
Instructions
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Abstract

This thesis aims to design a framework for tracking people based on a stream
from a single stationary camera, with the secondary goal of extracting age
and gender information for tracked people. The focus of this work is on the
retail shop environment. The main algorithm follows the tracking by detection
approach. The matching of detections to tracks is done based on spatial and
visual information from convolutional neural networks. Kalman filter is used
for robust state representation and updates. We evaluate the algorithm with
multiple detector models on a dataset collected from the target environment.
We also evaluate the performance improvements from using the TensorRT
optimization framework. The resulting application achieves 0.91 MOTA on
the testing dataset, with frame rate of 13 FPS on the Jetson NX platform.

Keywords computer vision, people tracking, demographic information ex-
traction, TensorRT
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Abstrakt

Ćılem této práce je návrh frameworku pro sledováńı osob na záznamu z jedné
staticky umı́stěné kamery, s vedleǰśım ćılem extrakce věku a pohlav́ı sledo-
vaných osob. Práce je zaměřena na prostřed́ı maloobchodu. Hlavńı algorit-
mus funguje na principu sledováńı na základě detekćı. Asociace detekćı k
identitám je založena na informaćıch o poloze a vzhledu źıskaných z kon-
volučńıch neuronových śıt́ı. Kalman filtr je použit pro robustńı reprezen-
taci identit a jejich aktualizaci. Algoritmus vyhodnocujeme s několika mo-
dely pro detekci na datasetu źıskaném z ćılového prostřed́ı. Také vyhodnocu-
jeme zlepšeńı výkonu źıkané použit́ım optimalizačńıho frameworku TensorRT.
Výsledná aplikace dosahuje 0.91 MOTA na testovaćım datasetu, se sńımkovaćı
frekvenćı 13 sńımk̊u za sekundu na zař́ızeńı Jetson NX.

Kĺıčová slova poč́ıtačové viděńı, sledováńı osob, extrakce demografických
údaj̊u, TensorRT
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Introduction

The topic of this thesis is automatic video analysis with the goal of track-
ing people and creating unique identities for them, including demographic
information such as age and gender. Movement and demographics can be a
valuable source of information for retail stores. This information can help
predict customer behavior, evaluate marketing strategies, and find areas for
improvement.

Motion tracking falls into the area of computer vision, which is an inter-
disciplinary field that deals with gaining high-level understanding of image
or video data and automating tasks based on visual information. Computer
vision is at the intersection of image processing, artificial intelligence, physics,
and software engineering.

A major part of this work is focused on Multiple Object Tracking (MOT),
the task of identifying objects in a scene and following their positions on
subsequent frames. The main parts of MOT are object detection and object
association between frames. Object association is also called re-identification
because we are trying to find already identified objects in a new frame. While
this work’s goal is motion tracking of people, most of the techniques can be
applied to general MOT.

Artificial inteligence (AI) and Machine learning (ML) are vital components
of MOT applications. The most popular models for image data processing in
the past decade have been Neural Networks (NNs) which will be introduced
in chapter 1.

As AI grows increasingly common and approachable, there is more focus on
performance and scalability. One approach that has been rising in popularity
in the last years is edge computing[1], a paradigm that moves computation to
the edge of the network, where the data is acquired. Processing data this way
can save the time and resources needed to transport the data itself, as only
processed data are transferred. Specialized hardware used for this purpose is
called an edge device. The use of edge devices typically means working with
limited resources, which is also a topic of this work. The advantage is that
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Introduction

the resulting product is better suited for real-world usage.
While movement and location information is helpful, image data provide

additional information that we can use. Another part of this work focuses
on retrieving age and gender data for tracked people. This information can
be used in the retail environment for customer analysis and better targeted
marketing.

Objectives

This thesis aims to design and implement a pipeline for tracking people in front
of a retail store while also obtaining age and gender information where pos-
sible. The starting point is the research of existing approaches and solutions.
The next step is experimentation and analysis of data collected in the target
environment. Based on this, a pipeline will be designed and implemented with
emphasis on real-life usability and deployment on edge devices.

Motivation

MOT is a natural task to consider. This task has received significant attention
in research and in practice. Progress in AI theory and computer hardware
has allowed MOT to be achievable with lesser budget and without expensive
hardware. It provides interesting and practical use for knowledge in fields of
AI, statistics, and image processing.

Furthermore, this thesis is directly related to my work at the ImproLab
laboratory at FIT CTU. The results of this work will be used for practical
application and real-world usage in the retail environment.

Challenges

While MOT has been actively studied, the problem is not yet solved. Real
environments are complex and variable. Scenes are recorded at different an-
gles and under different lighting conditions. Human movement patterns are
complex and virtually unpredictable. This means trackers have to work with
uncertain and imprecise information. Both the problems and their solutions,
are explored more in-depth in the following chapters.

AI models often require large datasets for training. These datasets are
also needed to tune the whole MOT algorithm and evaluate it. This presents
a challenge of obtaining a representative and sufficiently large dataset. This
task is currently further complicated by the specific situation related to the
Covid-19 epidemic. Datasets are discussed in more detail in later parts of the
work.
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Assumptions

MOT is a broad topic with many possible approaches. To keep the scope
manageable, this work assumes a single static camera watching a known scene.
Furthermore, we are interested in solutions that work in real-time or near real-
time applications on edge devices. For the task of demographic characteristics,
we assume the majority of people are not wearing face masks.

Thesis structure

The rest of the thesis is organized into several chapters. Chapter 1 intro-
duces theoretical concepts needed for understanding this work. Chapter 2
describes work related to the MOT and re-identification (ReID) tasks. Chap-
ter 3 discusses the work’s objectives in more detail and describes the dataset
collection. Chapter 4 presents application design and implementation. Chap-
ter 5 evaluates the application’s results on the collected dataset, compares
different detection models and benchmarks the optimization framework.
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Chapter 1
Theoretical Background

This chapter introduces concepts and terms used throughout the work. It
starts with a general discussion of AI and common terms used in this field.
Second part discusses NNs as its the main ML model used in this theses. The
next section describes Convolutional Neural Network (CNN), a special type
of NN widely used in image processing. The last part introduces the Kalman
filter.

1.1 Artificial Intelligence

There are many definitions of AI. [2] define AI as the study of agents that
receive percepts from the environment and perform actions. Each such agent
implements a function that maps percept sequences to actions. Other possibil-
ities are to define AI as the study of either intelligent or human-like systems.

Another term associated with AI is ML, an area of AI that focuses on
automatic learning of correct actions based on data. Another way to look
at this is that the system autonomously gains knowledge from training data.
There are two main approaches in ML - supervised learning and unsupervised
learning.

In unsupervised learning, the model is trying to gain information from
the dataset without explicit correct answers. The absence of correct answers
leads to difficulties when evaluating the results but further reduces the need for
human input. Typical tasks in unsupervised learning are based on clustering.

Supervised learning uses datasets with correctly labeled data. The avail-
ability of labels leads to a straightforward approach where the model can
optimize some function related to how much its output matches the labels.
The optimized function is often called loss function, objective function or cost
functions.
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1. Theoretical Background

1.1.1 Supervised Learning

This part introduces common concepts and approaches in supervised learning.
Main tasks of supervised learning are classification and regression. Both

deal with assigning a value to some input vector. In classification, the task is to
assign a label from a finite and typically small number of choices called classes.
In regression, the number of possible answers is infinite, or it is practical to
state the problem as if there was.

The typical supervised learning process splits the dataset into three parts.
The first part is called training data and is used to train the model. Sec-
ond part is evaluation data. The evaluation data is used to evaluate the
performance of a trained model. The main goal of this evaluation is to find
hyperparameters. Hyperparameters are parameters that the model does not
learn on its own during training. The last part of the dataset is called testing
data. It is used in the final stage to evaluate the model on data it has not seen
yet. This evaluation enables reasonably predicting the model’s performance
on future data, assuming that the testing dataset is representative.

Alternative method for finding hyperparameters is cross-validation. In-
stead of splitting the dataset into fixed training, evaluation, and testing parts,
the data is split only into training and testing data. Training data is then
split into n parts. In each training step, we train the model n times on the
training data without one part (in a way to leave out each part once). This
approach can lead to more robust models and is especially useful when the
dataset is relatively small. On the other hand, this increases the computing
time significantly.

1.2 Neural Networks

Artificial Neural Network is a model that is used throughout this work. NNs
have proved to be very useful, especially in the area of image processing. There
are many types of NNs, and their use is very versatile. This section provides
a basic introduction to NNs.

A basic part of NN is a neuron. An artificial neuron is a model that is
inspired by a biological neuron. However, while the workings of a biological
neuron are complicated, the artificial neuron is very simple. The main idea is
that many simple units linked together can add up to an intelligent whole.

1.2.1 Artificial Neuron

Output of a single neuron is calculated as some function, called activation
function applied to a weighted sum of inputs as shown in Equation 1.1, where
xi is the i-th input, wi its weight, b is the bias, σ is the activation function
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1.2. Neural Networks

and n is the number of inputs.

y = σ

(
n∑
i=1

(wixi) + b

)
(1.1)

1.2.2 Activation Functions

The activation function should be nonlinear. Linear functions are not useful
here because the composition of linear functions is a linear function, so we
could easily replace multiple neurons with one neuron with different weights.
Non-linearity is also needed to fit nonlinear data.

Activation functions are usually required to be differentiable. The differ-
entiability is needed for backpropagation algorithm, which is an algorithm for
efficient training of NNs that will be introduced later.

Common activation functions are:

• sigmoid: σ(x) = 1
1+e−x ,

• hyperbolic tangent: tanh(x) = e2x−1
e2x+1 ,

• ReLU: ReLU(x) = max(0, x).

The last layer typically uses different activation functions based on the
target task. For binary classification the typical function is logistic sigmoid

f(ξ) = 1
1 + e−ξ

= eξ

1 + eξ

and the resulting value is interpreted as the probability that the given input
is from class 1. This can be written as P̂(Y = 1|X = x).

For classification into c classes a softmax function is used with c output
neurons. Output for i-th neuron is

fi(ξ) = eξi

eξ1 + . . .+ eξc
,

where ξ = (ξ1, . . . , ξc)T and ξi is the input for i-th output neuron. The
interpretation is similar as for the binary case, formally fi(ξ) = P̂(Y = i|X =
x). Final prediction is then the class with maximum probability assigned

Ŷ = argmax
i∈1,...,c

fi(ξ).

1.2.3 Feed Forward Neural Network

A feedforward neural network is a basic type of NN with neurons organized
into layers. The first layer is called input layer and represents input variables.
Last layer is called output layer. The remaining layers are called hidden layers.
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1. Theoretical Background

NNs with large number of hidden layers are sometimes called deep neural
networks. Usage and study of such NNs is sometimes called deep learning.
There is however no consensus on the precise meaning of the term. In practice,
the term deep learning is often synonymous with learning of NNs.

Every neuron in each layer is connected to neurons in the following layers
creating a directed acyclic graph.

Figure 1.1: Structure of a simple neural network.[3]

Let wli,j be the weight of connection from i-th neuron in (l − 1)-th layer
to j-th neuron in l-th layer. Let blj be the bias of j-th neuron in l-th layer,
σ some activation function and N (l) number of neurons in layer l. Then the
activation (output) alj for the j-th neuron in l-th layer is

alj = σ

N(l−1)∑
i=1

(wli,jal−1
i ) + blj

 . (1.2)

We can write this more succinctly with the usage of matrices and vectors.
Let W l be a weight matrix for layer l which has wli,j from Equation 1.2 in j-th
row and i-th column. Similarly let bl = (bl1, . . . , blN(l)) be a bias vector. Then
we can compute an activation vector al whose components are activations alj
with

al = σ
(
W lal−1 + bl

)
(1.3)

Each layer produces a nonlinear transformation of outputs from previous
layers. [4] proved that standard multilayer feedforward networks with as few as
one hidden layer are capable of approximating any Borel measurable function
from one finite-dimensional space to another to any desired degree of accuracy.
In this sense, multilayer feedforward networks are universal approximators.
However, finding parameters for such networks is rather difficult.

[5] argues that shallow architectures can be very inefficient in terms of the
required number of computational elements and examples. Furthermore, they
argue that deep architectures have the potential to generalize in a way that
is crucial to make progress on the kind of complex tasks required for artificial
intelligence. This corresponds well with empiric observations. Commonly used
NNs have tens of layers and millions of parameters [6, 7, 8].
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1.3. Convolutional Neural Networks

1.2.4 Learning

The goal of learning is to find the parameters θ = (W, b) (from Equation 1.3)
that minimize the selected loss function L(θ). Common loss functions are
categorical cross-entropy for multi-class classification and Mean Squared Error
(MSE) for regression.

Let θ be learned parameters, Y the vector of target labels, also called
ground truth, and Ŷ vector of predicted values from NN based on θ and N
input vectors. Let ||.|| be L2 norm. Then MSE is defined as:

L(θ) = 1
N

∣∣∣∣∣∣Y − Ŷ ∣∣∣∣∣∣ . (1.4)

With the use of a suitable cost function such as MSE and differentiable
activation functions the whole NN is differentiable and can be trained using
backpropagation.

Backpropagation is an iterative algorithm, where we compute the gradient
of the cost function with respect to the weight and then update the weights
with a step proportional to the negative of the gradient. The algorithm is
explained in more detail, for example in [9].

1.3 Convolutional Neural Networks

This section introduces CNNs, which are a specialized kind of NN for pro-
cessing data with a known grid-like structure, for example, time-series data
or images. Convolutional networks have been very successful in practical ap-
plications. The information in this section is mainly based on [10] and [3].

CNN is a NN that uses convolution instead of general matrix multiplication
in at least one of its layers. Convolution is a mathematical operation defined
for functions f and g as

(f ∗ g)(t) =
∫ ∞
−∞

f(x) g(t− x) dx

in continuous and

(f ∗ g)(t) =
∞∑

a=−∞
f(a) g(t− a)

in the discrete case. The first argument f is called input and the second
argument g is called kernel of the convolution. The output is sometimes
referred to as the feature map. Convolution can be generalized to multiple
dimensions.

In machine learning applications, the input is usually a tensor (multidi-
mensional array) of data, and the kernel is usually a tensor of learned param-
eters. In practice, both input and kernel are considered zero everywhere but
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1. Theoretical Background

in the finite set of points where we store their values. This allows the imple-
mentation of the infinite summation as a summation over a finite number of
elements.

In traditional neural networks, the neurons in each layer are connected to
all neurons from the previous layer. This large number of connections leads
to a large number of parameters that need to be learned. CNNs leverage the
structure of input data to reduce the number of parameters. If we assume that
the input consists of images, we can reasonably constrain the neural network
architecture.

The layers of CNNs are arranged in three dimensions: width, height, and
depth (which refers to the third dimension of an activation volume). The
input layer holds the image, so its width and height will be the dimensions of
the image, and the depth would be three for color images (representing the
three Red, Green, Blue (RGB) channels).

Figure 1.2: CNN layer transformation of 3D input volume to 3D output
volume.[3]

Three main types of layers are used to build CNNs: convolutional layer,
pooling layer and fully-connected layer. Fully-connected layers were already
introduced in section 1.2.3.

1.3.1 Convolutional Layer

A convolutional layer is the core building block of CNN. Each layer consists of
a set of learnable filters. Every filter is spatially small and has the depth of the
input volume. Each filter is convolved across the input volume’s width and
height to produce a two-dimensional activation map. Intuitively, the network
will learn filters that activate when they see some feature. The idea is that
early layers learn to recognize simple features like an edge, and later layers
will learn to recognize more complicated patterns based on these features. The
output of the whole convolutional layer is the output of each filter in given
layers stacked along the depth dimension - this produces the output volume.

Every entry in the 3D output volume can be interpreted as an output of
a neuron looking at only a small region in the input and sharing parameters
with all the neurons that apply the same filter. This property is called local
connectivity.

The spatial extent of this connectivity is determined by a hyperparameter
called filter size. The filter size only affects the spatial dimensions (width and

10



1.4. Kalman Filter

height). The connectivity along the depth axis is always equal to the depth
of the input volume.

Convolutional layers use a schema called parameter sharing to reduce the
number of parameters greatly. This reduction is based on the assumption that
if one feature is useful to compute at some spacial position (x, y), it should
also be useful to compute at different positions. We can then constrain the
neurons in each depth slice to use the same weights and bias. It is common
to refer to this shared set of weights as a filter (or a kernel).

1.3.2 Pooling Layer

Pooling layers perform non-linear downsampling of the input. They do this by
combining multiple values into a single value that they pass to the next layer.
Most common approach is max pooling. Max pooling takes the maximum
value from its input.

It is common to periodically insert a pooling layer between convolutional
layers in a CNN architecture. The layer’s function is to reduce the number
of parameters, which reduces the number of computations needed and helps
control overfitting.

1.3.3 Transfer Learning

Transfer learning is a standard process, where we take a pre-trained model for
a similar task and use it as initialization or a feature extractor for the target
task. The use of pre-trained models dramatically reduces the computational
power needed and the need for an extensive dataset.

The use of an existing CNN as a feature extractor is simple, as only the
last fully-connected layer needs to be removed or replaced.

1.4 Kalman Filter

This section introduces Kalman filter, which is an integral part of tracking
algorithms used in this work. The information in this section is mainly based
on [11].

Kalman filter is a mathematical model to gain (relatively) precise informa-
tion about a system based on imprecise measurements and information about
the system. Kalman filters are fairly general and have usages in estimation,
data smoothing, and control applications. We will focus mainly on its usage
in tracking applications.

1.4.1 Introduction to g-h Filters

Any real measurement is inaccurate. The output of any sensor does not give
us perfect information about the observed system but depends on the sensor’s
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1. Theoretical Background

quality. To deal with this, we can use an algorithm called g-h filter (also called
alpha-beta filter).

The first idea of the g-h filter is that the system’s behavior should influence
how we interpret the measurements. Imagine we are weighting a rock and
getting slightly different results each time. We would probably attribute these
differences to noise in the measurement. On the other hand, if we were getting
changing position from a car GPS, we might conclude that the car is moving.

Assume we have some predictions for the target variable. If we only form
estimates from the measurements, then the prediction will not affect the result.
If we only form estimates from the prediction, then the measurements will be
ignored. This leads to the second idea that we need to take some combination
of the prediction and measurement. We will call the difference between the
measurement and prediction the residual.

In general, we cannot expect to know the rate of change of the target
variable, and it also may change over time. These ideas lead to an iterative
two-step process. First, we predict the target variable and its rate of change.
Next, we update the target variable and its rate of change based on the pre-
diction and new measurement.

This algorithm is very general. Kalman filter is then one approach on how
to do these steps.

1.4.2 Kalman Filter Algorithm

Like any g-h filter, the Kalman filter makes a prediction, reads a measurement,
and then forms a new estimate between the two.

The Kalman filter is using normal distributions for the representation of
measurements and predictions. The normal distribution is well studied and
has many interesting properties. Using normals allows us to store informa-
tion about whole probability distribution as just two numbers - mean µ and
variance σ2.

Sum of two normal distributions N(µ1, σ
2
1), N(µ2, σ

2
2) is a normal dis-

tribution N(µ1 + µ2, σ
2
1 + σ2

2). The product of two normal distributions is
proportional to a normal distribution, meaning we can scale it to a normal
distribution. These two properties mean we can sum and multiply normal
distributions, and the result will still be a normal distribution (assuming we
are normalizing after multiplication).

Predict

The general formula for the predicting the next state mean is
x = Fx+Bu. (1.5)

x denotes the state mean. F is the state transition function. B and u let us
model control inputs to the system and can be removed if we do not have any
control over it.
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State covariance P is predicted with

P = FPF T +Q, (1.6)

where P is the previosu state covariance, F is the state transition function
from Equation 1.5 and Q is the process covariance.

Update

The update step consists of applying the following equations.

y = z −Hx (1.7)
K = PHT (HPHT +R)−1 (1.8)
x = x+Ky (1.9)
P = (I −KH)P (1.10)

x, F and P ,Q are from equations 1.5 and 1.6 respectively. H is the mea-
surement function. z and R are the measurement mean and noise covariance.
K is called Kalman gain. I is the identity matrix.

Measurement noise is the variance of the sensor we are using, while process
noise is the observed system variance. The measurement function maps the
true state space into the observed space. The Kalman gain is the relative
weight given to the measurements and current state estimate. With a high
gain, the filter places more weight on the most recent measurements.

Summary

Kalman filter is a recursive algorithm that can be used to extract useful in-
formation from noisy measurements.

In the context of tracking, the Kalman filter can be used to better ap-
proximate track’s bounding boxes. The Kalman state is typically some repre-
sentation of a rectangle and its speed. The measurements are usually taken
from a CNN. These measurements are noisy, and the Kalman filter smooths
them to provide a more accurate and stable position. Furthermore, we can
also predict the track’s position in the next frame, which is used to match the
track to new detections.

The filter needs correctly designed models and functions introduced in
previous sections to work correctly. There is no universal approach, and the
design must be based on experience, intuition, and experimentation. One
possible design is described in section 4.2.
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Chapter 2
Related Works

This chapter presents relevant work in the area of MOT and age and gender
recognition.

2.1 Multiple Object Tracking

Multiple Object Tracking is a longstanding goal in computer vision[12, 13, 14],
which aims to estimate trajectories for objects of interest in videos.

Tracking-by-detection has emerged as the preferred paradigm to solve the
MOT problem[14, 15]. This paradigm simplifies the task by breaking it into
two steps: detecting the objects’ locations independently in each frame and
then forming tracks by associating corresponding detections across time. The
second step is sometimes called linking or ReID.

In recent years, NN based detectors have clearly outperformed all other
methods for detection.[16, 8].

Track association has been handled by various methods. Straightforward
Intersection over Union (IOU)1 based approach has been applied[17] as well as
various embeddings from NNs[15]. The association step usually first computes
a cost matrix based on the motion and appearance information and then
matches the tracks to minimize the total cost.

When using the two-step method, one can develop the most suitable model
for both tasks separately. Additionally, one can crop and resize the image
patches based on the bounding boxes before estimating the ReID features.

Recently [12] came up with a model that handles both the detection and
ReID tasks while achieving accuracy comparable to state-of-the-art (SOTA)
trackers.[14]

An alternative approach using recurrent neural networks for data associ-
ation has been explored in [18] and [19]. While providing some advantages,
their work is not competitive with current SOTA methods.[14]

1IOU of two areas is the area of their overlap over the area of their union.
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2.1.1 Simple Online Realtime Tracking

Simple Online Realtime Tracking (SORT) is a pragmatic approach to MOT
with a focus on simplicity and performance introduced in [13], which uses
Kalman Filter (introduced in section 1.4) to predict object location in the next
frame. Cost matrix is based on IOU of Kalman predictions and detections
in the new frame. Finally, Hungarian algorithm[20] is adopted to make a
minimum cost matching based on the IOU.

The main disadvantage of the SORT algorithm is its reliance only on po-
sition and movement data. This can easily lead to identity switches of tracks
when occluded either by environment or by other tracks.

Simple Online and Realtime Tracking with a Deep Association Metric
(DeepSORT) extends the SORT with appearance information from a CNN.

To incorporate motion information DeepSORT uses Mahalanobis distance
between predicted Kalman states and newly arrived measurement:

d(1)(i, j) = (dj − yi)TS−1
i (dj − yi),

where (yi, Si) is the projection of the i-th track into measurement space and
dj is the j-th bounding box detection. The Mahalanobis distance takes state
estimation uncertainty into account by measuring how many standard devia-
tions the detection is away from the mean track location. This metric makes
it possible to exclude unlikely associations by thresholding the Mahalanobis
distance. The threshold is calculated as a 95% confidence interval computed
from the inverse χ2 distribution.

To incorporate appearance information we compute an appearance descrip-
tor rj for each detection dj with ||rj || = 1. Furthermore, we keep a history
Rk of the last Lk descriptors for each track k. We then measure the distance
between the i-th track and j-th detection as the smallest cosine distance:

d(2)(i, j) = min{1− rTj r
(i)
k | r

(i)
k ∈ Ri}.

We can also find a suitable threshold to indicate if an association is ad-
missible according to this metric using a training dataset.

We can combine both motion-based information from Mahalanobis dis-
tance and appearance-based information from the cosine distance using a
weighted sum

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j),

where we call an association admissible if it is admissible for both thresholds
described above.

The influence of each metric can be controlled through the hyperparameter
λ.
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2.1.2 Metrics

To evaluate and compare different methods, we need a way to measure errors.
While this is very straightforward for some tasks, this is not the case for
MOT. [21] introduces two relatively simple and intuitive metrics that will be
described in this section. Both metrics are widely used[14].

The first metric is called Multiple Object Tracking Precision (MOTP)
and characterizes trackers precision in estimating object positions. The sec-
ond metric is Multiple Object Tracking Accuracy (MOTA) and expresses the
tracker’s ability to determine correct object configuration and keep consistent
tracks.

The procedure for calculating these metrics consists of three steps each
frame:

1. establish the best possible correspondence between hypotheses and ob-
jects,

2. for each correspondence compute the error in objects position estima-
tion,

3. accumulate following errors:

• count all objects with no hypothesis as misses (false negatives),

• count all hypotheses with no real objects associated as false posi-
tives,

• count all occurrences where the tracking hypothesis for an object
changed compared to previous frames as mismatches.

Figure 2.1: Illustration of various types of errors.[21]
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Let ct be the number of matches for time t. For each match, let dit be the
distance between the object and the hypothesis. The MOTP is then defined
as:

MOTP =
∑
i,t d

i
t∑

t ct
.

Let mt be the number of misses, fpt the number of false positives, mmet
the number of mismatches and gt total number of objects in time t. The
MOTA is then defined as:

MOTA = 1−
∑
t(mt + fpt + mmet)∑

t gt
.

The MOTA can be seen as computed from three ratios - miss ratio, false
positives ratio, and mismatch ratio.

For more discussion and implementation details see [21].

2.2 Person Re-identification

Person ReID is a fundamental task for people MOT. One person’s appearance
can change significantly in different frames, for example, by changing pose,
turning around, or taking off a backpack. On the other hand, people often
wear similar clothes and may look very similar, especially when viewed from
a distance. These variations make the task challenging.

[7] presents OSNet, a CNN architecture for tackling the ReID task. While
CNNs have been used before (for example in [15]) to learn discriminative
features for ReID, OSnet presents a novel approach.

Key concept in OSnet is focus on omni-scale feature learning and its ef-
fective implementation. Authors argue that using even features at multiple
scales (for example, local and global features) is not sufficient and features of
all scales are crucial for the ReID task.

The result is a lightweight ReID network that achieves SOTA results on
multiple datasets outperforming even much bigger models.[7]
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Chapter 3
Analysis

The main goal of this work is to create a pipeline for processing video data,
with the goal of consistently tracking people in front of a retail shop. Addi-
tionally, we want to extract age and gender information for found tracks.

This chapter discusses this objective in more detail to allow us to design
and evaluate a solution. To keep the scope manageable while keeping the appli-
cation usable in a real-world environment, we have to make some assumptions
about the observed environment (inputs). These assumptions should be noted
so the limitations of the system are clear.

3.1 Target Environment

The target environment is an area in front of a retail shop. This area can be
outdoors or indoors, for example, inside a shopping mall.

We assume a single stationary camera recording this environment. Each
environment is different, so the setup must be adjusted individually to provide
the best possible video quality. A specific setup used for data acquisition for
this work will be described in a later chapter.

Since only one camera can be used, it must be carefully positioned to
capture the whole area of interest with reasonable quality. The area is also
expected to be well lit, meaning the system is not expected to work, for
example, at night, unless suitable artificial lighting is provided.

On the other hand, imperfect conditions are expected in real environments.
The system should deal with minor lighting changes and reflections caused by
the environment and various distortions caused by the camera. For example,
reflections from the shop windows are expected. The camera system should
be selected and installed in a way to minimize these problems.

19



3. Analysis

3.2 Dataset

An appropriate dataset is required to tune and evaluate the algorithm. [14]
presents multiple datasets from various scenes along with annotations. These
datasets are commonly used for evaluation in literature. Both datasets and
evaluation results are available at https://motchallenge.net. This dataset’s
main advantages are that it allows for direct comparison with many different
tracking algorithms and provides ground truth annotations.

Figure 3.1: Example frame from the [14] dataset.

We have decided to create our dataset targeting the retail environment,
as we have not found any usable data from the specified environment. Such
a dataset will be more representative and allow for more accurate evaluation.
Further, it can be used to optimize and fine-tune the system for the target
environment.

Dataset collection was done in cooperation with store owners, where the
designed system might be used in the future. This cooperation allowed us
to collect the dataset according to the system’s assumed use. Collecting the
dataset in the retail environment has shown some complications the system
might face in actual usage and helped significantly with problem analysis from
a practical standpoint.

The dataset collection process was done across two locations. The first
location was used for selecting a camera, finding suitable camera placement,
and initial experiments. The dataset itself was collected at the second location.

3.2.1 Camera Selection

This section describes the first part of the dataset collection process, where
short videos were recorded with multiple cameras in different positions at the
first location.

Cameras were placed in a shop window behind glass with the view facing
the street. Evaluation criteria were image quality, camera view (does the cam-
era see the full Region of Interest (ROI)), and camera noticeability. Camera
noticeability is meant as a criterium of how much the camera is visible to a
passerby, as a noticeable camera might discourage potential customers from
browsing the shop window.

Three possible camera placement configurations were considered:
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1. at the edge of the shop window, near the glass, at approximately 150
cm from the ground,

2. at the center of the shop window, near the glass, at approximately 150
cm from the ground,

3. at the edge of the window in the corner, at approximately 220 cm from
the ground, positioned at an angle.

The first option did not present a sufficient view of the ROI and was
rejected. The second option provided good image quality while being more
noticeable. The third option proved to be very unobtrusive with a good view.
However, the image quality seemed subjectively slightly lower, mainly thanks
to reflections on the glass window.

Recordings from the second and third configurations were further evalu-
ated using a simple initial version of the tracking algorithm. This early eval-
uation confirmed the third configuration as suitable and hinted at the task as
being reasonably solvable.

Based on the initial testing, the AXIS FA1105 surveillance camera[22] was
selected for the following recordings. This camera is highly discreet, provides
sufficient video quality with resolution 1920x1080 (1080p), and has a wide
111° horizontal field of view.

3.2.2 Dataset Acquisition

Before starting the dataset collection itself, we needed to find a suitable camera
configuration for the second location, which proved to be more challenging
than expected. The camera was placed at a shop inside a shopping mall.
The main difficulties were caused by camera obtrusiveness and appearance,
lighting conditions, and reflections.

The camera appearance issue was solved by 3D printing a custom camera
holder, which allowed for a more discrete and pleasant camera look. One of
the main lighting problems was direct lighting from the shopping mall ceiling,
which was handled by adding a black cover on top of the camera to shield it
from this lighting. The camera is shown in figure 3.2.

Another significant problem was reflections on the shops’ glass windows.
A polarization filter was added to the camera to minimize these reflections.
While this improved the image quality, reflections remain a problem. The
effect can be seen in figure 3.3.

The camera remained in the location long-term, however usable dataset
size is limited by the time needed to annotate the data. Multiple video se-
quences were hand-selected and annotated using CVAT software[23]. The
total dataset size is 2600 annotated frames. A sample dataset frame can been
seen in figure 3.4.
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Figure 3.2: Camera used for dataset acquisition.

Figure 3.3: Image taken without a polarizer filter (left) and with polarizer
filter (right).

Figure 3.4: Sample frame from collected dataset.

3.2.3 Region of Interest

The goal of our work is to observe a region in front of a shop. It can be
expected that the camera captures a larger area, as is the case in our collected
dataset. The tracks need to be filtered based on their position to select only
the tracks in the target area to provide relevant statistics.

The ROI is also relevant for the experimental evaluation. Evaluating tracks
only in ROI makes the evaluation more relevant to the actual goal. Tracking
people far away from the shop (and the camera) is not our goal and may
not be reasonably achievable. Tracks in a significant distance are small, their
image resolution is low, and occlusions and bounding box overlaps make this
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even more difficult. What is considered relevant needs to be considered for
each camera setup individually.

To filter the relevant tracks, we need to specify a function to tell if a
given track lies inside the ROI. The target area could be intuitively specified
as a polygon. More general shapes could allow more flexibility but increase
the complexity of operations such as intersection. Once we have the target
area specified as some geometric shape, we can find if a track is inside based
on bounding box intersection. Simple intersection could also be expanded
to consider, for example, only tracks above some intersection over minimum
threshold. Another possible approach is to convert each track to a single point
(such as its bounding box center) and then find if the given point lies in the
ROI.

The methodology used for evaluation is described in chapter 5.

3.2.4 Age and Gender Information

The original goal for the dataset was to include age and gender information.
This was an additional reason for collecting our dataset, as we do not know any
MOT dataset that includes the biometric information. The current Covid-19
epidemic complicates the task significantly, as (nearly) all people wear face
masks.

Initial experiments on collected data confirmed that extracting biometric
information on images with face masks is challenging and currently available
models and datasets are not sufficient for this task. Furthermore, we did not
find any relevant datasets and little relevant work, which is probably caused
by how unexpected and novel the current pandemic situation is.

Dealing with face masks properly is out of scope for this work. We con-
sider the mask situation temporary, so it is not essential for future use of the
application.

Based on the current difficult situation, we have made the following de-
cisions. We do not include the age and gender information in our collected
dataset. We include the age and gender classification in our pipeline; it is
prepared for use once the situation with face masks changes. We evaluate the
age and gender models mainly from the performance standpoint.

3.3 Age and Gender Classification

One of the goals of this thesis is to extract age and gender information for
tracked people. Multiple works dealing with this task exist, using various
CNN architectures[24, 25, 26].

The same network architecture can typically be used for both age and
gender as in [24], except the last layer, which has to match the target number
of classes.
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The expected output for gender is either male or female. For age informa-
tion, the output format is less straightforward.

While age estimation has been formulated as a regression problem, for
example, in [25]2, it is more common to formulate it as a classification problem,
where the categories are various age ranges[24, 26].

Formulating the age prediction as a classification task into some age ranges
simplifies the task (as we do not try to predict the exact age) and arguably
does not reduce the information usefulness noticeably. Marketing strategies
and behavior prediction will probably be different for various age groups, such
as children, adults, and the elderly, but differ less inside these groups.

3.3.1 Classification Input

The required information can be extracted either from a whole-body image or
from a face image. Using a whole-body image would be very beneficial since
this information is always available, and no association step is needed. [27]
explores gender classification based on body pose estimation, which is in turn
based on image information. We experimented briefly with this approach and
found both performance and accuracy to be insufficient.

A more typical approach is to use face information[24, 25, 26], which has its
own downsides. The face may not always be visible, and we need to associate
faces to appropriate tracks.

In contrast to classification on a single image, our input is a sequence
of frames. We need for a given face to be visible on at least one frame to
make predictions. While this provides no guarantees, it makes the chance of
a successful face detection more likely. If we have multiple predictions for a
single track, we need to put them together using some statistical function such
as mean or median.

3.3.2 Face Alignment

Both literature[26] and our experiments suggest that the classification task is
heavily influenced by face alignment. We found that many detected faces are
practically unusable for prediction because of alignment and general image
quality issues.

As a potential improvement, we experiment with filtering faces based on
face alignment. The goal is to accept predictions that are based only on face
images with reasonable quality and alignment.

3.4 Hardware and Performance

Most tracking and age and gender classification methods use NNs as described
in previous chapters. One of the limiting factors of NNs is the computing

2Even [25] is based on classification that is turned into regression using expected values.
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power they require[14, 8]. Advances both in theoretical understanding and
hardware have allowed for NNs to be used in an increasing number of devices
such as mobile phones[6] and even browsers[28].

However, video processing is still a very data-intensive task. Processing
live feed requires processing multiple images each second. One of the system’s
primary goals should be to focus on speed to allow live camera feed processing.

Furthermore, using a dedicated (edge) device that would process the video
stream at the camera’s location would significantly improve the system’s scal-
ability and ease of use.

For these reasons, Xavier Jetson NX (Jetson)[29] was chosen as a testing
device, which will be used to process the video stream and run the tracking
algorithm in our experiments. This device is very compact and specialized
for both video processing and NNs inference, making it suitable for use in the
retail environment. Running all experiments on single hardware assures that
the results are comparable when looking at processing time. Running on a
suitable device for the production environment also makes the results more
directly relevant and usable.

3.4.1 Optimization

In recent years, there has been growing interest in building AI models with
the focus not only on quality but also on performance (computation power
required)[30, 31, 8]. Performance can often be significantly increased when
using a smaller model3 without significant quality loss[25].

Another important topic is optimization of existing models. The task of
reducing NN size by removing parameters is called pruning[32].

A common pruning strategy[32] is to first train the target NN to conver-
gence. After which parameters or structural elements are issued a score. The
network is then pruned based on these scores. Pruning typically reduces4 the
accuracy of the network, so the network can then be trained further (this is
called fine-tuning).

NVIDIA TensorRT[34] is a framework for NN optimization and efficient in-
ference. This software is closed-source, and the precise optimization algorithm
is not disclosed. We will evaluate it experimentally in chapter 5.

3By smaller, we mean model with less learnable parameters. For NNs the critical factor
is typically depth; however, the overall architecture is also important.

4Pruning can also increase the accuracy in some cases[33].
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Chapter 4
Design

This chapter presents our proposed tracking algorithm. Our solution is based
on the DeepSORT[15] algorithm, introduced in section 2.1.1. Implementation,
especially with respect to efficient use of hardware, has been inspired by [30].

We use the following notation. Track is each unique object of interest
(in our case person). Track’s age is the number of frames it has not been
associated with any detection. We will say a track is active if its age is below
some threshold. We say track is confirmed if it has been associated with a
detection at least n times. Track is considered lost if it moves out of the frame
or is not matched with a detection for m frames.

The algorithm consists of the following high-level steps which are run for
each input frame.

1. detect people and faces

2. extract visual features from detections

3. apply Kalman filter

a) run prediction for each existing track
b) mark/remove tracks that move out of frame

4. associate existing tracks with detections and update tracks

a) associate confirmed tracks based on Mahalanobis distance and vi-
sual features

b) associate remaining confirmed and active tracks based on IOU
c) associate unconfirmed tracks based on IOU
d) associate (ReID) lost tracks based on visual features
e) update tracks
f) register new tracks
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5. extract biometric information from faces

6. associate faces to tracks

(a) Tracks at time t. (b) Detections at t+ 1.

(c) Kalman predictions for t+ 1.
(d) Matching is based on IOU and
visual features.

Figure 4.1: Visualisation of the main tracking steps. Images from [14], modi-
fied.

4.1 Detection and Feature Extraction

CNNs, which were introduced in section 1.3, provide SOTA results for the
tasks of detection, feature extraction and age and gender classification. Many
CNN architectures exist, and the choice of the appropriate one is not obvious.
The training dataset selection is also essential.

Our criteria for model selection are accuracy, speed, and, for practical
reasons, availability of pre-trained models.

Since performance is a priority, the model should detect both faces and
people. Furthermore, we could increase performance if the network used for
detection also provided visual features, which would remove the need for a ded-
icated feature extractor network. [12] proposes such a network while claiming
good performance. We found their model to be too slow for real-time pro-
cessing on our hardware. However, their approach seems very promising, and
combining detection and feature extraction might be the best approach in the
future.

Comparison of various models is presented in chapter 5.
Based on our analysis, we selected YOLOv4[35] model as the detection

model. We use version pre-trained on [36] dataset, with potential fine-tuning
on data from the target environment.
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For feature extraction we use OSnet architecture from [7], which achieves
SOTA results on multiple ReID datasets and is very lightweight. For details
see section 2.2. Specifically we use the the version termed osnet x0 25 trained
on the MSMT17[37] dataset. Pre-trained model is provided by the paper
authors.

4.2 Kalman Filter Design

We use the Kalman filter to predict each track’s position and update its posi-
tion after association with a detection. General introduction to Kalman filter
is presented in 1.4. This section describes the Kalman model used and its
application in our algorithm.

4.2.1 Model Design

We define the Kalman state as a vector

x = (x1, y1, x2, y2, ẋ1, ẏ1, ẋ2, ẏ2),

where the first four elements represent the coordinates of the top left and
bottom right points of the track’s bounding box, and the remaining elements
are their respective velocities.

Each track is then represented by state means vector x ∈ R8 and covariance
matrix P ∈ R8,8. The means vector is initialized from detection with its
coordinates and zero velocity. We initialize the covariance matrix as a diagonal
matrix. The specific values depend on the observed scene and quality of the
detector model.

We assume a constant velocity model for the tracked objects. This as-
sumption is common in literature [13, 15, 11]. Human motion is generally
not linear. However, the Kalman filter can reasonably work even when the
assumption is not satisfied.

With the constant velocity model in mind, we can define state transition
function F as

F =



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

Next, we define measurement function H, which is used to transition from
the Kalman state space to a measurement space. In our case, this means mov-
ing from an 8-dimensional vector with position and velocity to a 4-dimensional
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vector with only the position. The measurement function is

H =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 .

The remaining parts to define are measurement noise matrix R and process
noise matrix Q. We define the measurement matrix as a diagonal matrix R ∈
R4,4 with α ∈ R+ on the diagonal. In practice the α value is a hyperpameter
based on the precision of the underlying detector model.

We model the process noise as a discrete white noise. Let β ∈ R+ be a
hyperparameter, then the process noise matrix is

Q = β ·



0.25 0 0 0 0.5 0 0 0
0 0.25 0 0 0 0.5 0 0
0 0 0.25 0 0 0 0.5 0
0 0 0 0.25 0 0 0 0.5

0.5 0 0 0 1 0 0 0
0 0.5 0 0 0 1 0 0
0 0 0.5 0 0 0 1 0
0 0 0 0.5 0 0 0 1


.

4.2.2 Predict and Update

Predict and update are the basic steps of the Kalman algorithm. In the pre-
diction part, we try to predict the Kalman state for the next time step.

The update step is based on a measurement z. In our algorithm, the
measurement is a bounding box of detection associated with the given track.
Update consists of computing residual y and Kalman gain K and then updat-
ing the Kalman state. Kalman gain affects how much weight we place on the
measurement when combining it with the prediction.

Let xt ∈ R8, Pt ∈ R8,8 be the state mean and covariance of the given track
at time step t. State mean and covariance are separate for each track and
time step.

Further, let F,H,Q,R be the various matrices defined in the previous
section.

The predict step is described by the following equations:

x̂t+1 = Fxt, (4.1)
P̂t+1 = FPF T +Q, (4.2)
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and the standard update step is described by:

y = z −Hx̂t+1, (4.3)
K = P̂t+1H

T (HP̂t+1H
T +R)−1, (4.4)

xt+1 = x̂t+1 +Ky, (4.5)
Pt+1 = (I −KH)P̂t+1. (4.6)

We replace equation 4.6 with the following, more numerically stable version
from [38]:

Pt+1 = (I −KH)P̂t+1(I −KH)T +KRKT .

4.2.3 Application

We run the Kalman filter on each input frame. First, the prediction step is
run, and the predicted Kalman state is assigned as a new state to all tracks.
This new state is then used for all operations in the algorithm’s association
step (described in the next section). If the intersection over minimum of the
input frame and the track’s newly computed bounding box is less than 0.5,
the track is considered to have left the scene and is marked as lost.

When using the Mahalanobis distance, both mean and covariance are used
for the distance calculation. However, when using IOU between detections
and tracks, only the bounding box information is required. The bounding box
information can be extracted easily using the measurement function5.

After the detections and tracks are associated, we run the update step for
each track for which detection was associated. The input measurement is the
bounding box of the detection. We also check if the track left the scene same
way as in the prediction step.

4.3 Track Association

Associating tracks and detections is a non-trivial task. The tracker has to
differentiate between missed detections and objects leaving the scene. It has
to decide wherever unmatched detection is a new track or just a false positive.

To make the tracker more robust and accommodate for various errors in
underlying models, we perform the matching in multiple steps. We prioritize
already established tracks and wait for multiple frames before marking the
track as confirmed.

We find the identity switches as the most relevant and detrimental type
of error, because they introduce long-term errors, whereas the false positives
and false negatives are typically short-term and do not disrupt the overall
trajectory.

5In our case, this simply means taking the first four elements of the state, but in general,
the transformation could be more complex.
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Identity switches can easily happen in groups of multiple people, where the
algorithm cannot rely on the position information. Moreover, even relevant
visual information can be difficult to obtain due to occlusion. Problematic sit-
uations may also be caused by partial or full occlusions from the environment
and different visual conditions in various parts of the input frame.

4.3.1 Association Steps

The main part of all association steps is forming a cost matrix for a subset
of tracks and a subset of detections. The cost matrix contains the distance
between given tracks and detections. Once we have this matrix, we can easily
find the minimum cost matching using one of the standard algorithms in poly-
nomial time[20, 39]. We start the association with all defections6. Detections
matched in any step are not used in subsequent steps.

The first association step is analogical to DeepSORT[15], which is de-
scribed in section 2.1.1, with differences described further. The remaining
steps are mostly inspired by [30].

In the first step, we associate only confirmed tracks. The cost matrix
is computed based on Mahalanobis between tracks’ states and detections’
bounding boxes and feature vectors similarity. Apart from using only the
confirmed tracks, another difference from the original DeepSORT is how we
store the visual features. The original keeps a gallery of the last n features
for each track and computes the distance as a minimum distance between any
feature in the gallery and the bounding box feature.

Instead of this, we keep only a single feature (vector) for each track. On
update, the new feature is calculated as a weighted average of the current
and new feature and is normalized afterward. This approach is faster since
we need to compute only a single distance for each track. An additional
advantage is a potential for robustness. When using the gallery, a single
incorrect measurement can take precedence over multiple valid measurements
and can remain in the gallery for a long time.

In the second step, we associate the confirmed tracks which were not as-
sociated with any detection in the first step. We also filter out tracks that
are not active. The cost matrix is computed based only on IOU of tracks and
detections’ bounding boxes.

The third step associates unconfirmed detections. The cost matrix is com-
puted from IOU of tracks and detections’ bounding boxes, as in the previous
step.

After that, lost tracks are associated based only on visual features. This
step is similar to the first one; however, no position information is used, as we
cannot meaningfully predict the position of lost tracks.

6By all detections we mean all detections of appropriate class with at least given confi-
dence.
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Next, we update all matched tracks and set their age to zero. We update
their Kalman filter state as described in the previous section.

The next part is dealing with unassociated tracks. We remove those which
are unconfirmed, dismissing them as a false positive. We increase the age of
remaining unmatched tracks. If the track’s age is above some threshold, we
mark it as lost.

The last step is creating new tracks from the remaining detections. We
initialize each track with a Kalman state as described in section 4.2.1.

4.4 Age and Gender Classification

This section describes the age and gender classification of faces and subsequent
association with tracks. We introduce optional step for filtering faces based
on face alignment. Additionally, we discuss how to produce a final outcome
from multiple classification results.

We will be using CNNs for the classification task. We find the architectures
GoogLeNet from [40] and SSRNet from [25] to be suitable for use in our
algorithm. We chose these based on their speed and proclaimed accuracy, as
we cannot properly evaluate them due to the dataset problems described in
section 3.2.4.

4.4.1 Face Association

To propagate the age and gender information to the tracks, we need to asso-
ciate them with the faces. We calculate a center point for each face’s bounding
box. We then (for each face) iterate over all tracks and assign the face to the
all tracks eligible based on relative bounding box position.

Let ξ1, ξ2, ξ3, ξ4 ∈ [0, 1] be hyperpameters, cx, cy the face center, x, y the
track’s bounding box top left corner coordinates and w, h its width and height.
The track is eligible if

x+ w · ξ1 ≤ cx ≤ x+ w · ξ2 ∧ y + h · ξ3 ≤ cy ≤ y + h · ξ4.

The main problem with this approach is, we might assign multiple faces
to a single track or a single face to multiple tracks. We do not think this issue
can be solved without significant overhead. We believe, based on observations
from our data, that reasonable choice of the hyperparameters presented above,
along with assumed availability of multiple predictions for given tracks, make
this issue tolerable.

Another possible approach would be getting better face position approx-
imation from body pose estimation. While this would still leave some cases,
where overlap happens (as is inevitable when projecting 3D world to 2D coor-
dinates), it could improve the matching. We did not explore this idea further,
as we have found body pose estimation to be too computationally challenging
for real-time processing on our hardware.
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4.4.2 Face Alignment

As discussed previously, face alignment is critical for explored face classifica-
tion models. We found that many of the detected faces by selected models
are not suitable for further classification. Furthermore, face alignment is a
potentially interesting source of information for future expansion, as it allows
us to approximate the target’s field of view.

The best solution to the classification problems would be to train the model
to handle differently aligned faces. However, this can be difficult in practice.
Adding alignment-based validation for faces, described in this section, can be
seen as a supplementary step.

One possible approach is to assume that most classifications are correct and
solve this when combining multiple predictions. This introduces no additional
overhead, as we should always assume that some predictions may be incorrect.

The models typically output a probability for the target classes, which can
typically be interpreted as the model’s confidence. Another approach might
be to consider only detections with very high confidence, assuming that those
should be well visible faces. This does not work in practice because models
often output extremely high confidence for very low-quality detections, as we
have found when experimenting in our dataset.

Facial landmarks localization is topic of [41], where authors present SOTA
models for this task. Both 2D and 3D face alignment models are presented.
We found the 2D version to be about two times faster while producing good
results. The model’s output is the location of 68 face landmark points. Visu-
alisation of this output is shown in figure 4.2.

Based on these landmarks and some assumptions about human face ge-
ometry, we can quickly test if some selected landmarks are approximately at
expected locations. We can measure the relative position of the eyes, nose,
and mouth and combine this with the face’s bounding box size. Based on
this, we should be able to classify approximate face position and decide, for
example, if the face image is frontal or from the side.

4.4.3 Final Output

Since we evaluate a video and not a single image, we expect to have multiple
predictions for a single track. Some approach is needed to produce a final
output of the algorithm. We designed the algorithm to finalize its decision
once the track leaves the scene.

Some statistical function is needed to process the multiple predictions into
a single outcome. We think reasonable choices are mode for the gender pre-
diction and median for the age prediction.

If the given track has no associated prediction, we output its demographics
as “unknown”, as we have no prior knowledge about the class probabilities.
Additionally, it might be reasonable to output “unknown” even when there
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Figure 4.2: Visualisation of face landmarks, with certain landmarks high-
lighted. Images are from the LS3D-W dataset[41].

is data present. For example, if there is an equal or almost equal number of
predictions for the different gender classes.

4.5 Algorithm Hyperparameters

The presented algorithm has a number of hyperparameters that need to be
configured. This section presents their overview and used values in table 4.1.
The values are presented mostly for illustrative purposes and as a potential
starting point. Target scene, selected models and target goals must be con-
sidered when choosing the hyperparameters.

name description value
max age Tracks missed more times are considered lost. 7

max age active Maximum track’s age to be considered active. 1
min hits Minimum number of assigned detections to be

considered confirmed.
5

feature alpha Weight for calculating new visual feature
(higher means slower update).

0.8

motion weight Weight of the motion distance in contrast to
visual feature distance (note that the motion
distances are typically about an order larger).

0.02

iou threshold Minimal IOU to consider areas overlaping
(when associating with IOU.

0.5

measurement noise Detected bounding box standard deviation. 100
process noise var Kalman filter process variance. 10

Table 4.1: Selected algorithm hyperparameters.
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4.6 Implementation

The pipeline is implemented in Python 3.6. We use TensorRT framework
for optimized NN inference on the Jetson platform. GStreamer framework
along with Jetson-specific NVIDIA plugins is used for efficient video stream
processing. [30] was used as a basis for developing the pipeline, which proved
especially helpful for efficient video processing and using the TensorRT frame-
work.

Used Python libraries are NumPy for numerical computing and matrix
operations, Pandas for data manipulation, FilterPy for Kalman filter imple-
mentation, py-motmetrics for MOT metric calculations and OpenCV for video
and image processing.

4.6.1 Inputs and Outputs

The system should be usable with various input sources and produce output
suitable for additional computer processing.

A standard protocol used in industrial and surveillance cameras is RTSP[42].
Handling input via this protocol allows the application to be easily con-
nected to live streams from many types of cameras. The application also
handles video input from the local filesystem to allow the processing of al-
ready recorded videos.

The application outputs location of all confirmed tracks for each frame
along with their currently classified demographic information. The final de-
mographic information is stored as a special event when a track leaves the
scene. Output for the gender field is either male, female, or “unknown”. For
the age field, the output is either an age range or “unknown”.

The application can optionally output the average frame rate and propor-
tional time spend in various parts of the algorithms (time spent in detection,
association, . . .). Additionally, the pipeline can be provided with ground truth
information for a given file and produce detailed statistics along with overall
metrics.

Output can be either send periodically over the network or saved to the
local filesystem. Data is saved in the JSON format, which is commonly used
for data serialization.
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Chapter 5
Experiments

This chapter presents experiments and the evaluation of our algorithm.
The goal of the experiments is to compare various models and approaches
in terms of quality and performance. Supplementary materials and code
are available at https://github.com/davidmasek/Algorithms-for-video-
analysis-of-customer-behavior-in-front-of-retail-store.

All evaluations are run on the Jetson Xavier NX platform[29], with the
15W and 4 core power configuration. Jetpack version is 4.1.1, CUDA version
is 10.2 and TensorRT version is 7.1.3.

5.1 Tracker Evaluation

The main part of our pipeline is the MOT tracker. We evaluate its performance
on our collected dataset, which consists of 2600 annotated frames with 49
unique objects and 7108 objects in total. We split the dataset into train and
test subsets, with respective sizes of 1309 and 1291 frames.

Figure 5.1: A sample frame from the dataset with visualized ROI.

We run the pipeline without the demographics extraction. We evaluate
only tracks and annotations inside the ROI, a rectangle covering the relevant
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area in front of the shop. See figure 5.1 for visualisation. Results are pre-
sented in table 5.1. Final results are computed as an average of the evaluated
sequences weighted by the number of frames. Switch ratio is the ratio between
the number of identity switches and the number of objects in total (scaled by
1000 for readability). We consider the minimal frame rate for real-time pro-
cessing to be 10 Frames Per Second (FPS).

YOLOv4 [35] is trained on the CrowdHuman[36] dataset. PeopleNet[43] is
trained on a proprietary NVIDIA dataset. The SSD[44] model is trained on
the COCO[45] dataset and used with InceptionV2 [46] as a feature extractor.

Model MOTA ↑ MOTP ↑ Switch Ratio ↓ FPS ↑
PeopleNet 0.84 0.83 8.6 9.42
YOLOv4 0.91 0.93 8.7 13.0
SSD 0.53 0.73 25 12.8

Table 5.1: Tracker evaluation results with different detector models. The
arrows indicate low or high optimal metric values.

Based on the results, we selected the YOLOv4 model for use in the ap-
plication. It has the best results in all categories except for the switch ratio,
where the results are very close to the best. Based on the metrics and visual
evaluation of the algorithm’s outputs, we consider its performance satisfactory.
We also consider the algorithm fast enough for real-time usage.

Apart from our dataset, we also experimented on the MOT17[14] dataset,
which is popular in literature. We have found the dataset to be too different
from our target environment. The dataset contains videos taken from different
angles and (often) with a moving camera. Our work assumes a stationary
camera position at an elevated viewpoint, and so we have decided not to use
the MOT17 dataset for evaluation. However, it remains an interesting source
of data for testing the algorithm’s robustness.

5.2 Performance Optimization

This section evaluates multiple architectures from a performance standpoint.
In particular, we are interested in performance gain from using the TensorRT
optimization framework.

We evaluate the SSRNet[25] and GoogLenet[40] usable for age and gender
classification. Further, we evaluate two OSNet[7] ReID architectures. As a
baseline, we run the inference on CPU and GPU using ONNX Runtime[47],
which is an open source machine learning framework. We then use the Ten-
sorRT framework to optimize the model and run inference. The results are
presented in table 5.2.

We observe that using the TensorRT optimized models increases perfor-
mance about three times. To test that the optimization does not signifi-
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Architecture CPU GPU TensorRT
SSRNet (batch size 1) 3.7 ms 4.02 ms 1.4 ms
SSRNet (batch size 32) 106 ms 8.85 ms 3.85 ms
GoogLeNet 144 ms 12 ms 3.17 ms
OSNet x0.25 361 ms 41.8 ms 12.3 ms
OSNet ain x1.0 2.08 s 156 ms 53.8 ms

Table 5.2: Inference time comparison.

cantly decrease accuracy we evaluated the SSRNet model on the MegaAge[48]
dataset. The test Mean Average Error (MAE) of the baseline version is 12.8,
and the MAE of the optimized version is 14.4 (which is an error increase of
12.6%).

Based on our experiments, we conclude that the TensorRT framework can
be used for significant performance gain while maintaining comparable results.
However, it should be noted that the results may vary on different models or
hardware.
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Conclusion

The goal of this thesis was to design and implement a pipeline for tracking
people in front of a retail store while also obtaining information about age
and gender.

In the first two chapters, we presented necessary theoretical concepts and
explored related works and existing approaches.

Next, we analyzed the requirements of the retail environment and poten-
tial solutions. To provide relevant evaluation, we collected a new dataset with
cooperation from retail store owners. Collecting the dataset made us more
aware of potential problems and helped in the algorithm design. Due to the
current Covid19 epidemic, we were unable to include age and gender infor-
mation in our dataset, which led us to focus on the tracking task and leave
demographic feature extraction as a secondary objective.

Based on our analysis and research, we designed a MOT pipeline based on
the DeepSORT algorithm presented in [15]. We modified the algorithm mainly
in the association phase and extended it with the support for demographic
information extraction. The tracking is based on associating new detections
to existing tracks using the combination of two metrics. The first metric is
IOU of Kalman filter predictions for tracks’ locations and detections’ bounding
boxes. The second metric measures the visual similarity between detections
and tracks.

Our pipeline is focused on performance and usability in the retail environ-
ment. We implemented the pipeline in Python using TensorRT framework for
optimizations. The pipeline is optimized for the Jetson NX device, which has
been chosen as a suitable device for production.

In the last chapter, we presented experiments comparing various models
and evaluated our application on the collected dataset. We concluded that
the algorithm provides satisfactory results for use in production and can run
in real time.

The most relevant opportunities for future improvement are demographic
information extraction and overall robustness. Specifically, it would be bene-
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Conclusion

ficial to collect data from other locations and include the demographic infor-
mation. We plan to continue working on the presented pipeline in cooperation
with ImproLab laboratory at FIT CTU, with the goal of deploying the appli-
cation in production.
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Appendix A
Acronyms

AI Artificial inteligence.

CNN Convolutional Neural Network.

DeepSORT Simple Online and Realtime Tracking with a Deep Association
Metric.

FPS Frames Per Second.

IOU Intersection over Union.

Jetson Xavier Jetson NX.

MAE Mean Average Error.

ML Machine learning.

MOT Multiple Object Tracking.

MOTA Multiple Object Tracking Accuracy.

MOTP Multiple Object Tracking Precision.

MSE Mean Squared Error.

NN Neural Network.

ReID re-identification.

RGB Red, Green, Blue.

ROI Region of Interest.
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Acronyms

SORT Simple Online Realtime Tracking.

SOTA state-of-the-art.
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src .................... the directory of LATEX source codes of the thesis
thesis.pdf..............................the thesis text in PDF format
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