
Instructions

Dynamic textures are textures that evolve over time in some predictable way (they have both spatial

and temporal homogeneity).

Typical examples of dynamic textures are clouds.

1) Perform research for the topic of clouds, their types and behavior.

2) Perform research for dynamic textures, cloud generation, and procedural modeling.

3) Analyze existing methods and select the appropriate one.

4) Design and implement a cloud generation prototype.

5) Compare the results of your generator with existing results and real clouds.

Electronically approved by Ing. Radek Richtr, Ph.D. on 4 February 2021 in Prague.

Assignment of bachelor’s thesis

Title: Dynamic texture modelling and editing

Student: Alžběta Mrkvová

Supervisor: Ing. Radek Richtr, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Computer Graphics

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

Dynamic texture modelling and editing
Modelovánı́ a editace dynamických textur

Alžběta Mrkvová

Department of Web and Software Engineering
Supervisor: Ing. Radek Richtr, Ph.D.

May 12, 2021

Acknowledgements

I would first like to thank my supervisor Ing. Radek Richtr, Ph.D. who answered my
constant questions and who gave me plenty of advice regarding the thesis. I would
also like to thank my family for their great support on all fronts.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all
sources of information in accordance with the Guideline for adhering to ethical prin-
ciples when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that the
Czech Technical University in Prague has the right to conclude a license agreement
on the utilization of this thesis as a school work under the provisions of Article 60 (1)
of the Act.

In Prague on May 12, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Alžběta Mrkvová. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Informa-
tion Technology. The thesis is protected by the Copyright Act and its usage without
author’s permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis

Mrkvová, Alžběta. Dynamic texture modelling and editing
Modelovánı́ a editace dynamických textur. Bachelor’s thesis. Czech Technical Uni-
versity in Prague, Faculty of Information Technology, 2021.

Abstrakt

Mraky v přı́rodě se dynamicky měnı́ ve větru a tuto vlastnost chceme vystihnout
v počı́tačové grafice. Ve své bakalářské práci jsem provedla průzkum na téma mraků,
existujı́cı́ch řešenı́ jejich simulace a návrh generátoru mraků jako plugin do Blenderu.
Tento plugin pomocı́ buněčného automatu vytvářı́ volumetrické mraky v klı́čových
snı́mcı́ch vhodných pro následné vykreslenı́.

Klı́čová slova mraky, dynamické textury, simulace, animace, buněčný automat,
Blender

Abstract

Clouds are dynamically changing in the wind and it is desired to mirror this character-
istic in computer graphics. In my thesis, I conduct research on the topic of clouds and
the existing approaches to their simulation. I propose an implementation of a cloud
generator as a Blender plugin. The plugin generates volumetric clouds using cellular
automaton and produces a keyframed animation ready for rendering.

Keywords clouds, dynamic textures, simulation, animation, cellular automaton,
Blender

vii

Contents

Introduction 1

1 Goals and objectives 3

2 Research 5
2.1 What are clouds . 5

2.1.1 Creation of cloud . 5
2.1.2 Cloud’s colours . 5

2.2 Types of clouds . 6
2.3 Clouds in computer graphics . 7

2.3.1 Computer games and films 7
2.3.2 Used concepts . 9
2.3.3 Cellular automaton . 11
2.3.4 Coupled map lattice . 13
2.3.5 Particle systems . 13
2.3.6 Doretto’s dynamic textures 15
2.3.7 Richtr’s dynamic textures 15

2.4 Fluid dynamics . 16
2.4.1 Navier-Stokes equations 16
2.4.2 Stable fluids . 17

3 Analysis and design 19
3.1 Generator . 19

3.1.1 Cellular automaton . 19
3.1.2 Coupled map lattice . 20
3.1.3 Chosen method . 21

3.2 Visualization . 21
3.2.1 OpenGL . 21
3.2.2 Blender . 21

3.3 Design . 23

ix

3.3.1 Requirements . 23
3.3.2 Use cases . 23

4 Realisation 25
4.1 Chosen method . 25
4.2 First results . 25
4.3 First attempts in Blender . 28
4.4 Blender scripting . 28

4.4.1 Script sketch . 28
4.4.2 Initialization of cloud . 29
4.4.3 Growth of cloud . 29
4.4.4 Movement of clouds . 29
4.4.5 Representation of data . 30
4.4.6 Colours . 31
4.4.7 Cloud texture . 31
4.4.8 Technical problems . 32

4.5 Plugin parameters . 33

5 Testing 35
5.1 Personas . 35
5.2 Testing scenarios . 35
5.3 Conclusion of testing . 36

6 Results 37
6.1 Version 1.x . 37
6.2 Version 2.x . 40
6.3 Version 3.x — Plugin . 41
6.4 Render speed . 45
6.5 Comparison of clouds . 48

Conclusion 49

Bibliography 51

A Acronyms 55

B Contents of enclosed CD 57

x

List of Figures

2.1 Classification of clouds . 6
2.2 The Long Dark (game 2017) . 8
2.3 Horizon Zero Dawn (game 2017) . 8
2.4 Castle in the Sky (film 1986) . 8
2.5 Definition of metaball . 9
2.6 The rule 30 automaton after 15 steps starting with a single black cell . . 10
2.7 Transition rules . 12
2.8 Simulation of Bénard cells . 14
2.9 Dynamic texture examples . 16

3.1 Animation of natural scenery . 20
3.2 Use case diagram . 24

4.1 Static cloud from initial state . 26
4.2 Animation of cloud CA in Wolfram Mathematica 26
4.3 Visualization of cloudy neighbours . 27
4.4 Colourful sunset . 31
4.5 Blue sky . 32

6.1 Version 1.1, moving light with cloud 38
6.2 Version 1.2 with and without shadows 39
6.3 Version 2.1, radius of spheres = 2 . 40
6.4 Version 2.06 . 40
6.5 Version 3.12 . 41
6.6 Version 3.14, sun from behind . 42
6.7 Version 3.14, more clouds in scene . 43
6.8 Version 3.14, growth + movement . 44
6.9 Version 3.14, particles per cloud = 64 45
6.10 Version 3.14, particles per cloud = 512 46
6.11 Version 3.14 . 47

xi

List of Tables

4.1 Effect of increasing the size of cloud noise texture: bottom right quadrant
of each volume is an example of used noise texture 32

4.2 Amount of particles . 33
4.3 Displacement degree . 33
4.4 Density . 34

xiii

Introduction

Clouds are natural part of the world. Wherever we found ourselves on the planet it is
almost impossible to avoid them – for sky without clouds is not really common.

Therefore, we are expecting clouds maybe even unconsciously in every natural
scene: on our Saturday outing when we are enjoying the landscape, in a moment
captured by professional photographer, or even in a quick snapshot with our friends
during a trip.

The sky is part of even the film industry and the worlds of computer games.
Sky full of clouds, grey tumultuous giants, or peaceful little lambs. Clouds are ever-
changing and create myriads of interesting shapes in the sky, and similarly captivating
is the interplay of their shadows underneath.

That is why generation (and also simulation and animation) of clouds is one
of the most important, not to mention interesting, problem in computer graphics.
Nature without clouds would be missing something. . . After all, you can’t have bad
rainy weather without large gloomy clouds. And sunset would be a lot more boring
without them.

Clouds always fascinated me. I decided to learn more about generating clouds in
computer graphics and tried implementing a solution to this problem.

In theoretical part of my thesis I will introduce existing approaches to cloud gen-
eration. I will compare several existing solutions and choose one for my implemen-
tation.

The practical part will describe my solution of using cellular automaton as a base
for cloud generator. The first attempts that were made using C++ and Wolfram Math-
ematica as a proof of working concept and rudimentary visualization. The later recre-
ation of the cloud generator as a Blender plugin that allowed for addition of modelling
and simulation using Blender API.

The practical part will be concluded by the comparison of my results with real
clouds and existing solutions and discussion of my primary objectives.

1

CHAPTER 1
Goals and objectives

The main objectives of this thesis are:

• to perform research on the topic of clouds, their types and behaviour

• to perform research on cloud generation, procedural modelling and dynamic
textures

• to analyze existing methods and select the appropriate one

• to design and implement a cloud generation prototype

• to compare the results of my generator with existing results and real clouds

3

CHAPTER 2
Research

2.1 What are clouds

Clouds are visually distinct large masses of minute water droplets and ice crystals
suspended in the atmosphere. They can also include solid particles that can be found
in fumes, smoke or dust.

2.1.1 Creation of cloud

There is number of mechanisms that lead to a formation of a cloud. What they have
in common is that cloud (or fog) is formed when air is saturated with water vapor.
For air to reach the saturation point, the temperature either has to drop so it can hold
lower amount of moisture, or the vapor accumulates until the air can hold no more
water.

One of the common examples of formation of clouds is uplift of body of air due
to planet’s surface heating followed by convection. As the air rises, its temperature
and saturation point drops so the moisture in the air becomes visible in the form of
clouds.

There are many artificial clouds such as contrails1 and clouds produced by cool-
ing towers of thermal power stations as a part of landscape.

2.1.2 Cloud’s colours

Clouds are beautiful. They create complex shapes in the sky that engage the imag-
ination of the observer. Not only their shapes are interesting but also their colour.
Colour of the cloud depends mainly on the position of the sun in the sky. Almost
the whole colour palette can be found in the sky and clouds throughout the day and
night.

From moments before sunrise the sky and the clouds are painted yellow and red
by the rising sun. Midday the clouds appear white or gray with the Sun high above

1Short for condensation trails, line-shaped clouds created by aircraft flying at high altitude.

5

2. RESEARCH

the horizon. The sunset colours are tinged red. Higher positioned clouds remain
white but those in lower heights take the reddish colour of the sky.

The night clouds can be illuminated by the moon or from below them either by
moonlight reflected off of frozen lake, desert sand or by bustling cities to name a few
examples. On an overcast night the moon and the stars are covered which results in
gray and black clouds.

2.2 Types of clouds

There is a great diversity of clouds and multiple systems that categorise them.
One of the most used categorizations is by altitude (Figure 2.1).

Figure 2.1: Classification of clouds [27]

Low clouds are located up to 2000 metres above ground. Nimbostratus, stra-
tocumulus, cumulus and cumulonimbus clouds are included in this category. Middle
clouds are up to 7000 metres above ground. We can find altocumulus and altostratus
in this category. High clouds are cirrus, cirrocumulus and cirrostratus.

These are only the core types of clouds. However, there exists an array of vari-
eties to every previously mentioned cloud. Another types of clouds are for example
vertebratus (riblike patterned cloud), undulatus (billow cloud), lacunosus (cloud full
of holes), translucidus (transparent cloud) or perlucidus (cloud allowing the passage
of light).

Nimbostratus and cumulonimbus are clouds that most often produce rain. Nimbus
in their names means rainstorm in Latin. Rain clouds appear darker because they

6

2.3. Clouds in computer graphics

consist of larger droplets that obscure sunlight.
Stratus is Latin word for layer. Stratus clouds develop in flat horizontal forma-

tions that often cover the whole sky. Low-hanging stratus clouds often bring rain,
stratus cloud located in higher altitudes produce snow.

2.3 Clouds in computer graphics

In computer graphics clouds are important subject. That is why there are multiple
approaches to generating and simulating clouds, different methods are more suitable
for different uses. Some methods are more efficient or produce more realistic looking
results.

There are solutions that are able to produce only static images, but with over forty
years2 of interest of many scientists and graphics programmers there are also plentiful
solutions regarding dynamic clouds. Many of these approaches can be considered as
dynamic textures as stated Haindl [24, 23] and Richtr [31, 26, 30] because they evolve
in time according to a set of defined rules.

One of the classifications3 [16] of clouds in computer graphics:

Physics-based solutions simulate the physical process of fluid dynamics. Most
methods require a large amount of computational time. Main difference lies in
used solvers leading to stability/instability.

Heuristic solutions are computationally inexpensive but many parameters need to
be found by trial-error method. Heuristic solutions are using fractals, qualita-
tive simulation, stochastic modelling or procedural modelling.

Image-based solutions use sets of images for learning. Static images from satellites
are used for modelling clouds using metaballs. Video sequences are used for
generating infinite textures called dynamic textures.

2.3.1 Computer games and films

It is essential to be able to smoothly display natural phenomena in various animations.
The approaches can vary dramatically as illustrated by following examples:

The Long Dark game (2017) used smaller sprites moving within the skybox as
clouds (Figure 2.2). The sprites for the clouds seem like painted by brush with water
colours.

Horizon Zero Dawn (2017) is a game with eye-catching graphics. The studio
needed convincingly looking evolving clouds in the sky. They were successful with
their solution of real-time volumetric clouds (Figure 2.3) which can simulate many
types of clouds, e.g. cirrus and cumulus clouds.

2For example Csuri’s article [1] about interactive animations from 1979.
3Doretto’s dynamic textures [18, 19] were added to this system.

7

2. RESEARCH

Figure 2.2: The Long Dark (game 2017) [29]

Figure 2.3: Horizon Zero Dawn (game 2017) [28]

Figure 2.4: Castle in the Sky (film 1986) [5]

8

2.3. Clouds in computer graphics

Figure 2.5: Definition of metaball [12]

Castle in the Sky (1986) is studio Ghibli’s first film. Although it is not an exam-
ple of computer graphics as it is a hand-drawn film, it is good to remember classical
approaches to animation. As the name suggests the film is situated in the sky on a fly-
ing island called Laputa (Figure 2.4). The director Hayao Miyazaki, an enthusiastic
fan of aircraft, likes to include planes and flying in his animations.

2.3.2 Used concepts

Metaballs also known as soft objects are solids defined by scalar fields. They are
used to model free-form surfaces. Metaballs often need hundreds of data points and
it is important to be able to calculate the value of a specific point without having to
refer to all of them. For this purpose field functions are used in the metaballs.

Field function is guaranteed to have only a local effect of the metaball. To achieve
local control, field function and its derivative must drop to zero at some distance R
called effective radius (or radius of influence). The function is calculated from a set
of key points which form a skeleton of the object. Each point can be considered as
a source of energy (or density). The energy decreases with increasing distance from
the centre of the object (as described in Figure 2.5).

The concept of metaballs and field functions was first introduced in a paper
by Wyvill et al. [7].

Cellular automaton (CA) is a collection of coloured cells in a grid. The simplest
type of grid is one-dimensional but more dimensions are possible. The cells evolve
through discrete time steps according to a set of rules that take into consideration
states of neighbouring cells. The neighbourhood has to be specified prior to the
simulation (Figure 2.6).

In 1984 an article by Wolfram [4] was published describing universality of CA.
He included many examples of configurations and images of generated results with
detailed analysis of performed steps.

9

2. RESEARCH

Figure 2.6: The rule 30 automaton after 15 steps starting with a single black cell [17]

Coupled map lattice (CML) is an extension of cellular automaton [16]. It was first
used by Kaneko in 1990 [6] for simulating physics. The simulation space of CML
is subdivided into lattices. Each lattice has several state variables and their status is
updated according to the neighbouring lattices. CML uses real-value variables while
CA uses discrete variables.

10

2.3. Clouds in computer graphics

2.3.3 Cellular automaton

Dobashi et al. proposed a method for making animation of clouds using the cellular
automaton in their 1998 paper [12] and further developed their findings two years
later in [15].

Dobashi et al. [12] followed upon the numerical model by Nagel et al. [8] for
simulating the growth of clouds using cellular automaton. The space is divided into
a three-dimensional grid. For each point (cell) in the grid there are three binary
variables: humidity4 hum, cloud cld and transition phase5 act.

Since the state is either 0 or 1, the transition rules can be represented as Boolean
operations. However, in Nagel’s method there were several disadvantages: once cld
is 1 it remains 1 and the cloud never disappears; the simulation output is binary
distribution therefore realistic images cannot be generated.

Dobashi et al. decided to remedy [8] disadvantages and address them as follows:
new variables for cloud extinction ext and its transition rules are added so the clouds
can disappear. For generating more realistic looking clouds continuous distribution
using metaballs is calculated in the post process of the simulation.

Metaballs (see 2.3.2) are spheres in which a field function is defined. Each meta-
ball has two parameters: density at the center and effective radius. Metaballs are
placed at each point of the grid and the continuous distribution is represented as
weighted sum of the field functions. Metaballs are used to obtain the continuous
distribution.

Complicated cloud motion can also be simulated by method described in [12].
At every frame the variables are checked if their value is 0. The variables with status
0 are flipped to 1 by random numbers that obey probability function. Animator can
control the motion by specifying different probabilities at each grid point at different
times.

The newer model [15] is able to cast shadows on the ground, render shafts of
light through clouds and clouds can be animated with directional movement.

The whole simulation is computed quickly using graphical hardware through
OpenGL. The rendering method is based on splatting algorithm. It is a fast algorithm
using billboards placed in the centres of the grid’s metaballs. Each billboard has a
precomputed texture mapped on it, the positions of colour shades on the texture are
based on summed densities of the cloud’s metaballs from viewer.

Transition rules6 used in the growth simulation are as follows:

hum(i, j,k, ti+1) = hum(i, j,k, ti)∧¬act(i, j,k, ti) ,

act(i, j,k, ti+1) = ¬act(i, j,k, ti)∧hum(i, j,k, ti)∧ fact(i, j,k) ,

cld(i, j,k, ti+1) = cld(i, j,k, ti)∨act(i, j,k, ti) ,

(2.1)

4Humidity – is there enough vapor to form clouds?
5Transition phase – water vapor becomes water droplets or cloud. act = 1 means that transition

phase is ready to occur.
6The rules are taken from [8].

11

2. RESEARCH

Figure 2.7: Transition rules [15]

where fact is also a Boolean function, its value is calculated by the status of act
around the cell:

fact(i, j,k) = act(i+1, j,k, ti)∨act(i, j+1,k, ti)∨act(i, j,k+1, ti)

∨act(i−1, j,k, ti)∨act(i, j−1,k, ti)∨act(i, j,k−1, ti)

∨act(i+2, j,k, ti)∨act(i−2, j,k, ti)

∨act(i, j+2,k, ti)∨act(i, j−2,k, ti)

∨act(i, j,k−2, ti) .

(2.2)

For better understanding of all neighbouring cells participating on extinction and
transition phase for one cell look at Figure 2.7.

For stochastic behaviour animator can supply probabilities which are real num-
bers from interval 〈0,1〉, for extinction pext , vapor phum and transition phase pact .

Initial state is
hum = rand < phum ,

act = hum∧ rand < pact ,

cld = 0 .

(2.3)

At each cell where cld is 1 a random number rnd ∈ 〈0,1〉 is generated. Vari-
able cld is changed to 0 if rnd < pext . Vapor probability phum and phase transition
probability pact are used similarly to pext to set hum and act randomly:

hum(i, j,k, ti+1) = hum(i, j,k, ti)∨ (rnd < phum(i, j,k, ti)) ,

act(i, j,k, ti+1) = act(i, j,k, ti)∨ (rnd < pact(i, j,k, ti)) ,

cld(i, j,k, ti+1) = cld(i, j,k, ti)∧ (rnd > pext(i, j,k, ti)) .

(2.4)

Animator can design the cloud motion by specifying pext , pact and phum. Ellip-
soids are used in this method to simulate the air parcels. When wet air parcels move
upward and reach the dew point clouds are gradually formed. The vapor and phase

12

2.3. Clouds in computer graphics

transition probabilities are assumed to be higher at the center of clouds and cloud
extinction probability is higher at their edges. By controlling size and position of
ellipsoids different types of clouds can be simulated.

2.3.4 Coupled map lattice

Miyazaki et al. in [16] advanced method for generating clouds by Dobashi et al. [15].
More types of clouds can now be generated: culumulus, cumulonimbus, stratocumu-
lus, altocumulus, cirrocumulus.

These types of clouds originate due to some factors:

1. viscosity and pressure effect

2. advection by fluid flow

3. diffusion of water vapor

4. thermal diffusion

5. thermal buoyancy

6. phase transition

This method classifies clouds into two categories: those that are created by as-
cending air currents (cumulus and cumulonimbus) and those formed by Bénard con-
vection (stratocumulus, altocumulus, cirrocumulus). Bénard convenction can be sim-
ulated using CML (see 2.3.2). Bénard cells can help to differentiate size and shape
of the clouds (Figure 2.8). Large Bénard cells create stratocumuli, cirrocumili are
generated with smaller Bénard cells.

2.3.5 Particle systems

Another approach to generating dynamic textures are particle systems. The very first
attempt for algorithm using particles was done by Csuri et al. in 1979 [1]. They
visualized cloud of smoke.

A very detailed description of the concept of particle systems was provided by
W. T. Reeves in 1983 [2]. He and his team used the idea for simulating wall of fire
in the film The Wrath of Khan.

Particle systems use new representation of objects. Objects are clusters of prim-
itive particles which define object volume. The particles are not static entity. New
particles are born, they move, change their form, and after their allotted time have
passed, they die. Due to their transient nature particle systems are suitable for mod-
elling natural phenomena such as smoke, fire, clouds, water, and even grass.

Objects created with particle systems are not deterministic since its shape and
form is not completely specified. Stochastic processes are used to create and to
change the properties of the objects.

13

2. RESEARCH

Figure 2.8: Simulation of Bénard cells [16]

An animation using particle systems is as follows: to compute a frame in a motion
sequence new particles are generated into the system and they are assigned their ini-
tial attributes. The particles that existed over their allotted lifetime are extinguished
and the remaining ones are moved and transformed. Finally the image of the particles
alive is rendered in a frame buffer.

An animator can manipulate set of parameters to control the shape, appearance
and dynamics of the particles. Stochastic processes are constrained by these param-
eters. Each parameter specifies a range in which a particle’s value must lie. Range is
defined as its mean value and maximum variance.

The application of the range parameter could be illustrated in the following ex-
ample featuring simple equation for calculating the number of new particles to be
generated at frame f :

NParticles f = MeanParticles f +Rand() ·VarianceParticle f , (2.5)

where MeanParticles f and VarianceParticle f is given by animator. Rand() is a
procedure that returns a uniformly distributed number from 〈−1.0,1.0〉.

Speed of particles and other attributes can be computed similarly. Particle motion
is achieved by adding its velocity vector to its position vector. For more complex
simulation (e. g. such as gravity) acceleration factor can be used.

Particle lifetime is defined as number of frames in which the particle exists. The
lifetime is then decremented in each frame. When it reaches zero the particle is
killed. Other, more complex mechanisms, can be also put in use in the extinction
process. For example if the intensity (which is computed by colour and transparency
of the particle) drops below specified threshold it is killed. Another condition can be
distance from the system’s origin.

14

2.3. Clouds in computer graphics

In 2010 a scheme for generating three-dimensional clouds in real-time flight sim-
ulator [22] was proposed. For this particular purpose very fast modelling and ren-
dering technique was needed. It was built on ideas of Particle systems [2] and the
particles used transition rules based on Boolean operations from [15].

2.3.6 Doretto’s dynamic textures

Another approach to simulating dynamic clouds is called dynamic textures. Doretto
et al. devoted their research to this method [19, 18].

Doretto’s dynamic textures are based on sequence of images of scenes such as
sea-waves, smoke and foliage in the wind.

The textures use image-based rendering technique (IBR). IBR generates syn-
thetic sequences of images without building physical model of the process that gen-
erate the scene. Among IBR there are procedural techniques that forego models al-
together concentrating on concatenation and repetition of data instead. Another IBR
techniques use model of the image sequence itself – model of visual signal. Such
models capture mixture of shape, radiance and motion as an image. This approach is
called video-based modelling.

Common feature of all IBR techniques is their inflexibility. Editing is a challenge
because there is a lack of physical parameters that can be manipulated. This challenge
was accepted by Doretto with his team [19].

The proposed system for generating and editing dynamic textures is composed
of several modules. Finite video of a dynamic texture and set of values for editing
parameters have to be given as input data. The input video is processed by learning
module. The module produces a representation of a dynamic texture in the form of
a parametric dynamical model.

The next module is editing which allows to interactively modify the temporal
characteristics of the simulation. For example, the speed of the texture can be altered
or the intensity of a pattern can be changed.

2.3.7 Richtr’s dynamic textures

There in no exact definition of visual (or multispectral [32]) texture, neither of dy-
namic (or video, temporal) texture [31, 30]. Dynamic textures (Figure 2.9) are char-
acterized by some spatially invariant statistics (like other visual textures). Addition-
ally to that they require some temporal invariance. Dynamic textures can be repre-
sented as a realization of a four-dimensional stochastic random field.

There are two main approaches that can be applied to modelling dynamic tex-
tures: a solution built on a mathematical model and a solution based on measured
data sampling. Modelling by some mathematical probabilistic model is by far less
demanding on memory. However it often produces results with low visual quality.
The intelligent sampling methods produce better results but they need to store mate-
rial patches.

15

2. RESEARCH

Figure 2.9: Dynamic texture examples [26]

Richtr stated in [30] that three major properties are present in dynamic textures.
They define the static texture itself with global and local dynamics. The static texture
represents a structure of the scene and its objects. The global motion is describing
moving of the whole scene (e. g. rotating or sliding camera) and the local motion
dynamics are for small motions, oscillation, overlapping or disappearing of small
objects.

Dynamic textures are synthesized by three-dimensional toroiodal patch which
allows to create realistic results very effectively and in short time. However this
approach is very limited and it works well only in some types of dynamic textures,
like natural scenes, grass, etc. It is not suitable for modelling clouds.

2.4 Fluid dynamics

The following section will focus on topics of Navier-Stokes equations and Stam’s
Stable fluids [14] that are partly based on the equations.

2.4.1 Navier-Stokes equations

“There is a consensus among scientists that Navier-Stokes equations are
a very good model for fluid flow.”[14]

Navier-Stokes equations describe the three-dimensional motion of viscous fluid.
The equations consist of conservation of mass and conservation of momentum.

Conservation of mass:
∇ ·~u = 0 , (2.6)

16

2.4. Fluid dynamics

Conservation of momentum:

ρ
D~u
D~t

=−∇p+µ∇
2~u+ρF , (2.7)

mass∗ acceleration = force . (2.8)

These equation can be used to model the weather, air flow, ocean currents and
water flow. They help with the design of cars, airplanes, nuclear reactors, etc.

Simplified version is called Reynolds-averaged equation using dimensionless
Reynolds numbers as an average and simplification. Reynolds number is defined
as

Re =
inertia forces
viscous forces

. (2.9)

2.4.2 Stable fluids

It is in high demand to convincingly mimic fluid-like behaviour like water, smoke
or fire in many different branches of computer graphics. For example in painting
programs where the emulation of traditional methods (i. e. watercolours or oil paint)
is desired.

Physical models are great for this task. The interaction of flows with objects and
forces is handled elegantly. It also permits an animator to create interesting, swirling-
like fluid behaviors. However, the models prior to [14] use unstable explicit schemes
to solve the physical equations which result in limited application. The results tend
behave erratically and an animator has to reset the initial values which complicates
the interactivity and speed.

Jos Stam [14] decided to follow up on the work of Foster and Metaxas [11]. They
use explicit solver based on three-dimensional Navier-Stokes equations. The insta-
bility is mainly due to large time-step, but it can be caused also because of other
parameters. Stam uses both Lagrangian7 and implicit methods for solving the equa-
tions. The implicit method is in diffusion step. Foster and Metaxas used simpler,
discretized solution.

Stam’s simulation consists of four steps. Each simulation step needs to be com-
pleted during one time-step of the simulation. From an initial state:

• add force, assuming that the forces does not change much during the time-step

• perform advection (or convection) of the fluid on itself8

• apply the effect of viscosity, diffusion

• apply projection step

This solver can be implemented in both two- and three-dimensions. The motion
is modelled by adding density into the fluid or by applying forces.

7It is combination of kinetic T and potentional V energies: L≡ T −V [21].
8The term −(u ·∇)u makes the equation non-linear. Thanks to Stam’s method of characteristics, it

results in unconditionally stable solver.

17

CHAPTER 3
Analysis and design

There are many factors that have to be considered when selecting a method creat-
ing for dynamic texture clouds. The main sub-problems are choice of method for
generating clouds and visualization of chosen method.

Different goals come with their inherent requirements and that is reflected in
used methods. A flight simulator will weigh more on the interaction of air currents
and the render speed of clouds while a film animation will focus more on detail and
visuals of a scene. For the first case very fast generating and rendering method has
to be chosen. For the second case there are no limitations to the time allotted for
generating and rendering the clouds therefore any method can be used. The latter
application is closer to the focus of this thesis.

3.1 Generator

The following section will be focused on comparison of cellular automaton with
coupled map lattice.

3.1.1 Cellular automaton

One of the methods of generating clouds as dynamic textures is a heuristic approach
using cellular automaton [12] (see 2.3.3). The main idea consists of several transition
rules for three state variables in cells placed in three-dimensional grid. It results with
very nice cumulus clouds (see Figure 3.1).

The advantage of this generator is its simple implementation. The grid is defined
by three dimensions: number of cells in X-, Y- and Z-axis represented by variables
X , Y and Z respectively. The variables for each cell of the grid can be represented
as Booleans and the transition rules can be computed using Boolean operations.

The memory complexity is O(2 ·N) ∼ O(N), where 2 ·N represents storage of
the current grid’s variables and the computed new generation.

The time complexity of computing one new generation of the cloud varies on
data structure used for storing the cloud’s information. Each cell of the grid has

19

3. ANALYSIS AND DESIGN

Figure 3.1: Animation of natural scenery [12]

to be recomputed and one of the cell’s variables is dependent on up to eleven cells
in its neighbourhood. It is appropriate to select data structure where getting and
setting items is done fast. In the case of using list for storing the cell’s data the time
complexity9 for these two operations is O(1). In the case of using hashed map or
dictionary the complexity for average case is also O(1), but the amortized worst case
can be O(N), where N is number of cells in the grid.

The resulting time complexity for computing one new generation of the cloud is
then

O(N) (3.1)

in case of using list. If hashed map or dictionary is used as the storage the time
complexity is in the worst case scenario O

(
N2

)
.

Initialization of state variables in the grid is very important phase. It can be done
randomly or with preset chunks of clouds. From the initial state the next generations
are then computed using the transition rules without further need for user input. The
state variables can be partly decided by random numbers and probabilities of occur-
rence of the state variables. The random elements secure irregularities in the cloud’s
growth.

3.1.2 Coupled map lattice

Coupled map lattice is an extension of CA. The idea of this method is much more
complex than the approach using cellular automaton. It takes into consideration
physics of the cloud creation and forces influencing the cloud. Different clouds are
formed due to different conditions. This method classifies the clouds into two types
based on the way they are formed. The first category is clouds that are formed by
strong ascending air currents, cumulus and cumulonimbus. The second category is
clouds formed by Bénard convection. The clouds have cell-like or roll-like shapes,
e. g. cirrocumulus or stratocumulus.

CML method uses real-value variables. Pressure, density and the viscosity of the
fluid have to be considered for simulating fluid flow. The method uses Navier-Stokes
equations at its basis. Solving them can be very time-consuming. However, this
method uses approximated models that have computationally smaller cost.

9https://wiki.python.org/moin/TimeComplexity

20

https://wiki.python.org/moin/TimeComplexity

3.2. Visualization

The memory complexity of this method is comparable to the method using CA.
The simulation space is divided into three-dimensional lattices and in each lattice
a set of equations is computed.

The time complexity is more difficult to compute due to more complex equations
(than Boolean operations of cellular automaton) are used during the cloud generation.
There are also several phases of cloud formation: computing viscosity and pressure,
advection by fluid flow, diffusion of water vapor, thermal diffusion, thermal buoyancy
and phase transition.

3.1.3 Chosen method

The method using cellular automaton is more user friendly for design than the ap-
proach using CML although CML can generate more types of clouds. CML achieves
this variety due to up to six phases of cloud generation that are computed with sets
of physical equations. CA on the other hand uses only Boolean operations in one
generation phase. The chosen approach was to use CA as a base for my generator
implementation for its ease of use.

3.2 Visualization

Visualization of clouds is yet another large topic. The colour and transparency of
cloud is dependent on position of main light sources and intensity of emitted light
with its direction. Multiple studies ([3, 7, 10]) have been written about cloud illumi-
nation methods. Some methods are adjusted for more efficient rendering at run time,
some give more emphasis on accuracy.

3.2.1 OpenGL

OpenGL is used in many solutions of generating clouds, e. g. [15, 20, 22]. It uses
fast visualization with precomputed textures mapped on billboards. This method is
fast because it utilizes graphical hardware and the rendering pipeline.

3.2.2 Blender

Blender is a free software suitable for modelling, sculpting, animating and rendering
objects, visual effects and creating computer games. To this day at least fifteen10

open films were created using Blender.
Blender provides favourable conditions for scripting and writing plugins. Almost

every action performed in Blender by mouse and keyboard produces a record in a log
which can be directly used in the script. It is easy to manipulate objects in a scene –
creating objects, translating and rotating them, changing their materials or textures,
or hiding the objects. Lighting with ray-tracing is also possible. If graphical card

10https://cloud.blender.org/films/

21

https://cloud.blender.org/films/

3. ANALYSIS AND DESIGN

is present Blender can utilize it effectively. There exist solutions for natural-looking
sky to be added as a background.

For the aforementioned reasons Blender has been chosen for both cloud visual-
ization and simulation.

22

3.3. Design

3.3 Design

The following section will list requirements for the cloud generator and in Python11.

3.3.1 Requirements

Non-functional requirements are:

• realized as a plugin for Blender version 2.92

• program written in Python

Functional requirements are for:

Cloud generation Cloud generator should able to create at least one type of cloud.
The generator should be operating according to set of parameters specifying
size of initial cloud and number of iterations when the cloud grows.

Visualization User should be able to specify parameters regarding to appearance of
clouds.

Animation The generator should also create an animation of dynamically growing
cloud with possible motion in direction of wind.

3.3.2 Use cases

The functional requirements need more detailed explanation leading to use cases (see
Figure 3.212) and input parameters.

The cloud is represented in three-dimensional space. The initial dimensions can
be represented as the grid height, depth and width, i. e. number of cells in X-, Y- and
Z-axis respectively.

The number of times the cloud generator will run depends on number of frames
and frequency of growth.

The visualization requirement is connected to specification of rendering qual-
ity. The information needed is: number of particles in the cloud, degree of cloud’s
particle displacement due to noise texture and density of cloud particles. After re-
searching and testing different values of density and displacement the most suitable
values were set as the plugin’s default.

The cloud motion is realized based on directional vector and frequency of the
wind. The frequency determines in which frames the cloud moves in the direction of
the vector.

The plugin produces an animation of dynamically changing cloud which requires
that total number of frames, frequency of wind and frequency of growth (in frames)
are mandatory parameters.

11Blender plugins are written in Python.
12The diagram was drawn in https://app.diagrams.net.

23

https://app.diagrams.net

3. ANALYSIS AND DESIGN

Figure 3.2: Use case diagram

The reason for using frequency in number of frames instead of speed is that it is
easier to imagine when the cloud grows or moves.

The use cases13 are:

• Cells in (X, Y, Z)-axis: specifying number of cells in X-, Y- and Z-axis

• Particles per cloud: specifying number of particles in a cloud

• Displacement degree: specifying degree (strength) of particle displacement
in cloud due to noise texture

• Density: density of cloud

• Direction from wind: directional vector from wind

• Frequency of wind (in frames): frequency of cloud motion, e. g. every frame
the cloud moves in direction from wind if this frequency is 1

• Frequency of growth (in frames): frequency of cloud growth, e. g. every
frame the cloud grows according to CA’s rules if this frequency is 1

• Animation frames: specifying number of animation frames

More parameters for the displacement texture are unnecessary because the used
cloud texture can be changed at any time by user.

13Input parameters in the plugin are based on these use case names.

24

CHAPTER 4
Realisation

Before settling on using Blender plugins OpenGL was considered to render the gen-
erated clouds. However, this method has proven to be problematic. Using OpenGL
would require Visual Studio on Windows as the programming environment which
is a program with complex setup. It is much less user-friendly then Blender and
with steeper learning curve. Furthermore this solution would not provide the desired
outputs by itself and a separate visualization program would be needed.

4.1 Chosen method

The method that was ultimately chosen for realisation was generator using cellular
automaton for cloud growth.

The solution of cloud generator that was decided to be implemented is a combi-
nation of [12, 15]. The transition rules are directly used from there, but the visual-
ization method is different. The method using CA is easy to implement but there are
problems with the visualization.

4.2 First results

Version 0.1 was written in C++ language. The preliminary code tests were carried
out in text form in console and later visualized in

Wolfram Mathematica14.
There is even a rudimentary function for cellular automaton in Wolfram Math-

ematica, however it is inadequate for purposes of this thesis, because it is only for
two-dimensional grids with predefined sets of rules.

The data to be visualized were supplied from a file generated by the program.
The resulting image for a static cloud with random noise and a sphere is Figure 4.1.
The cells with cld = 1 are blue points.

14Piece of trivia: Stephen Wolfram wrote a paper on cellular automata, four years later he released
this program. I realized it later on while writing the explanation on CA.

25

4. REALISATION

Figure 4.1: Static cloud from initial state

Figure 4.2: Animation of cloud CA in Wolfram Mathematica

An example of an animation of six cloud generations with motion in x-axis is in
Figure 4.2. The initialization was done with a cube and noise. The cube is visible in
the animation and the direction of motion can be derived from the cube’s position.
For this animation grid boundaries were set that when the cloud leaves the grid from
one side of an axis it appears on the other side of the axis.

26

4.2. First results

Figure 4.3: Visualization of cloudy neighbours

An alternative visualization of 11-neighbourhood (see 2.7). In Figure 4.3 is dis-
played the sum of neighbours with cld = 1 for each cell of the grid. The sum cell is
represented as an opacity of blue ball in three-dimensional grid. It is directly propor-
tional to the count of cell’s cloud neighbours and its opacity. The use of opacity has
proven to be more reasonable than size.

27

4. REALISATION

4.3 First attempts in Blender

First attempts using Blender were in Blender 2.79. As the very first try, obj object of
vertices generated by the previously mentioned program was imported into Blender.
It was for a static cloud. This was a dead end.

The second attempt was made with python script. The script could generate
transparent spheres into a scene. It remained as a loader of static cloud because the
rendered images were not appealing.

4.4 Blender scripting

Blender 2.9x makes it possible to work with particle volumes. As the starting point of
work in Blender could be considered consultation of the video15 on topic of creating
volumetric clouds in Blender.

At this point the decision was made to write a script for generating particle vol-
umes in a three-dimensional grid and animating it by using cellular automaton rules.

4.4.1 Script sketch

This is the pseudocode of the script used as a base for the plugin:

start(init, frames, wind, speed_wind, speed_growth):
iters = compute_iters(frames, speed_growth)
total = compute_dimns(init, iters)

grid = init_grid(total)
grid = init_cloud(grid, init)
animate(grid, frames, wind, speed_wind, speed_growth)

clean_up(grid)

The parameters init and total are three-dimensional vectors for user’s defined
initial cloud and total number of cells in the grid respectively.

Function clean_up deletes ellipsoids that form the cloud from the scene. Only
joined objects and particle volumes remain.

animate(grid, frames, wind, speed_growth, speed_wind):
for f in frames:

if f % speed_wind == 0:
grid = translate_grid(grid, wind)

if f % speed_growth == 0:
grid = new_generation(grid)

15Video from channel by Blender Tutor:
https://www.youtube.com/channel/UCn6kWatTy0_ayxgJ3MqWaag

28

https://www.youtube.com/channel/UCn6kWatTy0_ayxgJ3MqWaag

4.4. Blender scripting

4.4.2 Initialization of cloud

A cloud is generated on the position of the cursor. The initial cloud is randomly set
in a grid with user specified dimensions. The grid is then expanded to account for
the space needed for the cloud to grow.

User specifies number of frames in which the cloud will be keyframed and speed
of evolution for which the generator will run.

The number of CA iterations is computed as

iters = ceil(frames / speed_growth)

The dimensions of the extended grid are then

increment = Vector(iters · 2, iters · 2, iters + 4)
total_dimens = init_dimens + increment

The cloud with the initial dimensions is created from index

start_x = centre(total_dimens.x, init_dimens.x)
start_y = centre(total_dimens.y, init_dimens.y)

start_index = Vector(start_x, start_y, 2)

Function centre computes starting position from centre of the grid

centre = floor(total_dimens / 2) - floor(init_dimens / 2)

4.4.3 Growth of cloud

The cloud evolves and grows while keyframing into animation. The growth depends
on the cellular automaton rules from [15]. It is to a certain degree randomized by
probabilities for hum and act and randomly generated numbers. When computing
new generation of the cloud there is also probability for cloud extinction that is cho-
sen randomly from interval (0.14, 0.43〉 and multiplied by the shortest distance from
grid borders. If cld in a cell changes to False it gets second chance for resurrection
with probability of 0.11.

Each growth iteration the cells with cld = True are duplicated and joined into one
mesh which is linked to a particle volume visible for this particular generation. All
meshes stay hidden.

4.4.4 Movement of clouds

Blender is equipped with physics simulation engine with options for force field such
as vortex, magnetic, fluid flow, wind and many more. One of the earlier ideas was to
generate the clouds with the plugin and leave the user to add wind to the scene. The
wind would create the motion of the clouds.

29

4. REALISATION

Rigid body modifier has to be applied for the cloud mesh to be responsive to
forces. After multiple tweaks of different masses and wind strengths the combination
of mass= 0.05 kg and strength= 1 was settled on. The rendered short animation was
of growing cloud with the wind placed in the scene and the resulting movement was
unexpected. Working with wind forces would be difficult and hard predict or debug.

For that reason it was decided to simulate movement in the plugin with directional
vector from wind and frequency of the wind (used for keyframing frequency). When
the time for the cloud translation comes the whole grid and the cloud mesh is moved
in the direction of the wind.

The cloud evolution is computed while moving and making the animation frames.
That means that new position of each cell is computed as

positionnew = positionold +
−−→
wind . (4.1)

4.4.5 Representation of data

The cloud is being generated into a three-dimensional grid. The entire grid is stored
as a dictionary with cell position as a key. Under the key there are stored mesh
(ellipsoid) and Boolean variables cld, hum, act (with the same meaning as in [8, 12,
15]).

The growth of the cloud can produce more objects into scene, but the size of the
dictionary (i. e. number of keys and items) stays the same as in the beginning when
it was initiated.

Each growth of the cloud the cells with cld = True are duplicated and joined into
a mesh and the new volume is linked to the mesh. The meshes and volumes can be
stored in a list or a dictionary but it is not necessary.

First versions of the script generated spherical meshes with particle volumes
linked to them. It was done for each cell of the grid in the beginning before cre-
ating the animation. The animation was done by hiding or showing the volumes (the
meshes stayed hidden) while keyframing them. The resulting clouds had sharp shad-
ows and the regular structure of the grid was obvious (Figure 6.2 on the left). The
solution was slow because it generated a lot of unutilised objects into the scene.

Memory complexity of the final solution is in the worst case scenario double the
amount of grid cells.

30

4.4. Blender scripting

Figure 4.4: Colourful sunset

4.4.6 Colours

The colour of the cloud is computed by illumination.
It is possible to have clouds in blue sky, sunset or sunrise. Several versions of sky

were tried: light blue texture, photograph of sky, but the best results were with using
Blender Sky texture nodes.

There are three types of Sky nodes, each of them based on different sky model.
The sky used in the initial images was from Hošek and Wilkie [25]. Their sky’s
colour changes depending on Turbidity and Ground Albedo. The Sky texture
based on paper by Preetham et al. [13] is quite similar. One minor disadvantage of
these Sky textures is that there needs to be a light source added and set up.

The last Sky texture node16 is based on Nishita’s seminal paper [9]. Quite in-
teresting results can be achieved with the parameter Air (which is for density of air
molecules). By increasing this parameter the sky reddens and with it the particle
volumes darken in the scene (Figure 4.4).

This sky texture also takes as parameters Sun Elevation and Sun Rotation.
This sun removes the need for artificial sun in the scene (Figure 4.5). For visual
check of this node’s parameters Cycles render17 has to be set up in Blender.

4.4.7 Cloud texture

Cloud texture is a type of noise texture. The cloud texture is used for displacement
of particles in generated clouds. In the plugin the parameter displacement degree is
used as strength of the noise texture in the particle volumes.

User can change several of the texture parameters. The change will propagate
also into existing clouds, because the same texture is identical for every run of the

16It is a method for displaying the earth from outer space.
17Cycles render is not default option after starting new Blender file. Running the plugin for the first

time sets the Cycles as active render.

31

4. REALISATION

Figure 4.5: Blue sky

plugin. Most observed differences are made by changing noise scale of the texture –
parameter named Size. Increasing the size creates blurred regions in the noise. It is
made by enlarging small area of the initial noise texture (generated by random num-
bers) into bigger dimension and subsequently blurring the image. Table 4.1 shows
rendered clouds with different sizes of noise textures and bits of the textures dis-
played on the spheres.

Table 4.1: Effect of increasing the size of cloud noise texture: bottom right quadrant
of each volume is an example of used noise texture

Parameters

Size 0.1 0.2 0.4 0.6 1
Particles 128
Displacement 2.5
Density 1

4.4.8 Technical problems

Considerable time was spent trying to resolve technical problems associated with
Blender 2.9x. Several unsuccessful installations on both Linux and Windows were

32

4.5. Plugin parameters

experienced. One of which was on a virtual machine provided by school. The prob-
lem stemmed from obsolete components and a lack of support of newer versions of
OpenGL which is required for rendering.

4.5 Plugin parameters

Effect of every parameter linked to cloud appearance can be difficult to understand
theoretically. The following tables contain examples to demonstrate sample degrees
of freedom of the presented model.

Table 4.2: Amount of particles

Parameters

Particles 32 64 128 256 512
Displacement 0.5
Density 1

Table 4.3: Displacement degree

Parameters

Particles 128
Displacement 0 0.5 1.3 2.5 4
Density 1

33

4. REALISATION

Table 4.4: Density

Parameters

Particles 128
Displacement 0.5
Density 0.1 0.3 0.6 1 4

34

CHAPTER 5
Testing

This section will present the conclusions of tests of the plugin’s user interface. The
comments of the testers were taken as an initiative for improving documentation.

5.1 Personas

Two abstract personas were selected to cover most of the user base.

Persona A is based on a 50-year-old man. He is an amateur meteorologist and he
knows types of clouds and likes to photograph them. He works with computer on a
daily basis. Every year he makes New Year postcards in Photoshop or in Gimp. He
never worked with any graphical program for creating three-dimensional models or
animations but he was curious after hearing about the plugin and decided to install
Blender.

Persona B is modelled on a 24-year-old student. He learnt to work with Maya
and AutoCAD for creating school projects. He uses Blender to model objects and
creating short animations in his free time.

5.2 Testing scenarios

The testing subjects had to complete several tasks. First task was to install plugin
into Blender and run the plugin with default settings to generate a cloud. Second task
included generating a cloud based on more detailed information. Specified informa-
tion were size of initial cloud, wind vector, frequency of cloud motion and number
of cloud particles.

35

5. TESTING

5.3 Conclusion of testing

Testing subject A had minor problems with installing the plugin. He suggested
README to the plugin where the installation process would be described. He would
also welcome instructions for setting up sky and lighting the clouds in the scene. The
subject A also noted that the names of some parameters are unclear and not intuitive
and that a description of the parameters in the plugin menu would be helpful. He
tried to generate several clouds with different values of parameters. He was quite
content with the resulting clouds.

Testing subject B did not have any problems with the plugin installation. He tried
the plugin on his notebook. He found it to be hardware demanding. There are known
performance issues that could be optimized later by further development.

36

CHAPTER 6
Results

6.1 Version 1.x

From version 1.0 of the cloud generator the growing clouds were generated by script
(as a pre-phase of the plugin) in Blender 2.92.0. Versions 1.x create whole three-
dimensional grid of spherical objects. Centres of adjacent cells are 1 unit apart.
There is a sphere with radius of 1 unit in each cell and it has its own particle volume.
The cloud generation is very slow and the Blender file sizes have tendency to quickly
grow out of control. Sky texture used as a background was based on Hošek/Wilkie
and each cloud has to have its own light that has to be moved with the moving cloud
for better illumination of the particle volumes (Figure 6.1). The last image of Figure
6.1 has visible artifacts due to render image computation. Exact origin of this artefact
is unknown.

The grid composed of spherical cells was noticeably obvious when shadows were
computed. When shadows were disabled it created cartoon-like clouds (Figure 6.2).

37

6. RESULTS

Figure 6.1: Version 1.1, moving light with cloud

38

6.1. Version 1.x

Figure 6.2: Version 1.2 with and without shadows

39

6. RESULTS

Figure 6.3: Version 2.1, radius of spheres = 2

Figure 6.4: Version 2.06

6.2 Version 2.x

In version 2.0 and later, spheres were added into the cloud during each step of the
growth phase as they were required. Radius of cell spheres is randomized to be in
interval (1, 2). Later this value was set to 2 in hopes of eradicating most of the
shadows and improving the cloud shape (Figure 6.3). This has proven insufficient
and was discarded in later versions.

Nishita’s sky was welcomed as a background because it provided more comfort-
able solution of cloud illumination (Figure 6.4).

40

6.3. Version 3.x — Plugin

Figure 6.5: Version 3.12

6.3 Version 3.x — Plugin

Version 3.0 brought more changes to the generator. In this version the spheres that
form the basis for clouds were replaced by ellipsoids with randomized radius from
interval (1,2). Another big change was than only one particle volume was assigned
to a cloud growth iteration. This change finally solved the problem of evident grid
structure on the pictures (Figure 6.11).

More time was spent with setting up different parameters for better visuals of the
clouds, e. g. displacement degree of particles in a cloud and size of the displacing
cloud texture. And lastly the script was finalised and turned into a plugin.

41

6. RESULTS

Figure 6.6: Version 3.14, sun from behind

42

6.3. Version 3.x — Plugin

Figure 6.7: Version 3.14, more clouds in scene

43

6. RESULTS

Figure 6.8: Version 3.14, growth + movement

44

6.4. Render speed

Figure 6.9: Version 3.14, particles per cloud = 64

6.4 Render speed

The render of five-framed animation with Full HD resolution took 4m 17s when the
cloud had 64 particles per volume (Figure 6.9). The render took 24m 20s for cloud
with 512 particles per volume (Figure 6.10). Rendering was done on a machine with
CPU Ryzen 5 5900X, RAM 96GB, GPU RTX 3080.

45

6. RESULTS

Figure 6.10: Version 3.14, particles per cloud = 512

46

6.4. Render speed

Fi
gu

re
6.

11
:V

er
si

on
3.

14

47

6. RESULTS

6.5 Comparison of clouds

The cloud generator has undergone great development. Clouds generated in early
stages of the plugin development had evident regular structure because of layered
volumes of particles. The models and rendered images only remotely resembled
clouds with their colour and particle structure. The final version of plugin generate
clouds that look like cumuli clouds on a nice sunny day.

The clouds cast shadows on each other and other objects in their line of illumina-
tion. They are modelled as a part of the scene therefore they obstruct the rays of light
when shadows are computed for rendering in Cycles render in Blender. The clouds
and their shadows in articles [12, 15] (where similar method for creating clouds was
used) have to be computed in advance and stored in a buffer for later blending be-
cause OpenGL computes illumination for every object separately from each light and
the rest of the scene is ignored.

48

Conclusion

This thesis outlines different types of clouds and existing approaches to simulating
them. I read articles on the topic of creation of clouds, their colours and types.
Writing of my thesis required extensive observation of clouds in their natural habitat,
the sky.

Several papers written on different approaches to generating clouds and their vi-
sualization in computer graphics were consulted. This thesis only manages to scratch
the surface. The approaches studied were heuristic procedural solutions with stochas-
tic variables, image-based processing methods and methods based on physical pro-
cesses of fluid dynamics. The approaches with three-dimensional models were more
in kind with my imagination.

I analysed methods that use cellular automaton and methods that use coupled
map lattices. A comparison of these two methods was done based on their time
complexity, memory complexity and diversity of resulting clouds.

Finally I decided to implement a cellular automaton for generating dynamic
clouds as a Blender plugin.

The resulting clouds are from the cumulus family. By variation of the lighting
white puffy clouds or stormy giants can be depicted.

This cloud generating plugin is intended for work in Blender which is ideal for
making animations. Even though the generator can produce only one type of cloud
with this plugin, many distinct clouds can be placed into a scene where they can
move and evolve individually over time.

Although my solution requires high performance machine or long render times it
can produce complex cloud systems with different vectors of motion and speed.

During the work on this thesis I got acquainted with new version of Blender
which I found much more elegant than the older versions.

Every time I look up on the sky I think about what could have been done dif-
ferently in my solution and I would like to someday revisit this topic and try to
implement a different approach and develop it more.

49

Bibliography

1. CSURI, C.; HACKATHORN, R.; PARENT, R.; CARLSON, W.; HOWARD,
M. Towards an Interactive High Visual Complexity Animation System. In: Pro-
ceedings of the 6th Annual Conference on Computer Graphics and Interactive
Techniques. Chicago, Illinois, USA: Association for Computing Machinery,
1979, pp. 289–299. SIGGRAPH ’79. ISBN 0897910044. Available from DOI:
10.1145/800249.807458.

2. REEVES, William T. Particle Systems - A Technique for Modeling a Class of
Fuzzy Objects. ACM Transactions on Graphics. 1983, vol. 2, pp. 359–376.

3. KAJIYA, James T.; VON HERZEN, Brian P. Ray Tracing Volume Densities.
SIGGRAPH Comput. Graph. 1984, vol. 18, no. 3, pp. 165–174. ISSN 0097-
8930. Available from DOI: 10.1145/964965.808594.

4. WOLFRAM, Stephen. Computation theory of cellular automata. Communica-
tions in mathematical physics. 1984, vol. 96, no. 1, pp. 15–57.

5. Laputa: Castle in the Sky [film]. Director Hayao MIYAZAKI. Japan: Studio
Ghibli, 1986.

6. KANEKO, Kunihiko. Simulating physics with coupled map lattices. In: Forma-
tion, Dynamics And Statistics Of Patterns: (Volume 1). World Scientific, 1990,
pp. 1–54.

7. WYVILL, Geoff; TROTMAN, Andrew. Ray-tracing soft objects. In: CG Inter-
national’90. Springer, 1990, pp. 469–476.

8. NAGEL, Kai; RASCHKE, Ehrhard. Self-organizing criticality in cloud forma-
tion? Physica A: Statistical Mechanics and its Applications. 1992, vol. 182, no.
4, pp. 519–531.

9. NISHITA, Tomoyuki; SIRAI, Takao; TADAMURA, Katsumi; NAKAMAE,
Eihachiro. Display of the earth taking into account atmospheric scattering. In:
Proceedings of the 20th annual conference on Computer graphics and interac-
tive techniques. 1993, pp. 175–182.

51

https://doi.org/10.1145/800249.807458
https://doi.org/10.1145/964965.808594

BIBLIOGRAPHY

10. MAX, Nelson. Efficient light propagation for multiple anisotropic volume scat-
tering. In: Photorealistic Rendering Techniques. Springer, 1995, pp. 87–104.

11. FOSTER, Nick; METAXAS, Dimitris. Modeling the motion of a hot, turbulent
gas. In: Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. 1997, pp. 181–188.

12. DOBASHI, Yoshinori; NISHITA, Tomoyuki; OKITA, Tsuyoshi. Animation of
clouds using cellular automaton. In: Proceedings of Computer Graphics and
Imaging. 1998, vol. 98, pp. 251–256.

13. PREETHAM, A. J.; SHIRLEY, Peter; SMITS, Brian. A Practical Analytic
Model for Daylight. In: Proceedings of the 26th Annual Conference on Com-
puter Graphics and Interactive Techniques. USA: ACM Press/Addison-Wesley
Publishing Co., 1999, pp. 91–100. SIGGRAPH ’99. ISBN 0201485605. Avail-
able from DOI: 10.1145/311535.311545.

14. STAM, Jos. Stable Fluids. In: Proceedings of the 26th Annual Confer-
ence on Computer Graphics and Interactive Techniques. USA: ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 121–128. SIGGRAPH ’99.
ISBN 0201485605. Available from DOI: 10.1145/311535.311548.

15. DOBASHI, Yoshinori; KANEDA, Kazufumi; YAMASHITA, Hideo; OKITA,
Tsuyoshi; NISHITA, Tomoyuki. A Simple, Efficient Method for Realistic Ani-
mation of Clouds. In: Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques. USA: ACM Press/Addison-Wesley Pub-
lishing Co., 2000, pp. 19–28. SIGGRAPH ’00. ISBN 1581132085. Available
from DOI: 10.1145/344779.344795.

16. MIYAZAKI, R.; YOSHIDA, S.; DOBASHI, Y.; NISHITA, T. A method for
modeling clouds based on atmospheric fluid dynamics. In: Proceedings Ninth
Pacific Conference on Computer Graphics and Applications. Pacific Graph-
ics 2001. 2001, pp. 363–372. Available from DOI: 10.1109/PCCGA.2001.
962893.

17. WEISSTEIN, Eric W. Cellular automaton. https://mathworld.wolfram. com/.
2002.

18. DORETTO, G.; CHIUSO, A.; WU, Y. N.; SOATTO, S. Dynamic textures. ijcv.
2003, vol. 51, no. 2, pp. 91–109.

19. DORETTO, G.; SOATTO, S. Editable dynamic textures. In: cvpr. Madison,
Wisconsin, USA, 2003, vol. 2, pp. 137–142.

20. LIAO, Horng-Shyang; CHUANG, Jung-Hong; LIN, Cheng-Chung. Efficient
Rendering of Dynamic Clouds. In: Proceedings of the 2004 ACM SIGGRAPH
International Conference on Virtual Reality Continuum and Its Applications
in Industry. Singapore: Association for Computing Machinery, 2004, pp. 19–
25. VRCAI ’04. ISBN 1581138849. Available from DOI: 10.1145/1044588.
1044591.

52

https://doi.org/10.1145/311535.311545
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/344779.344795
https://doi.org/10.1109/PCCGA.2001.962893
https://doi.org/10.1109/PCCGA.2001.962893
https://doi.org/10.1145/1044588.1044591
https://doi.org/10.1145/1044588.1044591

Bibliography

21. MORIN, David. Introduction to classical mechanics: with problems and solu-
tions. Cambridge University Press, 2008.

22. LIU, Zhenbao; WANG, Zhongsheng; ZHANG, Chao. Scheme of Dynamic
Clouds Generation for 3D Real Time Flight Simulation. 2010. Available from
DOI: 10.1109/ICCMS.2010.24.

23. HAINDL, Michal; FILIP, Jiri. Visual texture: Accurate material appearance
measurement, representation and modeling. Springer Science & Business Me-
dia, 2013.

24. HAINDL, Michal; RICHTR, Radek. Dynamic texture enlargement. In: Pro-
ceedings of the 29th Spring Conference on Computer Graphics. 2013, pp. 5–
12.

25. WILKIE, Alexander; HOŠEK, Lukas. Predicting sky dome appearance on
earth-like extrasolar worlds. In: Proceedings of the 29th Spring Conference on
Computer Graphics. 2013, pp. 145–152.

26. RICHTR, Radek; HAINDL, Michal. Dynamic texture editing. In: SCCG. 2015,
pp. 133–140.

27. EMERY, William; CAMPS, Adriano. Chapter 8 - Atmosphere Applications.
In: EMERY, William; CAMPS, Adriano (eds.). Introduction to Satellite Remote
Sensing. Elsevier, 2017, pp. 597–636. ISBN 978-0-12-809254-5. Available from
DOI: https://doi.org/10.1016/B978-0-12-809254-5.00008-7.

28. GUERRILLA. Horizon Zero Dawn [comp. software]. 2017. Available also
from: https://www.playstation.com/en-us/games/horizon-zero-
dawn/.

29. HINTERLAND STUDIO INC. The Long Dark [comp. software]. 2017. Avail-
able also from: https://www.thelongdark.com/.

30. RICHTR, Radek. Modelovánı́ dynamických textur. 2018. PhD thesis.
Výpočetnı́ a informačnı́ centrum, České vysoké učenı́ v Praze.

31. RICHTR, Radek; HAINDL, Michal. Dynamic Texture Similarity Criterion.
In: 2018 24th International Conference on Pattern Recognition (ICPR). 2018,
pp. 904–909.

32. CHU, Rui Jian; RICHARD, Noël; CHATOUX, Hermine; FERNANDEZ-
MALOIGNE, Christine; HARDEBERG, Jon Yngve. Hyperspectral Texture
Metrology Based on Joint Probability of Spectral and Spatial Distribution.
IEEE Transactions on Image Processing. 2021, vol. 30, pp. 4341–4356.
Available from DOI: 10.1109/TIP.2021.3071557.

53

https://doi.org/10.1109/ICCMS.2010.24
https://doi.org/https://doi.org/10.1016/B978-0-12-809254-5.00008-7
https://www.playstation.com/en-us/games/horizon-zero-dawn/
https://www.playstation.com/en-us/games/horizon-zero-dawn/
https://www.thelongdark.com/
https://doi.org/10.1109/TIP.2021.3071557

APPENDIX A
Acronyms

CA Cellular automation

CML Coupled map lattice

IBR Image-based rendering technique

55

APPENDIX B
Contents of enclosed CD

readme.txt...........................the file with CD contents description
src... the directory of source codes

plugin................................ the directory of implementation
thesis.................. the directory of LATEX source codes of the thesis

text...the thesis text directory
thesis.pdf.............................. the thesis text in PDF format

visualization.............the directory of described visualization methods
Blender...............................Blender file with example scene
WolframMathematica................. the directory of examples in WM

renders............................the directory of high resolution renders

57

	Introduction
	Goals and objectives
	Research
	What are clouds
	Creation of cloud
	Cloud's colours

	Types of clouds
	Clouds in computer graphics
	Computer games and films
	Used concepts
	Cellular automaton
	Coupled map lattice
	Particle systems
	Doretto's dynamic textures
	Richtr's dynamic textures

	Fluid dynamics
	Navier-Stokes equations
	Stable fluids

	Analysis and design
	Generator
	Cellular automaton
	Coupled map lattice
	Chosen method

	Visualization
	OpenGL
	Blender

	Design
	Requirements
	Use cases

	Realisation
	Chosen method
	First results
	First attempts in Blender
	Blender scripting
	Script sketch
	Initialization of cloud
	Growth of cloud
	Movement of clouds
	Representation of data
	Colours
	Cloud texture
	Technical problems

	Plugin parameters

	Testing
	Personas
	Testing scenarios
	Conclusion of testing

	Results
	Version 1.x
	Version 2.x
	Version 3.x | Plugin
	Render speed
	Comparison of clouds

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

