




Bachelor’s thesis

Urban scene recognition and editing II.

Pavel Kříž

Department of Software Engineering
Supervisor: Ing. Radek Richtr, Ph.D.

May 13, 2021





Acknowledgements

I want to thank my bachelor thesis supervisor Ing. Radek Richtr, Ph.D. for
how he led me to the solutions and gave me answers for my questions. I also
want to thank Ing. Jiří Chludil for helping me understand all the technical
specifications regarding the Dowry Towns of Bohemians Queens project that
I needed. Last but not least, I want to thank my father and sister who helped
me to correct my grammar and improve other features of my text.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 13, 2021 . . .. . .. . .. . .. . .. . .. . .



Czech Technical University in Prague
Faculty of Information Technology
© 2021 Pavel Kříž. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Kříž, Pavel. Urban scene recognition and editing II.. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2021.



Abstrakt

Naše práce je součástí projektu Věnná města českých královen, jehož cílem
je přiblížit historii široké veřejnosti za použití moderních technologií, jako je
rozšířená realita. K tomu slouží aplikace pro mobilní zařízení se systémem
Android, která za běhu zobrazuje historické prvky do scény fotoaparátu. Tato
práce se na jejím vývoji podílí tím, že navrhuje lokalizační řešení pro aplikaci
za použití obrazových a geolokačních dat. V úvodu jsou popsány a analyzovány
potenciálně použitelné technologie a práce, které v rámci uvedeného projektu
naší práci předcházely. Tato práce pak konkrétně navazuje na bakalářskou
práci Rozpoznávání a editace urbanistické scény. Výsledky předcházející práce
jsme adaptovali pro potřeby naší práce, ve které jsme realizovali nový pokro-
čilejší prototyp založený na výpočtu globální polohy zařízení. Nový prototyp
je pak testován na funkčnost i na praktickou použitelnost s ohledem na hard-
warové možnosti zařízení a porovnáván se stávajícími možnostmi zařízení. V
závěru práce je posuzováno zapojení prototypu do mobilní aplikace projektu
a jsou předloženy podněty pro další budoucí vývoj.

Klíčová slova počítačové vidění, lokalizace, rozšířená realita, OpenCV, ob-
razové příznaky, Věnná města českých královen

vii



Abstract

Our work is part of the Dowry Cities of Czech Queens project, which aims to
bring history closer to the general public using modern technologies such as
augmented reality. This is done using an application for Android mobile de-
vices, which displays historical elements in the camera scene at runtime. This
work contributes to its development by proposing a localisation solution for
the application using image and geolocation data. The introduction describes
and analyses potentially applicable technologies and works that preceded our
work within the project. This work then specifically follows on from the bach-
elor’s thesis Recognition and Editing of the Urban Scene. We adapted the
results of the previous work for the needs of our work, in which we imple-
mented a new more advanced prototype based on the calculation of the global
position of the device. The new prototype is then tested for functionality
and practical applicability with respect to the hardware capabilities of the de-
vice and compared with existing device capabilities. At the end of the work,
the involvement of the prototype in the mobile application of the project is
proposed and suggestions for further future development are presented.

Keywords computer vision, localisation, augmented reality, OpenCV, im-
age features, Dowry Towns of Bohemian Queens

viii



Contents

Introduction 1

1 Research 3
1.1 From light to the image . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Human perception of colors . . . . . . . . . . . . . . . . 3
1.1.2 Representation of colors . . . . . . . . . . . . . . . . . . 5
1.1.3 Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Image pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Gamma correction . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Converting image to grayscale . . . . . . . . . . . . . . . 7
1.2.3 Histogram equalisation . . . . . . . . . . . . . . . . . . . 7
1.2.4 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 Crop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Local image features . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Categories of features . . . . . . . . . . . . . . . . . . . 9
1.3.2 Local features properties . . . . . . . . . . . . . . . . . . 10

1.4 Feature detection and description . . . . . . . . . . . . . . . . . 11
1.4.1 LBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.3 BEBLID . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.1 Methods of feature matching . . . . . . . . . . . . . . . 15
1.5.2 Methods of filtering matches . . . . . . . . . . . . . . . 16

1.6 Perspective-n-Point problem . . . . . . . . . . . . . . . . . . . . 16

2 The context of our work 19
2.1 The Dowry Towns of Bohemian Queens project . . . . . . . . . 19

2.1.1 History of the dowry towns . . . . . . . . . . . . . . . . 20
2.1.2 Project goals . . . . . . . . . . . . . . . . . . . . . . . . 20

ix



2.2 Urban scene recognition and editing . . . . . . . . . . . . . . . 20
2.2.1 Design of Šefčík’s work . . . . . . . . . . . . . . . . . . . 21
2.2.2 Realisation and testing in Šefčík’s thesis . . . . . . . . . 21

2.3 Dowry Towns of Czech Queens - Core . . . . . . . . . . . . . . 22
2.3.1 Previous state of the project . . . . . . . . . . . . . . . 22
2.3.2 Design and realisation . . . . . . . . . . . . . . . . . . . 24

3 Analysis 25
3.1 Previous theses . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Urban scene recognition and editing I . . . . . . . . . . 25
3.1.2 DTBQ - Image recognition module . . . . . . . . . . . . 26

3.2 Computer vision libraries . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 OpenCV . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 ML Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 ARCore . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Programming language . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Feature detecting, extracting and matching methods . . . . . . 35
3.4.1 Feature detecting and extracting . . . . . . . . . . . . . 35
3.4.2 Feature detecting and extracting in OpenCV . . . . . . 35
3.4.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . 37
3.4.4 Feature matching in OpenCV . . . . . . . . . . . . . . . 38

4 Prototype development 39
4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Programming language . . . . . . . . . . . . . . . . . . 39
4.1.2 Configurability . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Database . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.5 Elimination based on location . . . . . . . . . . . . . . . 41

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Input and output formats . . . . . . . . . . . . . . . . . 41
4.2.2 Processing pipeline . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Configurability . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Installing OpenCV . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 Installing Boost C++ Libraries . . . . . . . . . . . . . . 54
4.4.3 Running and compiling our prototype . . . . . . . . . . 55

x



5 Future outlook 57
5.1 Contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Design of the localisation module . . . . . . . . . . . . . . . . . 57

5.2.1 Integration of the already finished code . . . . . . . . . 60
5.3 Future improvements proposals . . . . . . . . . . . . . . . . . . 60

5.3.1 Future modules data requirements . . . . . . . . . . . . 61

Conclusion 63

Bibliography 65

A List of used abbreviations 69

B Contents of the attached data storage 71

C Test results 73

xi





List of Figures

1.1 Gamma corrections examples with different gamma values . . . . . 6
1.2 Example of histogram equalisation . . . . . . . . . . . . . . . . . . 8
1.3 Examples of all possible features . . . . . . . . . . . . . . . . . . . 10
1.4 Demonstration of a feature with good repeatability . . . . . . . . . 11
1.5 Illustration of creating the BEBLID descriptor . . . . . . . . . . . 14
1.6 Illustration of feature matching . . . . . . . . . . . . . . . . . . . . 15
1.7 Probability density function (DF) of correct and bad matches . . . 17
1.8 Illustration of the Perspective-n-Point problem . . . . . . . . . . . 18

2.1 Location of dowry towns in the Czech Republic . . . . . . . . . . . 19
2.2 Activity diagram of prototype realisation of Scene Recognition and

Editing bachelor thesis by Šefčík . . . . . . . . . . . . . . . . . . . 22
2.3 Scheme of the whole DTBQ project . . . . . . . . . . . . . . . . . 23

3.1 Performance of Šefčík’s prototype . . . . . . . . . . . . . . . . . . . 27
3.2 Localisation module class diagram of the thesis named DTBQ -

Image recognition module . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Result of a demo from OpenCV tutorial on how to find known

object location in picture . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 ML Kit image labeling example . . . . . . . . . . . . . . . . . . . . 31
3.5 Example of ML Kit detection and tracking . . . . . . . . . . . . . . 32
3.6 Example of an application based on ARCore . . . . . . . . . . . . 33
3.7 Early evaluation of our prototype. . . . . . . . . . . . . . . . . . . 36

4.1 Illustration of creating a reference building image . . . . . . . . . . 42
4.2 Activities diagram of our prototype for default configuration . . . 45
4.3 Illustration from side of a camera coordinates correction. . . . . . . 46
4.4 Testing results of the prototype . . . . . . . . . . . . . . . . . . . . 49
4.5 Results of understanding of the spatial object/building characteristics 50
4.6 Example of building’s reference image size importance . . . . . . . 51

xiii



4.7 Detection of background building instead of foreground object . . . 52

5.1 Visualisation of the localisation with a 3D model of a tower Kropáčka 58
5.2 Sequence diagram of the communication between the application,

localisation module and native code . . . . . . . . . . . . . . . . . 59
5.3 Possible gain of accuracy in case of improving reference images . . 61

C.1 Test result 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
C.2 Test result 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
C.3 Test result 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
C.4 Test result 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.5 Test result 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.6 Test result 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.7 Test result 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C.8 Test result 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C.9 Test result 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C.10 Test result 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
C.11 Test result 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
C.12 Test result 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
C.13 Test result 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
C.14 Test result 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.15 Test result 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.16 Test result 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.17 Test result 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
C.18 Test result 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
C.19 Test result 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
C.20 Test result 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.21 Test result 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.22 Test result 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.23 Test result 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.24 Test result 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.25 Test result 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xiv



List of Tables

3.1 Comparison of OpenCV feature detection and description methods 37
3.2 Comparison of two matching methods. . . . . . . . . . . . . . . . . 38

xv





Introduction

Augmented reality is a term for the method of extending a real world image
by some computer-generated content. The difference of augmented reality
to virtual reality is that the immersion to the computer-generated content is
significantly lower and instead of creating a new world it rather extends the
already existing one. Nowadays, the most common form of augmented reality
is inserting content into the image of a smartphone camera in real time. In
the Dowry Towns of Bohemians queens project one of the goals is to create
a mobile application that will allow to display 3D models in the scene of the
mobile device. The application will display models of historical buildings and
other objects. By doing that will the application create a view to the history
of the place where the application will be used. Such a window to the history
will allow seeing buildings that were already demolished or their look was
changed significantly in their original form at the original places.

In that point occurs a problem for which a solution has to be found. The
historical buildings cannot be displayed randomly all over the place in the
scene of the smartphone camera. The buildings have to be placed on the
exactly determined positions where they have stood before so the display has
a historical value and accuracy. In order to place the buildings into the correct
position the precise location of the smartphone has to be known. Nowadays
positioning (GPS) sensors guarantee accuracy in meters and sometimes they
lose the location accuracy completely. But the accuracy of the positioning is
key to place the buildings in correct positions and a few meters make a big
difference especially in case of smaller buildings.

The solution of that problem is searched in the area of computer vision.
When the building and its location were recognised in the image of the smart-
phone camera, the location towards the building could be calculated. Proto-
type solution of the image recognition was already created in the preceding
thesis Urban scene recognition and editing [1]. But beside the solution of the
image recognition it is also needed to create a solution for calculating the
global location or relative location towards the recognised building.

1





Chapter 1
Research

In this chapter are explained the theoretical basics of the image processing that
we consider to use in this project. In our project the image processing includes
image pre-processing, image identification and comparison of the images based
on their identification. At the end we explain the perspective-n-point problem.

1.1 From light to the image
In this section it is explained what colors are and how to represent them
digitally or what is the image considered to be. More detailed description of
the following topics can be found in the Czech learning book [2]. This whole
section is based on that book.

1.1.1 Human perception of colors

All known kinds of electromagnetic radiation like x-ray, microwave or visible
light are included in the electromagnetic spectrum. Specifically, visible light,
also called the visible spectrum, is a radiation with wavelengths in the range of
about 380 to 720 nm. Specific color is then radiation with specific wavelength
from the visible spectrum. Light with wavelength about 550 nm is perceived as
green and light with wavelength 720 as red. The so-called white light is then
composed of rays from the entire visible spectrum (with all possible visible
wavelengths). Such light is produced by the sun or a light bulb and is called
neutral light (achromatic light). When light hits a surface, some rays of light
are absorbed and some are reflected depending on the physical properties of
the surface. The resulting composition of the reflected rays creates what we
understand as color of the surface. The dominant frequency of light influences
how the color is perceived by humans. For example, a color with a majority
of rays with frequencies about 550 nm would be called green.

The following terms are important for describing colors:

3



1. Research

Luminance is a physical quantity describing the amount of light.

Brightness is a subjective perception of the light intensity.

Saturation purity of the light color is described by this term. The tighter is
the frequency spectrum of light the more saturated the color is.

Lightness in light with some dominant frequency is the lightness, the amount
of neutral light.

Human eye

Rod cells and cone cells are sort of sensors in the human eye which are re-
sponsible for perception of light and color. The rod cells are approximately
ten times more sensitive to light then the cone cells and thus the rod cell’s
purpose is mainly to measure the luminance. The cone cells complement the
rod cells in a way that they measure the colors.

Each cone cell has one of three different photopigments. Each photopig-
ment is more or less sensitive to specific wavelengths. Blue photopigment is a
photopigment that is most sensitive to light rays with a wavelength about 445
nm. Green and red is then most sensitive to rays with wavelengths about 535
nm or 575 nm respectively. Green and red photopigments, compared to blue
ones, are more sensitive to the whole visible spectrum. The photopigments
are also not evenly distributed among the cone cells. In the eye there are the
most cone cells with red photopigment, bit less with green one and the least
with blue one.

Color perception

In the eye, colors are perceived as three basic colors: red (R), green (G) and
blue (B) but the information about the colors is delivered to the brain in
different forms. In the connection between the eye and the brain, the optic
nerve, the colors are combined in the following way: The color information
is represented in two channels. The first one is made by the subtraction of
blue from yellow Y − B and the second one by subtraction of green from red
R − G. There is also a third channel created as an addition of red to green
G + R and the channel indicates the brightness.

Eye adaptation to luminance

An important feature of the human eye is the adaptation to luminance. It is
a phenomenon of perceiving the light intensity changes (seeing surfaces with
different brightness in one view). The light intensity change is not perceived
linearly by humans but logarithmically. Thus, the change of light intensity is
perceived as bigger in lower light intensities than in the higher ones. Thanks to

4



1.1. From light to the image

the luminance adaptation, the human eye is able to perceive a wide luminance
range.

1.1.2 Representation of colors
Colors are digitally represented in various ways, which are called color models.
All colors that can be represented by a color model, create a color space. One
of the most used color models is RGB. The name of the model is an abbre-
viation derived from the three colors: red, green, and blue. These colors are
considered basic colors and they are defined as a specific color in the spectrum
of colors visible by a human. In RGB, colors are expressed as a combination of
the basic colors. RGB is an additive color model. This means that by adding
intensity in each channel, we get a brighter color. So the maximum intensities
of basic colors are combined to create white and the minimum intensities to
create black. Value in each channel is usually represented in range ⟨0, 1⟩ as a
floating-point number or it is represented as an integer in range ⟨0, 255⟩. The
last case is related to the fact that the value is usually stored on 8 bits. A
maximum of 256 different values can be stored on 8 bits(28 = 256).

There are many other color models and spaces. One of them is the color
space CIE 1976 L*a*b* (also called CIELAB), that is closer to how humans
perceive colors than RGB. This color model also has three channels but one
of them stores the lightness of the color (channel L*). The other two channels
are axis in the color space, the first one is an axis that goes from green to
red (channel a*), and the second one goes from blue to yellow (channel b*).
There are other models similar to this one, such as the YUV color model. This
color model also has three color channels (Y, U and V) from which two (U
and V) determine the chrominance (color) and the third channel (Y) stores
the brightness.

1.1.3 Image
In society, an image is usually understood as a painting, a drawing, or what
people see on the screen, or as light that comes into the human eye. Mathe-
matically, however, we can define an image with a continuous function f with
two variables x and y, x, y ∈ R. Such a function is called an image function
and can be defined as follows:

z = f(x, y) . (1.1)

Such a function considers the infinite size of the image, which is not prac-
tical. Finite image function with range I within some specific boundaries
⟨xmin, xmax⟩ and ⟨ymin, ymax⟩ can be defined as follows:

f : (⟨xmin, xmax⟩ × ⟨ymin, ymax⟩) → I . (1.2)

5



1. Research

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

input

ou
tp
ut

γ = 1
γ = 2.2
γ = 1

2.2

Figure 1.1: Gamma corrections examples with different gamma values

To represent the image digitally, the variables x, y have to be integer numbers.
For discrete image functions, the value z is called pixel (picture element). It
is also important to mention that the value z does not have to be a number.
In the case of RGB, the value z would be a vector made of three numbers.

1.2 Image pre-processing
It is appropriate to think about some pre-processing of the image before the
main image processing. In our case, such pre-processing means to put the
image in a state in which the undesirable influences are diminished as much
as possible. Ideally, the image should be in the same state after the pre-
processing independently on the conditions in which the image was taken.

1.2.1 Gamma correction
Gamma correction is how is called a following non-linear operation [3]:

V ′ = V γ , (1.3)

where V ′ is the output and V is the input and γ is some real number. If
γ < 1, then such an operation is called gamma compression and the γ is called
encoding gamma. If γ > 1, the operation is then called gamma expansion and
the γ is called decoding gamma. Examples of some gamma corrections may
be seen in figure 1.1.

As mentioned above, the luminance is not perceived linearly by the hu-
man eye, but logarithmically, so the human eye is more sensitive to changes
in darker tones of colors in comparison to lighter ones. Therefore, gamma

6



1.2. Image pre-processing

correction is used. When the data is stored using gamma compression, then
more possible values are given for darker tones. This processing has the ad-
vantage that only 8 bits instead of 11 are needed to store the same amount
in the spectrum of dark shades, while maintaining the same visual quality.
But in the end it is needed to transfer the data back to the linear space by
processing all the values with the gamma expansion [3].

1.2.2 Converting image to grayscale
There are several color models that have one channel determining the lumi-
nance of the color. Such color models are YUV for example. When the Y
channel is separated, a grayscale image is created. But not all color models
have such simple conversion.

When converting colors from the RGB color space, it is important to
know that different colors contribute to the perceiving of the brightness of
the color with different amounts. This is due to the distribution of photopig-
ments among the phone cells, as explained above. Thus, when the colors
are converted, specific weights are used in a way that gives us the following
formula [4]:

Ylin = 0.2126 · Rlin + 0.7152 · Glin + 0.0722 · Blin , (1.4)

where Ylin a Rlin, Glin, Blin are values of lightness of the basic colors stored
in the linear space.

If the colors are stored in gamma compressed space, the values are first
transferred back to the linear space by using gamma expansion. Then is done
the conversion to the grayscale and the shades of gray are gamma compressed
again [5]. Different weights may be used for the conversion for different stan-
dards. The weights are also not scientifically determined, but determined
experimentally, so they provide satisfactory results. For simplicity, a linear
conversion from a non-linear color space to non-linear space of shades of grey
is sometimes used [4].

1.2.3 Histogram equalisation
Histogram equalisation is a method to change the global contrast in an image.
A histogram is a distribution of the values in the image. Contrast can be
explained as the difference of values between two objects (points, areas or
lines) [6]. If the contrast is too low, it is difficult to distinguish two objects in
image, see the picture 1.2a with the histogram in the image 1.2b. The values
are crammed in the middle of the histogram, leading to smaller differences
between the values in the image. After applying the equalisation, the values
are evenly distributed among the range of values, see the picture 1.2c with the
histogram 1.2d. The image with an equalised histogram has a higher contrast

7



1. Research

(a) Original image (b) Original histogram

(c) Enhanced image (d) Equalised histogram

Figure 1.2: Example of histogram equalisation. Photo: author

than the original image. Increasing the contrast helps the texture and objects
in the image to stand out more.

For an image of size M × N , where f(x, y) is a pixel at coordinates x, y, is
the image with an equalised histogram computed as follows. In the histogram
H, the quantity of each value from the range L is placed as follows [6]:

H(i) =
M∑

x=1

N∑
y=1

{
1 f(x, y) = i

0 otherwise
. (1.5)

The pixel g(x, y) in the output picture at coordinates x, y is than calculated
as follows:

g(x, y) = CDF (f(x, y)) − CDFmin

M · N − CDFmin
· (L − 1) , (1.6)

where CDF is the cumulative distribution function with minimum KDFmin

which is defined as follows:

CDF (j) =
j∑

i=1
H(i) . (1.7)

8



1.3. Local image features

The explained process takes into account the global histogram for the whole
image. Sometimes, such an adjustment is not sufficient and it is necessary
to use a more complex method. A method created by a simple modification
in this method, which gives significantly better results, is called the adap-
tive histogram equalisation (AHE). The adjustment is not to use the global
histogram, but a local histogram created from the neighborhood around the
calculated pixel. Another additional option of modification is the contrast lim-
ited adaptive histogram equalization (CLAHE), which does what AHE does,
but also clips the quantities to a certain limit [6].

1.2.4 Scaling
Scaling is such image processing in which the size of the image is changed.

1.2.5 Crop
Crop of the image is a method of removing unwanted parts of the image. By
using crop the wanted part of the image stands out more.

1.3 Local image features
Local features are such a pattern that is clearly distinguishable within its
closest neighborhood. Usually, the feature is some change of a property of an
image, despite the fact that the feature does not have to lie directly on the
change. Usually, the properties of an image are: luminance, color or texture.
Different examples of features can be seen in the image 1.3. The features may
be edges or small image patches as can be seen in the left outline drawings.
Features are often points, such as points (marked with small circles) in the
image on the right. The features neighborhood is usually described after
the detection of the features in the image and the products of that are the
descriptors of the features. The process of describing the features is then
called description or extraction of features. The descriptors are then what is
usually used for various purposes [7].

The features are sometimes also called keypoints, or interest points. The
image features are studied for a long time and the first paper was published
in 1954. Feature detection has evolved a lot since then. One of the interesting
properties is that the combination of features detected on straight lines and
rectangular corners is often an indication of structures made by humans [7].

1.3.1 Categories of features
There can be three categories of use of algorithms that have something to do
with features detection. This is not the only way to categorise these algo-
rithms, but their categorisation in this way helps to determine which proper-

9



1. Research

Figure 1.3: Examples of all possible features. Features might be lines or
surfaces as in outline drawings or points as in the grayscale image. Illustration
is taken from [7].

ties of features are important in which situations. The first case of use (first
category) is when meanings are assigned to the features. A good example is
when it is assigned the meaning of being roads or railroads to the line fea-
tures in the aerial photos. In the second case of use, the features are used as
anchors. Such features have to be reliably detected (all the time at the same
location) among multiple detections. Good examples of such use are searching
for matches, object tracking or creating panoramas. In the third category, the
features are used as a representation of the content in the image. Here it is not
the meaning of individual features or accurate location that is important, but
rather the properties of all the features together as a whole. Categorization
of the image content is a good representation of this category [7].

1.3.2 Local features properties

Local features are such features that have a specific spatial meaning in regard
to their neighborhood. Such neighborhoods may be any area in the image.
As a result, the local features have reasonable invariance across unfavorable
visibility conditions. Ideally, however, the features should represent some
meaningful geometric objects. But this is complicated and it is not even
considered nowadays. However, quality algorithms of feature detection should
have the following properties (not necessarily all of them at the same time) [7]:

Repeatability If there are multiple photos of the same object and a feature
is detected in one picture, then the feature has to be also detected in
other photos (if the feature is properly visible). There are two ways to
achieve repeatability. The first way is the invariance of transformations,
such as rotation or scaling. The second way is the robustness, which is

10



1.4. Feature detection and description

Figure 1.4: Demonstration of a feature (highlighted with the circle) with good
repeatability. Feature is detected despite different angles of view, noise and
slight rotation. Photo: author

meant as insensitivity to noise or other minor influences. Examples of
both ways and high repeatability can be seen in image 1.4.

Distinctiveness Feature with this property can be well distinguished from
other features detected in the image or in other images. To some extent,
this property is in contradiction to invariance and robustness. The in-
variance and robustness are usually done by ignoring some information
and that leads to less information by which the feature can be distin-
guished.

Locality Is the property of the feature depending only on the neighborhood
of the feature.

Quantity The number of features should be big enough to cover sufficiently
even small objects in the image. In some cases the high number of
features is not convenient so a limit of the features quantity has to be
set.

Accuracy If the same feature is detected in two different images, then the lo-
cation has to be in the same place in relation to the spatial configuration
of the two images.

Efficiency Short computation time is preferred especially in real-time appli-
cations.

1.4 Feature detection and description
In our thesis, several feature detection and description methods are briefly
described. A more detailed description of some of these and other methods
can be found in the previous bachelor thesis [1].

11



1. Research

1.4.1 LBP
Local binary patterns (LBP) are features that are calculated for each pixel in
the image as follows [8]:

LBPP,R =
P −1∑
p=0

s (gp − gc) 2p where s(x) =
{

1 x ≤ 0
0 x > 0

, (1.8)

gp means an adjacent point (the point has the value of the pixel on which it
is) value with index p, gc is the value of the evaluated pixel (central point).
The adjacent points lie evenly on a circle around the central point. Param-
eters P and R determine the number of adjacent points and the radius R
(measured in pixels) of the circle. For R = 1 the adjacent points lie in the
direct neighborhood pixels of the evaluated pixel.

A partial rotation invariance can be created by applying a bit shift to
the right on all the calculated values. The right shift is applied until 1 is in
the least significant position. With the help of this modification, the LBP is
invariant to rotations of multiples of the value 360/P .

1.4.2 SIFT
Scale-invariant feature transform (SIFT) was patented by University of British
Columbia [9] and published by David Lowe [10]. The patent expired in the
year 2020.

Further description of the SIFT is freely taken from work [11]. SIFT is in-
variant to lighting changes, orientation, uniform scaling and partially invariant
to affine transformations. These properties guarantee robustness preventing
many negative influences. Although it is an old method, it has good results
compared to other methods according to this comparison study [12].

The output of the SIFT algorithm is a list of N keypoints. The way of
computing the keypoints are the following steps:

• Creation of images in many different scales created from the original
image. This process is often called a creation of an image pyramid. The
levels of this pyramid are the images in different scales,

• Detecting extremes across all the images from the pyramid. The de-
tected points are candidates of being keypoints,

• Keypoints localisation,

• The canonical rotation is assigned to these keypoints,

• Generation of descriptors of these keypoints.

The output structure of keypoints xi is defined as follows xi = {x, y, σ, o, f},
where x and y are the coordinates of the keypoint in the image, σ is the scale

12



1.4. Feature detection and description

in which the keypoint was calculated, o is the canonical orientation, f is the
SIFT descriptor. The descriptor is a vector of 128 floating point numbers.

RootSIFT

RootSIFT is a modification of the SIFT algorithm that increases the accuracy
without greater memory storage requirements or significantly higher process-
ing cost [13]. The modification of the algorithm is not complicated and it
consists of a few steps after the keypoints description. The steps are as fol-
lows:

First step The first step is to L1 normalise the SIFT descriptors (originally
they are L2 normalised).

Second step Square root all the descriptors

Third step L2 Normalise all the descriptors.

L1-normalised vectors must meet following condition:

n∑
i=0

xi = 1 and xi ≥ 0. (1.9)

L2-normalised vectors must meet following condition:

n∑
i=0

√
x2

i = 1. (1.10)

Descriptors in this way are then called as RootSIFT descriptors, and compar-
ing them the same as SIFT descriptors leads to comparing them effectively by
the Hellinger kernel. According to the original work that leads to an improved
accuracy. The Hellinger kernel for two L1-normalised histograms(vectors) is
defined as follows:

H(x, y) =
n∑

i=0

√
xiyi. (1.11)

Resulting number is a coefficient that can be used for the comparison.

1.4.3 BEBLID
Boosted efficient binary local image descriptor (BEBLID) is a feature descrip-
tive method that is a binary modification of Boosted efficient local image
descriptor BELID (based on real values) [14]. According to the experiments
in the study, where the BEBLID was introduced [14], it beats the accuracy
and speed of other top performing descriptors ORB, BinBoost and LATCH
at the time (BEBLID was published in 2020).

13



1. Research

Figure 1.5: Illustration of creating the BEBLID descriptor for image patch x
around detected feature. The image was taken from the BEBLID paper [14].

The feature detection works on comparing pairs that are created from
the learned sampling patterns. Sampling patterns are predetermined pairs
of points to be compared around the place that is going to be described.
There is also a process that creates the descriptors invariant to Euclidean
transformations.

In the whole process, a term weak learner is used, which means a function
that creates responses to an image patch around a feature. The responses are
marked h(x) and they create a vector of K learning responses to the weak
learner and hk(z) ≡ hk(x; f, T ) is called the k-th weak learner. The weak
learner depends on the feature extraction function f and threshold T and the
hk(x) is defined as follows:

h(x; f, T ) =
{

1 if f(x) ≤ T

−1 if f(x) > T
. (1.12)

This weak learner is defined for the BELID algorithm and to modify it to make
it create binary outputs, -1 has to be mapped to 0. The feature extraction
function is based on comparing pairs of mean grey values of areas around
pixels. These pairs are determined by the sampling patterns. The descriptor
BEBLID is then vector created by the weak learner, as seen in the figure from
the original study 1.5

1.5 Feature matching
Feature matching is usually a process of finding the best matches for features
from the reference set of features in the second set of features. Not only one
best match has to be searched, some processing needs more than only the best
match. Sometimes it is necessary to have k the best matches (sorted according
to their similarity with the reference feature). The output of this process is a
set of best matches from the second set of features for each feature from the
reference set of features. Descriptors are usually used for the matching, rather

14



1.5. Feature matching

Figure 1.6: Illustration of feature matching between two images of the same
building taken from different angles. The green ones are matched correctly
and the red one is not correct. Photo: author

than the keypoints themselves [15]. Illustration of such a process can be seen
in the image 1.6.

If the scenario in the image 1.6 compares the content of both images, then
the result will probably be that similar content was found in both images.
Filters can be applied to the output matches in order to reduce the number
of miss matched features (as the red match in the picture 1.6). More on that
topic can be found in the previous work [1].

1.5.1 Methods of feature matching
A match for two features is such a pair in which the features are the most
similar ones from two sets of features. The Euclidean distance is used in
comparing the SIFT features [16]. For binary-based descriptors (like ORB),
the Hamming distance is usually used [17]. The smaller the distance, the
more features are considered to be similar. Features with zero distance are
then considered identical [16].

Brute force matching

Straightforward and simple way of feature matching is to use brute force.
When using this method, each feature from the first set of features is compared
to each feature from the second such set [17]. Because the time complexity is
quadratic, time increases rapidly with the number of features.

FLANN based matching

For faster matching of large sets of features, a method based on a freely acces-
sible library called Fast Library for Approximate Nearest Neighbors (FLANN)

15



1. Research

is usually used. With this method, the match is found with the use of hierarchi-
cal structures (randomized kd-trees, hierarchical k mean trees or hierarchical
clustering algorithm for ORB). It is important to note that for some structures
the search does not guarantee the best match. It produces an approximation
of the best match [18].

1.5.2 Methods of filtering matches
As mentioned above, some features might be miss matched. In this section it
is explained how it is possible to try to remove these mismatches.

Cross-check Test

A filter with a simple but working approach is the Cross-check Test. The idea
is to match the features in two directions. First, searching the best matches
for features from the first set of features in the second set, and then doing
the same in the opposite direction. Only the matches that have been found
in both directions are not filtered out [17].

Lowe’s ratio test

Another method of filtering matched features is the Lowe’s ratio test. This
method introduced in the study [19] filters the matches based on the ratio the
closest match distance to the second closest match distance. For this filter, it is
necessary that at least two found matches per feature. If the ratio of distances

best match
second best match is greater than some threshold, the match is filtered out. This
filter guarantees that the match is the best by large margin, so there is not
any similar possible match. Lowe states in his study that the threshold should
be set between 0.7 to 0.8, as can be seen in the image 1.7. There is a graph
of multiple tests of this filter and its results.

RANSAC

Random Sample Consensus (RANSAC) is a method used for interpreting and
smoothing data containing a large number of gross errors. It is important to
note that this is not a filtering method, but it rather just extracts the correct
interpretation of the data as a whole. This method is often used in computer
vision because the feature detection algorithms are prone to errors [20].

1.6 Perspective-n-Point problem
Perspective-n-Point problem (usually referred only as PnP problem) is about
finding the correct transformation of points from world space to local camera
space when specific information is known. The information must contain the
geometry of the points in world space (3D coordinates) and where they have

16



1.6. Perspective-n-Point problem

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Distance ratio (closest one to second closest one)

D
F

DF for correctly matched matches
DF for miss matched matches

Figure 1.7: Illustration of probability density function (DF) of correct and
bad matches depending on the ratio measured by D. Lowe in the study [19].

been projected in the image taken by the camera (2D coordinates). The focal
length of a camera, the sensor size, and the resolution has to be known as
well [21].

An illustration of the problem can be seen in the image 1.8. Where ci

are 3D points in world space, ui are their projections, the translation matrix
t ∈ R3,1 and rotation matrix R ∈ R3,3 create together the resulting transfor-
mation [21].

To project the 3D points into the image, the transformation has to be used
with the projection matrix A in the following way:

s

u
v
1

 = A

1 0 0 0
0 1 0 0
0 0 1 0




r1,1 r1,2 r1,3 t1
r2,1 r2,2 r1,3 t2
r3,1 r3,2 r3,3 t3
0 0 0 1




x
y
z
1

 . (1.13)

The final step is to divide the resulting vector by the s ∈ R. The matrix A
can be created from the information about the camera as follows:

A =

fx 0 cx

0 fy cy

0 0 1

 , cx = w

2
, cy = h

2
, fx = w · f

sx
, fy = h · f

sy
, (1.14)

where w is a width, h is a height of the image resolution, sx is a size of the
camera sensor in horizontal direction, sy is then a size in vertical direction
and f is the focal length of the camera [21].

17



1. Research

Figure 1.8: Illustration of the Perspective-n-Point problem. Image was taken
from OpenCV tutorial [21].

18



Chapter 2
The context of our work

This chapter describes the context of our thesis within the Dowry Towns of
Bohemian Queens project (further called also as DTBQ). Many theses were
created within this project. Two of these and the project itself are introduced
in this chapter.

2.1 The Dowry Towns of Bohemian Queens project

This project was named after a group of towns that were owned by Czech
queens in the past. The institution of the towns owned by Czech queens was
established at the beginning of the 14th century and ceased to exist in 1918. In
group of these towns belong Hradec Králové, Chrudim, Vysoké Mýto, Polička,
Jaroměř, Dvůr Králové, Trutnov, Nový Bydžov and Mělník. As can be seen in
the map 2.1, the towns except Mělník are located in the east of Bohemia [22].

Figure 2.1: Location of dowry towns in the Czech Republic. Image is taken
from website of the DTBQ project [22].

19



2. The context of our work

2.1.1 History of the dowry towns
Several queens had their court in Mělník. One of them was Queen Barbora
Celská, the wife of King Zikmund Lucemburský, or Queen Johana z Rožmitálu,
the wife of King Jiří z Poděbrad. Hradec Králové was a favorite town of Queen
Alžběta Rejčka, the first queen to have dowry towns. She got the towns when
her husband Václav II registered her 20 000 hryvnias of silver on the selected
East Bohemian towns before his death. Hradec Králové was also a favourite
town of Queen Alžběta Pomořanská, the wife of King Karel IV. However, she
was very unpopular in the town because she created big debts on the account of
the town. Thanks to this rich history, the dowry towns are strongly connected
to the Czech history and until nowadays they are considered to be part of the
Czech regional identity [22].

2.1.2 Project goals
The goal and content of the project is to study the presentation of dowry
towns with the help of modern technologies of computer graphics and tools of
historical geography. The main outputs of the project will be mobile applica-
tion and a website that is planned to be used as a historic guide for the dowry
towns. On the website, users will be guided through the urban landscape of
dowry towns using specialised maps of the entire region or each town. A 3D
reconstruction of buildings, which stood or still stands, for Hradec Králové
will be created and offered to the users in virtual reality with examples from
the life of people in the past. Set of products will be published to the pub-
lic to help to inform about dowry towns and popularize the history of these
towns [22].

2.2 Urban scene recognition and editing
The Urban scene recognition and editing thesis, on which this one continues,
is written by Jan Šefčík [1]. Within the DTBQ project, this work deals with
technical problems in the field of smartphone application, especially with the
problem of localisation based on computer vision. Based on this, building
images can be displayed in the scene of smartphone cameras.

Main goals of the thesis are established as follows:

• Researching the possibilities of urban scene recognition,

• Analyse the found possibilities and their restrictions within the DTBQ
project,

• Design and realisation of a prototype that determines the location using
the geolocation and image data,

20



2.2. Urban scene recognition and editing

• Testing the realised prototype and comparing it to the limitations within
the DTBQ project.

The first two goals, researching and analysing methods of image pre-processing,
feature detection and extraction, and feature matching and filtering are met in
the theoretical part of the thesis. Their suitability within the DTBQ project
is discussed too and in the chapter of analysis, there are some useful notes for
improvements.

2.2.1 Design of Šefčík’s work
The practical part of Šefčík’s thesis is devoted to a mobile application design
and a realisation. Application properties and functional and non-functional
requirements are specified within the design.

The requirements can be simplified as follows:

Functional requirements: The application runs in real-time, weather
adaptation, accuracy of the localisation, easy administration of the
database of the historical objects, saving data in the application.

Non-functional requirements: The application runs on the Android oper-
ating system version 9.0 and higher, modularity, quality documentation
in the form of technical documentation and documentation for program-
mers, user manual and video manuals for administrators.

2.2.2 Realisation and testing in Šefčík’s thesis
The design included a much wider area than the realisation itself. The state
of finished implementation is well illustrated by the activity diagram in the
image 2.2. The realised implementation is therefore a prototype of the image
recognition and localisation of the object in an image.

The prototype was implemented using the Python programming language
and OpenCV, the library for computer vision, and the Pillow library. In
the implementation, the feature detecting and extracting method SIFT and
the matching based on the FLANN were used. The Lowe’s ratio test and
RANSAC were used to filter and smooth out the matching output.

A simple file system database of images with buildings of different ar-
chitectural styles was created to test the prototype. Šefčík’s thesis was con-
cluded with that prototype testing, where the performance of the prototype
was evaluated. The importance of image pre-processing was shown in the test-
ing and the good results of CLAHE were specifically mentioned there as the
only worthy method of pre-processing. It was also mentioned that using the
RANSAC algorithm helps a lot with recognition accuracy. A big advantage
of the RANSAC algorithm was that it neglected the bad matches that are
created in repeated patterns (same windows on building).

21



2. The context of our work

Figure 2.2: Activity diagram of prototype realisation of Scene Recognition
and Editing bachelor thesis by Šefčík. The diagram is translated from the
Šefčík’s original [1].

2.3 Dowry Towns of Czech Queens - Core
The Dowry Towns of Czech Queens - Core thesis by Daniel Vančura (in orig-
inal called Věnná města českých královen - jádro) [23] is important work for
the project. This section describes the parts of Vančura’s bachelor thesis in
regard to ours. His thesis is then divided into chapters, in which the first
chapters describe the current state before the beginning of his works and im-
portant technologies in the project. The next chapters talk about design and
realisation.

The main goals of Vančura’s thesis have been:

• Finishing the application programming interface (API),

• Refactoring the data storage,

• Creating documentation for the entire technical area of the project.
Overall, the thesis has to be the documentation itself for other students
working within the DTBQ project.

2.3.1 Previous state of the project

Among others, a principle of 3D model approval and creation is explained in
Vančura’s thesis. The 3D models are models of selected historical buildings
that will be later prepared for the display in virtual and augmented reality.
Before that, these models have to be first created with highest historical ac-
curacy.

22



2.3. Dowry Towns of Czech Queens - Core

Figure 2.3: Scheme of the whole DTBQ project. Vančura’s thesis covered the
green highlighted parts. The scheme is from Vančura’s thesis [23].

The approval process was created, because the 3D model creator and the
historian are not expected to be one person. In this process, the 3D model
creator creates a model, which is then approved by a historian and graphic
designer who check the correctness of the model. This process is facilitated
with version control for the models, so if the model is not approved, a new
version can be created. The models have to be produced for many different
conditions like snowy, sunny or night. It is not suitable to display buildings
with snow on it in the summer.

There is also mentioned the concept of not only using a geolocation system
but also computer vision for better accuracy. Vančura’s thesis specifically
mentions the solution by using 360°photos. The state description of the project
at the time before his thesis is elaborated here in detail. The parts on which
he worked are clearly visible in the schema 2.3 as the highlighted parts. These
parts are mainly databases and private API. The public API is then simplified
and the Bug API is added to the public API. The Bug API serves the purpose
of logging problems, errors and other data.

At the time Vančura’s work began, the technologies had already been
determined as follows [23]:

23



2. The context of our work

Docker Tool that creates containers (environments) where the app can run
independently of the outer platform,

Node.js JavaScript multi-platform environment,

Express Framework for Node.js that simplifies creating of the web applica-
tion,

Typescript It is a technology introducing type variables into Javascript,

TypeORM Framework for object-relational mapping of object into database,

JSON Web Token (JWT) Security format standard,

PostgreSQL Open-source object-relational database system used in the
project for storing metadata,

MongoDB Database for storing binary data in the key-value style. This
technology was used for storing 3D models, textures, etc.,

Geographical Information System (GIS) This system includes maps
and other data describing terrain like aerial photos or the plan of
housing. This model is used to display the terrain.

2.3.2 Design and realisation
Within Vančura’ design, the lacks of the previous solution were corrected,
which were mentioned in the analysis in his thesis. The metadata database
has been redesigned and the same has been done in the approval process. The
version system for the models has been introduced, with the possibility to add
tags on which base it would be easy to search through the objects. Last but
not least, a vision of future development was outlined.

Regarding the API, the lack of the private API has been fixed, like no
possibility of editing or deleting records in the database. After the correction,
it is possible to do all the basic CRUD (create, read, update, delete) opera-
tions. The API allows to change supported formats, but now it supports the
following formats:

3D models: blend, 3ds, max, obj, fbx, sfb, sfa;

Images: jpg, jpeg, png;

Configuration files: txt, config.

It is important to note that a simple manual for administrators and developers
has been created within Vančura’s realisation. This manual also contains an
installation guide. The thesis with the manual can be considered a complete
documentation of the project at that time.

24



Chapter 3
Analysis

In this chapter we analyse the methods from the Research chapter. We briefly
test some of the methods to make a better image about them. Further, we
analyse possible technologies for the development of localisation programs.

3.1 Previous theses
In this section, we specifically analyse previous works in the DTBQ project
that have a direct influence on our work. Vančura’s thesis was important for
us as an introduction to the whole project and all its characteristics, but we
do not analyse it. Instead of it, we analyse the works directly preceding our.

3.1.1 Urban scene recognition and editing I

As mentioned above, the Urban scene recognition and editing thesis by Jan
Šefčík [1] is the direct predecessor of our thesis which continues in Šefčík’s
footsteps. Within analysis, we take a look at what is worth keeping and what
is good to further analyse, improve or do differently.

Analysis

The analysis describes which pre-processing methods are useful and which are
not. We see this part as important, because the pre-processing is a part of the
image processing and it should not be omitted, as Šefčík’s thesis mentions.
Šefčík also mentions that the only pre-processing method that makes a viable
positive difference is the Contrast Limited Adaptive Histogram Equalisation
(CLAHE) because it helps to compensate for the bad exposition or shadows.
The feature detecting and describing methods have been well analysed too.
Further, in his thesis only the SIFT algorithm, because it was evaluated as
the most accurate one.

25



3. Analysis

Design and realisation

In the analysis, we lack an explanation why FLANN was used for feature
matching, so we will analyse if it is an ideal choice. Besides many other pieces
of advice that we follow, there was the design and realisation of an image
recognition prototype. The prototype was created in Python, which is not
a typical programming language used to develop mobile applications. We
believe that Python was chosen mainly for the purposes of the prototype and
not for possible use in a mobile application. Based on that, we decided to
further analyse what technologies and methods to use.

Šefčík created an image database as part of the prototype implementation.
It contains buildings of different sizes or architectural styles. The database also
contains additional information about the photos, such as the GPS coordinates
of the place where the photo was taken. Šefčík mentions that GPS coordinates
are key for speeding up the detection process. Based on the location, it is
then possible to disqualify many buildings, so there will be significantly less
buildings to search by using the computer vision.

Testing

In the end there was done testing on the database. The best results of Šefčík’s
work may be seen in the image 3.1. The results seem accurate in most cases.
There are only a few images of the whole database so we consider that it is
the showcase of the best results.

However we see testing as the main weakness of Šefčík’s work. Every
reference image was created from an image that is queried to be recognised
only by blackening the parts of the image that are not the building itself.
So for every queried image with a building, there exists a perfect matching
reference image and thus no transformation invariance is tested except scale.
This is in contrast with the use outside of the experimental environment.

3.1.2 DTBQ - Image recognition module

Šefčík’s thesis is not the only important one on which ours continues. Another
important one is the master thesis of Jaroslav Štěpán [24]. There are three
goals that are important to us, namely creating the localisation module, the
tracking module and the manual on how to make a module in the application.
In the localisation module and tracking module goals is hidden another goal
which is to create the Application Programming Interface (API) that would be
used by the modules. The API would give the solutions addressing common
problems of the modules.

26



3.1. Previous theses

Figure 3.1: Performance of Šefčík’s prototype. Photo collection was made by
Jan Šefčík [1].

API

The API would provide support in the following areas: access to the camera of
the phone, access to the phone sensors, connection to the network and access
to the stored data. All the provided interfaces by the API are visible in the
diagram in the figure 3.2. The diagram is a part of a design of the localisation
module that was developed as a part of his thesis. At the top of the diagram
are the interfaces that provide help to the localisation module, but also the
interfaces that have to be implemented by the localisation module.

Specifically, the INetworkProvider interface provides the module the pos-
sibility to communicate with remote servers or to establish network connec-
tions. Another ICameraProvider interface provides the access to the camera
or the properties of the camera in the form of camera intrinsic parameters.
The other two supporting interfaces are ISensorProvider, which provides

27



3. Analysis

easy access to the data from phone sensors, and IStorageProvider, which
accesses the stored data to the module. All these interfaces have the same
purpose and that is to make it easier to develop modules. This is done in this
way, these interfaces are simple and easy to use. We see this as very useful, be-
cause we do not have to have a lot of knowledge about Android programming
when developing our module. These interfaces take care of that.

Localisation module interface

But probably the most important interface is the LocalizationModule,
which has to be implemented by the localisation module. We see the
getGlobalPosition method as the main of the three methods there, be-
cause it is the method called by the application to get the location of the
phone. The other methods are there to provide the application information
about the module, which is also important, but is not the core of the module’s
purpose.

Realisation of a simple localisation module

In the diagram in the figure 3.2 also contains the design of the localisation
module. The design in the part of Recognition is rather simple, but it suffi-
ciently outlines the main properties of the main processing part like feature
(called keypoint in the diagram) detection and feature description. There is
also a method that is named findObject and its arguments are the features.
We do not see this as completely clear, because features are not compared
themselves, but their descriptors are what should be compared to find simi-
larities in images.

There is a part of implementation that deals with pre-processing. All the
pre-processing methods have to implement the interface. Based on Šefčík’s
thesis, we think that the filters could be scaling, CLAHE, and conversion of
color images into grayscale ones. Štěpán states that the image is given by the
mobile device in the YUV model and it is needed to convert it to RGB and
then to shades of grey. He does not explain why the conversion to RGB is
needed and we do not see the need to do so. The conversion to the shades of
grey is necessary because all the considered feature detection and extraction
algorithms are defined only for grayscale images. The separation of the Y
channel (brightness) from the YUV color model should be a sufficient and
simple way to create input grayscale images. However, it is important to
note that it would be needed to store the descriptors of objects’ pictures (of
buildings or other objects to be found) in the database that would be computed
also from the Y channel (Y from the YUV color model). This detail might
not be necessary, but the disunity could lead to lower accuracy.

28



3.1. Previous theses

Figure 3.2: Localisation module class diagram of the thesis named textit-
DTBQ - Image recognition module. Diagram is taken from the thesis created
by Jaroslav Štěpán [24].

29



3. Analysis

Localisation module developing

At the end of the realisation in the Štěpán’s work, there are instructions on how
to create a module for the DTBQ application. Thanks to these instructions
the requirements of knowledge of Android development are lower. The manual
expects the developer to use the C++ programming language for the main
computations, so the manual also contains part on how to exchange data
between code in Java programming language (Java is the main programming
language of the application) and the C++ programmed part.

3.2 Computer vision libraries

In the preceding work by Jan Šefčík [1] was not done any analysis regarding
the libraries, platforms or software development kits in the area of computer
vision. OpenCV was introduced without any comment on exactly why to use
this library, thus we analyse not only this library but also some others. Finally,
we can make a reasoned decision on what to use in realising our project.

3.2.1 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source library
in the field of computer vision and machine learning. OpenCV is designed to
provide the infrastructure for computer vision applications. OpenCV is very
suitable for use in our thesis, because it provides infrastructure in the same
area as the application module that would be done in our work [25].

OpenCV versions up to version 4.4.0 are licensed under the 3-clause BSD
license and versions since 4.5.0 are licensed under the Apache 2 license [26].
Both licenses allow both non-profit and commercial use including possibility
for modifications [27], [28].

What we see as the benefits of OpenCV is a huge community of 47 thou-
sand developers and more than 2500 implemented algorithms [25]. We are
mainly interested in feature detecting, extracting, and matching algorithms.
All of the algorithms that we are interested in are implemented in OpenCV.
Functionality very similar to something we want to achieve is implemented in
a tutorial in the official OpenCV documentation [29]. There is a small demo
of how to find a known object in a picture. The result of this demo can be
seen in this image 3.3. This is the major thing that we want to achieve in our
work.

It is important for our project that OpenCV supports Android and besides
that it also supports Windows, Linux and Mac OS. There is also a wide range
of programming languages for which there exists an official interface. These
languages are C++, Python, Java and MATLAB [25].

30



3.2. Computer vision libraries

Figure 3.3: Result of a demo from OpenCV tutorial on how to find known
object location in picture. Picture is from the OpenCV tutorial [29].

Labels Text Confidence
1 Stadium 0.9205354
2 Sports 0.7531109
3 Event 0.66905296
4 Leisure 0.59904146
5 Soccer 0.56384534
6 Net 0.54679185
7 Plant 0.524364

Figure 3.4: Example of the ML Kit image labeling of an image with soccer
match. Example is taken from the website of the ML Kit.

3.2.2 ML Kit
Google offers multiple products to ease up mobile application development.
One of these products is the ML Kit package [30]. ML in the name means
machine learning. The ML Kit is a software development kit (SDK) designed
to provide solutions for the common problems in computer vision. The pack-
age supports Android and MacOS platforms and it is offered for free under
the terms of Google.

The ML Kit provides solutions in multiple areas, two of which are inter-
esting to us. The first one is image labeling. The labels assigned to images
are in the form of pairs of text and probability, as can be seen in figure 3.4.
The text describes things that might be in the image or what happens in the
image. The probability then represents the self-confidence of the algorithm
with the label. This is an interesting functionality, but not very suitable for
the localisation.

Another interesting area for us is the detection and tracking. In this func-
tionality, the ML Kit provides more information about what is in the image
than in the image labeling. The output of detecting and tracking can be seen
in the figure 3.5. The ML Kit provides tracking and detection of multiple

31



3. Analysis

Figure 3.5: Example of ML Kit detection and tracking. Example is taken from
the samples provided by Google on the ML Kit website.

objects in one photo. The output consists from the tracking ID of the object,
boundaries of the area where the object is detected, and a label (similar to one
in the image labeling). There is one main disadvantage, because the bound-
aries are only in the form of a bounding box. The bounding box provides too
low accuracy for our intentions. There is no other positioning information
than the scale and approximate location. Also, the use of the detecting and
tracking is not in line with what we expect, because we want to detect objects
from our own database and the ML Kit detects objects categories only from
its internal database.

The ML Kit shows as capable but it provides less specialised solutions
than we need. So we do not consider using ML Kit any further.

3.2.3 ARCore
ARCore is a platform created by Google for the implementation of augmented
reality projects [31]. Augmented reality is also what the DTBQ mobile appli-
cation is about. The first from the ARCore’s three main elements of perfor-
mance is the motion tracking. It covers the area of keeping the knowledge of

32



3.2. Computer vision libraries

Figure 3.6: Example of an application based on ARCore. Images are screen-
shots from a phone application created by Google LLC.

the relative position of the camera in the surroundings. Environmental un-
derstanding, the second element of ArCore, is responsible for understanding
the shapes of the surroundings. It mainly detects planes and the geometry of
the world around. Performance of light estimation, the last element, is clearly
visible in the image 3.6 where the animals create shadows on the floor in a
realistic style. The images 3.6 are taken from a typical mobile application that
uses ARCore. The application renders animals in the images of the real world
in real-time. It also uses two other elements of the ARCore motion tracking
(users can move phones around an animal) and environmental understanding
(animal stands on flat ground).

ARCore is ideal for a tracking module of the DTBQ mobile application.
That is probably why it was chosen for the tracking module in the work of
Jaroslav Štěpán [24]. But we want to localise buildings in the picture and such
functionality is not implemented in the ARCore, thus we no longer consider
ARCore in our work.

3.2.4 Conclusion
We have analysed the OpenCV, ML Kit and ARCore, but the only acceptable
option was the OpenCV, because the other two products have not met our
requirements.

33



3. Analysis

3.3 Programming language
Since we have decided to use OpenCV, we have to use some programming
language that is supported by OpenCV. The supported languages are C++,
Python, Java and MATLAB [25]. We eliminated MATLAB as not suitable and
it is not mentioned here. Main reason is non-existent possibility of application
development on the Android platform.

3.3.1 C++
In our work we are implementing a module to the DTBQ application. Jaroslav
Štěpán has already introduced instructions on how to create a module for this
application using C++ [24]. Therefore, if we used C++, we would not need
to research how to create the module ourselves completely but we could just
follow Štěpán’s instructions. Another advantage is that the DTBQ application
is a real-time application and C++ is a viable choice for real-time applications.
The programming language is generally known for its efficiency, so in case
of programming our own processing methods the high computation speed is
easily achievable.

3.3.2 Java
The DTBQ mobile application for Android is developed using Java [24]. Java
is also an official language for developing Android applications. This is a
big advantage that speaks for the use of Java. But Java is an interpreted
language and such languages generally run slower than compiled languages
like C++. Therefore, if we want to code some algorithms not implemented
in the OpenCV, it would lead to longer computation times. Our project
creates a module in real-time application, in which speed is critical, and in
the mentioned case of implementing our own algorithms could be the use of
Java a big problem. But according to Štěpán’s instructions at least some code
would be needed in Java as an intermediary between the application and the
C++ in case of developing application module [24].

3.3.3 Python
In the case of Python, the advantage for us lies in the fact that Python was
already used by Jan Šefčík [1] and his thesis is the direct predecessor of ours.
Thanks to that, it would be possible to continue on the basis of Šefcik’s code
and develop it further. That is a major advantage. However, there is also
one main downfall. In case of using Python, we would need to port that to
Android ourselves, because the DTBQ application now supports only C++ or
Java modules [24] and there are no instructions on how to create modules for
the DTBQ application in Python.

34



3.4. Feature detecting, extracting and matching methods

3.4 Feature detecting, extracting and matching
methods

3.4.1 Feature detecting and extracting
There are many methods for detecting and describing features. In the previous
thesis by Šefčík [1] were analysed ORB, SIFT and SURF. His thesis concluded
that the most accurate method of feature detection is SIFT. However, it is
also stated that it is the slowest one among the three methods. The fastest
one is ORB. The SURF method is commented as not suitable for the DTBQ
project, because the method is patented and it does not bring any significant
advantages over the other two methods that are free to use.

Methods not yet considered

What is not mentioned in Šefčík’s work is the SIFT modification called Root-
SIFT and feature description method called BEBLID.

RootSIFT is considered more accurate than SIFT with neglectable compu-
tation time increase. It is not included in OpenCV, but it is not complicated
to implement it when the SIFT implementation is available, so we could im-
plement it ourselves.

BEBLID was introduced recently, in the year 2020. At the time Šefčík did
his thesis, this method was not included in the OpenCV like other methods.
This method is implemented in OpenCV in modules with experimental and
non-free algorithms, because it is considered an experimental method. But the
method itself is free and it was published with the 3-clause BSD license [32].
To use this method, a compilation of the OpenCV with this module is needed.
According to the documentation, this compilation with extra modules is also
possible for Android. But anyway, the algorithm is published in the online Git
repository in the form of a demo [32]. The demo was created using OpenCV
and C++, so possible integration into our work should be without any prob-
lems in a case of using C++. The descriptors can be used to describe features
detected by ORB or SIFT methods.

We do not consider to use any deep learning methods of feature detect-
ing and extracting in our work. The application has to run in real-time on
smartphones, where the resources are limited and the computational costs of
running deep learning methods are increased significantly in comparison to
handmade methods[14].

3.4.2 Feature detecting and extracting in OpenCV
All the feature detecting and describing methods in OpenCV can be easily
exchanged, because they implement the Feature2D interface. So the choice
of the method can be done later or the choice can be configured at runtime.

35



3. Analysis

Figure 3.7: Early evaluation of our prototype. Correctly displayed object
(building) in the scene on the left and badly displayed on the right. Building
photos are from Jan Šefčík’s image database [1].

But since we are interested in a real-time application, the speed of the feature
detection and description is important.

Testing

An early prototype was implemented using OpenCV to test the speed of the
methods. For testing we used a subset of images from the image database of
the Šefčík’s project [1]. We did 5 tests and in each one there was one scene
image (urban scenery) and a database of reference building images, which
were searched in the scene.

The number of detected features was limited to 1000. The number was
slightly lower for several images, because the methods were not always able
to find 1000 features (we observed that ORB is more reliable in detecting at
least 1000 features than SIFT). After detecting the features, the features were
described with a predetermined algorithm and the time that the process took
was carefully measured.

Each of the object descriptor vectors was then compared with the calcu-
lated one from the scene image. The object that best suited (according to
simple metric) to the scene was chosen and displayed in the scene. After that
we could visually evaluate if the display of the object in the scene is correct or
not the same, as can be seen in images 3.7. This test was primarily prepared
in mind to measure the time. The accuracy measurement was simplified to a
binary evaluation: fail or success.

36



3.4. Feature detecting, extracting and matching methods

Detection:
Description:

SIFT
SIFT

SIFT
RootSIFT

SIFT
BEBLID

ORB
ORB

ORB
BEBLID

1 success yes yes yes yes yes
1 time (ms) 7758 (13775) 8064 (13543) 7729 1361 897
2 success yes yes yes yes yes
2 time (ms) 10025 (17958) 10220 (17824) 9931 1626 1022
3 success no yes yes no no
3 time (ms) 9843 (17706) 10556 (17940) 10120 1700 1086
4 success yes yes yes yes yes
4 time (ms) 7608 (13687) 8274 (13639) 7794 1395 916
5 success yes yes yes yes yes
5 time (ms) 7739 (13500) 8203 (13903) 7636 1349 882
Total success 4/5 5/5 5/5 4/5 4/5
Average time 8595 (15325) 9063 (15370) 8642 1486 961

Table 3.1: Comparison of OpenCV feature detection and description methods.
All tests included processing of 48 images with the limit of detected features set
to 1000. There are two values for SIFT-SIFT and SIFT-RootSIFT columns,
because time depends on the usage of the OpenCV methods.

Test results

The test results can be seen in the table 3.1. In case of the SIFT-SIFT
and SIFT-RootSIFT columns, two different values can be explained in the
following way. The feature interface offers to detect and describe features
in one step (values outside brackets), or to split the calculation to two steps
(values in brackets). In the case of SIFT, the splitting into two calculations
leads to a significant speed decrease. We think this behavior is specific to the
OpenCV SIFT implementation.

The conclusion from this testing is that SIFT is by a magnitude order
slower than ORB. The RootSIFT modification is only 5% slower than SIFT
and is more successful. Also the combination of SIFT feature detection and
BEBLID description has 100% success rate (in our test), the same as Root-
SIFT and it is only slightly slower than SIFT-SIFT. Method combinations
with ORB ended up as less successful in terms of correct results than combi-
nations with SIFT. But on the other side, they are multiple times faster. The
combination of ORB and BEBLID achieves even a 35% increase in speed in
comparison to pure ORB and still maintains the same success rate.

3.4.3 Feature matching

In Šefčík’s work [1], it is stated that another option is to use matching methods
based on FLANN. The advantage of these methods is that it creates data
structures which speeds up the searching of a match for the feature. But these

37



3. Analysis

Distance:
Matching method:

Hamming
Brute force

Hamming
FLANN

L2 norm
Brute Force

L2 norm
FLANN

1 success yes yes yes yes
1 time (ms) 86 531 119 898
2 success yes yes yes yes
2 time (ms) 91 539 121 922
3 success no no no no
3 time (ms) 87 584 119 915
4 success yes yes yes yes
4 time (ms) 88 541 120 921
5 success yes yes yes yes
5 time (ms) 90 526 123 902
Total success 4/5 4/5 4/5 4/5
Average time (ms) 88 544 120 912

Table 3.2: Comparison of two matching methods. All tests included processing
of 48 images with the limit of detected features set to 1000.

structures have some additional costs, such as the cost of the structure built
at the beginning. The number of features has to be therefore large enough,
so the FLANN based matching is faster than the brute-force matching. The
question is which method is faster in our case.

3.4.4 Feature matching in OpenCV
Both of the above mentioned matching methods are implemented in OpenCV.
We therefore prepared a test, similar to that one mentioned above, to find out
which matching method is the fastest in our case. We were interested in how
the matching methods performed, according to the used distance to compare
the descriptors.

The test result can be seen in the table 3.2. We can see that the brute-force
matching is clearly faster than the FLANN-based matching. The number of
features is the key in which method is faster. So we also performed a test
without maximum detected feature limit (it led to about 5000 features per
image) and this test also favoured brute-force matching. The type of distance
used influences the matching time as well. Hamming distance made both
matching methods to run faster than L2 norm (Euclidean) distance. Based
on this test we could consider to use only brute-force matching. In case of
change for another matching it would not be a problem because all OpenCV
feature matching implement the same interface.

38



Chapter 4
Prototype development

As a main part of our work is the creation of a prototype, which is intended to
be a development, debugging, and testing platform for a localisation solution.
Such a prototype would be similar to that one that was developed in Jan
Šefčík’s work [1]. The goal of doing this is to push what Šefčík has done
further and to extend the process by calculating not only the transformation
matrix between the reference image space and the image space of the image
queried to be recognised.

4.1 Design
We will follow the design of Jan Šefčík[1]. So in this section, we will describe
the changes from the Šefčík’s design that we will make.

4.1.1 Programming language

The main change is that we will choose C++ programming language instead
of Python. To be able to work with a file system and parse JSON files we
decided to use Boost (set of C++ libraries).

C++ will be used, because of its efficiency and the code itself will be
more similar to that one in the application localisation module. The C++ is
planned as a programming language for the computation parts in the local-
isation modules. We expect that in that way it will be possible to integrate
big code parts from our prototype.

4.1.2 Configurability

We will continue using JSON files for storing additional image data. However
we plan to create a more sophisticated configuration system than Šefčík’s,
where the initial configuration Python source files were used. That is not

39



4. Prototype development

possible in C++ without compiling. We want to approach it in a more user-
friendly way by moving the configuration into JSON files. This configuration
will be divided into more JSON files, so they can be easily exchanged. They
will be all linked in main JSON configuration file that will have following form:

{
"reference_images" : "filepath/references.json",
"scene_images" : "filepath/scenes.json",
"parameters" : "filepath/parameters.json",
"output_root" : "Where/to/save/output/",
"run_name" : "some name"

}

The reference_images field will point to JSON with file paths to the refer-
ence images of buildings and in a similar way for other fields. The JSON file
with parameters will be a file with parameter fields similar to that mentioned
above. Based on our testing of feature detecting and extracting methods we
observed that the configuration data changing the most across tests is the in-
put scene image. The JSON file with scene images file paths will have following
structure allowing smooth workflow:

{
"index" : 0,
"scene_images" : [

"filepath/scene1.jpg",
"filepath/scene2.jpg"
]

}

where the index determines the used scene from the scene_images array. The
most frequent expected use case is including going through the scene images
and in this case it is needed to increment the index only.

4.1.3 Database
Same as in Šefčík’s work we will use a file-system database to store images.
All the needed image data other than the image itself will be stored in JSON
files within the same directory as the images and the same name but the
suffix. Information about reference images of buildings will contain localisa-
tion data and information about the scene images will be the camera intrinsic
parameters and eventually the global position, where the image was taken.

The file paths of the images will be stored in a dedicated JSON file. To fill
our database with images we will use image sets created by us and the images
from the work of Tatiana Popova [33].

40



4.2. Implementation

4.1.4 Output
The current mobile application DTBQ interface for localisation modules re-
quires global coordinates and rotation to the object in the form of a quaternion,
so that will be realised as well. Beside this, the prototype will calculate a 3D
transformation from the world space to the local space of the camera.

The result will be provided in the form of image visualisation and text in-
formation. Both will be provided in the real-time while running the prototype
or by saving the output into files. This will create the options to debug the
application and also create and store test results. The text information will
include the information about the processing and the result.

4.1.5 Elimination based on location
An elimination of images based solely on global coordinates will not be a part
of our prototype. The intention of the prototype is to test the algorithms and
methods and create the solution for given problems. The location elimination
would significantly decrease the input to these methods.

4.2 Implementation
In this section we write about the realisation of the localisation prototype. In
this section we first describe what inputs have been defined and which outputs
have to be expected. We then explain what processing is done to calculate
the output from the input.

4.2.1 Input and output formats
In this part we describe the necessary inputs and expected outputs of our local-
isation prototype. We expect that our localisation prototype will be similar to
other possible localisation solutions in the DTBG project. So this information
could be used in further development in the DTBQ project.

Reference building images

The input images on the side of buildings with known locations to be rec-
ognized in the camera scene are called reference images. Such an image of
a building has to be created in a way that it looks like a parallel projection
from the front of a building. The image has to be without the perspective
deformation as seen in the image 4.1. In this illustration is visible how the
reference image was created. The perspective is removed so the real world
horizontals are horizontal also in the image and the same for the vertical di-
rection. In this way, the deformation is only partially removed, because the
original image from which the image in the database was created is influenced
by the perspective, that is well visible in the middle picture in the figure 4.1.

41



4. Prototype development

Figure 4.1: Illustration of creating a reference building image. On the left
is the original picture, in the middle is the created database reference image.
The cyan ellipse shows the remaining perspective deformation (the right side
of the building extension is wider in the image than the left side). On the
right is an illustration of the global location requirements. Original photo:
Tatiana Popova

A photo that was taken straight in front of the object/building from a large
distance is ideal for creating the image for the database.

With the reference building images, the JSON files have to be created,
with the same name and information about global coordinates (often just
called GPS) of the left and right corner as in the right image in the figure 4.1.
The position data has to be given exactly for the places in the left and right
corner of the image, the lowest to the ground as possible. The JSON data
structure looks like as follows:

{
"right_corner": {

"longitude": 14.419302807,
"latitude": 50.086761105

},
"left_corner": {

"longitude": 14.41927048,
"latitude": 50.086600324

}
}

Camera scene images

Camera scene images are images taken by phone that are to be recognised.
There are two following necessary requirements that has to be met to obtain
valid results:

• The scene image must not be cropped (it can be uniformly scaled).

42



4.2. Implementation

• The following information about the camera from which the images have
been taken:

– Focal length,
– The size of the camera sensor in both directions.

The following JSON content is example of a file attached to every scene
image:

{
"camera_name" : "Xiaomi Redmi 5 Plus",
"focal_length" : 4,
"sensor_size_x" : 4.96,
"sensor_size_y" : 3.72

}

The following sentences are guidelines for best results. The localisation
has better results, if the scene image has such a resolution that the resolution
of the building in the scene image matches the resolution of the reference
building. This is usually slightly higher than a reference image resolution.
A scene image is better recognised if taken parallel to the ground (rotated
images might not work as well).

Resolution of the images

The size of the image affects the computation time and size of allocated mem-
ory for the feature detection and extraction. When we used high resolution (≥
12 MP) the size of used memory was about 3 GB at the peak. The resolution
about 750x1000 (0.75 MP) works for us as a good compromise, because about
240 MB is allocated at the peak and the computation time is shorter.

Global location

The global location in the global coordination system and rotation towards
the object/building are the first possible result of the localisation. They are
in the following format:

• Global location of the camera defined as follows:

– Latitude in degrees,
– Longitude in degrees.

• Quaternion representing rotation of the direction vector pointing to-
wards the detected object from the east.

43



4. Prototype development

Rotation-translation matrix

The second type of output is a rotation-translation matrix, which transforms
points from world space to the local camera space, the same matrix that was
described in section 1.6. The biggest advantage of this output is that it does
not depend on the global location. The output structure is following in this
case:

• Which object is in the scene image,

• Rotation-translation matrix.

The global location of the left L and right R corner are exchanged in runtime
(not in files) for the world space coordinates (virtual world space) which are
defined as follows:

L = (0, h, 1, 1)T , R = (w, h, 1, 1)T (4.1)

where w is the width and h is the height of the reference image.

4.2.2 Processing pipeline
In this section, we closer specify the processing pipeline. The whole processing
pipeline is documented in the activity diagram in figure 4.2. Some parts are
very similar to the activity diagram by Šefčík [1] in figure 2.2. We redone
all these parts, but we followed similar principles, so we do not explain these
parts, but we explain what we have added. Above all, we have added the
possibility of pipeline configuration, calculation of 3D transformation, global
localisation, and interpreting of the matching data.

Choosing the best match

During the development of the prototype, we searched for the best option for
how to choose the correct match between multiple matches. We found three
viable options, namely the average of values from the Lowe’s ratio test, the
average distance of feature matches and the ratio between matches and filtered
feature matches. We discovered strong positive correlation between these three
values. We chose the way of searching for the highest ratio between matches
and filtered matches. It has an asymptotic complexity of O(1) in comparison
to the linear asymptotic complexity of the averages depending on the number
of matches.

Calculation of 3D transformation

In this calculation, the PnP problem has to be solved and the rotation-
translation matrix has to be found. We used the OpenCV iterative imple-
mentation of that problem in the OpenCV module calib3d. As an input for

44



4.2. Implementation

Figure 4.2: Activities diagram of our prototype for default configuration

this PnP problem solution we provide a 3D plane geometry (building facade)
of the image and 2D projection of the reference image corners in the space of
the scene image. These corners can be obtained by transforming the original
reference corners with the transformation matrix from the 2D solution.

The 3D plane geometry G for image of size h × w is defined as follows:

G = {(0, 0, 1, 1)T , (w, 0, 1, 1)T , (w, h, 1, 1)T , (0, h, 1, 1)T }. (4.2)

Localisation

When the corners location of the building plane (facade) are known in the
camera space and the global coordinates are known for the two bottom corners
of the building, we can calculated the global coordinates of the camera. For
our prototype, we only considered a flat ground and the computation will be
less accurate in the case of a slope along the building facade and inaccurate
in case of a slope in different directions. But because the dowry towns are
mostly on flat ground, it is not a significant problem.

There is one more problem and it is the height at which the camera of
the phone is above the ground. It is similar to the problem with the hilly
terrain, but it has an easier solution because we can expect some average phone
holding height. For this problem, we created an illustration in the figure 4.3.
The problem is that the real location of the camera global coordinates are not

45



4. Prototype development

Figure 4.3: Illustration from side of a camera coordinates correction. The
green line stands for vector in the direction of the camera view, the black line
stands for the ground, the red line then for building facade from the side, the
red striped line is then real world up vector in place of camera C and C ′ is a
intersection of the up vector and the ground.

at the origin (where is the camera located) but it lies on the intersection of
ground and the real world up vector passing through the origin. As seen in
the image, there is a small distance between the intersection and y-axis which
makes the difference.

The up vector is computed from the building facade. Therefore, if it is not
guaranteed that the facade of the building will create a real world up vector
(as in the case of objects other than buildings), we recommend turning off this
feature in the configuration of our prototype.

4.2.3 Configurability
Our prototype was realised with the flexibility in mind. It is possible to
configure which methods are used for feature detection, feature extraction,
feature matching and possibility to configure these methods by adjusting the
OpenCV parameters. List of these methods consists of SIFT, RootSIFT, BE-
BLID, ORB, brute-force matching and FLANN based matching. The Lowe’s
ratio is also possible to easily set in configuration. Other possible settings to
disable or enable are global coordinates calculations, optimisation for bigger
accuracy when measuring time and optimisation for calculation of the global
location.

The last configurable thing is if the log of the whole process with images
is displayed in real-time or saved to files. The prototype creates a log with
information about what it processed, how and with what results and values.

46



4.3. Experimental evaluation

All the parameters of the feature detection and extraction methods (except
detected feature limit) are configurable only in the header file before compila-
tion. They are in the header file, because they are determined to be changed
only by a knowledgeable person. However the prototype is built so they can
be changed without any problems.

4.3 Experimental evaluation
We have done testing in which we focused mainly on the comparison with
the phone location sensor (GPS sensor). We did this because the use of the
prototype (a future phone module) has to provide a more accurate location
to that one that is provided by the phone sensors.

4.3.1 Methodology
We prepared a database of reference building (or other objects) images and
then created a set of 25 tests. In each test, we queried images of the scenes.
Some of the images were taken from the image database created by Tatiana
Popova for her bachelor thesis [33]. We created the rest of the images to cover
our needs for testing which could not be covered with images from Popova’s
database. We made the tests with the intention to create similar conditions
to these ones that would be present when using the mobile application.

Reference building images

There were prepared all the objects that covered a wide variety of objects, but
most of the objects are buildings, because that is mainly what the prototype
was optimised for. We chose buildings with different architectural styles. With
our tests we covered the following areas:

• Buildings with one front facade,

• Corner buildings,

• Towers,

• Free-standing columns.

Scene photos

The image with the scene is such an image containing the building/object that
we put into the database. The style of every scene image is such that it could
be taken by any tourist/anyone. This means that the image was taken by
phone camera from such places where people usually move like pavements. In
more detail, the tests were created in a way that they cover all the following
areas:

47



4. Prototype development

• Ideal camera shots from front of the building,

• Camera Shots from angles up to 50°,

• Different weather and lighting conditions,

• More reference objects in the scene.

Used algorithms and methods

We decided to use SIFT without modification, because it was tested a lot
during its existence and considered to be reliable and as a golden standard.
We needed reliability, because we also needed to test other parts and thus
the whole prototype. But for any future testing, we encourage the testing
of a combination of SIFT and BEBLID or RootSIFT modification of SIFT.
The parameters of the SIFT algorithms were set to default values except for a
number of features that were set to 1000. For feature matching, we used the
brute force matching and Lowe’s ratio test and RANSAC for filtering.

Measuring results

We saw three ways on how to measure the results. The first is to compute
the global location and project it on the map with the global location given
by the phone sensors. With this, we were able to decide which one better
suits the photo scene and as a score we measured the difference between a
more accurate and a less accurate solution. So the result will be in form
of a number measuring increase of accuracy in comparison to phone sensors
(negative number in case of accuracy decrease in comparison to phone sensors).

The second way is to binary decide if the building was correctly recognised.
That means if it was recognised which object/building is in the photo scene.

The last way is to evaluate the understood relative location to the ob-
ject/building in the form of a projection matrix. With such a matrix, we
could render into the scene image a wire frame of a prism. This prism rep-
resents the understanding of the spatial characteristics of the object/building
by our prototype.

4.3.2 Results
We created a representation of the results in the form of a histogram 4.4,
where the results of the first measuring method can be seen. The results
are in the form of gained accuracy in meters in comparison to the phone
positioning sensors. We assign -56.58 (the additive inverse of the maximum
positive difference) as a value to the failed cases (when our prototype failed
to identify the building in a scene image) and we obtain an average accuracy
increase of 0.98 meters. This result is a small gain in accuracy from the results
of the mobile device sensor. If we omit all the failing cases, the average increase

48



4.3. Experimental evaluation

−60 −40 −20 0 20 40 60
0

2

4

6

8

10

Difference in meters

N
um

be
r
of

oc
cu

rr
en

ce
s

Figure 4.4: Testing results of the prototype in the form of a histogram. The
values in the histogram are the differences between the phone sensor’s and
our prototype’s location output in meters. If the result was more accurate
for our prototype, then the numbers are representing the accuracy increase
compared to data provided by phone sensors. Special value is -56.58, this
has been assigned to 4 cases where our prototype completely failed. Zero was
assigned to 5 undecidable cases.

in accuracy is 11.94 meters. If we further omit the undecidable cases (cases
when we could not tell if the phone was more accurate or our prototype), we
obtain an average accuracy increase of 15.68 meters (higher value is better).
Thus, for that measurement, we can conclude that there are cases where our
computer vision localisation solution fails completely, but if it does not fail, it
provides superior accuracy in comparison to the phone sensors. It is important
to note that no front facing test (ideal conditions) has failed.

The second measurement results are 21 (84%) successes and 4 (16%) fail-
ures.

The last measurement method has similar results as the previous methods,
because when the object was recognised (success), then at least a somewhat
accurate understanding of the spatial object/building characteristics was cre-
ated. Usually such a result is the same or better than the image 4.6b. The
images in the figure 4.5 represent a perfect match and a fail. In the image
with the fail was the volume of the column missed, but on the other side, in
the successful image, the object is perfectly matched with the prism.

49



4. Prototype development

Figure 4.5: Results of understanding of the spatial object/building character-
istics. On the left is the best result, where the prism perfectly matches the
tower. On the right is then a totally spatially misunderstood object (fail).
Author of original photos: Tatiana Popova

Notes to testing

During the testing, we improved the reference pictures database by adding a
night version of objects or improving the images. In all tested cases, the daily
reference pictures led to failure when testing with the night scene image. But
after adding the night reference image, the object was detected and in one
case ideally matched as seen in perfect match in figure 4.5. Improvement of
the reference images is well seen in the set of pictures 4.6, where it is well
visible that the correct size (height to width ratio) of the reference image is
very important to get right for the accurate matching.

We tested a column at the town square where a building is visible in the
background and we performed two tests with the same image. The first test
was before and the second after adding the improved reference image. In
the second test, the building in the background was detected instead of the
column in the foreground. It is important to say that the first test failed. This
case can be seen in the figure 4.7. Because of detecting the building in the
background, the location was detected more accurately than from the phone
sensors.

50



4.3. Experimental evaluation

(a) Original reference

(b) Result

(c) Enhanced reference

(d) Enhanced result

Figure 4.6: Example of building’s reference image size importance. It is visible
that the accuracy in the top result image is worse and it is visible that the
reference picture is deformed (it is too wide). Photo: author

51



4. Prototype development

Figure 4.7: Detection of a building in the background instead of the fore-
ground object, after improving reference image of the detected building in
the background. The test on the left image failed. Original photos: Tatiana
Popova

4.4 Installation

In this section, we provide a manual on how to install our project in a way
that would be able to compile and run the prototype. We describe how to
satisfy all the dependencies of the OpenCV and Boost C++ libraries. We have
developed the prototype in the Visual Studio 2019 IDE on operating system
Windows and the manual is written in a way to provide installation guide for
this configuration.

4.4.1 Installing OpenCV

To run our prototype, it is needed to install OpenCV. There are two options
for installing OpenCV. The first is to download the already built libraries and
the second option is to compile the OpenCV codes. We write about two ways
of installing, because there are some OpenCV modules that are not included in
the official prebuilt binaries. Such a module is xfeatures2d (extra/experimental
2D features algorithms), which is important for our project, because it contains
the BEBLID algorithm.

In both cases, the version 4.5.1 and higher has to be installed, because
the BEBLID algorithm was introduced in this version. Also, the algorithm
SIFT was already moved from the xfeatures2d module to the regular features2d
module (2D features algorithms) in this OpenCV version.

52



4.4. Installation

Installing prebuilt version

Installing the prebuilt version is more straightforward than compiling the
library and installing it afterwards. The following manual is for installing
OpenCV 4.5.2 for developing projects in Visual Studio 2019 on the operating
system Windows. The steps of the installation are as follows:

1. Download the sources of the version 4.5.2 from the OpenCV releases
page [34],

2. Unpack the sources into desired location <INSTALL_ROOT>,

3. Run the Edit the system environment variables tool and click the Envi-
ronment Variables. . . button,

4. When installing on the same account, create and edit the following vari-
ables in the table User Variables otherwise in System Variables,

5. Create there a new OPENCV452_ROOT variable with value <INSTALL_ROOT>\,

6. Add %OPENCV452_ROOT%x64\vc16\bin record for the PATH variable.

Follow next steps for installing OpenCV into Visual Studio project (the nam-
ing for OPENCV452_ROOT may vary in different projects, so it is further called
only OPENCV_ROOT):

1. Create an empty C++ project in Visual Studio or download our project,

2. Open project properties,

3. Set the configuration (release/debug) that would be edited,

4. In the C/C++ section, open the General subsection and add the
$(OPENCV_ROOT)include record for Additional Include Directories field,

5. If there are already some records in the fields, separate the records with
semicolon,

6. In the Linker section open the General subsection and add
the $(OPENCV_ROOT)x64\vc16\lib\ record in the Additional Library
Directories field,

7. In the Linker section, open the Input subsection and add
the opencv_world452d.lib record in the Additional Dependencies field
for debug configuration or
opencv_world452.lib for release configuration (configurations can be
set at the top of the properties window),

8. It might be needed to restart the Visual Studio.

Further information may be found in the installation tutorial in the official
OpenCV documentation [35].

53



4. Prototype development

Compiling the library

For installing the library, it is best to follow the tutorial in the official OpenCV
documentation [35]. To compile OpenCV with the xfeatures2d module, the
CMAKE parameter OPENCV_EXTRA_MODULES_PATH has to be set to
opencv_contrib/modules where opencv_contrib is a directory containing
sources downloaded from the Repository for OpenCV’s extra modules. For
our project it is also necessary to set the variable BUILD_opencv_world to
true.

4.4.2 Installing Boost C++ Libraries
The second dependency of our project is the Boost C++ Libraries. We use
the Boost version 1.76.0 in our project. To install Boost on Windows, the
steps are following [36]:

1. Download and unpack the Boost ZIP file,

2. Go to the tools\build\ directory,

3. Run bootstrap.bat,

4. Then run b2 install --prefix=PREFIX where the PREFIX is the direc-
tory to which is the Boost installed,

5. In a similar way as in the OpenCV installation manual, add a record
PREFIX\bin to the PATH system variable.

In our project, we have followed the installation manual from the official Boost
documentation [36]. More information can be found there. So to run our
project, following steps has to be taken during installing Boost to Visual
Studio project:

1. Create a new system variable BOOST176_ROOT with value <PREFIX>\

2. Open the project properties,

3. Set the configuration (release/debug) that would be edited,

4. In the C/C++ section, open the General subsection and add the
$(BOOST176_ROOT) record for theAdditional Include Directories field,

5. In the C/C++ section, open the Precompiled Headers subsection, set
Precompiled Header field to Not Using Precompiled Headers,

6. In the Linker section, open the General subsection and add the
$(BOOST176_ROOT)stage\lib record in the Additional Library Directo-
ries field,

54



4.4. Installation

7. If there are already some records in the fields, separate the records with
a semicolon,

8. It might be needed to restart the Visual Studio.

4.4.3 Running and compiling our prototype
To run and compile our prototype, it is necessary to install the OpenCV and
Boost C++ libraries. The project was developed in Visual Studio 2019, so
the easiest way to start is to also use the same IDE, because the manuals are
created in that way.

There are some further notes to the installation. When OpenCV without
xfeatures2d was installed, then the COMPILE_EXPERIMENTAL_MODULES_ENABLED
macro in the experimentalModules.h header file has to be disabled. When com-
piling OpenCV manually, the opencv_world has to be created, otherwise the
additional library names in the project properties have to be specified dif-
ferently. The system throws an error with the name of the missing library
when running without them, so the names of the libraries can be found out
by trying.

When setting up the project and adding the additional library information
in the project properties, the values may already be there if the project was
downloaded by default.

55





Chapter 5
Future outlook

Despite the fact that it was not the task of our thesis, we considered creating
a localisation module for the mobile application of the DTBQ project. We did
not implement our own complete implementation, but we did a survey on how
to create such a module and how to integrate it into already created code. We
write about this in this chapter together with proposals for improving.

5.1 Contextualization
First, we want to put into the context of DTBQ what we have already cre-
ated. We have tested and developed our prototype on images taken mainly in
Prague, which is not a dowry town of bohemian queens, but we want to show
that it can be easily used in the dowry towns as well. We also want to show
how augmented reality could look based on our localisation.

To do this, we have created a visualisation in figure 5.1. In the image
is a rendered model of the Kropáčka tower, which stood in the past in the
dowry town Hradec Králové [37]. The render was stylised to match the night
lighting conditions. But otherwise it was rendered based on the unchanged
information given by our localisation prototype. The rendered tower does
not cover the whole tower that was originally in the image (Prašná brána),
because the sizes of both towers are different. But thanks to this, it is possible
to see that the perspective of the rendered tower corresponds to that one of
the original tower.

5.2 Design of the localisation module
We already specified and analysed the API and realisation of the localisation
module by Jaroslav Štěpán in the section 3.1.2. We follow his design of the
localisation module in most of the places. The part mediating the communi-
cation between the computing part and the application will be implemented

57



5. Future outlook

Figure 5.1: Visualisation of the localisation with a 3D model of the Kropáčka
tower. Environment photo was taken from the database of Tatiana Popova [33]
and the 3D model was created as part of study [37].

in Java. The localisation module interface ILocalizationModule has to be
implemented to create a localisation module in the application. The com-
munication with the native code in C++ will be done via the Java Native
Interface (JNI). The interface will have following methods:

• createProxyObject(),

• destroyProxyObject(),

• updateDatabase(),

• getGlobalPosition().

That list closely corresponds to the methods used in the JNI used in the local
localisation prototype by Jaroslav Štěpán [24]. The communication between
the application, the Java part of the localisation module and the native code
in C++ would look like in the sequence diagram 5.2. The key point of the

58



5.2. Design of the localisation module

Figure 5.2: Sequence diagram of the communication between the application,
localisation module and native code

communication between the Java part of the module and the native code is to
use a proxy object. The proxy object will be created on the heap memory and
accessed using the address in the memory of the object whenever needed until
it is released. The following list is an explanation of some called functions in
the sequence diagram 5.2:

getPerfExpectations() Method implemented by the localisation module
that returns information about what hardware usage the module would
have.

getSensorRequirements() Method returning what sensors the module needs

59



5. Future outlook

to operate with.

getGlobalPosition() Method that is called by the application to get the
location.

5.2.1 Integration of the already finished code
A big part of the already created code could be moved into the module. The
main part that would have to be redone is the input loading and processing
configuration. The prototype is not planned to store the images for a longer
time for multiple processing. Therefore, it would be appropriate to create a
run-time database of reference images inside the native code. The database
would be updated whenever the device location would be changed more than
by pre-defined the threshold. In the run-time database would be prepared
descriptors of reference buildings images for next calculation of the global
location, so that the response would be as fast as possible. The rest of the
code would be also optimised to get even better performance, mainly because
some parts of the prototype are redundant for the module inside the mobile
application. But the main processing part of the prototype could be just
modified in a way that it would be possible to run it directly after calling the
getGlobalPosition method of the proxy object.

5.3 Future improvements proposals
Here we want to present some improvement proposals of the processing that
we are aware of but we did not have the time frame to realise them.

Precise reference images

We have observed in the tests that the quality of reference images is a crucial
factor, especially the image aspect ratio has to be on point. Unfortunately
we do not have that much precise reference images of buildings yet, because
we do not know the exact size of the buildings facades. The loss of accuracy
by not having precise reference images is well illustrated in the image 5.3. By
having more precise references images not only the loss will diminish but also
the detection would be more successful as well. So we see that as the most
important point of improvement.

ASIFT

We discovered the ASIFT algorithm in the OpenCV documentation just
as we were finishing our thesis, so we did not have enough time to re-
search this method anymore. It is implemented in OpenCV under the name
AffineFeature as a part of the features2d module. The ASIFT algorithm is

60



5.3. Future improvements proposals

Figure 5.3: Possible gain of accuracy in case of improving reference images.
The green quadrilateral is what has been detected and the red quadrilateral is
the final product of a volume understanding. The difference between them is
then the accuracy loss that was caused by having inaccurate reference images.
Photo: author

a modification of the SIFT algorithm that improves the SIFT affine transfor-
mations invariance [38]. This could help to detect buildings, even if they were
photographed from a sharper angle.

5.3.1 Future modules data requirements
In this section we write about the possible future improvement of the local-
isation that would require more input data than what we specified in the
section 4.2.1.

Localisation in hilly areas

The localisation in hilly areas is problematic if we want to know the global
coordinates of the mobile device, because the altitude is not included in the
format of the global coordinates. In this case, it would be necessary to know
the precise real world up vector, which could be obtained from the phone
sensors or calculated if the detected object has a vertical facade. Another
requirement would be to have access to the altitude for the given coordinates.
With this information, it would be possible to calculate the exact location even
in hilly areas, for example by an iterative method with an initial estimate of
the altitude from the phone sensors.

61



5. Future outlook

Buildings given based on location

Another improvement would be if the API of the mobile application gave the
module only objects that are inside a circle with a given radius and center
around some global coordinates.

Descriptors instead of images

To detect objects, it is only needed to have the descriptors of the features
detected in the reference image. So it would be better to use already precal-
culated descriptors of the reference images in the application. It would be ap-
propriate if the descriptors were precalculated by multiple methods. Because
then it would be possible to use faster (but less accurate) feature detection
and extraction methods for devices with lower computation power and vice
versa.

Dynamical scaling of scene images

Despite the fact that the used local image features are to some extent invariant
to the scale of the image they have been detected in, the feature is more likely
to be detected in both of two different images if their scale is similar. The
scene image would be probably scaled anyway to improve the speed of the
computations. For this reason it would be convenient to scale the image so
the building in the scene image has a similar resolution as the resolution of
the image in the database. This can be achieved by guessing the scale factor
from the distance between the location of the phone and the building based
on the output of the phone positioning sensors.

62



Conclusion

We continued the work started by Jan Šefčík. We improved the image recog-
nition processing and moved the localisation from within image object local-
isation into 3D space and real world localisation. First, we have researched
the used technologies, the Dowry Towns of Bohemian Queens project and the
theses within the project connected to our. After that we analysed the re-
searched technologies, theses and technologies used in the project. There we
described the concepts of current designs and realisations already created in
the project and then explained the changes we want to make in the design.
Based on this, we realised a prototype of mobile device localisation based on
image recognition. We wanted to show the performance of the prototype on
tests created with the intention of getting as close as possible to the future use
of the localisation module. These tests have shown that the device localisation
based on image recognition is, on average, more accurate than phone sensors.
Also we have observed that by having better quality of reference images the
accuracy and reliability will get even higher by recognisable margin.

During the solution, we considered making not only the prototype but also
the localisation module for the DTBQ application. Unfortunately this was not
possible because the application itself was prepared only one month before the
thesis submission deadline. We wanted to finish a fully functional localisation
solution, so we spent the rest of the time completing the prototype.

In addition, we outlined the future development of the localisation appli-
cation module. We have gained a lot of knowledge about this issue and we
would like to help develop the Dowry Towns of Bohemian Queens project by
finishing the localisation module for the mobile application. Therefore, we
plan to continue working on it also after submitting the bachelor thesis.

63





Bibliography

1. ŠEFČÍK, Jan. Rozpoznávání a editace urbanistické scény. Praha, 2020.
Bachelor thesis. Czech Technical University in Prague, Faculty of Infor-
mation Technology.

2. ŽÁRA, Jiří; BENEŠ, Bedřich; SOCHOR, Jiří; FELKEL, Petr. Moderní
počítačová grafika. .2nd ed. Praha: Computer Press, 2005. isbn 80-251-
0454-0.

3. MCHUGH, Sean. Understanding gamma correction [online]. c2005–2020
[visited on 2020-11-28]. Available from: https://www.cambridgeincolour.
com/tutorials/gamma-correction.htm.

4. POYNTON, Charles. Color FAQ - Frequently Asked Questions Color
[online] [visited on 2020-11-27]. Available from: http://poynton.ca/
notes/colour_and_gamma/ColorFAQ.html.

5. How to Convert an RGB Image to Grayscale [online] [visited on 2020-11-
26]. Available from: e2eml.school/convert_rgb_to_grayscale.html.

6. What is Histogram Equalization and how it works? [Online] [visited on
2020-11-28]. Available from: https : / / www . mygreatlearning . com /
blog/histogram-equalization-explained/.

7. MIKOLAJCZYK, Krystian; TUYTELAARS, Tinne. Local Image Fea-
tures. In: Encyclopedia of Biometrics. Ed. by LI, Stan Z.; JAIN, Anil K.
Boston, MA: Springer US, 2015, pp. 1100–1105. isbn 978-1-4899-7488-4.
Available from doi: 10.1007/978-1-4899-7488-4_224.

8. GUO, Z.; ZHANG, L.; ZHANG, D. A Completed Modeling of Local
Binary Pattern Operator for Texture Classification. IEEE Transactions
on Image Processing. 2010, vol. 19, no. 6, pp. 1657–1663. issn 1941-0042.
Available from doi: 10.1109/TIP.2010.2044957.

65

https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html
http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html
e2eml.school/convert_rgb_to_grayscale.html
https://www.mygreatlearning.com/blog/histogram-equalization-explained/
https://www.mygreatlearning.com/blog/histogram-equalization-explained/
https://doi.org/10.1007/978-1-4899-7488-4_224
https://doi.org/10.1109/TIP.2010.2044957


Bibliography

9. LOWE, David G. Method and apparatus for identifying scale invariant
features in an image and use of same for locating an object in an image.
Google Patents, 2004. US Patent 6,711,293.

10. LOWE, David G et al. Object recognition from local scale-invariant fea-
tures. In: iccv. 1999, vol. 99, pp. 1150–1157. No. 2.

11. AMERINI, I.; BALLAN, L.; CALDELLI, R.; DEL BIMBO, A.; SERRA,
G. A SIFT-Based Forensic Method for Copy–Move Attack Detection and
Transformation Recovery. IEEE Transactions on Information Forensics
and Security. 2011, vol. 6, no. 3, pp. 1099–1110. issn 1556-6021. Available
from doi: 10.1109/TIFS.2011.2129512.

12. MIKOLAJCZYK, K.; SCHMID, C. A performance evaluation of local
descriptors. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence. 2005, vol. 27, no. 10, pp. 1615–1630. issn 1939-3539. Available
from doi: 10.1109/TPAMI.2005.188.

13. ARANDJELOVIĆ, Relja; ZISSERMAN, Andrew. Three things everyone
should know to improve object retrieval. In: 2012 IEEE Conference on
Computer Vision and Pattern Recognition. 2012, pp. 2911–2918.

14. SUÁREZ, Iago; SFEIR, Ghesn; BUENAPOSADA, José M.; BAUMELA,
Luis. BEBLID: Boosted Efficient Binary Local Image Descriptor. Pattern
Recognition Letters. 2020. issn 0167-8655. Available from doi: https:
//doi.org/10.1016/j.patrec.2020.04.005.

15. SZELISKI, Richard. Computer vision: Algorithms and applications.
2011th ed. Guildford, England: Springer, 2010.

16. YAN KE; SUKTHANKAR, R. PCA-SIFT: a more distinctive represen-
tation for local image descriptors. In: Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
2004. CVPR 2004. 2004, vol. 2, pp. II–II. issn 1063-6919. Available from
doi: 10.1109/CVPR.2004.1315206.

17. MORDVINTSEV, Alexander; K., Abid Rahman. Feature Matching [on-
line]. c2013 [visited on 2020-12-16]. Available from: https://opencv-
python-tutroals.readthedocs.io/en/latest/py_tutorials/py_
feature2d/py_matcher/py_matcher.html.

18. MUJA, M.; LOWE, D. G. Fast Matching of Binary Features. In: 2012
Ninth Conference on Computer and Robot Vision. 2012, pp. 404–410.
Available from doi: 10.1109/CRV.2012.60.

19. LOWE, David G. Distinctive image features from scale-invariant key-
points. International journal of computer vision. 2004, vol. 60, no. 2,
pp. 91–110.

66

https://doi.org/10.1109/TIFS.2011.2129512
https://doi.org/10.1109/TPAMI.2005.188
https://doi.org/https://doi.org/10.1016/j.patrec.2020.04.005
https://doi.org/https://doi.org/10.1016/j.patrec.2020.04.005
https://doi.org/10.1109/CVPR.2004.1315206
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://doi.org/10.1109/CRV.2012.60


Bibliography

20. FISCHLER, Martin A.; BOLLES, Robert C. Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM. 1981, vol. 24, no. 6, pp. 381–
395. issn 0001-0782. Available from doi: 10.1145/358669.358692.

21. RIBA, Edgar. Real Time pose estimation of a textured object [online].
OpenCV team, 2021 [visited on 2021-05-06]. Available from: https://
docs.opencv.org/master/dc/d2c/tutorial_real_time_pose.html.

22. O projektu: Věnná města českých královen [online]. Univerzita Hradec
Králové [visited on 2020-11-25]. Available from:
https://www.kralovskavennamesta.cz/about.html.

23. VANČURA, Daniel. Věnná města českých královen - jádro. Praha, 2020.
Bakalářská práce. České vysoké učení technické v Praze, Fakulta infor-
mačních technologií.

24. ŠTĚPÁN, Jaroslav. Věnná města českých královen - Modul rozpoznání
obrazu. Praha, 2019. Master Thesis. Czech Technical University in
Prague, Faculty of Information Technology.

25. About OpenCV [online]. OpenCV team, 2021 [visited on 2021-04-13].
Available from: https://opencv.org/about/.

26. OpenCV License [online]. OpenCV team, 2021 [visited on 2019-12-12].
Available from: https://opencv.org/license/.

27. Apache License, Version 2.0 [online]. Wilmington, DE 19801 U.S.A.: The
Apache Software Foundation, 2004-01 [visited on 2021-04-13]. Available
from: https://www.apache.org/licenses/LICENSE-2.0.

28. The 3-Clause BSD License [online]. West Hollywood, CA 90069-4109
United States: Open Source Initiative [visited on 2021-04-13]. Available
from: https://opensource.org/licenses/BSD-3-Clause.

29. HUAMÁN, Ana. Features2D + Homography to find a known object [on-
line]. OpenCV team, 2021 [visited on 2021-04-15]. Available from: https:
//docs.opencv.org/4.5.2/d7/dff/tutorial_feature_homography.
html.

30. ML Kit [online]. Google LLC [visited on 2021-04-15]. Available from:
https://developers.google.com/ml-kit/.

31. ARCore [online]. Google LLC [visited on 2021-04-15]. Available from:
https://developers.google.com/ar.

32. SUÁREZ, Iago. BEBLID: Boosted Efficient Binary Local Image Descrip-
tor [online]. Madrid: GitHub, Inc., 2020 [visited on 2021-04-14]. Available
from: https://github.com/iago-suarez/BEBLID.

33. POPOVA, Tatiana. Urban scene recognition and editing II. Praha, 2021.
Bachelor Thesis. Czech Technical University in Prague, Faculty of Infor-
mation Technology.

67

https://doi.org/10.1145/358669.358692
https://docs.opencv.org/master/dc/d2c/tutorial_real_time_pose.html
https://docs.opencv.org/master/dc/d2c/tutorial_real_time_pose.html
https://www.kralovskavennamesta.cz/about.html
https://opencv.org/about/
https://opencv.org/license/
https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/BSD-3-Clause
https://docs.opencv.org/4.5.2/d7/dff/tutorial_feature_homography.html
https://docs.opencv.org/4.5.2/d7/dff/tutorial_feature_homography.html
https://docs.opencv.org/4.5.2/d7/dff/tutorial_feature_homography.html
https://developers.google.com/ml-kit/
https://developers.google.com/ar
https://github.com/iago-suarez/BEBLID


Bibliography

34. Releases [online]. OpenCV team, 2021 [visited on 2021-05-05]. Available
from: https://opencv.org/releases/.

35. GÁBOR, Bernát. Installation in Windows [online]. OpenCV team, 2021
[visited on 2021-05-05]. Available from: https://docs.opencv.org/
master/d3/d52/tutorial_windows_install.html.

36. Getting Started on Windows [online]. 2021 [visited on 2021-05-05]. Avail-
able from: https://www.boost.org/doc/libs/1_76_0/more/getting_
started/windows.html.

37. VOJTÍŠKOVÁ, Jana. Případová studie k zaniklým objektům královského
věnného města Hradce Králové. In: Královéhradecko: historický sborník
pro poučenou veřejnost. 10, 2019. Hradec Králové: Státní okresní archiv,
2019, pp. 355–363. isbn 978-80-87686-25-6. issn 1214-5211.

38. YU, Guoshen; MOREL, Jean-Michel. ASIFT: An algorithm for fully
affine invariant comparison. Image Processing On Line. 2011, vol. 1,
pp. 11–38.

68

https://opencv.org/releases/
https://docs.opencv.org/master/d3/d52/tutorial_windows_install.html
https://docs.opencv.org/master/d3/d52/tutorial_windows_install.html
https://www.boost.org/doc/libs/1_76_0/more/getting_started/windows.html
https://www.boost.org/doc/libs/1_76_0/more/getting_started/windows.html


Appendix A
List of used abbreviations

AHE Adaptive histogram equalisation

API Application programming interface

BEBLID Boosted efficient binary local image descriptor

BELID Boosted efficient local image descriptor

CIE International Commission on Illumination

CLAHE Contrast limited adaptive histogram equalization

CRUD Create, read, update, and delete

DTBQ Dowry Towns of Bohemian Queens

FLANN Fast Library for Approximate Nearest Neighbors

GPS Global Positioning System

IDE Integrated development environment

JNI Java native interface

LBP Local binary patterns

ORB Oriented FAST and Rotated BRIEF

PnP problem Perspective-n-Point problem

RANSAC Random Sample Consensus

SIFT Scale-invariant feature transform

69





Appendix B
Contents of the attached data

storage

readme.txt................brief description of the data storage contents
exe....................directory with executable form of implementation

image_database......................................image database
config...................................directory with configuration

src
impl .................................... implementation source codes
thesis..........................source form of work in LATEX format

text..........................................................thesis text
thesis.pdf................................thesis text in PDF format

71





Appendix C
Test results

In this appendix are all the results from testing. They are in the form of
two pictures and a caption. The left picture is an aerial map, where the
detected building’s facade is marked with a yellow line. The global location
calculated by our prototype is then located at the tip of the green pin and
the location detected by the phone sensor is at the tip of the cyan pin. The
right image represents the recognised volume of the building (the place where
the building is located). It should be taken into account that the aerial map
may not accurately correspond to the real location of the buildings. All the
input scene photos were taken by us or from the image database by Tatiana
Popova [33].

The caption has the following format: Our: global coordinates; phone:
global coordinates; difference: distance; note:(optionally) text. Where Our
represents a field with the global coordinates calculated by our prototype and
phone then those which have been detected by the phone positioning sensor.
Difference is then the distance between Our and phone. The distance value
is preceded by a plus if the result was evaluated as more accurate for Our or
a minus if the phone was more accurate. The question mark is then used for
undecidable cases and -∞ where our prototype failed (then there is also no
green pin on the map).

73



C. Test results

Figure C.1: Our: 50.0867079, 14.4196045; phone: 50.0866778, 14.4194886;
difference: +8.92 m. Source of the aerial map: Mapy.cz

Figure C.2: Our: 50.0865094, 14.4194608; phone: 50.0864750, 14.4194681;
difference: ?3.86 m. Source of the aerial map: Mapy.cz

Figure C.3: Our: 50.086637, 14.4196669; phone: 50.0866556, 14.4195519;
difference: +8.46 m. Source of the aerial map: Mapy.cz

74



Figure C.4: Our: 50.0872907, 14.4213531; phone: 50.0869444, 14.4205556;
difference: -∞ m. Source of the aerial map: Mapy.cz

Figure C.5: Our: 50.0868708, 14.420301; phone: 50.0863889, 14.4205556;
difference: +56.58 m. Source of the aerial map: Mapy.cz

Figure C.6: Our: 50.0867419, 14.4204009; phone: 50.0869444, 14.4205556;
difference: +25.08 m. Source of the aerial map: Mapy.cz

75



C. Test results

Figure C.7: Our: 50.0755673, 14.4229881; phone: 50.0758333, 14.4230556;
difference: +29.97 m. Source of the aerial map: Mapy.cz

Figure C.8: Our: 50.0755462, 14.4227431; phone: 50.0758333, 14.4227778;
difference: +32.02 m. Source of the aerial map: Mapy.cz

Figure C.9: Our: 50.0870019, 14.4284049; phone: 50.0871414, 14.4285222;
difference: ?17.63 m. Source of the aerial map: Mapy.cz

76



Figure C.10: Our: 50.0857078, 14.4191975; phone: 50.0872222, 14.4280556;
difference: -∞ m. Source of the aerial map: Mapy.cz

Figure C.11: Our: 50.0872281, 14.4282983; phone: 50.0872222, 14.4280556;
difference: +17.33 m; note: In comparison to the test C.10 this test was done
after the night reference building image was added to the database. Source of
the aerial map: Mapy.cz

77



C. Test results

Figure C.12: Our: 50.0870014, 14.4284044; phone: 50.0871414, 14.4285222;
difference: ?17.69 m; note: In comparison to test C.9 this test was done after
the night reference building image was added to the database. Small difference
in output was created, because the Lowe’s ratio threshold was changed from
0.7 to 0.75. Source of the aerial map: Mapy.cz

Figure C.13: Our: 50.087235, 14.4213759; phone: 50.0872222, 14.4213889;
difference: ?1.70 m. Source of the aerial map: Mapy.cz

78



Figure C.14: Our: 50.0669414, 14.4487256; phone: 50.0875000, 14.4213889;
difference: -∞ m; note: The reference image of the column from that side was
missing. Source of the aerial map: Mapy.cz

Figure C.15: Our: 50.0874903, 14.4212677; phone: 50.0875000, 14.4213889;
difference: +8.71 m; note: This test was made after the test C.14 and the
difference was that the the reference image of the detected building in the
background was improved. Source of the aerial map: Mapy.cz

Figure C.16: Our: 50.0668904, 14.4486542; phone: 50.0668333, 14.4487250;
difference: +8.11 m. Source of the aerial map: Mapy.cz

79



C. Test results

Figure C.17: Our: 50.0667679, 14.4486013; phone: 50.0666778, 14.4487639;
difference: +15.33 m. Source of the aerial map: Mapy.cz

Figure C.18: Our: 50.0873903, 14.421842; phone: 50.0874025, 14.4218625;
difference: +1.99 m. Source of the aerial map: Mapy.cz

Figure C.19: Our: 50.0873903, 14.4218407; phone: 50.0874025, 14.4218625;
difference: +2.06 m; note: This test was done after adding improved reference
image of the building (difference to test C.18), but the old reference image
was still left in the database (difference to test C.20).The old reference image
was detected instead of the improved one. Source of the aerial map: Mapy.cz

80



Figure C.20: Our: 50.0873926, 14.4218324; phone: 50.0874025, 14.4218625;
difference: +2.41 m; note: The test was done after improving the reference
image of the building (difference to test C.18). Source of the aerial map:
Mapy.cz

Figure C.21: Our: 50.0873907, 14.4215317; phone: 50.0874142, 14.4214806;
difference: +4.49 m. Source of the aerial map: Mapy.cz

81



C. Test results

Figure C.22: Our: 50.0873907, 14.4215317; phone: 50.0874142, 14.4214806;
difference: +4.49 m; note: In comparison with the test C.24) was this test
made after adding to the database the house to the left of the detected house.
The test was made with the intention to find out which building will be de-
tected. Source of the aerial map: Mapy.cz

Figure C.23: Our: 50.0874767, 14.4219311; phone: 50.0874733, 14.4219272;
difference: ?0.47 m; note: This test was also made with the intention to
observe the behavior of the detection when, there are two reference images in
the scene. Source of the aerial map: Mapy.cz

82



Figure C.24: Our: 50.0819741, 14.4506596; phone: 50.0772222, 14.4075000;
difference: -∞ m. Source of the aerial map: Mapy.cz

Figure C.25: Our: 50.0771431, 14.4073852; phone: 50.0769444, 14.4072222;
difference: +24.97 m. Source of the aerial map: Mapy.cz

83


	Introduction
	Research
	From light to the image
	Human perception of colors
	Representation of colors
	Image

	Image pre-processing
	Gamma correction
	Converting image to grayscale
	Histogram equalisation
	Scaling
	Crop

	Local image features
	Categories of features
	Local features properties

	Feature detection and description
	LBP
	SIFT
	BEBLID

	Feature matching
	Methods of feature matching
	Methods of filtering matches

	Perspective-n-Point problem

	The context of our work
	The Dowry Towns of Bohemian Queens project
	History of the dowry towns
	Project goals

	Urban scene recognition and editing
	Design of Šefčík's work
	Realisation and testing in Šefčík's thesis

	Dowry Towns of Czech Queens - Core
	Previous state of the project
	Design and realisation


	Analysis
	Previous theses
	Urban scene recognition and editing I
	DTBQ - Image recognition module

	Computer vision libraries
	OpenCV
	ML Kit
	ARCore
	Conclusion

	Programming language
	C++
	Java
	Python

	Feature detecting, extracting and matching methods
	Feature detecting and extracting
	Feature detecting and extracting in OpenCV
	Feature matching
	Feature matching in OpenCV


	Prototype development
	Design
	Programming language
	Configurability
	Database
	Output
	Elimination based on location

	Implementation
	Input and output formats
	Processing pipeline
	Configurability

	Experimental evaluation
	Methodology
	Results

	Installation
	Installing OpenCV
	Installing Boost C++ Libraries
	Running and compiling our prototype


	Future outlook
	Contextualization
	Design of the localisation module
	Integration of the already finished code

	Future improvements proposals
	Future modules data requirements


	Conclusion
	Bibliography
	List of used abbreviations
	Contents of the attached data storage
	Test results

