumplex
model; examples are shown in Figure 1.2.

There seems to be particular disagreement whether to use only the circum-
plex (bound by unit distance from the origin) or the entire VA plane, with
both v, a ∈ [−1; 1]. The AffectNet database uses only the circumplex for an-
notations [4], whereas the Aff-Wild database uses the entire plane [13]. Using
the standard circumplex allows for conversion to a polar coordinate system.
Each point can be described by angular coordinate φ ∈ [0; 2π] rad and radial
coordinate ρ ∈ [0; 1], but could be counterintuitive to interpret, as simulta-
neous maximum valence and arousal lies at (

√
1
2 ;
√

1
2) on the VA plane, as

opposed to the intuitive (1; 1).
Handrich et al. suggest that in the AffectNet database, “there are no sam-

ples with both strong valence and arousal (e.g., (1; 1))” [14]. This could be a
misinterpretation, as AffectNet is annotated within the bounds of the circum-
plex, thus (

√
1
2 ;
√

1
2) represents the strongest possible simultaneous valence

and arousal.
A closer comparison between those two models could be possible using

a transformation such as Shirley-Chiu’s equiareal map [15] to expand the
circumplex with low distortion (Figure 1.3). Different transformations such
as radial stretching could also be used to preserve the angular coordinate but
would result in increased distribution density along diagonal axes.
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1. Definition of Facial Expression

Figure 1.2: Russel’s circumplex model taken from [16].
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Figure 1.3: Transformation of the AffectNet VA annotations from the circum-
plex model to v, a ∈ [−1; 1].
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Chapter 2
Neural Networks

2.1 Artificial Neuron

Invented by Frank Rosenblatt in 1958 [17], the mathematical model inspired by
biological neurons called the perceptron eventually became the basic building
block of all modern neural networks.

Compared to its predecessors – Threshold Logic Units (TLU) – proposed
in 1943 by McCulloch & Pitts [18], Rosenblatt’s perceptron allows for non-
uniform weights w to account for different influence levels from different in-
puts. Furthermore, weights are no longer restricted to positive numbers, al-
lowing some inputs to have an inhibitory effect. He also introduces the bias
input, a constant one with its corresponding weight w0; this affine transfor-
mation allows for the shift of activation function f(ξ) to fit the data better.

x2 w2 ξ f(ξ)

Activation
function

ŷ

Output

x1 w1

xn wn

Weights

bias: x0 = 1 w0

...
...

Inputs

Figure 2.1: Single artificial neuron - perceptron.
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2. Neural Networks

2.1.1 Forward Pass

Perceptron is a simple binary classifier that maps its input x = (x1, . . . , xn)
of length n (to which we prepend an intercept or bias x0 = 1, see Figure 2.1)
to an output value ŷ using a dot product ∑n

i=0wixi to calculate the action
potential ξ. The action potential is then fed to a threshold activation function:

ŷ = f(ξ) =
{

1 ξ ≥ 0
0 ξ < 0

=
{

1 ∑n
i=1wixi ≥ −w0

0 ∑n
i=1wixi < −w0

2.1.2 Backward Pass

The process of finding the weights is called perceptron learning. A single cycle
of updating weights for a set of all training examples is called an epoch.

Algorithm 1: Perceptron Learning
Input : Set of m training examples {xj , yj}mj=1
for j ← 1 to m do

error ← yj − f(w0 +∑n
i=1wixj,i);

if error 6= 0 then
w0 ← w0 + error;
for k ← 1 to n do

wk ← wk + error × xj,k;
end

end
end
Result: Perceptron with weights updated from a single epoch.

With the perceptron being a linear classifier, if the training set is linearly
separable, it is guaranteed to converge within a finite number of weight ad-
justments. If the training set is linearly inseparable (e.g., the XOR function),
the perceptron will never learn to classify all examples correctly [19].

2.1.3 Activation Functions

Artificial neurons can be very versatile; using different activation functions
can be used for different types of predictions. Examples of selected activation
functions and their derivatives can be found in Table 2.1.

8



2.1. Artificial Neuron

Linear Activation Function Sigmoid
f(ξ) = ξ = w0 +∑n

i=1 xiwi f(ξ) = eξ

1+eξ
f ′(ξ) = 1 f ′(ξ) = f(ξ)(1− f(ξ))

−1 1

−1

ξ

f(ξ)

f(ξ)
f ′(ξ)

−6 −4 −2 0 2 4 6

0.5

1
f(ξ)

f(ξ)
f ′(ξ)

Binary classification: Binary classification:

ŷ =
{

1 f(ξ) ≥ 0
0 f(ξ) < 0

ŷ =
{

1 f(ξ) ≥ 0.5
0 f(ξ) < 0.5

f(ξ) = P̂ (Y = 1|X = x)
ReLU Hyperbolic Tangent

f(ξ) =
{
ξ ξ ≥ 0
0 ξ < 0

f(ξ) = tanh ξ

f ′(ξ) =
{

1 ξ ≥ 0
0 ξ < 0

f ′(ξ) = sech2 ξ

−1 −0.5 0 0.5 1

0.5

1
f(ξ)

f(ξ)
f ′(ξ)

−1 1

−1

ξ

f(ξ)

f(ξ)
f ′(ξ)

Table 2.1: Activation Functions
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2. Neural Networks

2.1.3.1 Binary Classification

Binary classification is a prediction of a boolean value, true or false, 1 or 0.
The activation function should be both continuous and differentiable2 so that
the delta rule and loss function can be used in the learning process. In the
ADALINE paper [20], linear activations are used, where f(ξ) = ξ. The output
is still interpreted by thresholding the activation value, but the weighted sum
of inputs is used to update the weights rather than a binary error.

In more modern artificial neurons, a sigmoid activation function can be
found. Its output is a real-valued number between 0 and 1 and, in the context
of binary classification, can be interpreted as a probability of belonging to a
class (Table 2.1).

2.1.3.2 Regression

Prediction of a continuous variable can be achieved using the result of the
activation function as output ŷ = f(ξ). Choosing an appropriate activation
function is necessary, as its range determines the possible predictions ŷ. This
can be used to limit the prediction range, e.g., linear activation for ŷ ∈ R,
ReLU activation for ŷ ∈ R+, hyperbolic tangent for ŷ ∈ [−1; 1] (Table 2.1).

2.1.4 Cost Functions

In 1960, the concept of a cost function was introduced [20]. A continuous
and differentiable activation function f(ξ) is used instead of the threshold
activation function. We can define a quadratic cost function as:

C(w) = 1
m

m∑
j=1

(f(w0 +
n∑
i=1

wixj,i)− yj)2

where f(ξ) = ξ is a linear activation function, m is the number of training
samples, and n is the total number of weights. The set of weights w is obtained
by minimizing the sum of squared errors:

min
w
C(w)

Using the delta rule, we descend opposite to the maximum positive slope (the
gradient) with the weight updates ∆w moderated by the learning rate η to
step towards the cost function minimum.

∆w = − ∂C
∂w =

[
− ∂C
∂w0

. . . − ∂C
∂wn

]
wnew = w + η∆w = w− η( ∂C

∂w
)

2The derivation of activation function has to be defined for all inputs. For activations
such as ReLU, the derivative in zero is either considered 0 or 1, based on implementation.

10



2.2. Multilayer Perceptron

Once the cost function minimum has been found (the gradient is equal to
zero), or after the norm of the weight updates decreases under a set tolerance
or iteration limit is reached, we say the perceptron has converged. The rate
at which the model converges depends on both the training set and learning
rate. Too low η and reaching minimum takes an excessive amount of iterations,
setting η too high and the model might never find the minimum (Figure 2.2).
This problem can be alleviated by using a learning rate decay, which decreases
the η in later iterations [21].

w

C(w)

Random
initial

weights

Optimal
weights

w

C(w)

Random
initial

weights

Optimal
weights

Figure 2.2: Too small vs. too large learning rate η.

For different prediction tasks, different activation and cost functions are
used. The previous example where f(ξ) = ξ and C(w) = (Y − Ŷ )2 is well
suited for regression, but not for binary classification.

Most common cost function for binary classification is the binary cross-
entropy together with sigmoid activation function (Table 2.1):

C(w) = −1
m

m∑
j=1

yj log(f(ξj)) + (1− yj) log(1− f(ξj))

2.2 Multilayer Perceptron

First introduced in 1967 [22], multilayer perceptrons are a class of feedfor-
ward neural networks, meaning the data only flows in a single direction. In
1974, Paul Werbos developed backpropagation algorithms for the training of
artificial neural networks (ANN) [23]. We call the individual neurons nodes.

The input consists of n0 + 1 nodes; their activations are set to the input
x = x(0) = (x1, . . . , xn), and x0 is the bias node with constant unit output.
After the input layer, there is l > 1 following layers, each with a variable
number of nodes ni. Except for the bias nodes, every node in the network

11



2. Neural Networks

...
...
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Figure 2.3: Multilayer perceptron with a single hidden layer.

takes outputs from the entire previous layer as its input and adjusts its weights
(Figure 2.3). We call this a densely connected network.

The activation of individual nodes is defined as:

g
(i)
j = f(w(i)

j,0 +
ni−1∑
k=1

x
(i−1)
k w

(i)
j,k)

where w(i)
j,k is the k-th weight of g(i)

j and x
(i−1)
k is the k-th element from the

vector of outputs x(i−1) from the previous layer i− 1. The output vector x(i)

from the layer i can be defined as:

x(i) = f(
[
1 x

(i−1)
1 . . . x

(i−1)
ni−1

]

w

(i)
1,0 w

(i)
2,0 . . . w

(i)
ni,0

w
(i)
1,1 w

(i)
2,1 . . . w

(i)
ni,1...

... . . . ...
w

(i)
1,ni−1

w
(i)
2,ni−1

. . . w
(i)
ni,ni−1

)

where ni is the number of nodes in layer i. The output vector from the last
layer is also the vector of predicted values:

x(l) = ŷ

Neural networks are great for many things, they can have multiple outputs,
allowing for multiclass classification, and most importantly, they can solve
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2.2. Multilayer Perceptron

linearly inseparable problems (e.g., the XOR function), as the consequent
layers transform the data in a way that makes it separable.

Training of neural networks is a complex task, large training sets are used
to update many weights throughout the network, and full batch training with
cost function calculating the error on the entire training set is very memory-
expensive. Full batch training is usually avoided by splitting the test set into
fragments called mini-batches and calculating the individual prediction errors.
This individual error is called loss, and the loss function L is used to update
weights after each mini-batch.

The mini-batch size can be as small as a single training example – this is
called online training – and is usually much slower compared to larger mini-
batch sizes and sometimes leads to unstable convergence [24]. Large mini-
batches are memory-expensive and, after a certain point, can lead to worse
generalization [25]. For those reasons, it is essential to select an adequate
mini-batch size hyperparameter.

The cost function C is the average L across the training set. Training the
network on the entire training set single time is called an epoch, and multiple
epochs are often needed for the model to converge, as the step size needs to
be moderated (Figure 2.2).

2.2.1 Multiclass Classification

Neural networks improve on the binary classification ability and can classify
multiple classes by representing n classes as n neurons in the output layer of
the network, with the softmax activation function:

fk(ξ) = eξk∑n
i=1 e

ξi

for k-th output neuron, representing the probability P̂ (Y = k|X = x) of
the network input x belonging to class k. The class prediction Ŷ is then
determined as the most probable class:

Ŷ = arg max ŷ = arg max (
[
f1(ξ) . . . fn(ξ)

]
)

The loss used for multiclass classification is most often categorical cross-
entropy, which is defined as:

L(Y, Ŷ ) = −
n∑
i=1

yi log ŷi

2.2.2 Multivariable Regression

Similarly, multiple output neurons can be used for multivariable regression.
The activation function used determines the range of possible predictions. If,

13



2. Neural Networks

for example, our task was to predict spatial dimension (e.g., length), using
ReLU as the activation function limits the range of possible predictions to
f(ξ) ∈ R+, as negative length is never a valid prediction.

The vector of n predicted values Ŷ is defined as:

Ŷ = ŷ =
[
f1(ξ) . . . fn(ξ)

]
When the prediction range cannot be easily limited by the choice of the

activation function, a linear transformation can be used to interpret the result,
as can be seen, for example in [14]. E.g., if the range of a prediction was to
be limited to Ŷ ∈ [10; 20], a sigmoid activation function can be used, and the
final prediction Ŷ is obtained as:

Ŷ = 10ŷ + 10

Different loss functions can be used, commonly used are mean average
error (MAE), mean square error (MSE), root mean square error (RMSE),
and root mean square log error (RMSLE). Each of them has slightly different
properties.

LMAE(Y, Ŷ) = 1
n

n∑
i=1
|yi − ŷi|

LMSE(Y, Ŷ) = 1
n

n∑
i=1

(yi − ŷi)2

LRMSE(Y, Ŷ) =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

LRMSLE(Y, Ŷ) =

√√√√ 1
n

n∑
i=1

(log(yi + 1)− log(ŷi + 1))2

MAE is a metric that represents the average error and does not penalize
outliers in the set. MSE, on the other hand, penalizes outliers quite heavily.
RMSE is better suited for scenarios in which the errors are quite large, as it
scales their values down but still penalizes outliers in the set. It also represents
the standard deviation σ of residuals3. RMSLE is a metric similar to RMSE
but does not penalize the large outlier errors.

2.2.3 Backpropagation

To train a neural network, we minimize the network’s cost function for the set
of weights θ.

min
θ

( 1
m

m∑
j=1
L(Yj , Ŷj))

3Residual = prediction error
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2.2. Multilayer Perceptron

In full batch training, m is equal to the number of training samples. In
mini-batch training, m is the number of samples for which the weights are
updated at a single iteration. This number is commonly referred to as the
mini-batch size or batch size.

The average mini-batch loss (mini-batch cost) is calculated and used to
find the gradients and update weights after every mini-batch:

θ = θ + η∇θ = θ − η
[

∂C
∂w

(1)
1,0

. . . ∂C
∂w

(l)
nl,nl−1

]
Compared to single perceptron learning, reaching the global minimum is

very difficult, as the descent can get stuck in local minima or at saddle points.
For those reasons, additional techniques such as momentum can potentially
improve both the learning speed and convergence by accelerating the SGD in
the relevant direction and dampening oscillations [26]. It is defined as:

θ = θ + η∇θi + γ∇θi−1

where γ is the momentum rate, and ∇θi−1 is the previous gradient. In
practice, using just momentum is not ideal, as the accumulated descent iner-
tia can sometimes make the descent overshoot and does not slow down quickly
enough. More complex sets of rules for the descent have been invented, and
different optimizations are suitable for different problems. Those sets of op-
timization rules are commonly referred to as optimizers. Commonly used
optimizers are Nesterov accelerated gradients (NAG), Adagrad, RMSprop, and
Adam.

NAG seeks to improve the momentum overshooting of simple momentum
term by first calculating the current gradient, then calculating a second gra-
dient based on a momentum-only update, and then correcting the descent
direction on the combined gradients. Adagrad gives individual weights their
individual learning rates so that infrequently updated weights receive more
significant updates, which improves the learning on sparse data. RMSprop
improves on Adagrad by instead of accumulating past gradients using an ex-
ponential moving average of squared gradients. Adam is basically RMSprop
with added momentum [26].

Although Adam has been shown to converge significantly faster at the
beginning of the training [27], in the later stages, SGD can take over with
better generalization, and hybrid training strategies could benefit both speed
and generalization [28].

2.2.4 Common Problems of ANN

One of the common problems of artificial neural networks is model overfit-
ting. Many epochs are often needed for the model to converge, and after a
certain point, the model starts to remember the training samples instead of
generalizing the problem and performs poorly on other data.
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To detect when this starts to happen, we split the training data into two
separate sets, the training and the validation set. The model is never trained
on the validation data, but both training and validation losses are evaluated
and monitored. Once the validation loss ceases to improve, we consider the
model converged. This is called early stopping, as it stops the training when
the validation accuracy does not improve for the last n epochs. If the train-
ing is not stopped at this point, the training accuracy continues to improve,
overfitting the model, and the validation accuracy degrades (Figure 2.4).

The validation set is also used to fine-tune hyperparameters of the net-
work, as improving the validation accuracy most often translates to better
test accuracy, as both of those sets are considered a representative sample of
the real problem. The difference between validation and test set is that, unlike
the validation set, the test set is never used to fine-tune the hyperparameters
to avoid any possible bias and be a representative evaluation metric of the
resulting model’s accuracy. It is only used to evaluate the single final model
with the best validation accuracy.

Figure 2.4: Train vs. validation loss comparison.

Another thing to look out for are the exploding gradients, a problem with
computers’ numerical precision. During the gradient descent and backpropa-
gation, the error gradients can accumulate due to large weights in the network
and cause an overflow in variables, resulting in not-a-number (NaN) values
and invalid computation. Such problems can be prevented by using weight
regularization techniques, which penalize the network’s increasing weights by
adding a regularization term to the loss function.
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2.2. Multilayer Perceptron

Lp regularization is defined for the p-norm as:

||w||p = (|w1|p + . . .+ |wn|p)
1
p

L(Y, Ŷ) = Error(Y, Ŷ) + λ||w||p

where λ is the regularization rate and Error(Y, Ŷ) is a loss function, such
as MSE. Commonly used regularizations are L1 and L2, where L1 is commonly
used where sparse weights are required, as it promotes zero weights, and L2
more heavily penalizes larger weights [29]. Regularization techniques also
improve the model’s ability to generalize and reduce overfitting, as overfitting
requires more complex weights (Figure 2.5).

Figure 2.5: The classifier overfitting example is represented by the blue curve.

Other techniques also aim to improve the overfitting problem, commonly
used is the dropout, which randomly deactivates some nodes during the train-
ing process so that no neurons depend excessively on individual inputs. It was
even shown to outperform L2 regularization in more complex networks [30].
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2. Neural Networks

2.3 Convolutional Neural Networks

The motivation behind convolutional neural networks is traditional ANN’s
unsuitability for large input data, e.g., images. For example, a network ac-
cepting 256 × 256 RGB images as input would require 196, 608 nodes in the
input layer. Each following layer with the same size would require a total of
196, 6082 = 38, 654, 705, 664 weights to process the image.

Based on D. H. Hubel and T. N. Wiesel’s works, who studied the visual
cortices of cats [31], monkeys [32], and their receptive fields, K. Fukushima
came up with a network architecture mimicking the hierarchy of simple and
complex cells [33]. A simple cell works similar to a Gabor filter – it responds
to an oriented gradient, working like an oriented edge detector, with spe-
cific inhibitory and excitatory regions in the receptive field. Complex cells
have larger receptive fields and work as spatially invariant pattern detectors,
meaning their receptive fields can not be divided into specific inhibitory or
excitatory regions.

This behavior of spatially invariant pattern detectors consisting of in-
hibitory/excitatory regions can be achieved with matrix convolution, which
applies a filter called kernel to an image, and produces output based on a
weighted sum of a window sliding over the image. Convolution is defined as:

(I ∗K)i,j =
o−1∑
a=0

p−1∑
b=0

Ii+a,j+b ·Ka,b

where I is the image with dimensions m,n, K is the kernel with dimensions
o, p, and (I ∗ K)i,j is element at position i, j in the resulting matrix (I ∗ K)
with dimensions q, r; where q = m− 2b o2c and r = m− 2bp2c.

0 0 0-1 0-1 0-1 0 0
0 1 1-1 18 1-1 1 0
0 1 1-1 1-1 1-1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0




∗

−1 −1 −1
−1 8 −1
−1 −1 −1


 =

5 3 3 3 5
3 0 0 0 3
3 0 0 0 3
3 0 0 0 3
5 3 3 3 5




I K I ∗K

Figure 2.6: Matrix convolution example with edge-detection kernel.

As seen in Figure 2.6, for border values of I, the convolution is undefined,
as part of the kernel would be out of the image. Different implementations
of the matrix convolution might pad the image I with zeros or with border
values to solve this problem. Another approach is to wrap around the image
and take the pixel values from the opposite side.

18



2.3. Convolutional Neural Networks

I K =

−1 −1 −1
−1 8 −1
−1 −1 −1

 I ∗K

Figure 2.7: Matrix convolution example with edge-detection kernel.

Fukushima’s idea was that the consequent layers learn to detect higher-
level complex features from the previous lower-level simpler ones. An impor-
tant step forward came in a 1998 paper, in which LeCun et al. combined
Fukushima’s neocognitron [33] with pooling layers [34] and used the gradient
descent to optimize both convolution filters and weights [35]. Their meth-
ods eliminated the need for hand-crafting of the convolution filters for pre-
determined features, but the training was still very difficult for then-current
hardware.

In the 2000s, the development of graphical processing units (GPU) capable
of massively parallel computation started to revolutionize the artificial intel-
ligence research, as GPU implementations of neural networks were up to 60
times faster than their CPU counterparts by the year 2011 and have reduced
the training times for larger networks from months to days [36].

In 2012, Alex Krizhevsky won the ImageNet competition, an annual com-
puter vision contest in multiclass object recognition, in which their GPU im-
plementation of CNN broke all previous records with only 16 % error rate
(over 10 % better than runner-up) [37], and with it brought lots of attention
to neural networks.

With the increasing speed of GPUs, training larger networks was the pri-
mary pursuit for better accuracy4. One example of such large networks were
the VGGNets – smaller VGG16 and larger VGG19, with 16 and 19 weight
layers respectively. They experimented with new techniques as different fil-

4There is no universal accuracy metric for neural networks, as it is highly dependent
on the exact problem. In most modern literature, the network performances are compared
using the ImageNet database classification accuracies [38]. We will stick to this convention.
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ter sizes [39]. Going deeper than this was becoming an issue, as explod-
ing/vanishing gradients prevented the models from ever properly converging.

This was solved by a new approach introduced in 2015 ResNet, where
residual blocks were used to address the vanishing/exploding gradients prob-
lem. Residual blocks work as shortcuts, skipping few layers in the network and
applying its output as a second input to the destination layer. Residual blocks
helped ResNets converge better and won the 2015 ImageNet competition, with
an 8x deeper network than VGG19 [40].

layer 1 layer 2 layer 3+x

identity

Figure 2.8: ResNet residual block example.

The Inception family of CNN architectures took a different approach than
ResNets, and instead of going deeper, it went wider. Compared to other
architectures, where a single filter size was usually used in a single layer,
Inception uses multiple convolution filter sizes and filter concatenation layers.
The main idea is that different filter sizes might be suitable for different inputs,
which the network learns [41].

layer 1
filter

concatenation

1x1 conv

3x3 conv

5x5 conv

3x3 pool

Figure 2.9: Inception module example.

InceptionV2 and InceptionV3 were introduced in the same paper and im-
proved on the previous Inception by factorizing larger convolutions like 5× 5
convolution into two smaller 3× 3 convolutions [42]. Furthermore, separating
a n×n convolution into 1×n and n×1 leads to even greater speedup. Multiple
different Inception modules were used as basic building blocks of the entire
network. A year later, InceptionV4 introduced reduction blocks, a specialized
type of block designed to change the dimensions of its input [43].
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In the very same paper, another architecture was also introduced. The
Inception-ResNet combined two ideas, going both deeper and wider with the
convolution layers. The residual connections within the Inception blocks work
by adding the block’s input to it’s output before the activation function [43].

There are many different architectures, and each is interesting and unique
in different ways. One more notable mention because of its innovative ap-
proach is the family of NASNets, where the researchers used reinforcement
learning instead of architecture engineering to find the best building blocks
for a new CNN architecture. Their model outperformed all other state-of-the-
art human-invented architectures while reducing the model’s computational
demand by 28 % compared to the runner-up [44].

As CNN architectures grew in pursuit of the best possible accuracy, their
computational demand grew as well, making them unsuitable for lower-powered
mobile or embedded systems. The family of MobileNets is specifically de-
signed for those devices – reducing computational demand while preserving as
much accuracy possible [45]. Those networks are easily scalable to allow for
further latency/accuracy tradeoff tuning. MobileNetV1 is built with the com-
putationally efficient depthwise separable convolutions introduced in Inception
networks. MobileNetV2 uses linear bottlenecks and inverted residual blocks
to further improve the accuracy with fewer total network parameters [46].

Model Params Size Accuracy5 Depth GFLOP
AlexNet 60 M 233 MB 0.633 / 0.846 8 0.727
VGG16 138 M 528 MB 0.713 / 0.901 23 16.0
VGG19 143 M 549 MB 0.713 / 0.900 26 20.0
ResNet50 25 M 98 MB 0.749 / 0.921 50 4.0
ResNet152 60 M 232 MB 0.766 / 0.931 152 11.0
InceptionV3 23 M 92 MB 0.779 / 0.937 159 6.0
InceptionResNetV2 56 M 215 MB 0.803 / 0.953 572 13.0
MobileNetV1 4.2 M 16 MB 0.704 / 0.895 88 0.579
MobileNetV2 3.5 M 14 MB 0.713 / 0.901 88 0.3
MobileNetV2 [1.4] 6.9 M 27 MB 0.747 / 0.919 156 0.585
NASNetLarge 89 M 343 MB 0.825 / 0.960 −6 23.8
NASNetMobile 5.3 M 23 MB 0.744 / 0.919 −6 0.75
YOLOv2 51 M 197 MB −7 10 31.0

Table 2.2: Comparison of selected CNN architectures. [38, 43, 44, 45, 46, 47]

5Accuracy values for Top-1 / Top-5 on the ImageNet database.
6Given the complexity of NASNets, depth is no longer an applicable metric.
7YOLOv2 is an object detection network.
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Chapter 3
Facial Detection

Facial detection algorithms detect a presence of a human face in images. It is
closely related to facial recognition, which identifies the individual or matches
faces in different images. Early development goes as far as the 1970s when
T. Kanade demonstrated a fully automated system for facial feature local-
ization [48]. In the 1990s, this technology started making its way into law
enforcement, using automated identification systems and digital biometric
databases [1].

3.1 Viola-Jones Object Detection Framework

In 2001, Paul Viola and Michael Jones proposed an object detection frame-
work based on Haar-like features [49]. A Haar-like feature consists of several
rectangular regions, in which the pixel intensities are summed, and a difference
between the regions is then calculated.

Figure 3.1: Examples of Haar-like features.

They used integral images for fast calculation speed. Integral image is a
summed-area table [50] in which calculation of any Haar-like feature can be
achieved in constant time by looking up precomputed sums of different areas
of the image and combining them into the desired feature.

For facial detection, the Haar-like features are tailored for common prop-
erties of human faces - darker eyes, lighter cheeks, lighter nose bridge, its
relative position to the eyes, and more. An AdaBoost learning algorithm was
used to find 200 such features that achieved a 95 % detection rate, with a
false positive rate of 1

14084 . To further improve speed and accuracy, the cas-
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3. Facial Detection

cade classifier works as a degenerate tree – a positive result from each filter
is required to move on to the next one, a negative result immediately rejects
the sub-window. The cascade is designed so that most negatives are discarded
very early, as the vast majority of sub-windows do not contain a face. The
complete face detection cascade consists of 38 stages with more than 6000
features [49].

This technique achieves reasonable accuracy with low computational de-
mands and can be used in real-time applications on embedded devices but
struggles with different scales and faces not facing the camera [51].

3.2 Histogram of Oriented Gradients and Bag of
Features

A different approach to facial detection uses histograms of oriented gradients
(HOG) and bags of features. It aims to be better at detecting partially oc-
cluded faces and faces with poor illumination [52].

HOG descriptor works by separating the described region of the image into
cells. Oriented gradients are calculated for each cell, and their magnitudes
are normalized to compensate for the local illumination. That is done by
combining multiple neighboring cells and dividing their histogram values by
their L2-norm.

Figure 3.2: Example of histogram of oriented gradients descriptor from [52].

The HOG descriptors are then transformed into n clusters – those will
become n different codewords. Each image can then be described as a sparse
vector of occurrences of those codewords, or a histogram of the features [53].

Those bags of features can be used to train a classifier, such as the Support
Vector Machine. This approach achieved > 99 % classification accuracy using
a codebook size of n = 10 and 85 % with a codebook size of n = 100 [52].

3.3 CNN-Based Approaches

Current state-of-the-art facial detectors are based around CNN; examples in-
clude the Multitask Cascaded CNN (MTCNN) [54], Single Shot Scale-invariant
Face Detector (S3FD) [55], and CenterFace [56].
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3.3.1 Multitask Cascaded CNN

MTCNN sets to improve facial detection and facial alignment8 on poorly illu-
minated and occluded faces, where Viola-Jones’ algorithm accuracy degrades
with visual variations of human faces [54]. It achieves this by implement-
ing a cascade of three convolutional networks. The image is resized for each
network in advance, building an image pyramid. The first one, called the Pro-
posal Network (P-Net), finds candidate windows with possible faces. Highly
overlapped windows are merged using non-maximum suppression (NMS). The
second network, called the Refine Network (R-Net), further narrows the num-
ber of candidate windows so that the last Output Network (O-Net) only goes
through very high probability windows and detects both the face and facial
landmarks.

Figure 3.3: An illustration of the MTCNN facial detection pipeline from [54]

8Detection of facial landmarks such as mouth corners and eyes.
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3.3.2 Single Shot Scale-invariant Face Detector

S3FD is based on the Single Shot Detector (SSD), which separates the image
into a set of predetermined default bounding boxes (anchors), and those boxes
are adjusted and shifted based on the image shapes inside. It then generates
confidence scores for the presence of different object categories (in this case,
face and no-face) and further adjusts the bounding boxes to better match the
object’s shape [57].

To develop a robust, scale-invariant facial detector, the S3FD develops a
CNN architecture based on the VGG16 with extra convolutional layers, grad-
ually scaling the image to detect adequate features at all scales. Additional
techniques such as the max-out background label allow for better classification
of small faces, as less than 1

500 of anchors belong to actual faces due to the
scale of detection for small faces [55].

Compared to MTCNN, S3FD achieves greater detection accuracies but
does not perform a facial alignment.

Figure 3.4: An illustration of the S3FD architecture from [55].

3.3.3 CenterFace

CenterFace uses a feature pyramid network [58] for an anchor-free design, and
compared to previous approaches, uses a single efficient MobileNetV2 network
as a backbone to achieve superior speed and accuracy to that of the resource-
heavy VGG16-based (Table 2.2) S3FD on the WIDER FACE database while
being able to run in real-time on single CPU core [56].

The code has been made available on the author’s GitHub repository [59].
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Chapter 4
Experiments and Results

4.1 Facial Expression Databases

When considering which database to use in this work, the key characteristics
taken into consideration were the number of different subjects, the total num-
ber of samples, the resolution of the images, and the affective model used for
the annotations.

Database # Subjects # Samples Labels Note
FER-2013
[60]

∼35,887 35,887 7 categories 48×48px,
wild setting

RAF-DB
[61]

∼29,672 29,672 7 basic
+ 12 compound
categories

100×100px,
wild setting

RaFD
[8]

67 8,040 8 categories 1024×681px,
posed

Aff-Wild2
[62]

∼550 ∼2,800,000 7 categories
+ VA
+ FACS AU

avg.
1030×630,
videos

AffectNet
[4]

∼450,000 ∼450,000 8 categories
+ VA

avg.
425×425,
wild setting

Table 4.1: Comparison of selected FER databases [4, 8, 60, 61, 62].

The FER-2013 database offers reasonable subject variance but at very low
resolution. RAF-DB offers a similar number of samples with better quality and
provides labels for compound emotions (e.g., “happily surprised”. . .) as well as
landmark locations, and was annotated by about 40 different annotators [61].

The RaFD database offers high-quality pictures with multiple samples of
each emotion taken from different angles. However, the models were primarily
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Caucasian, and the pictures were taken in a very controlled environment, and
posed samples with low subject variance might not generalize well for in-the-
wild recognition with various environmental conditions and illumination.

Aff-Wild2 database is very different from other works, as it contains videos
with labels for each frame, as well as audio, and is labeled with both categor-
ical and dimensional models, as well as FACS action units. Handrich et al.
show that simultaneous training on both VA and categorical labels improves
the model’s accuracy [14]. It is possible that adding action units might in-
crease the accuracy further. Using videos also allows for the use of recurrent
neural networks (RNN), where the data input is a temporal sequence of mul-
tiple consequent images, to improve the prediction based on visual and audio
context. The authors also experimented with such architectures [62].

As our aim is a lightweight classifier based on a single image, using Aff-
Wild2 would require extensive preprocessing (facial detection and alignment),
and given the nature of the database, subject variance is very low and might
lead to overfitting when using individual frames.

AffectNet is our database of choice for this work. It was created by query-
ing different search engines in multiple languages and crawling the web for
images, offers very high subject variance as well as high-resolution and both
categorical and dimensional labels [4].

4.2 Our Facial Expression Test Set

To further validate the results achieved on the AffectNet database, we collect
our own modest test set. This test set had to be collected similarly to the
aforementioned AffectNet – by querying search engines due to pandemic re-
strictions. The queries were in English using keywords like “happy woman,
surprised man. . .”. The queries were also limited to results published in the
last year to lower the chance of finding pictures that are already contained in
the AffectNet database.

The images were manually sorted, contain no watermarks or occluded
faces, and are manually cropped to facial regions. The resulting set contains
160 images, 82 males, 78 females; 131 of those subjects were labeled as an
adult, 130 were of caucasoid origin, 15 of mongoloid origin, and 15 of negroid
origin [63].

Neutral Sad Happy Angry Surprise Fear Contempt Disgust
36 28 23 22 19 14 11 7

Table 4.2: Distribution of expression labels on our test set.

Five different annotators were instructed on how to annotate both dimen-
sional and categorical labels. A GUI application was developed to display
individual pictures for annotation one at a time (Figure 4.1). Figure 1.2 was
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displayed with two axial sliders and a marker representing the current anno-
tation on the circumplex model for the dimensional labels. When in doubt,
annotators were to use the marked reference points and consider the valence
and activation. The choice of one label did not limit the second label, as
was the case in the AffectNet database, e.g., choosing the “Happy” category
did not limit valence range to positive values, but annotators were asked to
stay within the circumplex unit bound to stay consistent with the AffectNet
database.

Figure 4.1: Illustration of the annotation application GUI.

Four different metrics were used to evaluate the annotator agreement –
accuracy, RMSE, defined in Section 2.2.2, Concordance Correlation Coefficient
(CCC), defined in [64], and Sign Agreement Metric (SAGR), defined in [4].

SAGR = 1
n

n∑
i=1

δ(sign(θ̂i), sign(θi))

δ(a, b) =
{

1 a = b

0 a 6= b

The SAGR metric is relevant to assess whether the general directions of
the annotations agree (e.g., both predict positive valence, despite the actual
values). δ(a, b) is the Kronecker delta function, and θi, θ̂i are the individual
compared labels. The CCC metric is defined as:

ρc = 2ρσxσy
σ2
x + σ2

y + (µx − µy)2
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where µx, µy are means of x, y; σ2
x, σ

2
y are their variances and ρ is their

correlation coefficient.

Label Metric Ours AffectNet

Valence
RMSE 0.455 0.340
SAGR 0.768 0.815
CCC 0.630 0.821

Arousal
RMSE 0.528 0.362
SAGR 0.680 0.667
CCC 0.449 0.551

Expression Accuracy 60.3 % 60.7 %

Table 4.3: Evaluation of annotator agreement.

The AffectNet database evaluates annotator agreement on 36,000 samples
labeled by two annotators. We report the average of those metrics between
five annotators. Our annotators also reported they often felt like the expres-
sion could not be described accurately with the categorical model or that the
expression could not be annotated accurately without knowing the context.
Interestingly, some faces with very high agreement on the discrete label still
had a considerable disagreement about the dimensional labels.

Figure 4.2: Selected images with low annotator agreement rate.

Median values were used to evaluate the discrete labels due to outlier
values that would otherwise skew the average. For the discrete labels, the
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4.2. Our Facial Expression Test Set

majority classes (> 3 votes) were used. In few cases with no clear majority
(e.g., 3:2, 2:2:1. . .), three additional annotators decided the final label.

Compared to AffectNet, we did not limit dimensional labels to regions
based on the selected discrete expression. That allows us to see that com-
pared to Figure 1.2, some categorical labels can be found outside of their
expected regions. The scatter plot of final labels (Figure 4.3) shows, that
for example, the “surprise” label, which would be expected in high arousal
and mildly positive valence region, is still the closest match to a VA region
representing the “startled” expression, according to the Figure 1.2. “Neutral”
was often used in low arousal and low positive valence region, where it was
the closest match to expressions like “longing” or “pensive.” In AffectNet,
those expressions where only the dimensional labels can be accurately anno-
tated but are outside of expected categorical regions are commonly labeled
as “None.” We did not use this approach, as our network will not predict a
wildcard category.

Figure 4.3: Distribution of annotation values on the test set.

31



4. Experiments and Results

4.3 Proposed Method

Multiple lightweight CNN architectures were tested to find an expression clas-
sifier with reasonable accuracy and inference time. All models were imple-
mented in Keras [65], an API for the TensorFlow machine learning frame-
work [66]. After the baseline comparison of different architectures, two were
selected for further hyper-parameter tuning. Some of the experiments were:

• Optimizer testing – Adam, RMSprop

• Influence of learning rate cap for the aforementioned adaptive LR opti-
mizers

• Improvement in generalization performance with different data augmen-
tation techniques

• Comparison of inference speedup and accuracy hit when using RGB or
grayscale input images

• Use of different loss functions

• Comparison of separate categorical and dimensional models to a simul-
taneous one with a combined loss function

• Transfer learning using pre-trained weights from the ImageNet database

• The scaling factor α for the MobileNet family of networks

• Skew-normalization techniques for both categorical and dimensional la-
bels

A log of those experiments was kept, and the training sessions were recorded
using the TensorBoard toolkit. The resulting model with the highest valida-
tion accuracy was tested on a reserved 20% image test set and our custom test
set. Inference speed was measured, and an application for real-time expression
recognition was developed to evaluate the real-world usability of the model.

4.3.1 Training Pipeline

Due to the size of the database being over 50GB, an efficient pipeline had to
be implemented. The images were stored on an NVME SSD, and during the
training epoch, each mini-batch was dynamically loaded to the main memory,
the CPU processed data augmentation, and the prepared batch was then
processed on GPU. The main bottleneck when training was the GPU for larger
and CPU for smaller models. The total processing time for the experiments in
this work was over 300 hours on a system with an Intel i7-5775c, GTX 1070TI
GPU, and 32GB of RAM.
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4.3.2 Architecture Experiments

The different architectures tested include MobileNetV1 [45], MobileNetV2 [46],
NASNetMobile [44] and EfficientNet-B0 [67]. Those networks are imple-
mented in Keras [47], and a Keras Functional API was used to wrap those
architectures into a final model. The original classification top layers were
stripped and replaced with new classification layers – eight nodes for discrete
label classification, two nodes for dimensional label regression, or both for a
simultaneous prediction (Figure 4.4).
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Figure 4.4: Visualization of the model architecture generated using
Net2Vis [68].

The functional block is followed by a Batch Normalization layer to reduce
the internal covariate shift and accelerate the training [69]. Global Average
Pooling is a substitute for Dense layers in CNN and works by taking averages
of feature maps and converting them into a feature vector [70]. A Dropout
layer with p = 0.5 is used for further regularization [30].

The mini-batch size used for training varied based on the model – a larger
mini-batch size results in faster training time but might cause the video mem-
ory to overflow. Such overflow into main memory would increase the training
time by over 20 times.

Architecture Expected Input Mini-batch Size Time / Epoch
MobileNetV1 224 × 224 128 1800 sec
MobileNetV2 224 × 224 96 2050 sec
EfficientNet-B0 224 × 224 48 3000 sec
NASNetMobile 224 × 224 32 3400 sec
Xception 299 × 299 16 10800 sec

Table 4.4: Comparison of training times of selected lightweight architectures
to a larger network such as Xception [71].
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After the initial evaluation, EfficientNet-B0 and NASNetMobile brought
marginal improvement to validation accuracy at best. Thus we used Mo-
bileNets for further experiments, as they are much faster to train.

4.3.3 Data Preprocessing and Augmentation

The AffectNet database contains undesirable images – those either contain
watermarks, are distorted, animated, or not a human face. Those are labeled
as the “Non-face” category. Another category that had to be removed is
the wildcard “None” category, which is assigned to images with dimensional
labels only. The third category that had to be removed was the “Uncertain”
category, which also does not contain dimensional labels. At last, six images
in TIFF format had to be removed, as they would crash the input pipeline
due to a bug in the latest Pillow library. There were 287,645 images left in
the training set with those removed, 20% of which were randomly reserved as
a test set.

Each mini-batch was dynamically loaded to memory during the training,
resized to 224×224 pixels, and pixel values were converted from [0; 255] range
to [−1; 1]. No facial cropping was performed.

We used random horizontal flip, ±10 % random brightness change, ±10-
degree random rotation, and up to 20 % random zoom for data augmentation9,
yielding minor improvements on validation loss. This data augmentation was
used in all later models. We also tested the sample-wise normalization, which
led to slightly worse results.

Using grayscale10 instead of RGB sped up the training by around 10 %
(mostly by reducing the CPU load for data augmentation) and led to only
marginally worse validation loss (< 2 % difference). However, it did not speed
up the inference time.

4.3.4 Loss Functions

For classification, categorical cross-entropy loss was used together with the
softmax activation function (Section 2.2.1).

For regression, a hyperbolic tangent activation function was used (Ta-
ble 2.1). MAE and MSE losses (Section 2.2.2) were tested, with almost iden-
tical results. Mollahosseini et al. used a Euclidean (L2) loss [4]:

L = 1
2N

N∑
n=1
||ŷn − yn||22

9Data augmentation = Techniques to increase the diversity of training samples and
reduce overfitting by modifying the data without altering their ground truth.

10In Keras, conversion to grayscale is handled by the Pillow library, using the ITU-R
601-2 luma transformation (0.299R + 0.587G + 0.114B) and Floyd-Steinberg dithering [72].
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whereas Handrich et al. used cross-entropy loss [14], defined as:

Lv,a = −ytlog(yp)− (1− yt)log(1− yp)

yt = [12(v + 1); 1
2(a+ 1)]

yp = [σ(v′);σ(a′)]

The cross-entropy loss requires the activation function of the dimensional
predictor also to be sigmoid and thus cannot be directly interpreted as pre-
dicted values but instead must be transformed as [v̂; â] = 2([v′; a′]− 0.5).

During the simultaneous training of a network with two predictors, the
combined loss of both predictors is minimized. For this reason, the choice of
appropriate losses is essential, as using poorly chosen losses might cause minor
improvement in one predictor to outweigh more significant improvement in the
second predictor.

Figure 4.5: Example of model training with different predictor loss functions.

We tested several different losses, and the difference between those was
marginal at best. Other metrics such as validation RMSE were also monitored
during all experiments to compare the performance of those models.

4.3.5 Optimizers, Learning Rate, and Transfer Learning

The tested optimizers were RMSprop and Adam [27], with learning rates
ηinitial = [10−2; 10−3; 10−4] and learning rate decay ρ = [0.8; 0.85; 0.9] after
each epoch.

In our experiments, the learning rate decay did little to help with further
model convergence – possibly due to the adaptive learning nature of both
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Figure 4.6: Training with η = 0.001 and exponential weight decay ρ = 0.85.

RMSprop and Adam, where learning rate only works as a value cap for in-
dividual learning rates – but the descent was much smoother (Figure 4.6 vs.
Figure 4.5).

Both optimizers seem to reach a similar plateau around epochs seven to
twelve, after which the validation loss improves very slowly. Early-stopping
was used when validation loss does not improve for three epochs, the last best
weights are restored, and the training is stopped. However, due to the low
total number of epochs and some variance between different models, we ended
up training for a set number of epochs for consistency. Adam optimizer with
learning rate ηinitial = 0.001 and ρ = 0.85 after each epoch yielded the best
results.

Transfer learning is a method of transferring knowledge from a different
but related domain to a new learner [73]. The general idea is that we can
take the trained weights from a network trained for another task, lock the
convolution layers with already trained filters, and fine-tune the network by
training the output layers on our data. Keras offers weights of networks trained
on the ImageNet database for object classification [47].

We experimented with two different methods of transfer learning. First,
we initialized the network with the pre-trained weights, locked the param-
eters except for the last classification layers, and trained the network until
convergence. After reaching a plateau, the weights in the network were un-
locked, and the entire network was fine-tuned with very small learning rates
η = [0.0001; 0.00001]. Training the network with the base model locked re-
duced the training time by 35 %, and a plateau was reached on average be-
tween epochs six to eight. Fine-tuning reached a plateau in the same number
of epochs. This approach resulted in no improvement in validation loss.

36



4.3. Proposed Method

Using the second method, we initialized the network with the pre-trained
weights instead of random weights, and the network was trained until a plateau
was reached. Neither this approach improved the validation loss.

4.3.6 Skew-normalization Techniques

Due to the highly skewed nature of the AffectNet database, skew-normalization
techniques might be required for good generalization, as some categories are
outnumbered twentyfold by others. Mollahosseini et al. show that weighted
loss can improve expression classification [4].

We define weighted loss as assigning the training samples weights inversely
proportional to their class’ frequencies:

weightc = total number of samples
number of classes× class c samples

When evaluating the model performance on skewed data, the accuracy
metric might be misleading. Other metrics as the F1 score have been proposed
as more appropriate [14]. For binary classification, the F1 score is defined as:

F1 = true positive
true positive + 1

2(false positive + false negative)

F1 score can be extended to multi-class classification by using the mean
of class-wise F1 scores:

F1 = 1
N

N∑
i=1

tpi
tpi + 1

2(fpi + fni)

where N is the number of classes and tpi, fpi, fni are the respective counts
for the class i.

To further evaluate the model performance on a skewed test set, Mola-
hosseini et al. use a 200-fold unskewed down-sampling evaluation [4]. We
use down-sampling with 500 random samples from each class per trial. Mean
metrics from 200 trials are reported under the “Norm” column.

AffectNet Ours
Imbalanced Weighted Imbalaned Weighted
Orig Norm Orig Norm Orig Norm Orig Norm

Accuracy 0.72 0.54 0.64 0.63 0.77 0.50 0.62 0.60
F1 Score 0.57 0.52 0.55 0.62 0.52 0.46 0.48 0.60

Table 4.5: Comparison of weighted loss results using MobileNetV1 trained for
15 epochs vs. AlexNet [4].
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Sensitivity Miss Rate

TPR =
∑

true positive∑
condition positive FNR =

∑
false negative∑

condition positive

Precision False Discovery Rate

PPV =
∑

true positive∑
predicted condition positive FDR =

∑
false positive∑

predicted condition positive

Table 4.6: List of metrics on confusion matrix.

Figure 4.7: Example of imbalanced learning model, with no skew-
normalization techniques used, compared to Figure 4.8.
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In our experiments, using sample weights improved the validation loss
significantly. The results can be further evaluated on the confusion matrices
when classifying the 20 % test set. The confusion matrix compares true and
predicted labels for individual classes. Furthermore, the matrix shows the
sensitivity (TPR), miss rate (FNR), precision (PPV), and false discovery rate
(FDR) for each class (Table 4.6).

Although the model in Figure 4.7 achieves higher test accuracy, its sensi-
tivity for the “contempt” category is very low with only 8.13 %, whereas when
using sample weights, the sensitivity is 50.28 %, but at the cost of a higher
false discovery rate.

Figure 4.8: Example of a model trained with sample weights.

Using sample weights for the classification problems is relatively com-
mon [74]. We test whether the dimensional predictor could also benefit from a
weighted approach since the distribution of labels is very uneven (Figure 1.3,
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mind the logarithmic scale). Similar to how total classifier accuracy can be
misleading, the RMSE values of dimensional predictors also do not apply to
all predictions equally (Figure 4.9). To further evaluate the performance, we
split the VA space into 71 × 71 regions by their ground truth and measure
RMSE per region (Figures 4.9 and 4.10). The mean RMSE of non-empty
regions is reported as normalized RMSE in Table 4.5.

Compared to categorical classification, the choice of sample weights in
the dimensional space is not as simple. We experimented with class weights,
as class prevalence determines the sample density in the corresponding VA
region. The second approach is a region-based one – the VA space is divided
into regions, and samples inside of each region are assigned weights as:

weightregion = # of samples in region
# of non-empty regions×# of samples in region

Figure 4.9: Heatmap of RMSE prediction error for test samples from different
regions of the VA space.

Figure 4.10: Heatmap of RMSE prediction error for test samples from different
regions of the VA space when using class weights.

This approach with region-based weights has two significant problems.
Since the annotations are bound by the circumplex, the border regions group
samples from a smaller area. This problem could be solved by defining the re-
gions in radial coordinates or using a completely different method to calculate
the sample weight based on the local sample distribution density. The second
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AffectNet Ours
Imbalanced Imbalanced Class Weights 7x7 Regions
Val Aro Val Aro Val Aro Val Aro

RMSE 0.394 0.402 0.286 0.233 0.397 0.297 0.317 0.284
SAGR 0.728 0.670 0.823 0.696 0.755 0.660 0.808 0.668
CCC 0.541 0.450 0.809 0.579 0.660 0.438 0.765 0.525
N. RMSE - - 0.278 0.271 0.340 0.317 0.307 0.300

Table 4.7: Comparison of regression results when using different sample
weights.

problem is that some regions with very few samples suddenly have a very high
weight due to the uneven distribution, possibly hurting the generalization and
overfitting the classifier.

Although the weighted approach to dimensional prediction did not improve
the accuracy of the predictions, the predictions are somewhat more consistent
(Figures 4.9 vs. 4.10). The region-based approach introduced different accu-
racy levels at the boundaries of different regions, and it would not perform
well in simultaneous predictors.

4.3.7 Simultaneous Prediction of Dimensional and
Categorical Labels

A classifier that simultaneously predicts multiple different expression models
– such as dimensional and categorical models – can be desirable for multi-
ple reasons. One would be the added versatility of such classifiers, allowing
for multiple applications at virtually no additional computational cost. The
second reason is that other works show improved classifier performance in cat-
egorical and dimensional predictions when the model learns simultaneously on
different labels [14].

Our guess as to why this is is the high annotator disagreement rate, and
describing each sample in terms of multiple expression models could lower the
total annotation error, especially in borderline samples.

Table 4.5 shows that sample weights are beneficial for categorical predic-
tors. We test whether the same applies to simultaneous predictors.

For our experiments, we used the MobileNetV1 architecture and compared
results with YOLOv2 architecture [14]. We further evaluate the performance
using skew-normalized metrics defined in Section 4.3.6.

The skew-normalized metrics show that using sample weights is still bene-
ficial to the classifier. Despite the slightly worse dimensional prediction accu-
racy, the classifier results are very similar to the results in Figures 4.7 and 4.8
– using sample weights improved the sensitivity for underrepresented classes
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Handrich et al. Ours
Imbalanced Imbalanced Class Weights

Accuracy 0.79 0.77 0.62
F1 Score 0.61 0.55 0.47
VA RMSE 0.269 0.228 0.285 0.236 0.399 0.298
VA CCC 0.845 0.606 0.822 0.598 0.644 0.411
N. Accuracy - 0.5275 0.5802
N. F1 Score - 0.4988 0.5809
N. VA RMSE - - 0.281 0.284 0.342 0.319

Table 4.8: Comparison of imbalanced and weighted learning approach using
MobileNetV1 trained for 15 epochs to a simultaneous classifier built on the
YOLOv2 architecture.

Imbalanced Categorical Dimensional Simultaneous
Accuracy 0.77 - 0.77
F1 Score 0.53 - 0.55
VA RMSE - 0.286 0.233 0.285 0.236
VA CCC - 0.809 0.579 0.822 0.598
N. Accuracy 0.51 - 0.53
N. F1 Score 0.49 - 0.50
N. RMSE - 0.278 0.271 0.281 0.284
Class Weights Categorical Dimensional Simultaneous
Accuracy 0.62 - 0.62
F1 Score 0.48 - 0.47
VA RMSE - 0.397 0.297 0.399 0.298
VA CCC - 0.660 0.438 0.644 0.411
N. Accuracy 0.60 - 0.58
N. F1 Score 0.60 - 0.58
N. RMSE - 0.340 0.317 0.342 0.319

Table 4.9: Comparison of the simultaneous predictor and baseline predictors,
both with and without weighted learning using MobileNetV1 architecture.

significantly. We consider this approach more balanced than using unweighted
learning, as shown by the skew-normalized metrics in Table 4.8.

As to whether the simultaneous training improves the total classifier per-
formance, we compare it to both baseline predictors. Table 4.9 shows that
our results did not show any significant improvement or degradation in per-
formance compared to other works [14]. The weighted approach still results in
a better categorical classifier with only minor accuracy hit to the dimensional
predictions. We believe that using a different type of sample weighting might
further narrow the difference between those predictors.
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4.3.8 Scaling Factor α of MobileNet Architectures and
Speed-Accuracy Tradeoff

The MobileNet family of networks is designed for easy width scaling with a
single parameter – this makes it a very versatile network architecture for use
on different devices and can be tailored to the available resources [45, 46]. To
determine what accuracy can be achieved at different computational costs, we
experimented with the network width scaling parameter α.

We used the MobileNetV1 architecture for those experiments, with an
input shape of 224 × 224. Values of the width multiplier α tested were
[0.25, 0.35, 0.5, 0.75, 1, 1.4]. A learning rate ηinitial = 0.001 and a weight decay
ρ = 0.85 after each epoch were used for 15 epochs. Mini-batch size of 128
was used to train α < 1 networks and 96 for α ≥ 1 due to GPU memory
constraints.

MobileNetV1 α-scale 0.25 0.35 0.5 0.75 1 1.4
Million Parameters 0.222 0.419 0.836 1.843 3.243 6.288
Model Size (MB) 0.83 1.58 3.16 6.99 12.31 23.91
RPi4 Inference Time (ms) 108 137 177 256 335 515
N. Accuracy 0.533 0.550 0.567 0.584 0.580 0.589
N. F1 Score 0.534 0.553 0.569 0.585 0.581 0.590
N. Valence 0.366 0.361 0.352 0.341 0.342 0.335
N. Arousal 0.342 0.330 0.327 0.323 0.319 0.318

Table 4.10: Comparison of performance and inference times of different Mo-
bileNetV1 sizes, scaled with α.

The models were further benchmarked on Raspberry Pi 4 (4GB), repre-
senting the mobile devices we target in this work. The models were bench-
marked in TensorFlow version 2.3.0. The inference time could potentially be
improved even further with tools like TensorFlow Lite [75].

Although the model inference time is fast enough for real-time classifica-
tion, we first need to detect the faces. Using the OpenCV [76] implementation
of the Viola-Jones algorithm requires 59ms on the Raspberry Pi 4 to process
a 1920× 1080 frame, whereas the CNN-based CenterFace requires 790ms. We
prefer the Viola-Jones algorithm on the Raspberry Pi 4 for two reasons –
firstly, much lower latency, and secondly, it only detects large and unoccluded
faces that can be classified accurately. CenterFace can detect even small and
partially occluded faces that might be too low quality for expression recogni-
tion. However, it can still be used with smaller MobileNets and achieve over a
frame per second throughput. This changes when more processing resources
are available, as CenterFace is a superior facial detector with a lower false
detection rate and would be the preferred detector.
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Figure 4.11: Screenshots from a real-time expression recognition application.
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Figure 4.12: More screenshots from a real-time expression recognition appli-
cation.

When running on the i7 5775c CPU, the Viola-Jones algorithm requires
13 ms on average, CenterFace 90 ms, and α = 1 MobileNet 52 ms. On
GTX 1070TI, the inference time of the same network is 454 ms per batch of
256 images or 4 ms per single image. Those GPU benchmarks were severely
bottlenecked by the CPU image preprocessing – CUDA usage never exceeded
60 %.

4.4 Evaluation on Custom Test Set

To further validate our results on the AffectNet database, we evaluate the
model performance on our test set described in Section 4.2.

Imbalanced Class Weights
Accuracy 0.606 0.606
F1 Score 0.527 0.550
VA RMSE 0.339 0.345 0.339 0.399
VA SAGR 0.756 0.738 0.744 0.650
VA CCC 0.733 0.618 0.665 0.477
N. Accuracy 0.561 0.554
N. F1 Score 0.503 0.537
N. VA RMSE 0.251 0.258 0.273 0.321

Table 4.11: Comparison of imbalanced and weighted models on our custom
test set. Normalized accuracy and F1 metrics on the smaller test set were
sampled with five images per class per trial.
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Class Sensitivity (%) Imbalanced Class Weights
Neutral 63.89 69.44
Happy 95.65 78.26
Sad 57.14 57.14
Surprise 68.42 63.16
Fear 0.00 35.71
Disgust 71.43 42.86
Anger 77.27 68.18
Contempt 9.09 27.27

Table 4.12: Comparison of class sensitivities of the two models.

Despite the modest size of our test set, the results are very close to those
measured on the AffectNet database. Although the accuracy difference be-
tween those two models is relatively small, the class sensitivities show that
class weights result in a more balanced classifier.

4.5 Comparison with the State of the Art

Mollahosseini et al. proposed multiple baseline solutions to AffectNet classi-
fication – both conventional approach (hand-crafted HOG features + SVM)
and CNN models are tested for categorical and dimensional predictions on
an unpublished test set, counting the 36 thousand pictures annotated by two
different annotators. An unskewed validation set of 500 random images from
each expression category is used for hyper-parameter tuning. They also show
that weighted loss is beneficial to the categorical classifier and propose skew-
normalized metrics to evaluate the model performance.

Handrich et al. used a YOLOv2 architecture that simultaneously predicts
both categorical and dimensional values and performs facial detection in real-
time. They also perform a cross-database evaluation on multiple databases
to further validate their results. Their model also outperforms the originally
proposed baseline solutions.

Our solution combines the two previous works and applies weighted loss to
a simultaneous classifier built on the lightweight MobileNet architecture. Our
solution significantly improves the categorical classification accuracy, which
we measure by skew-normalized metrics proposed in [4]. We propose a simi-
lar skew-normalized metric to evaluate the dimensional predictor better. Al-
though the accuracy of dimensional predictor is slightly worse when using the
weighted approach, our models built on the MobileNet architecture are about
ten times smaller and significantly faster compared to YOLOv2, allowing for
real-time FER on low-power devices like the Raspberry Pi 4, with a near
state-of-the-art accuracy and easy scalability for devices with more resources.
On a modern GPU, the throughput can achieve over 500 frames per second.
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We want to discuss the importance of skew-normalized metrics used in this
work and the labels in the AffectNet database.

Firstly, the misleading accuracy metric – due to the skewed distribution of
labels, even a model that always predicts happy expression would have 46 %
accuracy, which is way higher than the intuitively expected 12.5 %. The skew-
normalized accuracy metric would, in this case, result in the expected 12.5 %,
which is precisely how we would like to measure such a model, under the as-
sumption that all facial expressions are equally probable in the real world.

Neutral 80276 25 %
Happy 146198 46 %
Sad 29487 9 %
Surprise 16288 5 %
Fear 8191 3 %
Disgust 5264 2 %
Anger 28130 9 %
Contempt 5135 2 %

Table 4.13: Label distribution in the AffectNet database.

Secondly, the relatively large annotator disagreement rates – determining the
ground-truth value is often challenging, even for trained human annotators.
For this reason, as pointed out in [14], there is a large number of potentially
mislabeled samples (Table 4.14). Those might hinder the training of classi-
fiers and result in lower accuracy metrics, despite being predicted correctly.
The normalized accuracy metrics are very close to the measured annotator
agreement rates in the AffectNet database, leading us to believe that further
advancements in facial expression recognition will soon require the databases
to improve on the label accuracy, possibly by having multiple highly trained
annotators evaluate the data.
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Table 4.14: Examples of misclassified images in the AffectNet database taken
from [14]. True positives are the examples of correctly annotated samples,
and false positives are samples that all display the “fear” expression but are
annotated wrongly. False negatives are samples with wrong “fear” annotations
that display other expressions.
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Conclusion

In this work, we set out to find whether a convolutional neural network with a
small memory footprint and fast inference time can achieve reasonable accu-
racy in facial expression recognition to be used in real-time applications and
on mobile devices. To train and evaluate our models, we used the AffectNet
database – currently the largest database of facial expression images.

We tested different architectures and training hyperparameters and found
that MobileNetV1 achieved the fastest inference times while not compromising
accuracy. It can also be easily scaled with a simple hyperparameter to suit the
desired application better. To further allow for better scalability, our proposed
approach separates facial detection and expression recognition problems so
that both can be adjusted for the target processing power. The two facial
detectors tested were the Viola-Jones algorithm and a MobileNetV2-based
CenterFace. While the first detector is faster, the latter achieves state-of-the-
art results if the available resources allow for its use.

We tested both categorical and dimensional expression predictors and
combined them into a single versatile model for simultaneous prediction of
eight basic emotions and valence/arousal values. We further show that using
weighted loss for such a model improves the categorical classification accuracy,
which we measure using skew-normalized metrics.

To further validate our results, we collected a modest test set of 160 im-
ages, which were annotated via a GUI annotation application by five different
people. All were instructed on how to annotate both categorical and dimen-
sional labels properly. The annotator disagreement rate for categorical labels
was very similar to that in AffectNet, while the disagreement for dimensional
labels was considerably higher. We attribute this to the restriction of the VA
region during the annotation process based on the selected expression category
in AffectNet.

The results on our test set are very similar to those on the AffectNet
database, with the weighted loss approach resulting in similar accuracy but
higher sensitivity for underrepresented classes like fear and contempt.
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Conclusion

To demonstrate the classifier’s performance in a real-time scenario, we
developed a simple application. It tracks faces from a webcam input using the
Viola-Jones algorithm and uses one of six pre-computed models with different
parameter counts, from mere 220 thousand up to over six million. The fastest
model achieves over five frames per second (fps) on the Raspberry Pi 4, the
largest model over two fps, with 1920×1080 video input resolution. The same
models can achieve over 500 fps on modern GPU, allowing for high-speed
processing of videos or multiple camera inputs.
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Appendix A
List of Acronyms

AD Action Descriptor

ANN Artificial Neural Network

API Application Programming Interface

AU Action Unit

CCC Concordance Correlation Coefficient

CNN Convolutional Neural Network

EMFACS Emotion FACS

FACS Facial Action Coding System

FDR False Discovery Rate

FER Facial Expression Recognition

FLOPs Floating-point Operations

FNR False Negative Rate

FN False Negative

FP False Positive

FPS Frames Per Second

GPU Graphical Processing Unit

GUI Graphical User Interface

HCI Human-Computer Interaction

HOG Histogram of Oriented Gradients
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A. List of Acronyms

MAE Mean Average Error

MSE Mean Square Error

MTCNN Multitask Cascaded CNN

NMS Non-Maximum Suppression

O-Net Output Network

P-Net Proposal Network

PAD Pleasure – Arousal – Dominance

PANA Positive Activation – Negative Activation

PPV Positive Predictive Value

R-Net Refine Network

RAF-DB Real-world Affective Faces Database

RMSE Root Mean Square Error

RMSLE Root Mean Square Log Error

RNN Recurrent Neural Networks

RaFD Radboud Faces Database

ReLU Rectified Linear Unit

S3FD Single Shot Scale-invariant Face Detector

SAGR Sign Agreement Metric

SSD Single-shot Detector

SVM Support Vector Machine

TLU Threshold Logic Unit

TN True Negative

TPR True Positive Rate

TP True Positive

VA Valence – Arousal
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Appendix B
Contents of the enclosed media

Some large files could not be submitted due to size limits. For this reason, all
models can also be found on the FIT CTU GitLab repository at:

https://gitlab.fit.cvut.cz/vadlemar/real-time-facial-expression-recognition-in-the-wild.

src .............................. all source files and pre-trained models
BP Vadlejch Martin 2021.pdf............this thesis in the PDF format
BP Vadlejch Martin 2021.zip..........LATEX source files for this thesis
readme.md..................further description of all the submitted files
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