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Abstrakt

Tato práce neńı a nebude dokončená. Rád bych to zkusil znovu s novým
zadáńım.

Kĺıčová slova Nedokončené, MIRAM, Vesmı́r, Timepix, Medipix, Timepix3

Abstract

This work is not finished and it never will be. I would like try again with a
new assignment.

Keywords Unfinished, MIRAM, Space, Timepix, Medipix, Timepix3, Par-
ticle tracking
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Motivation

Imaging

Being able to identify individual particles can be very useful in imaging. For
example background radiation can be filtered in software before creating final
image. Also because of effect called charge sharing many particles, even pho-
tons, can take up multiple pixels, we can calculate it’s position high precision,
thus significantly increasing resolution.[5]

Filtering the data in software has some advantages, even if it could be
done by physical filters. Since the unwanted signal is not blocked during the
measurement, multiple different settings can be tried and chosen the best of
them, without the need for redoing the measurement.

Particle tracking

Timepix detectors can intercept many kinds of particles, including X-ray pho-
tons, muons, beta radiation, alpha radiation and heavy ions. All of these light
up a track of pixels on the detector.Some of them are long and only a few
pixels thick, some are round. Because individual particles can arrive around
the same time, it is necessary to identify individual particles before trying to
classify them.

dosimetry

with Timepix and Timepix3 it is possible to not only calculate total energy
deposited, but also to identify almost every particle and thus give accurate
information about the dose someone in that area would receive. Simple ex-
ample of place, where this is useful is the International space station, where
they use Timepix detectors for radiation monitoring.[6]
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Motivation

MIRAM

Short for Miniaturised Radiation Monitor, MIRAM is a Project of ESA. While
technical proposal talks about using Timepix, or Timepix2 [7], which was
being developed at the time of proposal, current prototype uses Timepix3 [?],
which actually finished its development sooner (see in which year were [8] and
[9] published).

Figure 0.1: MIRAM current prototype [1]
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Chapter 1
State-of-the-art

1.1 Indirect conversion

Indirect detection systems first convert the photon into visible light using a
scintillator and then visible light is detected by photodiodes. This degrades
the spatial resolution and detection efficiency.[10]

1.2 Direct conversion

In a direct detection system, photons are converted directly to electrical signal,
without using visible light as an intermediate step.

1.2.1 Photon counting detectors

Photon-counting detectors (PCD) are sensitive enough to allow for detection
of individual particles. Unlike conventional imaging devices which integrate
charge and measure it during frame readout, PCDs are constantly comparing
charge with set threshold and incrementing counter, present in each pixel,
whenever threshold is reached. This has few key advantages over traditional
methods which measure charge at the end. One of the undesired properties
of PCDs is so called dead time. It is the time that has to be between events
to avoid being counted as one event. To archive good results, dead time must
be significantly smaller than mean time between events. [10]

Another disadvantage for purposes of this thesis is that I don’t have access
to them.

1.2.2 Hybrid pixel detectors

HPD (hybrid pixel detector) consists of 2 parts - readout chip and sensor,
which are bump-bonded together. Huge advantage of this approach is the
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1. State-of-the-art

ability to connect sensor and readout chip made of different material, mean-
while monolithic devices have to be made out of silicon. [11] Even if silicon
is to be used, different sensor thickness can be used without making major
change to the rest of the device.

1.2.3 Medipix Timepix

Timepix is a Hybrid pixel
Timepix can operate in 3 different modes [12]

• Event count

– Measures how many times has pixel been hit

• ToA

– Measures when the pixel was hit for the first time

• ToT

– Measures energy deposited

Readout is done via 256 rows, where one bit at the time from each column
is read and placed into a 256 bit fast shift register. During readout counters in
pixels behave like shift registers, where single bit from each column is placed
into 256-bit register, which is then read out and the cycle continues.[13] This
approach is simple, but requires entire matrix to be read out even if most of
it are zeros.

Figure 1.1: Relation between ToT and energy [2]
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1.2. Direct conversion

1.2.4 Timepix3

Timepix3 is a successor to to the Timepix. By simply looking at the number,
it might seem that it is successor to the Timepix2, but it is not, otherwise
it wouldn’t be possible for [8] to introduce Timepix3 in 2014, while [9] which
introduced Timepix2 was published in 2020. Just like it’s predecessor it has
256x256 grid of pixels, each of size 55 × 55 m[12][8].

Main improvements of Timepix3 over Timepix[12] are as follows:

• It supports data driven mode

– individual pixels can be read out independently while keeping rest
of the detector sensitive

• There are 3 counters in each pixel, compared to 1 in Timepix

– This allows for storing ToA and ToT at the same time

•

There are 2 readout modes and 3 pixel modes. Readout mode affects how
will individual pixels be accessed, pixel acquisition mode affects meaning of
counters in individual pixels. It can operate in zero-suppressed frame-based
readout mode, but it’s main new feature is data-driven read- out mode. In this
mode every pixel hit is processed individually, without the need for readout
of the entire matrix. One of the advantages of this approach is that it allows
for readout to be done simultaneously with data acquisition, thus keeping the
detector sensitive at all times.[8]

1.2.4.1 Chip description

There are 3 pixel acquisition modes.[14]

• ToA & ToT

– contains information about when was pixel hit and energy of the
event

• Only ToA

– as above, without storing ToT

• Event count & integral ToT

– useful in matrix readout mode
– contains information about number of hits and total energy

5



1. State-of-the-art

Since Timepix3 has more features than original Timepix, it is significantly
more complex. Its pixel matrix is divided into double-columns, which are
then subdivided into SuperPixels. Each SuperPixel is 2 pixels wide and 4
pixels tall. As you can see in ??, individual pixels are quite similar to original
Timepix[13], however there are few key differences. One key difference is that
in Timepix3 there are 3 counters in each pixel.[8]

Counter sizes are 14, 10 and 4 bits. The 14bit register which can be used
for ToA using Gray encoding, or for iToT, in which case it operates as LFSR.
The 10bit register is used for ToT or photon count and operates as LFSR. The
4bit register can contain either fine ToA, as a binary number, or photon count,
in which case it operates as LFSR.[14] What is significantly different than the
original Timepix is the readout mechanism. For every 8 pixels, there is one
SuperPixel, which communicates with the End-of-Column block. Depending
on mode, data from SuperPixel can be sent as soon as they arrive, or wait for
external readout command. If operating in data-driven mode,[14]

1.3 Timepix 3 readout systems

Figure 1.2: SPIDR with and without housing[3]

1.3.1 SPIDR

SPIDR (stands for speedy pixel detector readout) is powerful readout system
for Timepix3 chip, developed by NIKHEF. It can read out Timepix3 at it’s
full data rate of 80 Mhits/s/chip. It connects to C with either 10 GbE or 1
GbE. It also supports Medipix3 chip and other chips might get support in the
future by reprogramming the built-in FPGA. [3]

1.3.2 Katherine

Katherine is Ethernet readout interface for Timepix3 developed by IEAP CTU
and Faculty of Electrical Engineering, University of West Bohemia. It’s main
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1.3. Timepix 3 readout systems

benefit is operation at up to 100m from computer. It features 1 GbE connec-
tion, which on one hand limits it’s maximal readout speed to 16MHits/s, on
the other hand it makes it compatible common laptops. It also contains rea-
sonably powerful ARM Cortex A9 processor, making it capable of operating
as stand-alone radiation detector. [4]

Figure 1.3: Katerine readout [4]

1.3.3 MiniPIX TPX3

MiniPIX is low power radiation camera developed by Advacam, featuring
timepix3 chip. It can be equipped with Si or CdTe sensor. It’s advantages
include small dimensions (80mm 21mm 14mm), weight of only 30g and com-
paratively low cost. It connects to a PC via USB 2.0 which is also used for
power delivery. Being limited to USB 2.0 speeds means that it is limited to
readout speed of 2.35MHits/s. [15] If better performance is required, AdvaPix
TPX3 can be used instead.

1.3.4 AdvaPIX TPX3

AdvaPIX TPX3 is high performance camera from Advacam featuring Timepix3
chip. It has readout speed of 40MHits/s and connects to PC via USB 3.0 con-
nection. [16]
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1. State-of-the-art

1.4 Data processing

1.4.1 PIXet

PIXet is data acquisition and processing software developed by ADVACAM.
It allows for making measurements, configuring the devices and viewing the
data. It allows for python scripting and can be extended with plugins.[17] It
contains plugins for track processing and clustering which I will use to check
if I have correct results.
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Chapter 2
Outputs

2.1 Clusters

2.1.1 Cluster properties

There are many different properties that could be calculated for each cluster.
Here are some examples of cluster properties:

• ToA

• Total energy

• Center of gravity

• Size

• Height

• Roundness

• Polar angle

• Elevation angle

• Standard deviation of energy

• Standard deviation of distance along axis

• Linear energy transfer

2.2 [*.clog]

In clog file, everything is separated into frames. Frames can either be actual
frames when operating in the frame mode, or just sets of clusters that are
close enough in time. This format is great for experimenting with new cluster
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2. Outputs

properties. I used this format for testing if I get correct results and it worked
great for that. However, many uses (e.g. filtering noise from image) require to
calculate cluster properties histograms Output of embedded version are just
histograms of some values. Which values will be used is subject to change.
Reason why histogram was chosen as the output of the embedded version is
simple: it takes up much less space compared to formats that save information
about individual clusters. It does sacrifice a significant amount of information
and I am aware of it, however there are significant issues with data storage
todo: insert info about ram size and communication bandwidth.

2.3 [*.elist]

As an output file format was chosen elist. todo describe this differently File
begins with comments and metadata on lines starting with . The first line
not starting with contains list of value names e.g. time, position, second line
contains units these parameters are in. Some of these values are mandatory
and some are optional. Each of these values has its own strict definition
and should be the same, no matter which software was used to generate the
file. Having option to define units is also important.Having clear definition of
each value might not seem like something worth highlighting, but it is really
important. Even something as simple as ToA for cluster can be defined in
multiple ways. One of them is to take pixel which recognized signal first,
someone might use the pixel which arrived last and another option would
be to take average or weighted average. This approach allows for having all
these values, just under different names. Main advantage of this format is
it’s simplicity, which is really important, because it is intended to be read
from scripts written by people who have high understanding of physics, but
programming is not their main specialization. Also scripts accessing these files
might not be run too many times and reducing runtime by 1 minute at the cost
of increasing time of writing the script by an hour is not a good tradeoff when
the script is only going to be run a few times. There are a few disadvantages
of this approach, one of them being that adding additional values will cause
this format to become bloated. This effect will be reduced by having multiple
people approve each value before adding it into specification. There are also
issues associated with every formated text format, like inefficient use of disk
space, slower read/write performance. To combat this issue, binary version
might be created in the future for working with large amounts of data.
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Chapter 3
Implementation

3.1 Input file formats

• [*.t3pa]

– text file with one pixel per line

• [*.t3p]

– binary version of t3pa

• [*.t3r]

– raw detector data data
– it’s documentation is basically nonexistent
– also contains empty packets, when detector isn’t fully utilized

If speed doesn’t have top priority, t3pa file is preffered. Working with
it is slower in terms of CPU time, but not . Since it is human-readable, it
is possible to find which part of the data causes problems and assess if the
problem was with data acquisition, or with data processing. In the end, time
saved on debugging can easily outweigh by time spent on runtime.

3.2 Software architecture

Software is divided into few major building blocks. First of them just reads
data from file or directly from the detector and converts them into internal
representation. When reading directly from detector, it would be vital to to
create noisy pixel detection Second part is the clustering engine responsible
for grouping pixels into clusters each corresponding with single particle. Final
part takes clusters corresponding to each particle, computes values required
for particle identification. Last optional step is to take computed values and
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3. Implementation

convert them to final form. This could be just writing them to file as they
are, or greatly reduce its size by creating e.g. histogram.

3.3 Clustering

Algorithm 1: Overview of clustering
Result: Pixels are grouped into clusters that are close in both time

and space
sort pixels by ToA;
forall Pixels do

look at pixels position in the matrix;
if there is existing cluster then

Mark the cluster as complete and remove it from matrix;
else
end
Create new cluster containing this pixel;
forall Neighboring clusters do

if Clusters are close in time then
Merge the clusters into one;

else
Mark the cluster as complete and remove it from matrix;

end
end

end
return Clusters in the order they were created
Main clustering engine contains buffer of pixel events, 2D matrix and col-

lection of clusters. Buffer of pixel events is required for multiple reasons, most
important of them being that these events need to be sorted before clusters
can be identified. To be absolutely sure that front of the buffer is sorted,
it would have to have at least the number of pixels in the matrix (65 K),
or time difference between pixel being added and the oldest pixel is longer,
than the time it takes to read out full matrix i.e. for AdvaPIX TPX3 which
has readout speed 40 MHits/s[16] it would be 65536

4e7 s = 1.6ms. This scenario
wouldn’t yield any reasonable results from this algorithm anyway, because it
would result only in one big cluster, therefore we divide these numbers by
some reasonable constant, knowing that in edge case scenario it could yield
incorrect result.

My first option was to keep buffer of pixel events in binary heap for time
complexity over n insertion and removals with buffer of size k of O(n× ln(k)).
However, with real world data, sorted linked list turned out to be faster even
though it has time complexity of O(n×k). This is most likely because there is
still some order in data coming from the detector. Also size of the buffer is in
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3.3. Clustering

reality not that large, because it’s minimum required size is limited not only
by number of pixel-events, but also by time between newest and oldest. There
is interesting possibility for improvement, where pixel events would be added
in batches that would be sorted by the fpga in the detector itself. Assuming
size of this batch is k where k is buffer size and c is some constant. Inserting
each batch would be merging of two sorted lists which has complexity of O(
k + k) which simplifies to O(k). This means n pixels added in n × c batches
will take O(n × c × k) time, which simplifies to (n).

Main element of this engine is the matrix. Each element of this matrix
corresponds to one pixel and contains reference to last event and cluster con-
taining it. When a pixel event is being processed it is first looked at the
corresponding place in the matrix. If the space is occupied, the original clus-
ter is removed from the matrix. Otherwise surrounding pixels are checked. If
occupied pixel is found and time is lower than specified interval, current event
is added to it’s cluster. If two or more clusters satisfy this condition, they
are joined. If There is no cluster satisfying condition, new cluster is created.
Every pixel-event contains one byte variable used to mark which neighboring
pixels were also activated. Doing this at this point makes it really fast, since
I am already checking neighboring pixels. It also adds unnecessary code com-
plexity, since this can be done afterwards and these features would be isolated.
If the performance wasn’t a big problem, i would probably do this while com-
puting other properties of clusters. If no clusters are joined or removed time
complexity is (1). If cluster is removed, time complexity gets to (n) where n is
number of pixels in given cluster, because entry for each of its pixels must be
cleared from the matrix. However each pixel will be removed from the matrix
only once which means that the amortized complexity is only (1).

3.3.1 Memory usage

There is a 256× 256 matrix with pointers. Assuming 2 pointers per point in
matrix (one for cluster, other for pixel), assuming 8 B per pointer, that would
use 256× 256× 8× 2 =∼ 1MB even before any data is added.

Modern computers have enough memory so I wouldn’t have to worry about
this e.g. laptop I am writing this on has 16GB. Unfortunately, this is already
more, than the 0.5 SRAM is available at CPU used in MIRAM prototype.[?]
There some structure like hash table can be used instead to save memory
(unfortunately at the cost of speed, which is also at a premium)

Pixels can take only little amount of space, if needed, after all Timepix3
packet has 48 bits.[8]. However, this could grow quite easily, after all you
might want to give each pixel a unique id and if you make it 64 bit integer,
the original size of pixel just doubled. Other places where the size could
grow include storing energy and time as 64bit floating point numbers, storing
duplicated values e.g. both calculated time and original ToA, not discarding
ToT after calculating calibrated energy.
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3. Implementation

3.3.2 Time complexity

3.4 Parallelization

To harness more power from modern CPU, parallel version was done. Before
clustering begins, pixels are divided by some criteria between threads. I was
considering splitting them by time and by position. Split by time has few
advantages - it is easy to do, relatively easy to do, checking if clusters should
be joined can be done brute force without big performance issues, since there
won’t be too many clusters close enough in time to be joined. It is required
to sort pixels near the time of split to be sorted, or at least have its time
compared to constant. Discarting those is also a valid option, that is trivial
to implement.

Algorithm 2: Parallel clustering
Result: Split clustering into multiple threads
Divide pixels into two sets based by their coordinates;
Add pixels on the boundary to the second set too;
Find clusters in both sets separately;
Create 2 queues for each boundary pixel, one for each set;
forall Clusters do

if Contains boundary pixel then
Push the cluster to corresponding queue;

else
Mark the cluster as finished;

end
end
forall Boundary-pixel queues do

while both queues for boundary pixel contain cluster do
Pop and merge the clusters;
if Cluster has all boundary pixels resolved then

Mark the Cluster as finished;
end

end
end
Sort clusters on the boundary by ToA;
Merge lists of clusters, keeping them sorted by ToA;

Split by position on the other hand is more difficult to implement, but
it also has some advantages. Unlike splitting by time, which requires having
large amount of data before starting, makes it more suitable for processing in
real time.

While it can be easily generalized to more than 2 threads, I will describe
it’s workings only on 2. First pixels are divided whether they are on the top
or bottom part of the matrix, keeping one pixel overlap. Since data is split
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3.5. Minimal version

before sorting events by time, sorting step can, at least in theory, take less
time. Then Clusters are created in each half independently. Each cluster now
keeps track of pixels, that are touching borders to allow for later joining of
clusters and unfortunately increasing memory usage.

There are 2 queues for each pixel on the dividing line - one for each side.
These queues contain reference to cluster containing given pixel. These are
sorted by time, so on the same position in both queues are clusters containing
the same pixel, thus they need to be joined. If resulting cluster doesn’t contain
any cluster on the border, it is put into buffer, which will have to be sorted.

As I stated, this approach can easily be used for more than 2 threads, but
after looking at performance compared to sequential I don’t see the point in
doing so.

Finding clusters isn’t the only part where doing thing in parallel can help.
There is no reason to read to load data in the same thread used for processing.
Calculating most cluster properties can also be done in parallel, since most
properties don’t require to look at other clusters.

3.5 Minimal version

Even though approach above does provide good results, it needs reasonably
powerful computer. When the data rate is low, there is also an option to look
for packets that don’t correspond to packets being hit and call packets that
consist of pixels being hit surrounded by dummy packets a cluster.

This might skew data, if some situations cause cluster to be discarded
more often, than others, However it does provide some aditional information,
compared to just taking sum of energy, which is one of the modes MIRAM
uses [1]
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Chapter 4
Functional Verification

4.1 Benchmark data

To measure performance I planed on using 2 main sets of data. one of them
is background radiation from the environment and the other one with high
amount of gamma radiation. It is necessary to have both of these, because
there is suspicion, that performance wouldn’t depend only on number of pixels,
but also on number of clusters. Number of hits per second could also play
a significant role since it can influence how much out of order pixels will be.
This is because if there is enough time between events to read it, these events
can’t be mixed together

Background radiation data was measured with detector simply lying on

Figure 4.1: ADVAPIX TPX3 with Am241 source from smoke detector
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4. Functional Verification

the table.
To get data with a high amount of gamma radiation I used Americium241

source from a smoke detector. As a detector I used ADVAPIX TPX3 with
1mm thick Si sensor, because that’s what was available to me at the time. I
simply placed the source onto kapton tape covering the sensor of the detector
and ran the measurement.

4.1.1 Comparison with PIXet plugins

4.1.2 Further possibilities
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Conclusion

This work isn’t finished. I would like to try again with a new assignment.
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Appendix A
Acronyms

PCD Photon counting detector

GbE Gigabit Ethernet
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
text..........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format
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