
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 20, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Self-supervised model for efficient sound recognition trained on aggregated data

 Student: Vojtěch Houska

 Supervisor: Mgr. Alexander Kovalenko, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of winter semester 2021/22

Instructions

The task is to create an efficient model based on neural network for state-of-the-art computer audition (eg.
music instrument recognition). The model is intended to learn from aggregated data.

1) Analyze the latest state-of-the-art approaches for sound classification using deep neural networks,
including signal preprocessing, neural network type and architecture.

2) Define general and specific obstacles, constraints and recommendations in the field of sound
recognition.

3) Compare and suggest:
- various sound preprocessing techniques;
- various neural network types;
- various neural network architecture;
- manually vs. automatically extracted features;

4) Implement and test proposed applications

References

Will be provided by the supervisor.

Bachelor’s thesis

Self-supervised model for efficient sound
recognition trained on aggregated data

Vojtěch Houska

Department of Applied Mathematics
Supervisor: Mgr. Alexander Kovalenko, Ph.D.

February 14, 2021

Acknowledgements

I would like to thank my supervisor Mgr. Alexandr Kovalenko, Ph.D. for his
great patience and advice provided throughout this work. Additional thanks
belongs to my family for their support during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on February 14, 2021 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Vojtěch Houska. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Houska, Vojtěch. Self-supervised model for efficient sound recognition trained
on aggregated data. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2021.

Abstract

The thesis summarizes state-of-the-art approaches in deep learning. It discus-
ses application of self-supervised autoencoders and pre-processing techniques
used in sound recognition. YouTube platform served as a source of weakly-
labeled data to train such models. Latent space properties of proposed autoen-
coders were compared and tested using K-means clustering. Implementation
of Adversarially Constrained Autoencoder Interpolation failed to outperform
randomly initialized autoencoder. The reasons are further discussed and seve-
ral recommendations for future research are proposed.

Keywords Weakly-labeled data, Sound classification, Deep learning, Au-
toencoders, Imbalanced data, Self-supervised learning, K-means, Adversari-
ally Constrained Autoencoder Interpolation

vii

Abstrakt

Tato práce shrnuje nejmodernější metody využívané v hlubokém učení. Probírá
použití autoenkodérů a metody předzpracování v oblasti rozpoznávání zvuku.
Jako zdroj slabě anotovaných dat pro učení těchto modelů byla použita plat-
forma YouTube. Práce porovnala vlastnosti latentních prostorů navrhovaných
autoenkoderů, které byly testovány pomocí shlukování K-means. Použitá
metoda regularizovaného autoenkodéru nepřekonala náhodně inicializovaný
autoenkodér. V závěru práce jsou rozebrány příčiny a byla navrhnuta další
doporučení pro pozdější výzkum.

Klíčová slova slabě anotovaná data, rozpoznávání zvuku, hluboké učení,
autoenkodéry, nevyvážená data, učení bez učitele, k-means, Adversarially Con-
strained Autoencoder Interpolation

ix

Contents

Introduction 1
Motivation . 1
Brief History of Neural Networks . 2

1 Deep Learning 3
1.1 Introduction . 3
1.2 Basics of Deep Learning . 3
1.3 Convolutional Nerual Networks 7
1.4 Recurrent Neural Networks . 8
1.5 Convolutional Recurrent Neural Networks 11
1.6 Residual Neural Network . 11
1.7 Attention Mechanism . 11
1.8 Autoencoder . 14
1.9 Obstacles and Advantages in Sound Classification in Compari-

son to Image Recognition . 17

2 Audio Pre-processing 19
2.1 Discrete Fourier Transform . 19
2.2 Short-time Fourier transform 19
2.3 Mel-spectrogram . 20
2.4 Decibel Scale . 20
2.5 Mel-frequency Cepstral Coefficients 21
2.6 Constant-Q transform . 21
2.7 Other Preprocessing Techniques 21
2.8 No Pre-processing of Audio Signal 22
2.9 Data Augmentation . 22

3 Analysis and Design 23
3.1 Dataset . 23

xi

3.2 Pre-processing . 24
3.3 Different Classification and Supervision Types 25
3.4 Proposed Methods . 25

4 Realisation 27
4.1 Used Technology . 27
4.2 Procedure . 28
4.3 Second test . 32
4.4 Additional Experiments - Effects of Pre-processing on Recon-

structed Sound . 37

Conclusion and Outlook 39

Bibliography 41

A Latent Space Visualisations 49

B Acronyms 53

C Contents of enclosed DVD 55

xii

List of Figures

1.1 Single layer of Feedforward Neural Network 4
1.2 Diagram of Recurrent neural network 8
1.3 Backpropagation through time . 9
1.4 Single Long Short-term Memory Cell 9
1.5 Single Cell of Gated Recurrent Unit 10
1.6 Residual neural network . 12
1.7 Hard Attention . 12
1.8 Soft Attention . 13
1.9 Cross Attention . 13
1.10 Self Attention . 14
1.11 Autoencoder . 14
1.12 Variational Autoencoder . 15
1.13 Adversarially Constrained Autoencoder Interpolation 16

2.1 Mel-filter banks . 20

4.1 Training progress of ACAI with Sigmoid functions 30
4.2 Training progress of ACAI with ReLU functions 31
4.3 Latent Space visualisation of first proposed model 31
4.4 Training progress of . 32
4.5 Visualisation of Elbow Method . 33
4.6 Problem of Elbow Method . 34
4.7 Elbow Method predictions for ACAIs latent space 34
4.8 Elbow Method predictions for Autoencoders latent space 35
4.9 Elbow Method predictions for Randomly Initialized Autoencoders 35
4.10 Comparison of ACAI, Autoencoder and Randomly Initialized Au-

toencoder . 36

A.1 PCA visualisation of Randomly Initialized Autoencoder latent space 49
A.2 PCA visualisation of ACAI on NSynth data 50

xiii

A.3 UMAP visualisation of ACAI on NSynth data 50
A.4 t-SNE visualisation of Randomly Initialized Autoencoder on NSynth

data . 51
A.5 PCA visualisation of ACAI when Sigmoid is used for latent vector 51
A.6 UMAP visualisation of ACAI when Sigmoid is used for latent vector 52

xiv

Introduction

Motivation

In recent years there has been tremendous progress in machine learning, es-
pecially in field of deep learning, where more and more accurate models are
created. But most of them are supervised since it is easier for a model to ex-
tract appropriate features of classes from clean data. With growing demand on
classification models, not just on their accuracy but other properties of classi-
fier, there is bigger need for larger, more balanced and robust datasets, which
are expensive to create. In order to bypass labeling, model can be trained on
data that is partially labeled (this technique is called weak labeling) or trained
on few labeled data and bigger portion of unlabeled data (this technique is
called semi-supervised learning). Other approaches are self-supervision, where
model is supervised by input data, and unsupervised learning, where model
does not use any labels at all and should assign appropriate classes based
solely on feature extraction.

Why audio? because sounds are weakly labeled by nature. It is hard to
have clean sound with only one class or without noise. And I believe, that
it is much easier to mimic how ear works in deep learning models then it is
with eye, because we can move them in our eye sockets or change focus of our
sight. Hearing on other hand is quite stationary and there are no active parts
in our ears that could give better hearing resolution, filter noise etc. Goal
of this work is to investigate latest approaches in computer audiation and
propose model that learns to classify instruments contained in sound, using
videos aggregated from YouTube. Videos will be selected based on appropriate
search query, which is very cheap but very noisy dataset.

1

Introduction

Brief History of Neural Networks
In 1957 Psychologist Frank Rosenblat proposed biologically inspired computa-
tional system Perceptron that can be considered as first neural net consisting
of two layers [1, 2, 3].

Single unit of a Perceptron can be described as function:

f(x) =
{

1 if ∑n
i=1 wixi + b > 0

0 otherwise
(1)

where wi is weight of i-th input pixel xi and b is bias or shift along x axis.
In 1960 Professor of electrical engineering Bernard Widrow and his gradu-

ate student Ted Hoff proposed perceptron called ADALINE (Adaptive Linear
Neuron) which adapts in order to filter echos on a phone line. It was first
application of neural network in commercial use and it is still used today [4,
2, 3].

Soon in 1969 cognitive scientist Marvin Minsky and mathematician Sey-
mour Papert published book “Perceptrons: An Introduction to Computational
Geometry” that points out shortcomings of the Perceptron [5, 2, 3].

Minsky and Papert’s book has caused fall of Perceptrons popularity and
fundings in the field of artificial neural networks [2, 3].

After multiple rediscoveries of backpropagation in 80s, neural networks
gained back attention [2].

In 1986 Michael I. Jordan published his “Attractor dynamics and paral-
lelism in a connectionist sequential machine” [6]. For first time introduced
recurrence in neural networks. But first mention of name recurrent neural
networks was in 1989 when Barak A. Pearlmutter published “Learning state
space trajectories in recurrent neural networks” [7].

In 1991 Sepp Hochreiter in his diploma thesis described vanishing gradient
occuring in recurrent neural networks, phenomenon that prevents learning of
deeper neural networks and proposed recurrent neural network Long Short-
term Memory (LSTM), that mitigates effects of vanishing gradient. Hochreiter
and his colleague Jürgen Schmidhuber introduced final results of LSTM in
1997 [8].

In 1994 Yoshua Bengio et al. published paper that focuses solely about
vanishing gradient in neural networks [9].

In 1998 Yann Lecun in his paper “Gradient-Based Learning Applied to
Document Recognition” proposed model called Convolutional Neural Networks
CNNs, that used convolutional kernels for feature extraction [10]. Model was
intended to classify sequences of numbers from images and it was continuation
of work done by Kunihiko Fukushima using backpropagation [11].

2

Chapter 1
Deep Learning

1.1 Introduction
As mentioned earlier, artificial neuron is based on a model of biological neuron
found in almost every living creature on our planet. Despite its oversimplifi-
cation (accurate models that are used for prediction of its behaviour are far
more complicated [12]) there are some obvious similarities that deserve simple
description.

Neuron dendrites act as an input of electrical signal (action potential),
received from nerves or other neurons through gaps or electrical links with
different strength, called synapses. Stronger the synapse easier it is for sig-
nal to be passed. Action potential coming from dendrites are summed and
propagated to neurons soma which might produce excitation, electrical signals
known as spikes. Spikes are further distributed along axon to terminal which
act as neuron‘s output that is received again by other neurons. Neurons with
thousands of synapses were found [13].

Neurons that way pass information from senses to more complex structures
of our brain forming distributed hierarchical structure, where each neuron is a
single unit communicating with each other exhibiting complex behaviour [14].

Same as its biological brother, artificial neuron has sum of weighted inputs
(dendrites) from other neurons or initial input followed by activation function
(excitation of the soma) where its output is passed to other neurons of a
network.

1.2 Basics of Deep Learning

1.2.1 Feedforward Neural Network

Neural networks are organized in layers of neruons. Simplest form of neural
network is called Feedforward Neural Network (FFA) also known as Multi-

3

1. Deep Learning

Figure 1.1: Single layer of Feedforward Neural Network with 6 neurons. M =
6 outputs of previous layer and N = 6 neurons

Layer Perceptron (MLP) [15]. Single layer of MLP is organized of N neurons
connected to all M outputs of previous layer as is shown in 1.1

Therefore, output of the layer is vector of M values computed as weighted
sum of input vector passed through activation function. It is more convenient
to think about it as linear operator followed by pointwise non-linear operation
written as f(W ∗ x + b) where W ∈ RN×M is weight matrix with weights of
neurons written in rows, x ∈ RM is input vector, b is bias and f is point-
wise non-linear function. Layers of Feedforward Neural Network are usually
stacked on top of each other therefore it can be written as a composition
of functions: fd(fd−1...f2(f1(x))...)) where d is depth of the neural network
and fi is parametric function described above. That is why it is called deep
learning [16].

1.2.2 Used Activation Functions

Sigmoid Function

Sigmoid is a function that smoothly transition between 0 and 1 [17]. Can be
described as

σ(x) = 1
1 + e−x

(1.1)

and its derivative as
d

dx
σ(x) = σ ∗ (1 − σ) (1.2)

4

1.2. Basics of Deep Learning

Hyperbolic Tangent

Hyperbolic tangent is function that smoothly transition between -1 and 1 [18].
It can be described as

tanh(x) = e2x − 1
e2x + 1

(1.3)

and its derivative as

d

dx
tanh(x) = 1 − tanh2(x) (1.4)

Rectified Linear Unit

Rectified Linear unit ReLU also known as positive part [19]. It can be de-
scribed as

f(x) =
{

x if x > 0
0 otherwise

(1.5)

ReLU does not have derivative in 0 but its set to 1 or 0 as convention.

f(x) =
{

1 if x >= 0
0 otherwise

(1.6)

LeakyReLU

LeakyReLU is extension of ReLU to prevent so called dead neuron in ReLU
by defining negative part as multiple of small constant therefore derivative in
negative part is not 0 [20]. LeakyReLU can be described as

f(x) =
{

x if x > 0
0.01x otherwise

(1.7)

and its derivative as

f(x) =
{

1 if x >= 0
0.01 otherwise

(1.8)

Softmax

Softmax is generalization of Sigmoid function on a vector. It softly distribute
its input into output that sums to 1 [21]. i–th element of output vector can
be described as

softmax(x)i = exi∑M
j exj

(1.9)

where M is width of input vector i ∈ M and x ∈ RM .

5

1. Deep Learning

1.2.3 Backpropagation
Goal of a Feedforward Neural Network is to approximate some function f∗
[15]. The way to learn multi layer neural network to do that is through
backpropagation.

Backpropagation is an algorithm that computes gradients of loss function
also know as objective function or cost function [22], w.r.t. neural networks pa-
rameters. Loss function measures performance of an network by computing a
loss sometimes called error. This allows utilization of optimization algorithms
to minimize the loss during training by updating the parameters.

Backpropagation needs activation function to be differentiable or contin-
uous and differentiable almost everywhere and that loss to be a scalar value
[23].

We can utilize chain rule to compute corresponding gradients since layers
of neural networks can be viewed as composition of functions [24].

1.2.4 Optimization
Neural network is learned in so called training loop. We iterate through train-
ing data and compute loss. There are three ways to iterate through the data.
We iterate through every single datapoint and compute loss. Weights of neu-
ral network, that we train, are updated by negative gradients of loss w.r.t.
weights of the neural network. This is called gradient Descent.

Second way is that instead of iterating through every single datapoint we
split data into mini-batches, which is collection of datapoints. Average of
losses of the mini-batch is computed and weights are updated by gradients of
this average. This is called mini-batch gradient descent [25].

Third way is same as previous but average loss is computed through whole
dataset. This is called batch gradient descent.

Gradient Descent

Gradient Descent is simplest form of optimization of neural network. It can
be described as:

w = w − lr
∂E

∂w
(1.10)

where w is updated weight, lr is magnitude of update called learning rate
and E is loss computed by loss function.

Gradient descent is not used since the negative of gradient indicates the
direction of „steepest descent“ orthogonal to the level set at the current point
but minimum is usually not in that direction [26].

Stochastic gradient descent

Stochastic gradient descent (SGD) is a generalization of a gradient descent by
taking average of an mini-batch [27].

6

1.3. Convolutional Nerual Networks

Optimization algorithm with Adaptive Learning Rates

There are also optimization algorithms that adapt learning rates during train-
ing to converge to a minimum smoothly. These algorithms include ADAM,
RMSProp, AdaGrad etc. [28]

1.3 Convolutional Nerual Networks
Convolutional Neural Network (CNN) is type of nerual network that utilize
discrete conovlutional operation [29, 30]. Convolutional Neural Network ex-
ploit property of natural data which is compositionality (world is hierarchi-
cal)[30]. If the N neurons are fully-connected to its previous layer of size M ,
size of weight matrix of such layer is N × M which can be large based on the
size of input. By stating two hypothesis about structure of data the need of
fully-connected neurons disappear. Data have to have strong local correlations
between values and features can appear anywhere in the image [29, 31].

One dimensional discrete convolution is defined as:

yi =
∑

j

wjxi − j (1.11)

but in practice is used cross correlation instead defined as:

yi =
∑

j

wjxi + j (1.12)

Which is same as convolution but kernel is not flipped relative to the input to
preserve commutativity of convolution [32]. [deep learning,332]

Two dimensional cross-correlation is defined as

yij =
∑
kl

wklxi+k,j+l (1.13)

vector or matrix W is called convolutional kernel which in Convolutional
Nerual Network act as weights. Since the kernel is only of limited size it is
considered as sparse connection between previous layer and neurons of the
layer [32].

Instead of convolving by „one step“ we can change the definition of con-
volution and add stride [29].

Thanks to CNNs parameter sharing in form of sliding kernels, CNNs con-
verge faster, generalize better, they are not constrained to input size, con-
nection sparsity reduces amount of computation and are highly parallelizable
because kernels are independent [32, 29, 30].

In Feedforward Neural Network are alternations of matrix multiplication
and application of activation function. In convolutional neural network there
is alternation of convolution, activation function and pooling which is optional.

7

1. Deep Learning

Pooling
Pooling layer is an layer that reduces dimensionality of convolved input and
makes the representation approximately invariant to small translations of the
input by using aggregation function [33] . It takes aggregate of small area
of an input using sliding window as was done in convolution but with stride
equal to its size so the input is not overlapping.

There are several types of pooling. Max pool takes maximum of an input
area, Average pool takes an average etc.

1.4 Recurrent Neural Networks
Recurrent Neural Network (RNN) is neural network which its current state
depends on its previous state. Its original form can be described by diagram
1.2

In order to train this type of neural network you have to perform back-
propagation through time see fig. 1.3.

Recurrent neural networks described above do not work very well due to
the problem of vanishing or exploding gradient. Every iteration of backprop-
agation in time gradients are multiplied by the the weight matrix W and if
the weights are small gradient becomes smaller. Therefore gradients will be
exponentially smaller in time. On the other hand if the weights of weight
matrix W are high then the gradients get exponentially bigger in time.

Due to vanishing or exploding gradient Recurrent neural networks have
issue to learn things from a distant past. This problem is called long-term

Figure 1.2: Recurrent neural network diagram with three layers, recurrent
loop from previous timestamp t-1

8

1.4. Recurrent Neural Networks

Figure 1.3: Backpropagation through time: In order to compute gradients of
E2 network has to first compute gradients of previous time stamps

dependency problem and was first described by Yoshua Bengio et al. in [9].
There are several ways to mitigate the effect of vanishing gradients in RNNs

like like gradient clipping to avoid exploding gradient or vanishing gradient
regularization for reducing vanishing gradient [34].

1.4.1 Long Short Term Memory

Long Short Term Memory (LSTM) is a type of Recurrent Neural Network. It
is also used for sequential data but unlike RNNs it introduces gates to control
LSTM cells state to mitigate vanishing or exploding gradient and therefore
improve learning of long-term dependencies [35]. Single cell of LSTM can bee
seen in 1.4

Figure 1.4: Single cell of LSTM with three gates f, i, o which controls its state.

9

1. Deep Learning

It can be described as:

ft = σ(Wf xt + Uf ht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft ∗ ct−1 + it ∗ c̃t

ht = ot ∗ tanh(ct)

c represents cells state, which is controlled by three gates. f forget gate, i
input gate and o output gate. Forget gate controls whether cells state should
be reset. If f = 0 previous cell state is forgotten. Input gate controls if the
cells state should be updated. If i = 1 then the cells state is updated by value
of c̃ which lies between 1 and -1. Output gate controls visibility of the cells
output. If the o = 0 than an output of the cell is completely hidden.

1.4.2 Gated Recurrent Unit

Gated Recurrent Unit (GRU) is a type of Recurrent Neural Network that
like LSTM uses gates to control learning of long-term dependencies. GRU is
simpler than LSTM and therefore computationally less demanding [36]. Single
cell of GRU can be seen in 1.5

Figure 1.5: Single cell of GRU. It utilizes gates to control cells state as it is in
the case of LSTM but GRU has fewer parameters.

10

1.5. Convolutional Recurrent Neural Networks

GRU can be described as:

zt = σ(Wzxt + Uzht−1 + bz)
rt = σ(Wrxt + Urht−1 + br)
ĥt = tanh(Whxt + Uh(rt ∗ ht−1) + bh)
ht = (1 − zt) ∗ ht−1 + zt ∗ ĥt

xt is an input vector, ht is an output vector, ĥt is an candidate activation
vector, zt is an update gate, rt is reset gate vector and W, U, b are correspond-
ing parameters of the cell.

zt is used to compute linear combination of two inputs ht-1 and ĥt if zt = 1
then ĥt and if zt = 0 then ht−1 is used. In other words if zt = 0 then copy
previous state and ignore the input if zt = 1 state of the cell is forgotten and
you output hatht. Reset gate rt resets previous state and if rt = 0 previous
state ht−1 is not considered in the output ĥt.

1.5 Convolutional Recurrent Neural Networks
Convolutional recurrent neural network CRNN is combination of previously
mentioned neural network types namely Convolutional Neural Network and
Recurrent Neural Networks. CRNN are used in sequential data where state
depends on previous states to describe its meaning. So they are used in music
genre classification speech recognition etc. [37].

1.6 Residual Neural Network
Residual Neural Networks utilize skip connections in their architecture. It
helps to train deeper neural networks since deeper neural networks are more
difficult to optimize and easily fall to local minimum[38].

Residual connections can be seen in diagram in fig. 1.6.

1.7 Attention Mechanism
Attention Mechanism is a mechanism that control importance of different
regions in the input. Attention Mechanism was first introduced for machine
translation by Bahdanu et al. [39] in 2015. It was an application of attention
on bidirectional recurrent neural networks .

In paper “Attention Is All You Need” [40] has been shown that there is
no need for recurrent neural networks and only the self attention was used
for machine translation. This model was trained without recurrence, in other
words there was no backpropagation, which reduced computation needed to
train the model.

11

1. Deep Learning

Figure 1.6: This diagram shows skipped connections present in Residual Net-
work. It is worth to mention that connection can skip more then one layer as
shown here.

1.7.1 Basic Types of Attention Mechanism

Hard attention

Selects only the most important region

12

1.7. Attention Mechanism

Soft attention

Soft Attention unlike Hard can select multiple important regions

Cross attention

Input X and Y are two different inputs to a neural network.

13

1. Deep Learning

Self Attention

Input to the attention branch is output of previous layer like in residual net-
works.

1.8 Autoencoder
Autoencoder is nerual network which is trying to reconstruct input on its out-
put with minimal information loss, therefore it is considered as self-supervised
model. Simplest architecture consists of encoder that is suppose to encode in-
put into latent code and decoder that tries to replicate input from the latent
code [41]. Diagram of an autoencoder can be see in fig. ??.

This type of autoencoder is usually used for dimensionality reduction and
unlike Principal Component Analysis (PCA) that can extract only linear fea-
tures of a data, autoencoder can learn non-linear features but only if latent
code is at least second hidden layer. However, if autoencoder consist only of
input, hidden and output layer (commonly referred as shallow autoencoder)

Figure 1.11: Autoencoder consists of Encoder and Decoder. Encoder maps
input data X to a latent space. Decoder then tries to reconstruct X with
minimal reconstruction loss.

14

1.8. Autoencoder

then latent code can only describe basic representation as it is case with PCA.
It was described by Marvin Minsky and Seymour Papert in their publication
„Perceptrons: An Introduction to Computational Geometry“ [5] and experi-
mentaly observed in work about sound reconstruction using autoencoders [42]

By introducing bottleneck autoencoder tries to code input into latent code
features that are most important for reconstruction. Without bottleneck au-
toencoder would not be encouraged to do so as it would only copy input to
output.

Latent space (space of all possible latent codes) of this simple autoencoder
architecture is not continuous because nothing encourages it to do so which
makes it difficult to explore. For example triangle inequality does not have
to hold and therefore makes most of the clustering technique unusable. If we
wanted to generate new datapoints by randomly initializing latent code and
decode it with autoencoders decoder, we might get noise instead of realis-
tic looking datapoint eg. Image that correspond to a used dataset for train-
ing, therefore various autoencoder architectures were proposed like Variational
Autoencoders, Adversiarlly Constrained Autoencoder Interpolation etc. that
address this issue [43, 44, 45].

1.8.1 Variational Autoencoder

Variational autoencder (VAE) is type of autoencoder that uses regularization
to enforce desired properties of latent space mainly to generate realistic looking
data by reconstructing certain latent code. Unlike autoencoder that maps
input to single point in latent space Variational Autoencoder encodes it as
normal distribution using mean and variance [45, 46] see fig. 1.12.

Unlike autoencoder that is deterministic for given input x. VAE is not
deterministic for given input x. It is because output of VAE is reconstructed
from latent code that is chosen randomly based on mean and variance. To be
able to use backpropagation through sampled vector, this vector is calculated
using parameterization trick z = µ(z) + ϵ ∗

√
σ(z) where ϵ is random number

from standard normal distribution [45].

Figure 1.12: Latent variable Z is sampled from mean σ and variance µ. De-
coder then tries to reconstruct it with minimal loss and Kullback-Leibler di-
vergence enforces structure in latent space.

15

1. Deep Learning

Loss of VAE is calculated as sum of reconstruction loss and discrete Kullback-
Liebler divergence of latent code z and standard normal distribution [45].

Reconstruction loss pushes points z away from each other because closer
they are bigger the probability of different inputs x to be reconstructed as same
output which will give higher reconstruction loss. Kullback-Liebler divergence
tries latent code defined by µ and σ to be as similar to standard normal
distribution as possible which will try to push points towards center 0.

Thanks to the properties of its latent space Variational Autoencoder can
be used for clustering [46].

1.8.2 Adversarially Constrained Autoencoder Interpolation
Adversarially Constrained Autoencoder Interpolation (ACAI) is method that
improves latent space interpolation properties by using regularization proce-
dure. It is based on idea that interpolation of two datapoints should appear
realistic therefore it incorporates critic that guesses interpolation coefficient α
which should always be 0 for realistically looking data [43, 44].

ACAI consists of encoder decoder and critic. During training encoder pro-
duces two latent codes z1 and z2 of two different inputs x. These codes are
then interpolated and reconstructed by decoder. Critic then guesses interpo-
lation based on reconstructed x [43]. Whole procedure is described in diagram
1.13

Loss of the critic is described as

Ld = ||dw(x̂α) − α||2 + ||dw(γx + (1 − γ)gϕ(fθ(x))||2 (1.14)

where dw denotes critic with parameters w, x̂α is reconstruction of interpo-
lated latent codes α ∈ [0; 0.5] is interpolation coefficient, γ is hyperparametr

Figure 1.13: ACAI: Two latent codes produced by same encoder are interpo-
lated together. Decoder tries to reconstruct realistically looking output of the
interpolation. Critic acts as discriminator that tries to predict interoplation
coefficient α

16

1.9. Obstacles and Advantages in Sound Classification in Comparison to
Image Recognition

for network stabilization, gϕ referes to decoder with parameters ϕ, fθ is en-
coder with parameters θ and x is uninterpolated input [43].

First term of the loss is just an error of critics guess. Second term serves
as a “clue” when should the critic start to take interpolations reconstructed
by the autoencoder “seriously”. It is a way to train the critic to recognize in-
terpolations when the reconstruction of decoders are not good. It interpolates
reconstructions with real datapoints by hyperparameter γ. This term is just
to stabilize the model during training. Choice of hyperparameter γ does not
have any effect on reconstruction quality of interpolated codes [43].

Architecture of the Critic is similar to encoders architecture and α is com-
puted as mean of the output of last layer [43].

Loss of autoencoder is describes as

Lf,g = ||x − gϕ(fθ(x))||2 + λ||dw(x̂α)||2 (1.15)

as proposed in [43].
First term is just reconstruction loss. Second term is regularization term

that forces autoencoder to output reconstructed data to appear realistic.
Higher the output of a critic higher is the loss of the autoencoder [43].

Unlike VAE that directly optimizes latent space using Kullback-Lieber di-
vergence, ACAI optimizes latent space to interpolate using adversary, namely
critic, indirectly [43].

Thanks to its properties, Latent space of an autoencoder that uses ACAI
method can be used for clustering despite that it was intended as an generative
model as is shown in [44].

1.9 Obstacles and Advantages in Sound
Classification in Comparison to Image
Recognition

Since many techniques of deep learning used for sound classification comes
from image classification these two domains will be compared.

In contrast to image recognition main obstacle in sound classification is
overlapping of sounds that corresponds to different sources in frequency do-
main and amplitudes of same frequencies in certain time.

If classification is based on raw unprocessed signals then we deal with
superposition of signals (signals with different sources are stacked on each
other). If however, we project sound into frequency domain then overlapping
of amplitudes applies only when sounds of different sources share common
frequencies.

But still, main obstacle is to recognize which frequencies correspond to
which sound source in given time frame. Therefore segmentation of the spec-

17

1. Deep Learning

trogram has to be done in order to distinguish frequencies corresponding to
different sources.

Due to hierarchical or semantic nature of symbolic representation of certain
domains [44], like speech, bird songs or genre of music, sound classification can
become a difficult task. Because in order to recognize spoken words, species
of a bird or the music genre we start to deal with long sequences of a time
series.

This does not necessarily have to apply to instrument classification. Iden-
tifying sounds does not have to depend on bigger structure when it comes
to classifying non-semantic data like instruments. We should be able, based
on few milliseconds time frame, to classify what instrument is present in the
sound, thanks to instruments timbre. However higher frequencies decay faster
then lower frequencies in atmosphere and in materials that instruments are
made of, so timbre changes over time [47].

Sound has generally lower dimensionality then images, even that human
ear can hear about 20000 different frequencies. ImageNet dataset [48] has
size of 482 × 418 pixels in average. However dimensionality greatly depends
on type of data that classification uses since sound signals can have different
sampling rates and different pre-processings like mel-spectrogram can have
different dimensionality based on their parameters. For example 4 seconds
long sound signal sampled by 44.1kHz will have 176400 samples.

Observation of sound is much more difficult then observation of single
images which makes evaluation of certain aspect difficult. For example if we
have generative model that tries to generate sound it is much easier to just
look at image it produced then to listen to sound. It takes more time and it
is difficult to compare then to other generated sounds. However that might
be said for all time series data.

18

Chapter 2
Audio Pre-processing

2.1 Discrete Fourier Transform
Discrete Fourier Transform (DFT) commonly referred as Fast Fourier Trans-
form (FFT) (thanks to widespread usage of fast algorithms that has compu-
tational complexity O(n ∗ log(n)) instead of O(n2)) is transformation from
time series to frequency domain. It is common technique to get frequency
components that are present in a signal [49].

In context of audio signal pre-processing it can be described as

f̂k =
N−1∑
n=0

xne−i2πn ksr
N (2.1)

Where f̂k is k-th fourier coefficient, N is length of examined signal, xn

is n-th amplitude value n ∈ {0..N − 1} and sr is sampling frequency of the
audio signal. Fourier coefficients f̂k are then complex numbers corresponding
to center frequency f = ksr

N in Hz for k ∈ {0..⌊N
2 ⌋ + 1}. Absolute value of the

complex number gives magnitude of that frequency and its angle gives phase
shift of the frequency. The magnitude is usually used as an input feature for
machine learning.

It is worth to note that range of frequencies that can be obtained is bound
from 0 to sr

2 due to Nyquist Criterion. So for k > ⌊N
2 ⌋+1 corresponding center

frequency f of k-th Fourier coefficient can be calculated as f = N − ksr
N .

2.2 Short-time Fourier transform
Short-time Fourier transform (STFT) or (STFFT) is a popular technique used
to pre-process audio signal. STFT transforms from Amplitude domain to
frequency domain like DFT. But unlike DFT it is using floating windows that
each performs DFT. Because DFT on whole signal would not describe local
occurrences and changes of frequency in time [49].

19

2. Audio Pre-processing

Spectrogram is visual representation of frequencies in the time and is usu-
ally produced by STFT. Deep learning models from image classification can
be used for audio thanks to its image-like representation.

2.3 Mel-spectrogram
Mel-spectrogram, maps frequencies produced by STFT to Mel-scale using Mel-
filter banks, which is scale that tries to mimic human perception of pitch
intervals [50].

It describes that difference in lower frequencies is more distinguishable
than difference in higher frequencies. It is worth to note that it is based on
empirical evidences and the interval perception might be subjective but it
give us estimate on how to linearize frequencies based on human perception.
This property of Mel-spectrogram makes it suitable pre-processing tool for
Convolutional Neural Networks since they require features to have same size
anywhere in the input data [51]. CNNs can be tolerant to changes in location
and rotations [52].

Transformation from linear frequency scale to Mel-scale can be described
as

Mel(f) = 1125 ln(1 + f

700
)

Mel-spectrogram is obtained by mapping spectrogram produced by STFT
onto Mel-scale, using triangular overlapping windows also called Mel-filter
banks.

2.4 Decibel Scale
Because ear does perceive intensity of sound logarithmically. Magnitudes of
frequencies of spectrograms are transferred to decibel scale. Lower frequencies

Figure 2.1: Triangular Mel-filter banks spaced according to Mel-scale. Only
10 bins are displayed for illustrative purposes.

20

2.5. Mel-frequency Cepstral Coefficients

are less louder then higher frequencies with same amplitude due to difference
of their intensities.

2.5 Mel-frequency Cepstral Coefficients
Mel-frequency cepstrum coefficients (MFCC) takes the discrete cosine trans-
form of individual frequencies in time of previously mentioned Mel-spectrogram
in decibel scale.

Purpose of MFCC is to represent power spectrum in short time frame
which is crucial for certain sound events, like speech.

Discrete cosine transformation compresses the Mel-spectrogram which re-
sults in lower dimensionality of input data.

2.6 Constant-Q transform
Musical instruments that produce tones with low degree of inharmonicity, eg.
flute, which means that frequency of overtones are exact multiple of funda-
mental frequency. Frequencies present in music are strictly given by musical
scale. Therefore overtones of such instruments will be present at frequencies
that are multiple of this scale [53, 54, 55].

Constant-Q transform sets Fourier transform basis to match these frequen-
cies. Constant-Q transform is a method to transform signal from time domain
to frequency domain as does discrete Fourier transform but instead of setting
centre frequencies linearly, like it was the case of discrete fourier transform,
constant-Q transform selects them logarithmically according to musical scale
[53, 54, 55].

Center frequencies can be calculated as

fµ = fmin2
µ
b (2.2)

where fmin is chosen as the first center frequency, b defines the number
of bins per octave interval, and µ represents the number of semitone intervals
beyond fmin [53, 54, 55].

2.7 Other Preprocessing Techniques
Gammatone filter banks

Gamma tone filter is like Mel-filter an approximation of human perception
but unlike Mel-filters it is based on model of human auditory system [56].

Learned Filter Banks

In contrast to mel-filter banks it is possible to learn filter banks within a neural
network as was shown in [57].

21

2. Audio Pre-processing

2.8 No Pre-processing of Audio Signal
It is possible to train deep learning models on raw audio signal. If model is
trained on pre-processed audio signal with e.g. Mel-spectrogram model learns
only the features presented in Mel-spectrogram that should not be issue in
classification. However if the model is suppose to generate sound then it will
learn pre-processed representation. In case of autoencoders it will learn to
reconstruct the Mel-spectrogram. But sound by pre-processing information is
lost in the process which reduces quality of reconstructed audio signal.

Models like WaveNet uses 1D dilated convolution layers which are convo-
lutional layers with sparser kernels (kernels with blank spaces) but with larger
receptive fields [58].

There are also classification models that uses raw audio signal. They
usually utilize 1D convolution layers [59, 60].

2.9 Data Augmentation
Data augmentation is process to apply slight alterations to the data in dataset
to increase its size and variation. It can be applied to datasets where is only
limited amount of datapoints for particular class which is usually case in sound
classification.

Basic types of data augmentation for sound includes pitch shift which
lowers or raises pitch of an audio sample, time stretching which slows or speeds
up audio sample and adding noise to audio samples [61].

22

Chapter 3
Analysis and Design

3.1 Dataset

Main goal of this work is to train model on aggregated data from YouTube
based on search results of specific query. Model is supposed to train to classify
musical instruments. This type of data is easily obtained but there might
be problems due to copyright-protected material that videos include. Since
content of the videos is not going to be reused but used solely for training it
should not be an issue.

The quality of obtained data is another issue with the dataset. Recordings
are very noisy in most cases so the sound does not contain only desired instru-
ment but other instruments as well. This is not surprising in case of music
where multiple instruments co-occure. Different instruments have different
level of noise surrounding it since some instrument stand out more in records
or they are used as solo instruments more then others.

Also, there is no guarantee that desired instrument is present in the record-
ing or that there are duplicated recordings in the data which makes balancing
the dataset very difficult.

Dataset used for testing should be labelled, should not contain too much
noise and all the labels have to be correct. Two datasets that fulfil this criteria
have been found. Dataset Nsynth containing 305979 of 4 seconds, 16kHz
recordings of musical instruments [62] and IRMAS [63] which contains musical
audio excerpts with annotations of predominant instruments present in the
audio [63].

There are also datasets like OpenMIC-2018 [64] and Audio Set [65]. But
these datasets are annotated YouTube videos which might be in conflict with
obtained videos from search results. And it is also more difficult to obtain
them.

23

3. Analysis and Design

3.2 Pre-processing

It is possible to train deep learning model on an unprocessed audio signal but
it would be more computationally demanding due to higher dimensionality. It
might be more convenient to train the model on carefully selected hand crafted
features like spectrogram produced by STFT, Mel-spectrogram or constant-
Q transform (all of them in decibel scale). These types of pre-processing
techniques has disadvantage in comparison to raw signals. For example, if we
consider generative models that are suppose to reconstruct generated signals
so that they can be observed and examined. Information loss created by them
might harm overall quality of the sound, as shown in the experiments. On the
other hand it should not be an issue for classification but it makes evaluation
of some models like autoencoders more difficult.

Spectrograms produced by different methods like STFT, Mel-filter banks
or constant-Q transform has their own advantages.

Spectrogram produced by STFT has lower information loss then Mel-
spectrogram making reconstruction of the sound back to waveform the easier.
Due to the fact that people perceive pitch distance logarithmically some mod-
els like CNN cannot be used or at least the requirement of CNN that features
have to appear anywhere in the input. The frequency domain features would
have different shape with respect to different frequency if we do not linearize.

Mel-spectrogram linearize the frequency as it is perceived by humans.
Which makes it possible for CNN based models to be used since sounds of
slightly shifted pitch will have similar features. However, if we want to lin-
earize musical features then it might be better to use musical scale instead
which is also logarithmic in frequency but it differs from Mel-scale. Other
issue is that resolution of Mel-spectrogram relies on resolution of short time
Fourier transform. Increasing bin count of Mel-filter banks might not produce
better spectrogram resolution. In addition to the linearization it also reduces
dimensionality based on number of specified bins.

Constant-Q transform addresses this problem that it linearizes frequency
domain during application of Fourier transform. It centres analysed frequen-
cies around frequencies that correspond to musical scale. Problem with using
such scale is that it emphasize on frequencies that are placed on musical
scale and therefore predominates instruments with low inharmonicity. On
the other hand drums like most percussion instruments have very high degree
of inharmonicity. Guitars that usually have low degree inharmonicity have
high degree of inharmonicity when distortion is applied what is common in
rock music genre. Therefore this pre-processing technique might be biased to-
wards instruments with low degree of inharmonicity discriminating those that
have higher degree inharmonicity or instruments that are not properly tuned.
Other issue is that constant-Q transform is more computational demanding
then previously mentioned pre-processing techniques.

24

3.3. Different Classification and Supervision Types

3.3 Different Classification and Supervision Types
3.3.1 Supervised Classification Models
Due to the noise level and imbalance that might occur inside the dataset.
Models which depend on strongly labelled data might be insufficient or would
underperform. Even if their performance would not be as good as they were
trained on strongly labelled data, information about the noise might be lost
and its recognition can be difficult.

3.3.2 Anomaly Detection Models
There are two categories of anomaly detection. Supervised which tries to
classify anomalous data and data that are considered „normal“. This can be
seen as supervised binary classification as discussed in previous paragraph.
The other category can be seen as one class classification also known as un-
supervised anomaly detection. Deep learning models that are used to solve
this problem extract features from data of single class and then try to predict
anomalies based on the extracted features. However they sometimes rely on
the idea that anomalies are rare and their structure is not that complicated,
which does not hold in this case.

3.3.3 Unsupervised Models
Unsupervised models try identify interesting datapoints based solely on un-
derlying structure describing the data. In unsupervised learning, there is no
apparent straightforward cost function that can directly distinguish individual
classes [44]. Deep learning therefore uses cost function that measures recon-
struction or similarity score [66] to extract important features. These features
are then usually clustered or other algorithm is used that decides appropriate
class. One example is SimCLR that uses contrastive learning that relies on
data augmentation [66]. Online Deep Clustering for Unsupervised Represen-
tation Learning proposed by [67] uses pseudo labels produced by K-Means
algorithm. Dynamic Autoencoder (DynAE) uses pseudo labels produced by
K-Means clusters in latent space of ACAI.

Conventional clustering is typically performed on fixed features [67]. Deep
neural networks can help capture hierarchical structure of features [44]. Uti-
lization of latent space in regularized autoencoders, like it was used in DynAE,
can help recognize noise in the data unlike in case of previously mentioned
methods.

3.4 Proposed Methods
Audio signal will be pre-processed using STFT spectrogram or Mel-spectrogram
with amplitude in decibel scale to reduce complexity of the models used to

25

3. Analysis and Design

extract features.
Datapoints will be represented as single sample of spectrogram. Using

multiple samples from a given time frame would increase complexity of a
model and it adds additional feature which is shape of a tone in time. Model
then might give importance to changes of pitch in time rather then timbre of
a tone that should describe an instrument.

Autoencoder was chosen to learn appropriate features from the data. Clas-
sification and recognition of conflicted data (datapoints that does not corre-
spond to its search query) will be performed on their latent space. Therefore
the latent space needs to be regularized to enforce smaller distance between
latent codes of similar datapoints. So ACAI or VAE are good candidates.

After Autoencoder is trained on the data, clustering of latent codes of
every datapoint from dataset will be performed to identify classes based on
its respective query. For example if some cluster has majority of datapoints
found by query piano, then the region of that cluster coresponds to piano.
K-means was chosen as clustering method due to its scaling properties and
known methods to identify number of clusters.

Properties of regularized autoencoder will be compared to same architec-
ture of autoencoder but without regularization.

If latent space will have appropriate properties, vector arithmetic on latent
codes might be performed based on their corresponding clusters to identify
potential conflicts in the data.

26

Chapter 4
Realisation

4.1 Used Technology

Programming Languages

All programs where written using Python programming language and bash.
Jupyter Notebook was used as environment performed tests and training of
deep learning models. Bash was used usually for moving the data, for applying
chains of scripts written in python that pre-processed the data or for applying
programs to change format of the data.

FFmpeg

FFmpeg is the leading multimedia framework, for decoding, encoding, stream-
ing, filtering etc. videos, audio and other multimedia [68]. In this work it was
used for converting downloaded videos to wav format.

Youtube-dl

Youtube-dl is a command-line program to download videos from YouTube.com
[69]. It was used to download youtube videos based on list provided by
Youtube Data API

Used Python Libraries

YouTube Data API

YouTube Data API is API allowing to upload videos, manage playlists and
subscriptions, update channel settings etc. [70]. The API also allows to
search for videos matching specific query which was used in this work to
create dataset of instruments.

27

4. Realisation

Librosa

Librosa is python library for music and audio analysis [71]. All the pre-
processing procedures like obtaining Mel-spectrogram, applying STFT or just
loading the wav files were done by the Librosa.

PyTorch

PyTorch is an open source machine learning framework mainly used for deep
learning [72]. PyTorch allows to define deep learning models and train them
using PyTorch tools. It has automatic differentiation engine that computes
gradients automatically. Optimization algorithm like ADAM. Dataloader that
allow to load data using parallelization.

Deep learning models proposed in this work were all modeled and trained
using pytorch.

Additional Libraries

NumPy was used mainly for storing pre-processed data in memory maps.
Previously mentioned libraries Librosa and PyTorch work with NumPy arrays.
Pandas for keeping track of information about acquired data. Scikit-learn for
the implementation of K-Means.

4.2 Procedure
List of phases of the whole procedure:

1. Obtain video list based on appropriate search query.

2. Download videos based on the list

3. Convert obtained videos to monophonic wav files with sampling rate of
16kHz.

4. Create an file to collect info about audio files.

5. Create memory maps of pre-procesed sounds.

6. Train models on pre-processed sounds.

7. Translate datapoints into latent code.

8. Examine latent space using K-Means clustering.

28

4.2. Procedure

4.2.1 Acquiring the Data
YouTube Data API v3 was used to return list of videos by given search query.

These queries included names of instrument classes present in IRMAS
dataset [63]. Included instrument classes are: cello, clarinet, flute, acoustic
guitar, electric guitar, organ, piano, saxophone, trumpet, violin, and human
singing voice. However in my case electric and acoustic guitar was considered
as one class same as is in NSynth dataset [62]. So search query ’electric guitar’
or ’acoustic guitar’ were not included but instead ’guitar’ was used.

Results of search queries were then observed if they contain relevant data.
In some cases like in query ’organ’ resulted list did not give appropriate search
results but if word ’music’ was added at the end search results become more
relevant. Therefore quality of the data can be enhanced by careful choice of
search query.

Obtained video lists were downloaded with youtube-dl library [69] in m4a
or webm format that was later converted using FFmpeg tools into monophonic
wav audio files sampled by 16kHz.

Csv file was created to describe expected instruments and sizes of corre-
sponding spectrograms.

4.2.2 Data Pre-processing
Every single recording was pre-processed into spectrograms using Short-time
Fourier transform with FFT floating window wide 1024 samples and step size
512 mapped onto decibel scale. Output of short time Fourier transform is
then array l

512 + 1 × 513 where l is number of samples. If the time series has
64000 samples, which is the case for sound excerpts from NSynth dataset, then
resulting array would have size 126 × 513. Every array of an music recording
by instrument was then concatenated into single memory map resulting in 10
memory-mapped files. Sum of all the file sizes were about 300GB.

Every frequency vector produced by STFT was then randomly shuffled into
10 files of same size. Therefore every file contained random selection of vectors
from every instrument. This shuffling process was intended for unsupervised
learning of ACAI model preventing similar vectors to be next to each other
in the file. Reason to have multiple files was simply due to limited amount of
fast storage on the computer where the files were transferred during training.
PyTorch dataloader can randomly selects items from dataset but they were
shuffled to keep distribution same across all files.

During training of ACAI model elements of each vector were scaled to
values between 0 and 1 from scale -80dB to 0dB.

29

4. Realisation

Figure 4.1: Example of training progress using Sigmoid as activation function
in hidden layers. Standard deviation of predicted α is low indicating low
stability of model.

4.2.3 Training on Data Aggregated From YouTube
First architecture of ACAI was trained on the pre-processed sound. Encoder
E(·) comprised FC(Input, 256, ReLU), FC(256, 128, ReLU), FC(128, 64,
ReLU), FC(64, 32, ReLU) and FC(32, 16, Sigmoid). The decoder network
D(·) incorporated FC(16, 32, ReLU), FC(32, 64, ReLU), FC(64, 128, ReLU),
FC(128, 256, ReLU) and FC(256, Output, Sigmoid) where FC(a, b, f) rep-
resents a fully-connected layer with input neurons a, an output layer b, and
activation function f . Critics architecture was same as of encoder E(·) and α
was calculated as mean of its output.

4.2.4 Effects of Different Activation Functions on Stability
Sigmoid Function

If Sigmoid function is used instead of ReLU for hidden layers activation func-
tion. Autoencoder and Critic always converge. In some cases critic is not able
to produce different guesses of α. Its standard deviation per mini-batch can
be seen in fig. 4.1.

Hyperbolic Tangent

Experiments and results using hyperbolic tangents were similar to the results
when using Sigmoid function critic has fallen to local minimum and was not
predicting variety of αs.

ReLU and LeakyReLU

Stability of the model improved by using ReLU or LeakyReLU which both
has shown similar results see fig 4.2.

Because Sigmoid and Hyperbolic tangent did not show promising results
during training LeakyReLU was used in further experiments with except to
latent space and output of autoencoder.

30

4.2. Procedure

Figure 4.2: Example of training progress using ReLU as activation function
in hidden layers.

Figure 4.3: Latent space of first proposed model visualised in PCA, TSNE
and UMAP. Individual frequency vectors are mapped into latent space and
displayed in 2D. Instrument classes are distinguished by different color.

4.2.5 Testing the Model
In the end dataset IRMAS was not used, due to weakly labeled properties of
IRMAS [63]. Labels correspond to predominant instruments in entire audio
excerpt which contains recordings of multiple tones of instrument and in most
cases multiple instruments are present. Therefore it is not known which time
frames correspond to which instrument. Subset of dataset NSynth whose
datapoints contain only single tone of single instrument, was used instead to
visualise and test latent space with corresponding labels. The Subset included
classes of instruments from guitar, human singing voice referred to as ’vocal’,
organ and flute.

Despite good reconstruction and prediction losses, latent space of this ar-
chitecture behaved unexpectedly as is shown in its visualisations 4.3.

31

4. Realisation

Figure 4.4: Training progress example of architecture used in [44]. Standard
deviation of predicted α around 0.10 which indicates variety of guesses.

4.3 Second test

Architecture from [44] was used instead of previously proposed architecture.
Encoder E(·) comprised FC(Input, 500, ReLU), FC(500, 500, ReLU), FC(500,
2000, ReLU), FC(2000, 10, none). The decoder network D(·) incorporated
FC(10, 2000, ReLU), FC(2000, 500, ReLU), FC(500, 500, ReLU) and FC(500,
Output, none) where FC(a, b, f) represents a fully-connected layer with input
neurons a, an output layer b, and activation function f . Critics architecture
was same as of encoder E(·) and α was calculated as mean of its output.

To test whether usage of Mel-spectrogram have any impact on the prop-
erties of latent space, additional memory-mapped training file was created.

Similarly to previous method of creating memory-mapped Mel-spectrogram
of every sound recording was created. However this time including only guitar,
vocal, flute and organ instruments. Size of FFT floating window was set to
2048 with step size of 512 which resulted in same length of spectrogram as with
STFT method. Number of Mel-filter bank bins was set to 512. Dimensions of
the Mel-spectrogram were then l

512 + 1 × 512 where l is number of samples.
Resulted Mel-spectrogram was then scaled to decibel scale. Mel-spectrograms
were then concatenated and shuffled to single file.

4.3.1 Training

Second architecture was trained on spectrogram and Mel-spectrogram data.
All model converged and critics guesses had around 0.10 standard deviation
per mini-bath see fig. 4.4.

After model was trained on the YouTube data. Nsynth datapoints were
then mapped into latent space. Every single NSynth recording was transferred
into spectrogram or Mel-spectrogram scaled in decibels, accordingly to the
models pre-processing and from these spectrograms vector with the highest
energy was selected to be projected into latent space.

32

4.3. Second test

Figure 4.5: Visualisation of elbow method, red circle indicates selected k which
is furthest point from imaginary line connecting first and last k.

4.3.2 K-Means

Projected vectors were then clustered using k-means to see the properties of
models.

Number of Centroids Estimation

Reason that number of centroids can not be set to be equal number of instru-
ments is because it is assumed that there is going to be more clusters for each
instrument in latent space.

Elbow method of squared distances to their respective centroids (in Scikit-
learn referred as inertia) was selected to estimate number of centroids for k-
means. Reason being is that all other methods like silhouette method did not
scale well. Despite that it was not feasible to compute all k up to number
of datapoints. Maximal k of 500 and 100 was selected. To test whether
elbow method gives good estimate of optimal k, Rand Index RI, Normalized
Mutual Information NMI and Purity was calculated along for every k based
on instrument labels. Computational time of maximal k 500 was 8 hours.

Elbow Method Implementation

Implementation of elbow method consisted of drawing imaginary line between
first point and last point of plotted inertia values. Scores of every k was
calculated as distance to the imaginary line and selected k. k with maximal
score was then selected as optimal number of centroids see fig 4.5.

However as was observed, selected k by elbow method depends on maximal
k. Larger maximal k prolongs the imaginary line, changes its angle and hence

33

4. Realisation

Figure 4.6: Effect of maximal k on selection of optimal centroids. When
maximal k was selected as 100, 7 centroids was chosen as optimal and for
maximal k = 500, 25 was selected instead.

changes the scores of ks. Larger is the maximal k then Elbow Method selects
larger number of centroids as optimal. Whole situation is pictured in fig 4.6

Elbow method presented here did not give good estimate of optimal num-
ber of centroids. Therefore to test the properties of latent space for every k
was observed and Rand Index (RI), Normalized Mutual Information (NMI)
and Purity was considered as evaluation. These metrics were then observed
in contrast to selected k by Elbow method based on maximal k to evaluate its
predictions. See figs. 4.7, 4.8 and 4.9 that consider k predictions in ACAIs,
Autoencoders and Randomly Initialized autoencoders latent spaces.

Figure 4.7: Elbow method predictions on ACAIs latent space. For maximal
k > 400 Elbow methods gives good predictions about number of centroids in
all metrics.

34

4.3. Second test

Figure 4.8: Elbow method predictions on Autoencoders latent space. Elbow
methods gives good predictions almost immediately for RI and NMI. Purity
grows with higher maximal k.

Figure 4.9: Elbow method predictions for Autoencoders latent space. Purity
and RI grows rapidly as maximal k rises. NMI on the other hand rapidly falls
as maximal k rises.

4.3.3 Test Results
ACAI and autoencoder with similar architectur but without regularization
was trained on the spectrogram and the Mel-spectrogram both in decibel
scale. Nsynth data were projected on their latent spaces and clustered using
K-Means afterwards. Rand Index, Normalized Mutual Information and Purity
of clusters were measured for every k up to maximal k. Selected visualisations
of latent spaces can be seen in Appendix A. All measured results are summa-
rized in fig 4.10. All the autoencoders showed similar results suggesting that
regularization in ACAI did not have effect on clustering performance of latent
space. Autoencoder and randomly initialized autoncoder even outperformed
ACAI in NMI. However, additional tests have to be performed to assess con-
sistency of the results which is difficult due to computational demand of whole
procedure.

35

4. Realisation

Figure 4.10: Comparison of ACAI, Autoencoder and Randomly Initialized
Autoencoder. All Autoencoders have similar results, which indicates no im-
provment of regularization present in ACAI. There does not seem to be an
improvement in using Mel-spectrogram over spectrogram in our case. Top
row is depicting scores for spectrogram and bottom for Mel-spectrogram. Left
column depicts Purity scores, middle column Rand Index and right column
Normalized Mutual Information.

4.3.4 Evaluation of Results

As can be seen in the the figure 4.10 ACAI did not performed better then
autoencoder which was as good as randomly initialized autoencoder. It is
needed to make additional tests to assess what is the underlying reason. Vi-
sualisations can not be taken as an evaluation of ACAIs performance. And
metrics of K-Means clusters does not give us much idea of the properties of
its latent space.

There might be reasons why ACAI did not performed better then simple
autoencoder.

The way datapoints are mixed in the ACAI is natural to sound. Multiple
instruments are overlapped in a single time frame and the datapoints have
different amount of volume which is not the case for images. Only case it
might happen in images is when the objects would have different amount
of transparency which happens rarely. This property of sound can result in
multiple correct α and therefore can have negative effects on regularization of
latent space. For example let us consider two single tones of instruments bass
and guitar mixed together with α = 0.5 then critic can correctly guess α = 0
realistic (these instruments usually play together) or α = 0.5 those tones are
mixed. This might be partially solved by considering only time frames with
highest volume using strongly labeled data. Different sound intensities might
be an issue for prediction of α. But additional research in this regard has to

36

4.4. Additional Experiments - Effects of Pre-processing on Reconstructed
Sound

be made.
However, clusters that emerged from this randomly initialized autoencoder

achieved good scores in reaching 65% Rand Index and Purity. This suggests
that frequency vectors produced by STFT or Mel-spectrogram showed that
similar frequency vectors grouped into clusters. This might indicate that there
are strong regularities among them. That might be used as a stepping stone
for further development.

4.4 Additional Experiments - Effects of
Pre-processing on Reconstructed Sound

In order to observe information loss of spectrogram produced by STFT and
Mel-spectrogram. They were applied to single sound recording of an piano
composition and then reconstructed back to sound signal with inverse proce-
dures.

Audio pre-processed with STFT sounded like the original audio with added
noise. But piano present in the audio was recognizable. Mel-spectrogram on
the other hand has clearly changed pianos timbre. It sounded more like an bells
rather than piano and the whole composition resembled background music of
an carol.

However perception of reconstructed sound is subjective so it can not be
used as measurement. Its purpose is just to point out that using pre-processing
might not be well suited for generation of new sounds.

37

Conclusion and Outlook

The review section of the presented thesis summarized the state-of-the-art ap-
proaches to deep learning. Emphasis was put on self-supervised autoencoders
and their application in image and sound processing. Audio recognition tech-
niques were compared to image classification. Commonly used pre-processing
approaches were also discussed.

The practical part of the thesis concerned audio classification of a weakly-
labeled sound excerpts. YouTube platform was used as a suitable source
of such data. Self-supervised autoencoder with regularized latent space was
chosen as an appropriate model. Adversarially Constrained Autoencoder In-
terpolation seemed to be a good implementation of such model. Multiple
architectures were tested within this method. Initial architectures that uti-
lized Sigmoid function in encoders latent layer did not have good latent space
properties as evident from their visualizations. Therefore, architecture with
linear embedding in latent layer was tested.

K-means clustering was performed to assess final performance of this model.
This model did not show promising results in comparison to randomly ini-
tialized autoencoder. However, clusters that emerged from this randomly
initialized autoencoder achieved good scores. This suggests that frequency
vectors produced by pre-processing techniques presented in this work showed
that similar sounds obviously grouped into clusters. This might indicate that
other methods than those based on neural networks can be suitable for sound
classification.

To train self-supervised model on this type of data different objective func-
tions probably have to be applied. Rather than trying to mix two latent
codes as implemented in Adversarially constrained autoencoder interpolation,
it might be more suitable to find objective function that could evaluate quality
of sound decomposition. Sound excerpt would be decomposed into multiple
audio components which should appear realistic. Unrealistic sounds could be
penalized by adversary. Another possibility would be to use distributional

39

Conclusion and Outlook

similarity based representations as a measure of similarity between individ-
ual vectors produced by pre-processing. This idea is widely used in natural
language processing.

40

Bibliography

1. ROSENBLATT, Frank. The perceptron: A probabilistic model for in-
formation storage and organization in the brain. Psychological Review.
1958, vol. 65, no. 6, pp. 386–408.

2. SAEED, Khalid; HOMENDA, Wladyslaw (eds.). CISIM. Vol. 9842, Com-
puter Information Systems and Industrial Management - 15th IFIP TC8
International Conference, CISIM 2016, Vilnius, Lithuania, September 14-
16, 2016, Proceedings. Springer, 2016. Lecture Notes in Computer Sci-
ence. isbn 978-3-319-45377-4. Available also from: http://dblp.uni-
trier.de/db/conf/cisim/cisim2016.html.

3. NEHA YADAV Anupam Yadav, Manoj Kumar (auth.) An Introduc-
tion to Neural Network Methods for Differential Equations. In: 1st ed.
Springer Netherlands, 2015, pp. 13–15. SpringerBriefs in Applied Sci-
ences and Technology / SpringerBriefs in Computational Intelligence.
isbn 940179815X, isbn 9789401798150.

4. WIDROW, Bernard; HOFF, Marcian E. Adaptive Switching Circuits.
In: IRE, 1960, pp. 96–104.

5. MINSKY, M.; PAPERT, S. Perceptrons. Cambridge, MA: MIT Press,
1969.

6. JORDAN, Michael I. Attractor Dynamics and Parallelism in a Connec-
tionist Sequential Machine. In: Proceedings of the Eighth Annual Con-
ference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum, 1986,
pp. 531–546.

7. PEARLMUTTER, Barak A. Learning State Space Trajectories in Re-
current Neural Networks. In: Proceedings of the International Joint Con-
ference on Neural Networks (Washington, DC). Piscataway, NJ: IEEE,
1989.

41

http://dblp.uni-trier.de/db/conf/cisim/cisim2016.html
http://dblp.uni-trier.de/db/conf/cisim/cisim2016.html

Bibliography

8. HOCHREITER, S. Untersuchungen zu dynamischen neuronalen Netzen.
Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technis-
che Universität München. 1991.

9. BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term depen-
dencies with gradient descent is difficult. IEEE Transactions on Neural
Networks. 1994, vol. 5, no. 2, pp. 157–166.

10. LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based
learning applied to document recognition. Proceedings of the IEEE. 1998,
vol. 86, no. 11, pp. 2278–2324. issn 0018-9219. Available from doi: 10.
1109/5.726791.

11. FUKUSHIMA, Kunihiko. Neocognitron: A Self-Organizing Neural Net-
work Model for a Mechanism of Pattern Recognition Unaffected by Shift
in Position. Biological Cybernetics. 1980, vol. 36, pp. 193–202.

12. HODGKIN, A. L.; HUXLEY, A. F. A quantitative description of mem-
brane current and its application to conduction and excitation in nerve.
Journal Physiology. 1952, vol. 117, pp. 500–544.

13. VANDERAH, Todd W. Nolte’s The human brain : an introduction to
its functional anatomy. In: 7th edition / Todd W. Vanderah, Douglas J.
Gould.. 2015, p. 20. isbn 9781455728596.

14. KOUKOLÍK, František. Lidský mozek. In: Na Bělidle 34, 150 00 Praha
5: Galén, 2012, pp. 32–39. isbn 978-80-7262-861-2.

15. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, p. 168. isbn 9780262035613 0262035618. Available
also from: https://www.worldcat.org/title/deep-learning/oclc/
985397543.

16. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017. isbn 9780262035613 0262035618. Available also from:
https://www.worldcat.org/title/deep-learning/oclc/985397543.

17. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, pp. 67–68. isbn 9780262035613 0262035618. Available
also from: https://www.worldcat.org/title/deep-learning/oclc/
985397543.

18. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, p. 195. isbn 9780262035613 0262035618. Available
also from: https://www.worldcat.org/title/deep-learning/oclc/
985397543.

19. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, pp. 193–194. isbn 9780262035613 0262035618. Avail-
able also from: https://www.worldcat.org/title/deep-learning/
oclc/985397543.

42

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543

Bibliography

20. MAAS, Andrew L.; HANNUN, Awni Y.; NG, Andrew Y. Rectifier nonlin-
earities improve neural network acoustic models. In: in ICML Workshop
on Deep Learning for Audio, Speech and Language Processing. 2013.

21. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, pp. 81, 184–187. isbn 9780262035613 0262035618.
Available also from: https://www.worldcat.org/title/deep-learning/
oclc/985397543.

22. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, p. 204. isbn 9780262035613 0262035618. Available
also from: https://www.worldcat.org/title/deep-learning/oclc/
985397543.

23. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, p. 326. isbn 9780262035613 0262035618. Available
also from: https://www.worldcat.org/title/deep-learning/oclc/
985397543.

24. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, pp. 205–207. isbn 9780262035613 0262035618. Avail-
able also from: https://www.worldcat.org/title/deep-learning/
oclc/985397543.

25. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, p. 152. isbn 9780262035613 0262035618. Available
also from: https://www.worldcat.org/title/deep-learning/oclc/
985397543.

26. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, p. 85. isbn 9780262035613 0262035618. Available also
from: https://www.worldcat.org/title/deep- learning/oclc/
985397543.

27. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, pp. 151–153. isbn 9780262035613 0262035618. Avail-
able also from: https://www.worldcat.org/title/deep-learning/
oclc/985397543.

28. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, p. 308. isbn 9780262035613 0262035618. Available
also from: https://www.worldcat.org/title/deep-learning/oclc/
985397543.

29. ALBAWI, S.; MOHAMMED, T. A.; AL-ZAWI, S. Understanding of a
convolutional neural network. In: 2017 International Conference on En-
gineering and Technology (ICET). 2017, pp. 1–6. Available from doi:
10.1109/ICEngTechnol.2017.8308186.

43

https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://doi.org/10.1109/ICEngTechnol.2017.8308186

Bibliography

30. LECUN, Yann; BENGIO, Yoshua. Convolutional Networks for Images,
Speech and Time Series. In: The Handbook of Brain Theory and Neural
Networks. Ed. by ARBIB, Michael A. The MIT Press, 1995, pp. 255–258.

31. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, p. 203. isbn 9780262035613 0262035618. Available
also from: https://www.worldcat.org/title/deep-learning/oclc/
985397543.

32. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, p. 332. isbn 9780262035613 0262035618. Available
also from: https://www.worldcat.org/title/deep-learning/oclc/
985397543.

33. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, p. 342. isbn 9780262035613 0262035618. Available
also from: https://www.worldcat.org/title/deep-learning/oclc/
985397543.

34. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, p. 302. isbn 9780262035613 0262035618. Available
also from: https://www.worldcat.org/title/deep-learning/oclc/
985397543.

35. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, pp. 410–411. isbn 9780262035613 0262035618. Avail-
able also from: https://www.worldcat.org/title/deep-learning/
oclc/985397543.

36. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, pp. 411–412. isbn 9780262035613 0262035618. Avail-
able also from: https://www.worldcat.org/title/deep-learning/
oclc/985397543.

37. SHI, Baoguang; BAI, Xiang; YAO, Cong. An End-to-End Trainable Neu-
ral Network for Image-based Sequence Recognition and Its Application
to Scene Text Recognition. CoRR. 2015, vol. abs/1507.05717. Available
also from: http://dblp.uni-trier.de/db/journals/corr/corr1507.
html#ShiBY15.

38. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep Resid-
ual Learning for Image Recognition. 2015. Available also from: http:
//arxiv.org/abs/1512.03385. cite arxiv:1512.03385Comment: Tech
report.

39. BAHDANAU, Dzmitry; CHO, Kyunghyun; BENGIO, Yoshua. Neural
Machine Translation by Jointly Learning to Align and Translate. 2014.
Available also from: http://arxiv.org/abs/1409.0473.

44

https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
http://dblp.uni-trier.de/db/journals/corr/corr1507.html#ShiBY15
http://dblp.uni-trier.de/db/journals/corr/corr1507.html#ShiBY15
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1409.0473

Bibliography

40. VASWANI, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT,
Jakob; JONES, Llion; GOMEZ, Aidan N.; KAISER, Łukasz; POLO-
SUKHIN, Illia. Attention is All you Need. In: GUYON, I.; LUXBURG,
U. V.; BENGIO, S.; WALLACH, H.; FERGUS, R.; VISHWANATHAN,
S.; GARNETT, R. (eds.). Advances in Neural Information Processing
Systems 30. Curran Associates, Inc., 2017, pp. 5998–6008. Available also
from: https://papers.nips.cc/paper/7181-attention-is-all-
you-need.

41. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. In: 2017, pp. 357, 502–503. isbn 9780262035613 0262035618.
Available also from: https://www.worldcat.org/title/deep-learning/
oclc/985397543.

42. ROCHE, Fanny; HUEBER, Thomas; LIMIER, Samuel; GIRIN, Laurent.
Autoencoders for music sound modeling: a comparison of linear, shallow,
deep, recurrent and variational models. 2019. Available from arXiv: 1806.
04096 [eess.AS].

43. BERTHELOT, David; RAFFEL, Colin; ROY, Aurko; GOODFELLOW,
Ian. Understanding and Improving Interpolation in Autoencoders via an
Adversarial Regularizer. 2018. Available from eprint: arXiv:1807.07543.

44. MRABAH, Nairouz; KHAN, Naimul Mefraz; KSANTINI, Riadh; LACHIRI,
Zied. Deep Clustering with a Dynamic Autoencoder: From Reconstruc-
tion towards Centroids Construction. 2019. Available from eprint: arXiv:
1901.07752.

45. KINGMA, Diederik P; WELLING, Max. Auto-Encoding Variational Bayes.
2013. Available also from: http://arxiv.org/abs/1312.6114. cite
arxiv:1312.6114.

46. PRASAD, Vignesh; DAS, Dipanjan; BHOWMICK, Brojeshwar. Varia-
tional Clustering: Leveraging Variational Autoencoders for Image Clus-
tering. In: 2020 International Joint Conference on Neural Networks,
IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020. IEEE, 2020,
pp. 1–10. Available from doi: 10.1109/IJCNN48605.2020.9207523.

47. BASS, H.E.; SUTHERLAND, L.C.; ZUCKERWAR, A.J.; BLACKSTOCK,
D.T.; HESTER, D.M. Atmospheric absorption of sound: Further devel-
opments. Calhoun, 1995. Available also from: https://calhoun.nps.
edu/handle/10945/62134.

48. DENG, J.; DONG, W.; SOCHER, R.; LI, L.-J.; LI, K.; FEI-FEI, L. Im-
ageNet: A Large-Scale Hierarchical Image Database. In: CVPR09. 2009.

49. C. WEIHS D. Jannach, I. Vatolkin; RUDOLPH, G. Music Data Analysis:
Foundations and Applications. Chapman Hall/CRC, 2016. isbn 978-1-
4987-1956-8.

45

https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://www.worldcat.org/title/deep-learning/oclc/985397543
https://arxiv.org/abs/1806.04096
https://arxiv.org/abs/1806.04096
arXiv:1807.07543
arXiv:1901.07752
arXiv:1901.07752
http://arxiv.org/abs/1312.6114
https://doi.org/10.1109/IJCNN48605.2020.9207523
https://calhoun.nps.edu/handle/10945/62134
https://calhoun.nps.edu/handle/10945/62134

Bibliography

50. STEVENS, Stanley S.; VOLKMANN, John; NEWMAN, Edwin B. A
Scale for the Measurement of the Psychological Magnitude Pitch. The
Journal of the Acoustical Society of America. 1937, vol. 8, pp. 185–190.
Available from doi: 10.1121/1.1915893.

51. XU, Yichong; XIAO, Tianjun; ZHANG, Jiaxing; YANG, Kuiyuan; ZHANG,
Zheng. Scale-Invariant Convolutional Neural Networks. CoRR. 2014, vol. abs/1411.6369.
Available also from: http://dblp.uni-trier.de/db/journals/corr/
corr1411.html.

52. KAYHAN, Osman Semih; GEMERT, Jan C. van. On Translation In-
variance in CNNs: Convolutional Layers can Exploit Absolute Spatial
Location. 2020. Available from arXiv: 2003.07064 [cs.CV].

53. SCHÖRKHUBER, Christian; KLAPURI, Anssi. Constant-Q transform
toolbox for music processing. Proc. 7th Sound and Music Computing
Conf. 2010.

54. CWITKOWITZ, Frank C. Jr. End-to-End Music Transcription Using
Fine-Tuned Variable-Q Filterbanks. 2019. Available also from: https:
//scholarworks.rit.edu/theses/10143.

55. BROWN, Judith C. Calculation of a Constant Q Spectral Transform.
Journal of the Acoustical Society of America. 1991, vol. 89, no. 1, pp. 425–
434.

56. VENKITARAMAN, Arun; ADIGA, Aniruddha; SEELAMANTULA, Chan-
dra Sekhar. Auditory-motivated Gammatone wavelet transform. Signal
Processing. 2014, vol. 94, pp. 608–619. Available from doi: 10.1016/j.
sigpro.2013.07.029.

57. SAINATH, T. N.; KINGSBURY, B.; MOHAMED, A.; RAMABHAD-
RAN, B. Learning filter banks within a deep neural network framework.
In: 2013 IEEE Workshop on Automatic Speech Recognition and Under-
standing. 2013, pp. 297–302. Available from doi: 10.1109/ASRU.2013.
6707746.

58. OORD, Aaron van den; DIELEMAN, Sander; ZEN, Heiga; SIMONYAN,
Karen; VINYALS, Oriol; GRAVES, Alex; KALCHBRENNER, Nal; SE-
NIOR, Andrew; KAVUKCUOGLU, Koray. WaveNet: A Generative Model
for Raw Audio. 2016. Available also from: http://arxiv.org/abs/1609.
03499. arxiv:1609.03499.

59. LEE, Jongpil; KIM, Taejun; PARK, Jiyoung; NAM, Juhan. Raw Waveform-
based Audio Classification Using Sample-level CNN Architectures. CoRR.
2017, vol. abs/1712.00866. Available also from: http : / / dblp . uni -
trier.de/db/journals/corr/corr1712.html#abs-1712-00866.

46

https://doi.org/10.1121/1.1915893
http://dblp.uni-trier.de/db/journals/corr/corr1411.html
http://dblp.uni-trier.de/db/journals/corr/corr1411.html
https://arxiv.org/abs/2003.07064
https://scholarworks.rit.edu/theses/10143
https://scholarworks.rit.edu/theses/10143
https://doi.org/10.1016/j.sigpro.2013.07.029
https://doi.org/10.1016/j.sigpro.2013.07.029
https://doi.org/10.1109/ASRU.2013.6707746
https://doi.org/10.1109/ASRU.2013.6707746
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://dblp.uni-trier.de/db/journals/corr/corr1712.html#abs-1712-00866
http://dblp.uni-trier.de/db/journals/corr/corr1712.html#abs-1712-00866

Bibliography

60. CHEN, Jiaxu; HAO, Jing; CHEN, Kai; XIE, Di; YANG, Shicai; PU,
Shiliang. An End-to-End Audio Classification System Based on Raw
Waveforms and Mix-Training Strategy. In: KUBIN, Gernot; KACIC,
Zdravko (eds.). INTERSPEECH. ISCA, 2019, pp. 3644–3648. Available
also from: http : / / dblp . uni - trier . de / db / conf / interspeech /
interspeech2019.html#ChenHCXYP19.

61. SALAMON, Justin; BELLO, Juan Pablo. Deep Convolutional Neural
Networks and Data Augmentation for Environmental Sound Classifica-
tion. CoRR. 2016, vol. abs/1608.04363. Available also from: http://
dblp.uni-trier.de/db/journals/corr/corr1608.html#SalamonB16.

62. ENGEL, Jesse; RESNICK, Cinjon; ROBERTS, Adam; DIELEMAN, Sander;
ECK, Douglas; SIMONYAN, Karen; NOROUZI, Mohammad. Neural
Audio Synthesis of Musical Notes with WaveNet Autoencoders. 2017.
Available from eprint: arXiv:1704.01279.

63. BOSCH, J.; JANER, J.; FUHRMANN, Ferdinand; HERRERA, Perfecto.
A Comparison of Sound Segregation Techniques for Predominant Instru-
ment Recognition in Musical Audio Signals. In: 13th International So-
ciety for Music Information Retrieval Conference (ISMIR 2012). Porto,
Portugal, 2012, pp. 559–564. Available also from: http://mtg.upf.edu/
system/files/publications/Bosch-ISMIR2012.pdf.

64. HUMPHREY, Eric J.; DURAND, Simon; MCFEE, Brian. OpenMIC-
2018. 2018. Available from doi: 10.5281/zenodo.1432913.

65. GEMMEKE, Jort F.; ELLIS, Daniel P. W.; FREEDMAN, Dylan; JANSEN,
Aren; LAWRENCE, Wade; MOORE, R. Channing; PLAKAL, Manoj;
RITTER, Marvin. Audio Set: An ontology and human-labeled dataset
for audio events. In: Proc. IEEE ICASSP 2017. New Orleans, LA, 2017.

66. CHEN, Ting; KORNBLITH, Simon; NOROUZI, Mohammad; HINTON,
Geoffrey. A Simple Framework for Contrastive Learning of Visual Rep-
resentations. 2020. Available from arXiv: 2002.05709 [cs.LG].

67. ZHAN, Xiaohang; XIE, Jiahao; LIU, Ziwei; ONG, Yew Soon; LOY, Chen
Change. Online Deep Clustering for Unsupervised Representation Learn-
ing. 2020. Available from arXiv: 2006.10645 [cs.CV].

68. [N.d.]. Available also from: http://ffmpeg.org/.
69. youtube. [N.d.]. Available also from: http://ytdl- org.github.io/

youtube-dl.
70. YouTube Data API | Google Developers. Google, [n.d.]. Available also

from: https://developers.google.com/youtube/v3.
71. librosa. [N.d.]. Available also from: https://librosa.org/doc/latest/

index.html.
72. [N.d.]. Available also from: https://pytorch.org/.

47

http://dblp.uni-trier.de/db/conf/interspeech/interspeech2019.html#ChenHCXYP19
http://dblp.uni-trier.de/db/conf/interspeech/interspeech2019.html#ChenHCXYP19
http://dblp.uni-trier.de/db/journals/corr/corr1608.html#SalamonB16
http://dblp.uni-trier.de/db/journals/corr/corr1608.html#SalamonB16
arXiv:1704.01279
http://mtg.upf.edu/system/files/publications/Bosch-ISMIR2012.pdf
http://mtg.upf.edu/system/files/publications/Bosch-ISMIR2012.pdf
https://doi.org/10.5281/zenodo.1432913
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.10645
http://ffmpeg.org/
http://ytdl-org.github.io/youtube-dl
http://ytdl-org.github.io/youtube-dl
https://developers.google.com/youtube/v3
https://librosa.org/doc/latest/index.html
https://librosa.org/doc/latest/index.html
https://pytorch.org/

Appendix A
Latent Space Visualisations

This appendix shows visualised latent spaces of autoencoders used in finall
tests. These visualisations are not good evaluation of performance of the
latent spaces. However, they can provide hint when the latent spaces do
not perform optimally as was case of the first model. Only most interesting
images are chosen because visualisation produced by same techniques give
similar results it is intended to be just illustrative.

Figure A.1: PCA visualisation of latent space corresponding to Randomly
Initialized Autoencoder. Subset of NSynth classes is used. Color differentiate
datapoints belonging to different labels namely flute, guitar, vocal and organ.

49

A. Latent Space Visualisations

Figure A.2: Visualisation of same data as in previous picture but using ACAI
instead.

Figure A.3: UMAP visualisation of NSynth data mapped in ACAIs latent
space.

50

Figure A.4: t-SNE visualisation of Randomly Initialized Autoencoder on
NSynth data

Figure A.5: PCA visualisation of ACAI when Sigmoid is used for latent vector.
This picture could indicate that latent space might not be well suitable for
clustering and other methods.

51

A. Latent Space Visualisations

Figure A.6: UMAP visualisation of ACAI when Sigmoid is used for latent
vector.

52

Appendix B
Acronyms

LSTM Long Short-term Memory

CNN Convolutional Neural Network

FFA Feedforward Neural Network

MLP Multilayer Perceptron

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

RNN Recurrent Neural Network

GRU Gated Recurrent Unit

CRNN Convolutional Recurrent Neural Network

PCA Principal Component Analysis

VAE Variational Autoencoder

ACAI Adversarially Constrained Autoencoder Interpolation

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

STFT Short-time Fourier transform

STFFT Short-time Fast Fourier transform

MFCC Mel-frequency cepstral Coefficients

DynAE Dynamic Autoencoder

53

B. Acronyms

RI Rand Index

NMI Normalized Mutual Information

54

Appendix C
Contents of enclosed DVD

readme.txt.......................the file with DVD contents description
src...directory of source codes

preproc......................source codes of pre-processing programs
models................................. source codes of tested models
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format
thesis.ps...............................the thesis text in PS format

55

	Introduction
	Motivation
	Brief History of Neural Networks

	Deep Learning
	Introduction
	Basics of Deep Learning
	Convolutional Nerual Networks
	Recurrent Neural Networks
	Convolutional Recurrent Neural Networks
	Residual Neural Network
	Attention Mechanism
	Autoencoder
	Obstacles and Advantages in Sound Classification in Comparison to Image Recognition

	Audio Pre-processing
	Discrete Fourier Transform
	Short-time Fourier transform
	Mel-spectrogram
	Decibel Scale
	Mel-frequency Cepstral Coefficients
	Constant-Q transform
	Other Preprocessing Techniques
	No Pre-processing of Audio Signal
	Data Augmentation

	Analysis and Design
	Dataset
	Pre-processing
	Different Classification and Supervision Types
	Proposed Methods

	Realisation
	Used Technology
	Procedure
	Second test
	Additional Experiments - Effects of Pre-processing on Reconstructed Sound

	Conclusion and Outlook
	Bibliography
	Latent Space Visualisations
	Acronyms
	Contents of enclosed DVD

