
Instructions

LearnShell is a modular system for managing and performing exams with programming assignments

in scripting languages, especially Shell. LearnShell currently offers basic functionality for creating

assignments and exams.

Improve the performance and functionality of analytics modules of the LearnShell backend.

1. Analyze the current architecture of the LearnShell backend and APIs.

- Identify the parts that need improvements

2. Propose improvements for analytics module backend functionality.

- Analyze the time complexity of this task

- Identify the rabbit-holes and no-gos

3. Optimize performance of all methods in analytics modules.

4. Compare the pricing and pros and cons of 3 major cloud providers where the LearnShell backend

with analytics module could be migrated in the future.

5. Compile a report of improvements, future re-evaluation, and internal documentation.

Electronically approved by Ing. David Buchtela, Ph.D. on 7 March 2021 in Prague.

Assignment of bachelor’s thesis

Title: Improving LearnShell backend for analytics

Student: Dan Pejchar

Supervisor: Ing. Jakub Žitný

Study program: Informatics

Branch / specialization: Information Systems and Management

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

Improving LearnShell backend for analytics

Dan Pejchar

Department of software engineering
Supervisor: Ing. Jakub Žitný

May 13, 2021

Acknowledgements

I would like to thank my thesis supervisor Ing. Jakub Žitný for helping with
the whole thesis-creating process, giving me tips and mentoring. I would
also like to thank the teachers Ing.Dana Vynikarová, Ph.D. and Ing.Ondřej
Guth, Ph.D. for helping with the technical aspect of the thesis and leading me
throughout the whole process. Finally I would like to thank all the teachers
that have taught me throughout the whole bachelor studies and my family
and friends for support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Dan Pejchar. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Pejchar, Dan. Improving LearnShell backend for analytics. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

V této bakalářské práci pracuji na vylepšování aplikace LearnShell 2.0. Mým
hlavním cílem je přidat do aplikace analytický modul. Tento modul vypočítává
statistická data, která mohou následně býti vyobrazena ve webové aplikaci.
Další částí této práce je finanční analýza poskytovatelů cloudových služeb
vhodných pro migraci LearnShellu v budoucnu. Hlavním přínosem je zlep-
šení LearnShellu pro studenty resp. učitele, kteří LearnShell používají, díky
kterému pro ně bude jednodušší studovat resp. učit.

Klíčová slova LearnShell, Analytický modul, Finanční analýza, Django,
Python, PostgreSQL, GraphQL, Celery, Docker, výuka na ČVUT, backend

Abstract

In this bachelor’s thesis my main focus is on improving the application: Learn-
Shell 2.0. My main goal is to add an analytics module to the application. This
module calculates statistical data which can then be visualised in the web ap-
plication. Another part of my thesis is a financial analysis of cloud service
providers ideal for migrating LearnShell to, in the future. My contribution is

vii

making LearnShell better for students resp. teachers who use this application
– making it more convenient to teach resp. study.

Keywords LearnShell, Analytics Module, Financial analysis, Django, Python,
PostgreSQL, GraphQL, Celery, Docker, teaching at CTU, backend

viii

Contents

Introduction 1

1 Goals 3

2 Theoretical part 5
2.1 Literature . 5
2.2 Technology in LearnShell . 5

2.2.1 Docker . 6
2.2.2 Celery . 6
2.2.3 Redis . 6
2.2.4 PostgreSQL and Django 7
2.2.5 Python . 8
2.2.6 GraphQL and Django Describer 9

3 Practical part 11
3.1 Current architecture analysis 11
3.2 Proposing improvements . 16

3.2.1 Conceptual design . 18
3.2.2 Defining property calculations 22
3.2.3 Time complexity . 23

3.3 Implementing the improvements 24
3.3.1 Creating the analytics module 24
3.3.2 Generating the GraphQL API 27
3.3.3 Optimisations . 31
3.3.4 Testing, Fixes and other Improvements 34

3.4 Cloud service provider selection 35

4 Accomplishments 39
4.1 Report of improvements, Future re-evaluation 39

ix

4.2 Documentation . 41

Conclusion 43

Bibliography 45

A Acronyms 47

B List of hyperlinks 49

C Contents of enclosed CD 51

x

List of Figures

2.1 Course example table . 8

3.1 LearnShell basic parts . 12
3.2 LearnShell architecture . 13
3.3 Database schema of the current architecture 15
3.4 Part of database schema of the current architecture 17
3.5 Functional requirements . 18
3.6 Functional requirements . 19
3.7 Class diagram . 21
3.8 Empty analytics module . 25
3.9 Chart of CSP pricing . 38

4.1 Schema of Django models in the analytics module 42

xi

List of Tables

3.1 Estimated time complexity . 24
3.2 Summary of CSP pricing . 37

xiii

List of Listings

2.1 Example of Django model . 8
3.1 Enumeration of UserLevel . 14
3.2 Basic user stats . 19
3.3 Basic course stats . 20
3.4 Basic assignment stats . 20
3.5 Creating new Django application 25
3.6 Declaration the UserStat model 26
3.7 Declaration the UserAssignmentStat model 27
3.8 Declaration the CourseStat model 28
3.9 Testing NumPy vs Pyhon . 29
3.10 NumPy vs Python results . 29
3.11 Adding all the models from the analytics module to the admin

site . 30
3.12 Basic describer of UserStat . 30
3.13 UserStat list action . 30
3.14 Basic describer of CourseStat 31
3.15 Friday night recalculation . 33
3.16 Scheduling a task with celery 34

xv

Introduction

In this bachelor’s thesis I will be improving the web application: Learn-
Shell 2.0. Learnshell is an application developed by several students at the
Czech Technical University – Faculty of Information Technology.

First I would like to mention the subject BI-PS1 (Programming in Shell 1).
BI-PS1 is a mandatory subject for all students in the first semester of FIT
CTU. In this subject they learn the basics of programming in Shell (hence
the name LearnShell). Throughout the semester, students take a very simple
(approx. 5 minutes) test at the beginning of every lesson regarding the topics
of the previous lesson.

That is where LearnShell comes in. Every year this subject has about
700 to 800 students. Correcting up to 800 exams every week by humans
would be very time-consuming and probably impossible. LearnShell makes
this possible. It can automatically generate assignments for students and
correct their solutions within seconds.

In the assignments, students are asked to design a basic Shell script (often
just one command). Then they enter it into a text-box and submit. The
system corrects it immediately and gives the student a result. The student
typically has a time limit within which the solution can be altered and sub-
mitted to the system repeatedly.

I have picked this topic because I think LearnShell is a very useful ap-
plication for FIT students and teachers and could be even more useful with
some changes made, perhaps even to students and teachers of other faculties
or universities. LearnShell is a work in progress, different students take part in
the development and there are always more things to add/improve. Thanks
to LearnShell, students of BI-PS1 are forced to at least open the studying
materials before every lesson. They do not need to study it intensively, just
to keep up with the subject matter.

My main goal is to add an analytics module to the LearnShell backend,
which will gather statistical data, so that students can view their personal
data and the data of their course. The module will be prepared for other

1

Introduction

additions in the future. One of my colleagues is working on the frontend – the
web page itself and I will prepare the data that will be visualised on the web
interface.

This improvement will be very useful for both the students and the teach-
ers. The students will be able to see clearly their progress in the subject. They
will be able to decide how well they are doing and whether they need to work
harder.

Apart from the analytics module, I will complete a financial analysis of
3 major cloud service providers, comparing their pricing and other pros and
cons. I will choose an ideal cloud service provider to which LearnShell, in-
cluding the new analytics module, could be migrated to and probably will be
in the future.

In the first chapter I will be defining the goals of my thesis. The next
chapter will be the theoretical part, where I will explain various technologies
used in LearnShell on a general level citing their official documentations. This
will lead to my practical part, in which I will analyse the current architecture
of the LearnShell backend, then I will propose improvements and design them
on a conceptual level. After that, I will describe the process of the implemen-
tation and finally I will reach the financial analysis. In the last chapter I will
conclude a report of the carried-out improvements, select a way to re-evaluate
the new implementation in the future and create a documentation for the
newly implemented improvements.

2

Chapter 1
Goals

My goals are divided into five. Some are more theoretical and some more
practical. However, they all have one common goal: to improve LearnShell.

In the first part of my thesis, I will be analysing the current architec-
ture of the backend and APIs. In my analysis I will identify which parts
need improving. After the analysis is finished, I will propose precise improve-
ments/optimisations, that I will carry out. In the analysis, I will also analyse
the time complexity of the proposed improvements. Then, I am going to iden-
tify the rabbit-holes and no-goes – mainly point out some ways of improving,
which would not be effective and lead to a failure /make the program worse.
After that, I will actually carry out the improvements and describe the whole
process.

LearnShell is currently running on FIT local servers so as a next goal, I will
chose 3 major cloud service providers, compare them – their pricing, pros and
cons – and select the most suitable one, to which LearnShell could be migrated
in the future. Finally I will summarise all executed improvements, prepare
them for future re-evaluation and create a documentation about them where
I will describe exactly how they work.

3

Chapter 2
Theoretical part

This chapter is the theoretical part of my thesis. I will not explain any of
my practical work, I will only describe the technology and literature I will be
using in my practical part on a theoretical and general level.

2.1 Literature

Before I start describing the technology I would like to write a few words about
the used sources. The largest part of my thesis is the actual implementing of
the new code. It is not a purely theoretical thesis so there was no need to
study any computer science paradigms on a theoretical level. I will mostly
be using official documentation of the technology in place, which will be cited
wherever I will be using it. I will also be using some internet articles and
studies/researches.

In my pricing analysis I will use some internet articles about, which cloud
service providers are the most popular and then use their official websites price
lists, documentations of their services and online calculators to calculate the
long term pricing.

2.2 Technology in LearnShell

In this section, I will be describing the technology (used in LearnShell backend
at the moment and which I will be adding as a part of my work) generally.
I will not go into detail on how it functions in LearnShell or in which way
I have decided to use it. In the practical part, I will not be explaining how
the technology functions anymore. I will assume that all this information was
already acquired in this section.

5

2. Theoretical part

2.2.1 Docker

What is Docker? According to [1] “Docker is a tool designed to make it eas-
ier to create, deploy, and run applications by using containers. Containers
allow a developer to package up an application with all of the parts it needs,
such as libraries and other dependencies, and deploy it as one package. By
doing so, thanks to the container, the developer can rest assured that the ap-
plication will run on any other Linux machine regardless of any customised
settings that machine might have that could differ from the machine used
for writing and testing the code.” In other words, Docker makes it possible
for anyone with a Linux computer to download the repositories of a dock-
erised application, install and run it by one command which may look like
this: sudo docker-compose up --build. Docker installs all the necessary
libraries, technologies and application packages and then all the vital services
run in the Docker container.

2.2.2 Celery

Now, let’s explain, what Celery is. According to [2] “Celery is an asynchronous
task queue/job queue based on distributed message passing. It is focused on
real-time operation but supports scheduling as well.”

With web applications of larger scales such as LearnShell we absolutely
need asynchronous tasks. Without asynchronous tasks/jobs it would basically
be impossible for more than one user to connect to the application at once.
We need the server to work asynchronously for each user at the same time
with the same computing capacity.

Celery allows that. It creates separate threads for all users and their
demanding tasks. Other than that, Celery can prove useful for scheduling
tasks too. Such as sending emails periodically or on exact dates. Celery can
even schedule tasks according to the sun, for example, it is possible to schedule
a task on “every sundown”.

2.2.3 Redis

What is Redis? Again, according to [3], its official website: “Redis is an open
source (BSD licensed), in-memory data structure store, used as a database,
cache, and message broker. Redis provides data structures such as strings,
hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospa-
tial indexes, and streams.”

It is mainly used as a message broker between Django and Celery. Celery
does not communicate straight with Django. There is no need to explain Redis
more, as I will not be using it directly.

6

2.2. Technology in LearnShell

2.2.4 PostgreSQL and Django
First I would like to mention what Django and PostgreSQL are, and then
explain how they work together. According to the official Django documenta-
tion website [4]: “Django is a high-level Python Web framework that encour-
ages rapid development and clean, pragmatic design. [. . .] It’s free and open
source.” LearnShell backend is implemented in Django.

Django projects consist of so-called Django applications. Those applica-
tions contain so-called models. The whole project is designed object oriented.
These Django models are classes which handle jobs which the specific class
is purposed for but also represent a table in the PostgreSQL database which
stores data belonging to the class persistently.

And what is PostgreSQL? Once again, I will start with their own def-
inition: “PostgreSQL: The World’s Most Advanced Open Source Relational
Database” [5].

PostgreSQL is the relation database Django generates. Django models
represent an object oriented class and a database table at the same time.

These models in a Django application have something in common. For
example we could have an application home which would contain the models:
House and Address. The House would represent a building and contain data
about it such as number of rooms and a one-to-one relation with the address
which would be a table containing the address of a house in separate fields
but they clearly belong together in one module.

I will explain how Django and PostgreSQL work together on an example.
Let’s say we create a Django model Course with a string name, an id and a
foreign key of another model CourseStat and we want it to be in a relation
1:1 with this other model. The code would look roughly as shown in example
(listing 2.1). This is not supposed to be a working code or a part of the actual
code from LearnShell, it is just and example I made up, to show, how it could
look.

After we would create a code like this, we would have to generate Django
migrations. These migrations are files with commands that edit the Post-
greSQL database. For this specific example, the migrations would create a
new table (figure 2.1) in the database, with 3 columns:

id — an automatically generated primary key

name — a string with the name of the course

course_stat — a reference to another model of this type

One may be wondering where did the id AutoField come from. Every
Django model inherits from a models.Model class which automatically creates
an id field which is the primary key of the database table and also has some
sort of automatic increment mechanism, unless we explicitly make the primary
key something else, like for example a ForeignKey in a 1:1 relation.

7

2. Theoretical part

Course

PK id: AutoField
name: String
course_stat: ForeignKey

Figure 2.1: Course example table

from django.db import models
from django.utils.translation import ugettext_lazy as _

class Course(models.Model):
name = models.CharField(

max_length=50,
verbose_name=_("Course name"),

)
course_stat = models.OneToOneField(

CourseStat,
on_delete=models.CASCADE,

)

Listing 2.1: Example of Django model

2.2.5 Python
Since Django is implemented in Python, I would also like to write a few
words about it. If you know something about programming, you most defi-
nitely know Python, or have at least heard about it, because at the moment
(5. 5. 2021) it is the most popular programming language and has been for a
very long time [6].

In my opinion it is due to its readability and overall, it is easy-to-use.
You do not even have to consider data types like in almost every other major
programming language. Anyone who has programmed before in a different
language can relatively easily switch to Python.

Although the Django models architecture is object-oriented and Python
supports classes, it is not truly an object oriented programming language.
There is no such thing as private, public or protected. All class methods and
attributes are public and you can’t change that. It is not even possible to
define constants with a keyword const like e. g. in C++. When you need a
constant, you have to make it a regular variable and never change it.

It is an interpreted language and quite slow compared to e. g. C++ and
most compiled languages. (Based on an independent programming language
benchmark website [7] and on my overall experience.) Fortunately, there are
packages like NumPy or SciPy which are implemented in C and compiled

8

2.2. Technology in LearnShell

with a C compiler. Their functions are basically wrappers for C implemented
functions. As a result, these packages work a lot faster than pure Python
would [8] which can prove useful under specific circumstances.

2.2.6 GraphQL and Django Describer
Finally let’s explain GraphQL. GraphQL is a query language for any API.
It is not tied to any specific database or storage engine but instead is backed
by some existing data and code.

The user has to only define types and fields of those types and functions [9].
For generating the GraphQL API we can use some generators like Django
Describer. Django Describer is a tool developed by another FIT student. In
its official documentation is stated: [10]: “An easy-to-use tool to auto-generate
GraphQL API from Django models.”.

When we have a running GraphQL API we can query and mutate data
from the database for which the GraphQL was generated. This can be done
manually in a web service, or we can use for example some frontend to query
through the GraphQL.

9

Chapter 3
Practical part

This is the part of the thesis, where all the practical work is done. First, I will
describe the current architecture and the main technologies it uses. While
describing the current architecture, I will identify some parts that need im-
provements. Then I will propose some improvements in the analytics module,
analyse the time-complexity of that task and identify the rabbit holes and
no-goes.

After proposing the improvements I will implement them into the cur-
rent LearnShell backend and comment the whole implementation process in
section 3.3.

Then I will select a cloud service provider to which LearnShell could mi-
grate in the future, based on a pricing analysis.

Finally I will report all the implemented improvements, create a docu-
mentation of the newly implemented parts and select a tool way of future
re-evaluation, which could analyse how much the users actually use the new
functionalities.

3.1 Current architecture analysis

Now let’s explain, how LearnShell works at the moment. LearnShell is divided
into 4 main basic parts described on figure 3.1. These parts work as separate
services that are capable of working on their own. For instance, you can
do everything with the backend that you could do through the frontend web
interface, without running it at all. The whole architecture is viewable on
figure 3.2.

In my thesis I will be working mainly on the LS core, so here, I will focus
mainly on the backend. I may mention the frontend a little bit, but I will
not explain how the generator and evaluator works. It is not a part of my
assignment.

11

3. Practical part

Figure 3.1: LearnShell basic parts

LearnShell core (backend): connects all the other services together.
It manages a database of all the necessary entities.

Generator (backend): is specific for PS1. It generates exams for specific
students by the given template written in a special LearnShell language.

Evaluator (backend): is also specific for PS1. It corrects the solution given
by the student automatically.

LearnShell web (frontend): is a web interface, which communicates with
the LearnShell core and visualises the data in a user friendly manner.

Let’s explain how the LearShell core works. How different technologies
work on a generall level has been explained in section 2.2. Now I will describe
how they are used specificaly in Learnshell.

LearnShell runs in a Docker container which can be built and ran by this
command: docker-compose up --build. The LearnShell Docker runs the
following services:

• ls-redis

• ls-postgres

• ls-celery

• ls-backend

• ls-generator-ps1

which all run on the ls-bridge network.
With a web application such as LearnShell, we absolutely need asyn-

chronous tasks. To accomplish this, we use Celery. Celery does not com-
municate with Django directly. For that we have Redis, which works as a
message broker between Celery and Django. Celery is used for example when
a class (parallel) is writing an exam. Every time a student submits an as-
signment, LearnShell has to correct it immediately and give him/her a result.
The LS core sends the students’ solution to the Evaluator service which cor-
rects it and returns some correction data in JSON format which contain for
instance the score obtained from the given assignment.

Imagine if these tasks were running synchronously. The student who sub-
mitted the submission last would have to wait until the system corrects all the
submissions before him. Also, if someone else would be working on the server,

12

3.1. Current architecture analysis

U
se

r

Pr
ox

y
se

rv
er

N
gi

nx

Ap
pl

ic
at

io
n

re
qu

es
t

Vi
su

al
is

at
io

n
of

re
su

lt

R
ed

ire
ct

io
n

Pr
ox

y
se

rv
er

N
gi

nx

ur
l:

ht
tp

s:
//l

ea
rn

sh
el

l.f
it.

cv
ut

.c
z/

Ve
rc

el

Fr
on

t E
nd

H
TT

P
re

qu
es

t

H
TT

P
re

sp
on

ce
 a

s
as

se
ts

LS
-w

eb

N
ex

t.j
s

ap
p

Ba
ck

 E
nd

Ap
pl

ic
at

io
n

Se
rv

er

Ap
pl

ic
at

io
n

Se
rv

er

H
TT

P
re

sp
on

ce
JS

O
N

 fo
rm

at
H

TT
P

re
qu

es
t w

ith
G

ra
ph

Q
L

qu
er

y/
m

ut
at

io
n

uW
SG

I s
er

ve
r

LS
-c

or
e

G
ra

ph
Q

L
AP

I
D

ja
ng

o
Ap

p

Po
st

gr
eS

Q
L

da
ta

ba
se

H
TT

P
re

qu
es

t

H
TT

P
re

sp
on

ce
JS

O
N

 fo
rm

at

H
TT

P
re

qu
es

t

H
TT

P
re

sp
on

ce
JS

O
N

 fo
rm

at

PS
1-

ev
al

ua
to

r

Fl
as

k
ap

p

As
yn

ch
ro

no
us

jo
b/

ta
sk

 q
ue

ue

C
el

er
y

R
ed

is
 d

at
ab

as
e

PS
1-

ge
ne

ra
to

r

Fl
as

k
ap

p

As
yn

ch
ro

no
us

jo
b/

ta
sk

 q
ue

ue

C
el

er
y

R
ed

is
 d

at
ab

as
e

Fi
gu

re
3.
2:

Le
ar
nS

he
ll
ar
ch
ite

ct
ur
e

13

3. Practical part

class UserLevel:
STUDENT = 1
TEACHER = 2

Listing 3.1: Enumeration of UserLevel

running some demanding task, the students could spend the rest of the lesson
waiting for their solution.

As written in the theoretical chapter 2.2, Celery also supports scheduling,
which could prove very useful. This means that even though LearnShell does
not have any scheduled tasks at the moment, it is very well prepared for them
and it would be very easy to add a task like that.

Although the general functionality of Django was explained in the theo-
retical chapter 2.2, I would like to describe it again on a specific part of the
LearnShell Django application.

In the following text I will sometimes be using the term student with
which I will be refering to a model in the database User. The Course has
a 1:N relation with the Parallel. The Parallel contains data about a weekly
lesson taught on its Course. The data contain e. g. the time of week when it
is taught or the room. For example there could exist a Parallel of one specific
Course taught on the third day of the week (Wednesday), on the third hour
of the week (from 11:00am to 12:30pm). The ParallelMembership is a class
connecting together a specific student with a specific parallel. A Parallel
has many students but a student typically has only one ParallelMembership
although it is not restricted in the database. The membership could also
belong to a teacher and a teacher could very easily have many Parallels. This
information is stored as a property level which contains an enumeration for
STUDENT or TEACHER created in the ls/utils.py file shown in listing 3.1.
In the database it is stored purely as an integer. The ParallelMembership is a
decomposition of an M:N relation between a User and a Parallel.

Information like this about the current architecture of the Django appli-
cation can be found in figure 3.3. It is a full database scheme of the current
architecture. By current I mean January 2021 when my analysis began. After
this semester, when my work (and the work of my colleagues) is done, the
database scheme will have changed.

Although we have the figure 3.3 I will go more into depth about how the
parts, which I will be mostly needing and editing, work. The applications I
will write about are: assignment, generatedAssignment, submission and user.
You can see how they are connected together and which data they store in
figure 3.4. It is basically a part of figure 3.3 with the previously mentioned
applications.

Let’s describe the process of students writing assignments. First someone
(a teacher) needs to create the assignment. The teacher will most likely be

14

3.1. Current architecture analysis

Figure 3.3: Database schema of the current architecture

creating the Assignment in the web interface. The web application will request
a mutation via GraphQL which will add a new row in the Assignment table.
The Assignment will contain some generator data in the form of a JSON.
Then, the generator service (from figure 3.1) generates a GeneratedAssignment
specifically for each student in the given Course. The GeneratedAssignment
is in a 1:N relation with the Submission table. The student can create many
submissions. When the student submits a new solution, the submission data
– also stored in the Submission table as a JSON – are sent to the Evaluator
service 3.1. The Evaluator returns some correction data which are stored in
the Correction table. The Correction table is related to a Submission in a
1:1 relation and contains a property score which is retrieved form the JSON
correction data. The GeneratedAssignment then contains the property score
which is always on call calculated as the max score out all the Corrections

15

3. Practical part

related with the Submission which is related with the GeneratedAssignment.
Now I will explain how the Django project is then used to generate a

GraphQL API which can be used by the frontend. GraphQL can be used
seperately to query the backend API through a GraphQL interface (currently
running on localhost:8000/graphql), but mainly, it can be used by the
fronted to query data and view them on the webpage.

The GraphQL API is generated with Django describer. Let me remind the
definition of Django Describer from the theoretical chapter: “An easy-to-use
tool to auto-generate GraphQL API from Django models.”[10]. However I do
not entirely agree with this statement. The tool does not have almost any
documentation (apart from a brief readme file) which makes it quite com-
plicated to use, for the users have to figure out by themselves how the tool
actually works. In my opinion, this is the part of LearnShell that definitely
needs improving. Django describer was created by another FIT student and
is now obsolete. There are much better tools for this job. For instance Django
Describer can’t generate the API if the Django project contains a model with-
out an auto-generated id as a primary key. That is possible in Django itself
(e. g. using a foreign key as a primary key in a one-to-one relationship) but
the describer can’t generate the API like that.

Each model has a complementary describer class which contains informa-
tion for the tool by which it creates the GraphQL API. Then you can access
the GQL API through a web interface and query or mutate the data in the
database. For instance you can list all the users and choose which data about
them you want to list (e. g. username, first name, last name, etc.).

Now about the analytics module. The simple description of the analytics
module is that there is no analytics module. The functionality of the analytics
module is in the other modules. For example the overall score of each user is
recalculated on call every time in the User model.

The data needed for analysing performance of students, parallels, courses,
etc. are there, they just are not packed into one organised package in one place
and there are not any methods to calculate statistical data like summations,
medians, percentiles. . . One would have to calculate them manually by listing
the raw data in the GQL web interface.

3.2 Proposing improvements

The improvement I will be working on is creating an analytics module which
LearnShell needs. This improvement is in my bachelor’s thesis assignment,
therefore I will carry it out. This section will be about the conceptual design,
time complexity of the implementation and identifying the rabbit holes and
no-goes. The next section 3.3 will be about the actual implementation process.

16

3.2. Proposing improvements

Figure 3.4: Part of database schema of the current architecture

17

3. Practical part

Figure 3.5: Functional requirements

3.2.1 Conceptual design
The goal of the analytics module is to calculate and store statistical data of all
sorts. As a part of my thesis I will be creating the analytics module which will
be able to respond to GraphQL queries. At the same time, there is a colleague
working on the LearnShell frontend who is preparing a web page for visualising
the data from the analytics module. Together, we will have to settle on some
functional requirements. Then we will create some sample GraphQL queries
which will fulfil the functional requirements. There are three basic functional
requirements that can be seen on figure 3.5 and are described on figure 3.6.

Now, we will figure out how some sample GraphQL queries could look.

• Query 3.2 will return basic user stats.

• Query 3.3 will return stats of the course with id = 1

• Query 3.4 will return stats of assignment with id = 1

To support queries like this, it would be suitable to create classes for
different kinds of statistical data which will all belong to one module (Django
app) called analytics. The module is going calculate statistical data of students
and courses. For this, I will create new classes UserStat and CourseStat, which
will calculate statistical data of a specific student resp. course.

18

3.2. Proposing improvements

Figure 3.6: Functional requirements

Functional requirements

1. Calculating students statistical data
Score The summation of scores from all submitted assignments.
Score history An array of the history of these scores from each

week.
Percentile history An array of the percentile, of the students

score at the end of the week compared to the other students
scores.

Score of assignment The students score of any given assignment
Percentile from assignment The percentile obtained by a stu-

dent from any given assignment
2. Calculating statistical data of a course

Median The median of all students current score.
Median history The history of the students median at the end

of each week.
Score histogram All the scores and their frequencies.

3. Calculating statistical data of an assignment
Median The median of all scores obtained from an assignment
Scores An array of all scores obtained from an assignment
Max score The highest possible score from the given assignment.

query {
UserMyself {
id
username

userStats {
results {

score
scoreHistory
percentileHistory

}
}

}
}

Listing 3.2: Basic user stats

19

3. Practical part

query {
CourseStatList(courseId: 1) {

results {
course {

id
kosTag
kosSemester

}
median
medianHistory
scoreHistogram {

results {
score
frequency

}
}

}
}

}

Listing 3.3: Basic course stats

query {
AssignmentList(id: 1) {

results {
scores
median
maxScore

}
}

}

Listing 3.4: Basic assignment stats

20

3.2. Proposing improvements

Figure 3.7: Class diagram

The main reason for this improvement is so that students will have the
ability to track their progress throughout the semester. They will have the
opportunity to compare their results with other students without actually
revealing their identities, through analysing their percentile in different weeks.
They will have a well-organised dashboard where they will have various graphs,
charts and values to analyse.

It will also be possible to analyse the results of various courses. The stu-
dents will be able to view the score histogram in their course. The whole
conceptual design is on figure 3.7

The data of these tables will consist of data already described in the func-
tional requirements 3.6. There will be need for methods for calculating the
data, from data LearnShell already contains.

Before I continue, I will try to define some rabbit holes and no-goes to make
sure I do not make a bad decision. One wrong way to create the analytics
module would be to put the properties into the classes that are already there.

21

3. Practical part

Let me elaborate. I mean adding properties like: score, median, percentile of
a user directly into the User class. The User class would become too large
and confusing. It makes much more sense to contain these data together in a
separate class.

So I have decided to create new classes for the stats, but another mistake
would be not to create a new module (Django app) but to put the newly
proposed classes into other modules. These models should belong together
into one module because they will have references to each other and also, it
would not be clear, how to extend the analytics module. On the other hand,
creating a true module will make LS backend prepared for analytics module
extensions.

Another bad decision would be to create the UserStat table in a one-to-one
relation with the User. The UserStat must be in an M:1 relation with the User
because the user can have various sets of stats in various courses.

3.2.2 Defining property calculations
In this part, I will define how the proposed properties will be calculated. From
the UserStat table I will need to define the calculation of: percentileHistory,
score, scoreHistory and AssignmentStat. In the CourseStat table I will need
to define the calculation of: median, medianHistory and scoreHistogram. In
the Assignment I will define the calculation of: maxScore, scores and median.

All of these methods will be defined as properties of their stat table (class).
That means, it will be recalculated on every query. These properties will not
have any parameters and they will return the calculated stat.

Calculating the UserStat.score will be done by iterating through all the
users assignments and adding the score from each assignment to the overall
score.

The UserStat.score_history will also be calculated by iterating through
all the users’ assignments. This time, we will first need to sort the assignments
by the week of semester and then add the score from the assignment to the
position in the array (score_history) to the same position as is the week
number of the assignment.

I had to add the week of semester attribute to the assignment table.
Until now, the assignment did not contain any information about when it
will be /was published to the students. Some assignments were named ac-
cording to a convention [<week of semester> – name of assignment] but not
all teachers respected it. So I decided to create a new column where the teach-
ers have to define for which week of the semester the assignment is intended.

For calculating the UserStat.percentile_history the code will need to
(for each week of semester) iterate through all the other UserStats with the
same course, obtain their score of the given week from the score_history
and add it to a temporary array. The percentile of the given week of the given
user will then be calculated from his score in relation to all the other scores.

22

3.2. Proposing improvements

To create all the UserAssignmentStats for a UserStat the code will iterate
through all the assignments and check, if the UserAssignmentStat of the
given assignment already exists. If not, it will add a new UserAssignmentStat
to the table.

The Assignment.max_score will be determined from the correction data
of the assignment by summing up all the testcase scores.

Calculating the Assignment.scores will be done by saving all scores ob-
tained from all generated assignments of the given assignment.

The Assignment.median will then be calculated from the scores by sort-
ing them and picking the middle value, or calculating the mean of the two
middle values (if there is an even amount of scores).

Calculating the Course.median will be done by iterating through all the
UserStats of the course, saving them in a temporary array and then calcu-
lating the median of these values.

The Course.median_history will be calculated for each week and then
saved into an array. In each week the program will iterate through all the
UserStats of the given course, save the values of their score_history of the
given week, calculate the median of these values and then save them into the
median_history array of the given week.

For the CourseStat.score_histogram there is a new table. The table
contains a score and its frequency. To calculate the score_histogram the
code will have to iterate through all the students of the given course and in
every iteration check whether a ScoreHistogram row with the students score
already exists. If not, it will create a new row and set the frequency to 1.
If the row already exists, it will just increment the frequency of the students
score.

3.2.3 Time complexity
Now I will analyse the time complexity of my task. The most time was already
taken by analysing the backend architecture and understanding it without
almost any documentation. Some time was also taken by the conceptual
design but this analysis will consider only the implementation process.

I will separate the task implementing the analytics module into smaller
tasks and estimate their time complexity. It will be more convenient to esti-
mate a time complexity of a small clearly defined task, than estimating the
time complexity of everything in one task.

The first partial task will be setting up the analytics module. Then I will
create the Django models I have decided to in the conceptual design. Then
I will declare their properties (the statistical data). Next I will decide how
the data will be calculated and implement the calculating methods. After
that I will test the newly implemented methods overall. Then I will do some
optimisations and finally fix errors or add other functionalities which were not
proposed but I will perhaps come up with them along the process. After each

23

3. Practical part

Table 3.1: Estimated time complexity

Task estimated time complexity [MD]
Setting up the analytics module 2
Creating the Django models 5
Declaring properties 3
Calculating properties 10
Testing 3
Optimisations 5
Extra time fixing & improvements 4
Total: 32

sub-task will follow a short testing period to determine whether it works how
I expect it to. These tasks and their estimated man-days can be inspected on
table 3.1. The overall time complexity of the whole implementation process
was estimated to 32 man-days.

3.3 Implementing the improvements

This section is going to be about explaining how exactly I created the codes
and why. I will include some shorter code samples but not all of the code I have
programmed. The whole and final code can be examined on my branch of the
LearnShell repository on the faculty GitLab (11) (if there is access) or on the
enclosed CD (C). Because LearnShell is a real deployed application uploaded
on a version control system, I may add a commit after submitting this thesis.
I will not be changing any major parts in the analytics module architecture,
but there could be some minor bug fixes. That does not mean that the code
on the enclosed CD contains any bugs, that I know of. I completely stand by
the submitted code. The source code on the enclosed CD will be identical with
the code of the latest commit before 13. 05. 2021 on my branch bap-pejchdan,
but I recommend using the faculty GitLab (if there is access) because there
might be a newer and better version of the code and there it is also possible
to see all the contributions I made.

3.3.1 Creating the analytics module

First of all I have created the Django application analytics by running the
Django command (listing 3.5) in the apps folder. This created a new direc-
tory ls/apps/analytics which contained the basic components of a Django
application. The directory of a fresh Django app is in figure 3.8. All the

24

3.3. Implementing the improvements

./../manage.py startapp analytics

Listing 3.5: Creating new Django application

Figure 3.8: Empty analytics module

migrations............................directory with Django migratoins
__init__.py..initial migrations

__init__.py..................................... init of Python package
admin.py file for registering models to admin
apps.py...configuration of app
models.py..models definitions
tests.py..file for tests
views.py...file for views

files are empty apart from the apps.py file which contains 3 lines of code to
register the application into the admin site.

Next I declared the models I have specified in the conceptual design. For
now I have only declared the models with their foreign keys and empty prop-
erties. Each model inherits from the django.db.models.Model class, which
makes it a Django model. The model declarations of UserStat can be exam-
ined on listing 3.6, UserAssignmentStat on listing 3.7 and the CourseStat
on listing 3.8.

The calculations of the properties were carried out as stated in the con-
ceptual design part. I will not include these codes, because it would be com-
plicated to fit it into the page and there is not much point in it, because the
final code can be accessed through the faculty GitLab (11) or on the enclosed
CD (C). For calculating the statistical values like median or percentile, I will
use NumPy and SciPy. The functions are much faster than regular Python
functions.

To support this, I carried out a small test comparing the median and
average functions. I generated a list of random values from −106 to 106 of
length 5 ∗ 106. The test is available in figure 3.9 and the results on figure 3.10.

Because NumPy and SciPy is compiled in the gcc compiler, I not only
had to install the packages, but also I also had to add the gcc installation
commands to the Dockerfile. I used a code from stack-overflow to install all
the necessities on building the Docker container [11].

To add these models to the Django admin interface, I had to register them
to the admin site. This was carried out by adding each of these models to the
admin.py file. I used the register_model() method which was already im-
plemented in LearnShell in the utils.py file. This method accepts a Django
model as a parameter and registers it to the admin site. Adding models to
the admin site is visualised on listing 3.11.

25

3. Practical part

from django.db import models

class UserStat(models.Model):
course = models.ForeignKey(

'course.Course',
on_delete=models.CASCADE,

)
user = models.ForeignKey(

'user.User',
on_delete=models.CASCADE

)
@property
def score(self):

pass

@property
def score_history(self):

pass

@property
def percentile_history(self):

pass

def create_user_assignment_stats(self):
pass

@property
def user_assignment_stat(self):

return self.userassignmentstat_set

Listing 3.6: Declaration the UserStat model

26

3.3. Implementing the improvements

from django.db import models

class UserAssignmentStat(models.Model):
user_stat = models.\

ForeignKey(UserStat, on_delete=models.CASCADE)
assignment = models.\

ForeignKey(
'assignment.Assignment',
on_delete=models.CASCADE,

)

@property
def score(self):

pass

@property
def percentile(self):

pass

@property
def user(self):

return self.user_stat.user

Listing 3.7: Declaration the UserAssignmentStat model

3.3.2 Generating the GraphQL API

To make the proposed (and other) GraphQL queries function I had to program
Django describers. In the file structure I added the file describers.py. This
file contains describers for distinct Django models. In the describers I defined
how the GraphQL API for the new analytics module models should work.
Each model has a describer class which inherits from the Describer class of
the package django_describer.

The parent class automatically creates some actions, like for instance
a list_action which allows you to query a list of all nodes of the given model.
Just a basic code like in figure 3.12 will allow you to list all the UserStats along
with the id of the UserStat as shown in figure 3.13. The properties are not
detected automatically. They need to be added as extra_fields as shown for
the properties of the CourseStat on figure 3.14. The full code of the describers
for the analytics module can again be examined on my branch of the faculty
GitLab (11) in file ls/apps/analytics/describers.py. This file contains
describers for all the models in the analytics module. As may be noticed, in
the describers.py there is an import from an analytics.permissions file.

27

3. Practical part

from django.db import models

class ScoreHistogram(models.Model):
course_stat = models.ForeignKey(

'CourseStat',
on_delete=models.CASCADE,

)
score = models.\

IntegerField(
help_text='a score at least some user obtained',

)
frequency = models.\

IntegerField(
help_text='the frequency of this score',

)

def increment_frequency(self):
self.frequency += 1
self.save()
return self.frequency

class CourseStat(models.Model):
course = models.OneToOneField(

'course.Course',
on_delete=models.CASCADE,
default=0,

)

@property
def median(self):

pass

@property
def median_history(self):

pass

@property
def score_histogram(self):

return self.scorehistogram_set

Listing 3.8: Declaration the CourseStat model

28

3.3. Implementing the improvements

import random
import statistics
from time import process_time

import numpy as np

rng = 1000000
length = 5000000

random_list = [random.randint(-rng, rng) for i in range(length)]

print('np median vs py median.')
start = process_time()
np.median(random_list)
end = process_time()
print('np median took {}s'.format(round(end-start, 5)))

start = process_time()
statistics.median(random_list)
end = process_time()
print('py median took {}s'.format(round(end-start, 5)))

print('np average vs py average. ')
start = process_time()
np.average(random_list)
end = process_time()
print('np average took {}s'.format(round(end-start, 5)))

start = process_time()
statistics.mean(random_list)
end = process_time()
print('py average took {}s'.format(round(end-start, 5)))

Listing 3.9: Testing NumPy vs Pyhon

np median vs py median.
np median took 0.38795s
py median took 1.51091s
np average vs py average.
np average took 0.31119s
py average took 1.91349s

Listing 3.10: NumPy vs Python results

29

3. Practical part

from utils import register_model
from .models import UserStat, CourseStat, UserAssignmentStat

register_model(UserStat)
register_model(CourseStat)
register_model(UserAssignmentStat)

Listing 3.11: Adding all the models from the analytics module to the admin
site

from django_describer.describers import Describer
from django_describer.permissions import Or
from analytics.models import UserStat
from analytics.permissions import IsAdmin, IsSelf, IsTeacherOf

class UserStatDescriber(Describer):
model = UserStat

default_field_permissions = Or(IsAdmin, IsSelf, IsTeacherOf)
default_action_permissions = IsAdmin

Listing 3.12: Basic describer of UserStat

query {
UserStatList {
results {

id
}

}
}

Listing 3.13: UserStat list action

30

3.3. Implementing the improvements

from django_describer.datatypes import Integer, QuerySet
from django_describer.describers import Describer
from django_describer.permissions import Or

from analytics.models import CourseStat, ScoreHistogram
from analytics.permissions import IsAdmin, IsStudent

class CourseStatDescriber(Describer):
model = CourseStat

default_field_permissions = Or(IsAdmin, IsStudent)
default_action_permissions = IsAdmin

extra_fields = {
'score_histogram': QuerySet(ScoreHistogram),
'median': Integer
'median_history': QuerySet(Integer)

}

Listing 3.14: Basic describer of CourseStat

This file contains classes, which authorise actions by various groups of users.
For instance, the IsAdmin permission checks whether the logged in user has
an admin status and then allows the user to perform the action. If the user
was not admin, the GraphQL would return an error message also defined in
the permissions.py file.

3.3.3 Optimisations
After trying the new functionalities, I realised that this design is very slow.
The methods for calculating the properties take time and listing all UserStats
with all their properties took too long for it to be used in real deployment.

One option was to try and optimise the methods, make them more effec-
tive, by using NumPy for instance, but I knew that still would not make such
a drastic change. The data had to be stored persistently and not recalculated
on every call. The calculations still had to take place, but not on every call.
So I had to decide when to recalculate them. Another alternative would be
not to recalculate the data from scratch every time but update the data each
week of the semester. However, I did not like that idea very much. I think
it is better to recalculate the data from scratch because in that way it is not
dependent on any changes in the semester, restarts of the server, different
dates every year and so on.

Another option was to recalculate the data after each submission of an
assignment by any user, but that still was not good enough, because there are

31

3. Practical part

times, when tens of students are creating multiple submissions at once and
that would take up a lot of computing capacity at times, when the capacity
is actually needed for other work.

Finally, for the computations, I decided to use a time, when the server
is not taking large payloads – at night. I had to implement a function to
recalculate all the statistical data and execute it periodically. Me and my
colleague form the frontend agreed, that the recalculations should take place
at the end of every week, because that is when the data are most relevant.
It would not make much sense to analyse the weekly percentile on Monday,
when most of the students have not even taken the weekly exam yet. The
scores of other students would be very different at the end of the week, than
at the beginning. The Monday students would have an unfair advantage of
having taken one extra test in contrast with the other students.

In the end I decided to carry out the calculations every Saturday at
12:00am. For completing this task, it was quite convenient that Celery is
already running in the LearnShell backend. I just had to schedule a task us-
ing Celery Beat and link it with the recalculating function. In order to use
the Celery Beat I had to alter the docker-compose.yml file. In the command
which activates the Celery worker in Docker I had to add the flag -B.

In the analytics module I created a new file tasks.py and in it defined
a new function called: friday_night_recalculation. The content of the
tasks.py file containing the code of the function can be examined on figure
3.15. This function basically calls all the recalculating methods from the
other models in the right order. After this I had to schedule this task with
Celery Beat.

To the settings/celery_setup.py I added a command to select the cor-
rect time zone and called autodiscover_tasks() which detects all functions
with the decorator @shared_task in the whole project and allows me to sched-
ule them. After updating the Celery setup file, I added the scheduling code
(on listing 3.16) to the end of the settings/settings.py file. Here I added a
new task to the Celery Beat schedule, selected the time and linked it with the
@shared_task. To support these ideas and their execution I used [12] and [13].

I tested the scheduling by changing it to a time that was close at the
moment of testing, the task was executed at the time, so the test was succesful.
I also tried running Docker on a Friday night and at midnight the calculations
did take place.

Thanks to Celery, the task runs asynchronously, so this does not mean
that on Friday night nobody can use LearnShell for a few minutes but the
server will definitely not crash from it as it could at a more busy time.

After implementing the scheduling at a time when the server is not used
very much, there was not much need to optimise the recalculating methods
anymore, because reducing the recalculating time by a few minutes/seconds
would not make much of a difference. I decided to optimise the methods any-
way because there was still room for it. Calculating some combinations of stats

32

3.3. Implementing the improvements

from celery import shared_task
from assignment.models import Assignment
from .models import CourseStat, UserStat

@shared_task
def friday_night_recalculation():

print('Initiating Friday night recalculation of all stats')
recalculate all users score and score history
and create assignment stats
for user in UserStat.objects.all():

user.recalculate_score()
user.create_user_assignment_stats()

recalculate all users percentile from scores,
must be after first loop
for user in UserStat.objects.all():

user.recalculate_percentile()

recalculate median of all assignments,
max scores and score arrays
for assignment in Assignment.objects.all():

assignment.update()

recalculate median and median history of all courses
for course_stat in CourseStat.objects.all():

course_stat.calc_median()
course_stat.calc_median_history()
course_stat.calc_histogram()

print('Stats recalculated')

Listing 3.15: Friday night recalculation

33

3. Practical part

CELERY_BEAT_SCHEDULE = {
schedules the task to every saturday at 00:00
'friday_night_recalculation': {

'task': 'analytics.tasks.'
'friday_night_recalculation',

'schedule': crontab(
hour=0,
minute=0,
day_of_week='saturday'

),
'name': 'Statistics every friday night'

' at the end of the week.',
},

}

Listing 3.16: Scheduling a task with celery

could be done in one method instead of having a method for recalculating each
stat. For example calculating the UserStat score and score_history was
done by iterating through the same data twice. The calculation of these stats
was possible to merge into one method. It made the code less understandable,
but saved one for loop in each users recalculation.

3.3.4 Testing, Fixes and other Improvements
To test the newly implemented code I used an anonymised dump of the Post-
greSQL database from the previous semester (B201 – winter semester of 2020).
The data contained students profiles with data of all the assignments they sub-
mitted. I had to create new tables for all the UserStats and CourseStats.
I overrode the save() methods in the User and Course model to add a new
stat table, if it does not exist yet on save of the model. After that I tested all
the possible queries and added some sample queries to the the analytics module
to the samle_queries_for_analytics.graphql file in the sample_queries
directory. Then I created a new dump of the database with all the new ta-
bles which can be loaded by running the load_dump.sh script in the scripts
directory and used for testing.

I called the queries in various combinations and analysed the data man-
ually checking whether they make sense. Another big part of the testing
was carried out when my colleague connected the new queries to the fron-
tend and visualised the data. Occasionally, there occurred some minor errors
which were not hard to solve. There were some issues with permissions in the
Django describers, for example, the student was not able to list his own data.
I missed this error before because I tested it only logged in as admin. Then
there were some errors in the data calculation but nothing serious.

34

3.4. Cloud service provider selection

One thing we realised with my colleague from frontend was, that the
percentile_history in UserStat and median_history in CourseStat was
not very relevant, because the course is taught in the first semester of FIT
and unfortunately a vast amount of students leave the faculty before the end
of the first semester. As a result, in the data, there are a lot of students
which are idle. We defined these students as students with the score at the
end of the semester from 0 to 5. My colleague from the frontend decided to
add a toggle option to display the statistics with either counting these stu-
dents in or not. For this I decided to add new array-fields to the database. In
CourseStats I added median_history_idle which is the history of median of
all the students and median_history which excludes students with the score
lower than or equal to 5. Analogically I added percentile_history_idle to
the UserStat model.

Then my colleague from the frontend decided, that he wants to add a final
score prediction to the students dashboard. He had some way of calculating
it in mind, but since he proposed this addition a week before the deadline for
the thesis, I decided to define the score prediction myself considering the lack
of time. I added an integer field final_score_prediction to the UserStat
table. I created a recalculation method for it and added it to the Friday night
recalculation task. The score prediction is calculated by iterating through
the students of the previous semester of the same course. I had to add an
extra static method to retrieve the KOS tag of the previous semester from the
current semester (for ‘B201’ the method returns ‘B191’). In every iteration
I store the final score of the students whose end-of-week score differs from the
users end-of-week score by up to 3 and then I calculate the average of these
scores (using NumPy). The average is the final score prediction.

3.4 Cloud service provider selection
In this section I will be analysing 3 major cloud service providers that can
run Docker containers. Why use a third party cloud service provider in the
first place? At the moment, LearnShell is running on faculty servers. These
servers are not prepared to take such payloads LearnShell demands. Respec-
tively, they are but the faculty servers are used for many other services and
we can’t take up all the computing capacity with LearnShell. Last year (in
the semester B201 – winter semester of 2020) we experienced various prob-
lems with the server crashing whilst a whole class was writing an exam on
LearnShell. And we are talking about only one course in one semester being
taught with LearnShell. With LearnShell there are ambitions to teach more
courses, perhaps even on different faculties or schools.

For the time being, LearnShell will stay on the faculty servers, but this
financial analysis could prove useful in the future, when the management
decides to migrate it. There are also possibilities of obtaining a grant from

35

3. Practical part

Google which could be used to finance the cloud service provision by Google.
When applying for these grants analysis like this are decisive.

I will compare the pricing of the three cloud service providers and pick the
best one for LearnShell. There are of course many cloud service providers and
I have to pick 3 to analyse. I have decided to choose:

• AWS – Amazon Web Services

• Microsoft Azure

• Google Cloud

because they are the leading cloud service providers according to [14] and other
websites. Another important thing is, that they all support Docker containers.
The Google Cloud is also picked due to the grant mentioned previously.

First, I will need to create an estimate of how much processing power and
which services will be needed to satisfy the needs of LearnShell. I will consider
two scenarios, one ideal and one with a little reserve (I will call it “excessive”)
and then I will apply these parameters to the pricing calculator of each CSP.
These calculators will calculate the estimate of the monthly fee for using their
services. This will help me select the best one.

Next I will explain which services I have selected in the individual CSP
calculators, adding a link to the calculator configurations. The links to the
calculators expire in some time e. g. 3 years, but all the calculated prices
will be listed. At the end there will be an overview of the pricing analysis in
table 3.2 with the data visualised in figure 3.9.

For the ideal configuration I will select a Kubernetes engine to run 10
virtual private servers with a 4 core processor and 16 GiB of RAM. These
servers will run the LearnShell services. As explained in the current architec-
ture analysis 3.1, there are only 4 services. Having 10 virtual private servers
will allow to duplicate the services when needed, to double the computing
capacity of the given service. Then for the excessive scenario, I will select
16 virtual private servers with the same configuration. We will need a 24/7
availability, because students could have homework assignments, which they
could be working on, whenever.

I will be using the dollar currency in all the calculators and calculate with
the monthly fee in order to keep the ratio.

With Amazon Web Services I have selected the service Amazon Elastic
Computer Cloud (EC2). Into the calculator I entered the previously men-
tioned parameters of the two scenarios. Amazon also offers various financing
plans. I will look into the on-demand pricing and the EC2 instance saving
plans. The ideal scenario with on demand pricing totalled to $ 1,750.70 per
month (link to calculator 1). The ideal scenario with the EC2 Instance Sav-
ings Plans reserving the service for 3 years totalled to $ 823.60 per month
(link to calculator 2). The excessive scenario totalled to $ 2,801.12 per month

36

3.4. Cloud service provider selection

Table 3.2: Summary of CSP pricing

Cloud service provider monthly fee
ideal excessive

Amazon web services $ 1,750.70
$ 823.60*

$ 2,801.12
$ 1,317.76*

Microsoft Azure $ 1,708.20
$ 741.10*

$ 2,733.12
$ 1,185.75*

Google cloud $ 1,675.94 $ 2,681.51
Note: ∗ price with the savings plan.

(link to calculator 3) with on demand pricing and $ 1,317.76 per month (link
to calculator 4) with the savings plan.

Next, let’s take look at Microsoft Azure. In the Microsoft Azure calculator
I have selected the Azure Kubernetes Service (AKS). Microsoft Azure also of-
fers price saving plans, so there will be 4 estimates. For the ideal scenario with
on demand pricing they charge $ 1,708.20 per month (link to calculator 5).
Selecting the 3 year saving plan drops the price to $ 741.10 per month (link
to calculator 6). The excessive scenarios are priced at $ 2,733.12 per month
(link to calculator 7) for the on demand pricing plan and $ 1,185.75 per month
(link to calculator 8) for the savings plan.

With Google Cloud I have selected the service Google Kubernetes engine
(GKE) Autopilot. This server can automatically manage nodes based on their
health and payload [15]. Google Cloud offers only on demand pricing, so we
will look into only 2 estimates. These estimates reached $ 1,675.94 per month
(link to calculator 9) for the ideal scenario and $ 2,681.51 per month (link to
calculator 10) for the excessive scenario.

Finally I have reached the conclusion that the main parameter which will
affect the monthly fee is whether the faculty would be willing to commit to
the cloud service provider for 3 years or not. This option is a huge advantage
of AWS and Microsoft Azure opposing to Google cloud. If the faculty would
commit, then the cheapest would be Microsoft Azure for both the ideal and
the excessive scenario. If the faculty decided to choose on demand pricing,
Google Cloud would be the best bet for both scenarios. The commitment
makes such a significant difference that with the savings plan, the monthly
fee would be lower for the excessive scenario (with both AWS and Microsoft
Azure) than it would for the ideal scenario with all cloud service providers.
Overall the monthly fee (when selecting on demand pricing) is very similar
with all cloud service providers and could probably be tweaked with some
minor changes in the configuration. Therefore I would recommend the Google
Cloud if the faculty went for the on demand pricing, due to its GKE Autopilot
and the possibility of financing it with a Google grant.

37

3. Practical part

AWS Microsoft Azure Google Cloud
500

1,000

1,500

2,000

2,500

3,000

M
on

th
ly

fe
e
[$
]

Ideal – on demand Ideal – savings
Excessive – on demand Excessive – savings

Figure 3.9: Chart of CSP pricing

38

Chapter 4
Accomplishments

4.1 Report of improvements, Future re-evaluation
In conclusion I would like to summarise, what improvements I have accom-
plished to carry out in the LearnShell backend. I have created a functioning
analytics module, which calculates and stores statistical data of students and
courses. The module is prepared for other additions in the future.

Students now have the possibility to analyse their performance throughout
the semester. They can view their overall score (without having to calculate
it manually from all their assignments), they can analyse how their score de-
veloped through time and analyse their percentile change through time. They
also received a final score prediction based on the performance of students
from previous years. Students can also view data about the whole course they
are studying at the moment, like for instance the score histogram of all current
scores or median in the given course. They can also view overall statistics of
all assignments that were generated for them, like the median of all scores
obtained from the given assignment.

My module calculates and returns the data with GraphQL queries and my
colleague from the frontend bound them to user friendly charts and graphs on
the web interface. Each student now has a Dashboard tab, where he/she can
display the data the analytics module provides.

There are also data, which are not being used in the frontend yet, like
summaries of all courses performances or medians of all assignments.

Another contribution is that LearnShell now possesses an analytics module
which can be very simply extended. In the future, it would be possible to
analyse other data. Ideas for future extension of the analytics module are:

• Calculating statistical data of various parallels

– The module could have a table for storing statistical data of various
parallels

39

4. Accomplishments

– Then, it would be possible to analyse performances of parallels
and deduct what the differences of their performances are due to.
For instance, whether evening parallels are less productive than
morning parallels, determining the most productive day of week,
etc.

• Analysing the success rates of assignments

– There could be added an assignment stat table, which would cal-
culate the success rate of the assignment.

– That would make possible determining which assignments were per-
haps too easy and which were too hard.

• Teachers dashboard

– In the future there could be added a table for statistics of a teacher
– The teacher could have the possibility to analyse the success rates

of his/her parallels
– Compare his/her parallel performances to other teachers parallels

These improvements (and more) can be added to LearnShell in the future.
Perhaps it could even be a topic for another bachelor’s thesis.

Another topic I would like to discuss is future re-evaluation. It would
be appropriate to analyse, whether and how much students actually use the
analytics module resp. how much they use the students dashboard on the
frontend. Here comes the question whether it would be better /more con-
venient to collect the data about the usage in the backend or the frontend.
Since, at the moment the, students do not really have an option to view spe-
cific statistical data discretely, there is not much point in adding tracking to
the backend queries. The students open their dashboard tab and they see all
the viewable data at once. In conclusion it would probably be best to add
tracking to the dashboard tab button and analyse how often students actually
access the data from the analytics module overall.

If however, the frontend changed in the future and made each statistic
available discretely, it would be possible to measure which statistic interests
them most and which they perhaps do not use at all.

To do this there are various options. One option would be to implement a
self-made tracking module into LearnShell which would contain counters for
individual queries and mutations. Another way is to use a professional charged
tool. There are some popular tools for this like Mixpanel or Amplitude. In
my opinion, these tools are too advanced for LearnShell at the moment. Since
LearnShell is not openly on the internet, there is no need to maximise the
effectiveness and reach as much users as possible. That is what these tools
are usually used for. They are payed-for, so their users look for some money
in return by reaching more users. LearnShell is a specific system for students

40

4.2. Documentation

who have no other option but to use it. However, if we decided to use one of
these tools in the future, I would recommend Amplitude. According to [16],
Mixpanel concentrates on mobile apps a lot, whetheras Amplitude is more
product based and more appropriate for web apps, which LearnShell is.

4.2 Documentation
The whole code of the new analytics module is thoroughly commented by
docstrings. There is a generated documentation of the analytics module
models.py file, in the docs/analytics directory on GitLab (11) and the
enclosed CD (C). The documentation was generated using pdoc, which is
an auto generator for Python APIs [17]. At first there were problems with
generating the documentation due to Django applications not being started.
I resolved this issue by temporarily removing the Django references from the
code. Thanks to this, it was possible to generate the documentation. The
code would not work and is not and identical copy of the real code, but the
documentation generated from this “dummy” code is perfectly understandable
and identical with how the documentation would look if the Django references
did not cause exceptions and allowed the documentation to generate.

I have also added a readme file for programmers, who will want or need
to change or update the analytics module. This file briefly describes the
analytics module and gives a small hint on how to add new functionalities to
the analytics module. The file also contains instructions on how to test the
analytics module using a database dump.

In the directory, there is also a new database model of the analytics module,
shown in figure 4.1.

41

4. Accomplishments

Figure 4.1: Schema of Django models in the analytics module

42

Conclusion

To conclude this thesis, I will evaluate whether I have accomplished to fulfil
the goals defined in the beginning. The main goal – improving LearnShell
backend for analytics – was accomplished.

I have defined the technology LearnShell uses, analysed the current Learn-
Shell backend architecture and identified the parts which needed improve-
ments.

Then, I have proposed the improvement: creating the new analytics mod-
ule, designed it on a conceptual level and implemented the new functionalities.
After that, I optimised the performance of all methods in the analytics module.

Inter alia, I have performed a financial analysis of three cloud service
providers to which LearnShell could be migrated in the future and recom-
mended Google Cloud.

Finally I have concluded a report of improvements in the LearnShell back-
end and proposed some possible improvements for the future. I also discussed
the question of future re-evaluation and compiled internal documentation of
the analytics module.

My main output is, that there is now a new functional analytics module,
which students can use to analyse their performance throughout the semester.
This improvement can be deployed immediately in the next semester and be
a contribution to the students and teachers who use it.

Another contribution is my personal development in my field, as should of
course be of any final thesis. I now have a deeper understanding of how soft-
ware development works in practise. I have also discovered new technologies
which I did not previously know of or how they work.

43

Bibliography

[1] Red Hat, Inc. What is Docker? Opensource Resources [online], 2021,
[cit. 2021-04-22]. Available from: https://opensource.com/resources/
what-docker

[2] Juwel, A. I. Asynchronous Task with Django Celery Redis and Production
using Supervisor. Start it up [online], 2020, [cit. 2021-04-20]. Available
from: https://medium.com/swlh/asynchronous-task-with-django-
celery-redis-and-production-using-supervisor-ef920725da03

[3] Redis. Introduction to Redis. Redis [online], 2021, [cit. 2021-04-21]. Avail-
able from: https://redis.io/topics/introduction

[4] Django Software Foundation. Django. Meet Django [online], 2021, [cit.
2021-04-21]. Available from: https://www.djangoproject.com/

[5] The PostgreSQL Global Development Group. PostgreSQL: The World’s
Most Advanced Open Source Relational Database. PostgreSQL offi-
cial website [online], 2021, [cit. 2021-04-21]. Available from: https:
//www.postgresql.org/

[6] Carbonnelle, P. PYPL PopularitY of Programming Language. PYPL
index [online], 2021, [cit. 2021-05-07]. Available from: https://
pypl.github.io/PYPL.html

[7] Gouy, I. Which programming language is fastest? Meet Django [on-
line], 2021, [cit. 2021-04-21]. Available from: https://benchmarksgame-
team.pages.debian.net/benchmarksgame/index.html

[8] Bolton, D. 5 Reasons You Should Know NumPy. Dice insights [online],
2016, [cit. 2021-05-09]. Available from: https://insights.dice.com/
2016/09/01/5-reasons-know-numpy/

45

https://opensource.com/resources/what-docker
https://opensource.com/resources/what-docker
https://medium.com/swlh/asynchronous-task-with-django-celery-redis-and-production-using-supervisor-ef920725da03
https://medium.com/swlh/asynchronous-task-with-django-celery-redis-and-production-using-supervisor-ef920725da03
https://redis.io/topics/introduction
https://www.djangoproject.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://insights.dice.com/2016/09/01/5-reasons-know-numpy/
https://insights.dice.com/2016/09/01/5-reasons-know-numpy/

Bibliography

[9] The GraphQL Foundation. Introduction to GraphQL. GraphQL Learn
[online], 2021, [cit. 2021-04-28]. Available from: https://graphql.org/
learn/

[10] Jílek, K. Project description. Django Describer Documentation [online],
2020, [cit. 2021-04-25]. Available from: https://pypi.org/project/
django-describer/

[11] ndclt. Unable to install numpy on docker python3.7-slim in a raspberry
pi. stackoverflow [online], 2020, [cit. 2021-04-27]. Available from: https:
//stackoverflow.com/a/63979755

[12] J-O Eriksson. Handling Periodic Tasks in Django with Celery and Docker.
TestDriven.io [online], 2020, [cit. 2021-04-29]. Available from: https:
//testdriven.io/blog/django-celery-periodic-tasks/

[13] Ask Solem. Periodic Tasks. Celery 5.0.5 documentation [online], 2018,
[cit. 2021-04-29]. Available from: https://docs.celeryproject.org/en/
stable/userguide/periodic-tasks.html

[14] Django Software Foundation. Top Cloud Service Providers & Companies
of 2021. Meet Django [online], 2021, [cit. 2021-05-08]. Available from:
https://www.datamation.com/cloud/cloud-service-providers/

[15] Google. Autopilot overview. Google Cloud Documentation [online],
2021, [cit. 2021-05-08]. Available from: https://cloud.google.com/
kubernetes-engine/docs/concepts/autopilot-overview

[16] Practico Analytics. Amplitude vs Mixpanel? Pros and Cons of
Each. Youtube [online], 2018, [cit. 2021-05-10]. Available from:
https://www.youtube.com/watch?v=SEnHJ6i2NOo&ab_channel=
PracticoAnalytics

[17] pdoc. What is pdoc? pdoc documentation [online], 2020, [cit. 2021-05-12].
Available from: https://pdoc.dev/docs/pdoc.html

46

https://graphql.org/learn/
https://graphql.org/learn/
https://pypi.org/project/django-describer/
https://pypi.org/project/django-describer/
https://stackoverflow.com/a/63979755
https://stackoverflow.com/a/63979755
https://testdriven.io/blog/django-celery-periodic-tasks/
https://testdriven.io/blog/django-celery-periodic-tasks/
https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html
https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html
https://www.datamation.com/cloud/cloud-service-providers/
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://www.youtube.com/watch?v=SEnHJ6i2NOo&ab_channel=PracticoAnalytics
https://www.youtube.com/watch?v=SEnHJ6i2NOo&ab_channel=PracticoAnalytics
https://pdoc.dev/docs/pdoc.html

Appendix A
Acronyms

CTU Czech Technical University

FIT Faculty of Information Technology

LS LearnShell

API Application Programming Interface

PS1 Programming in shell 1

KOS Study information system of CTU

GQL GraphQL

UI User interface

CSP Cloud service providers

JSON JavaScript Object Notation

OOP Object oriented programming

RAM Random Access Memory

VPS Virtual Private Server

47

Appendix B
List of hyperlinks

1. Amazon calculator ideal, on demand, available from:
https://bit.ly/3uARbzR

2. Amazon calculator ideal, savings, available from:
https://bit.ly/2SH2NDp

3. Amazon calculator excessive on demand, available from:
https://bit.ly/3f5GiiZ

4. Amazon calculator excessive savings, available from:
https://bit.ly/2SIig67

5. Microsoft Azure calculator ideal, on demand, available from:
https://azure.com/e/a4c4c94a0a154f339e6b7b86b6ae59b0

6. Microsoft Azure calculator ideal, savings, available from:
https://azure.com/e/4a4ed8a194f1431e84e0fd4bd2aed339

7. Microsoft Azure calculator excessive, on demand, available from:
https://azure.com/e/21388a95cb3c4e519745669acbce7fe4

8. Microsoft Azure calculator excessive, savings, available from:
https://azure.com/e/67d9f020991042dea91280946c963884

9. Google calculator ideal, available from:
https://bit.ly/33wgcjL

10. Google calculator ideal, available from:
https://bit.ly/3y0KrNN

11. My branch on the faculty GitLab:
https://gitlab.fit.cvut.cz/learnshell-2.0/ls/tree/bap-pejchdan

49

https://calculator.aws/#/estimate?id=435094a1d34aeaa0d692e34f947af7c5bc9a4524
https://calculator.aws/#/estimate?id=435094a1d34aeaa0d692e34f947af7c5bc9a4524
https://calculator.aws/#/estimate?id=370670d6fa72d4292441dcd1483e5fb5081cfbfe
https://calculator.aws/#/estimate?id=370670d6fa72d4292441dcd1483e5fb5081cfbfe
https://calculator.aws/#/estimate?id=dd2b5e80ae1953136fac10dfc7ef028794526d80
https://calculator.aws/#/estimate?id=dd2b5e80ae1953136fac10dfc7ef028794526d80
https://calculator.aws/#/estimate?id=4ca7bbc70423508d83c293ab5c178ad560a83fb6
https://calculator.aws/#/estimate?id=4ca7bbc70423508d83c293ab5c178ad560a83fb6
https://azure.com/e/a4c4c94a0a154f339e6b7b86b6ae59b0
https://azure.com/e/a4c4c94a0a154f339e6b7b86b6ae59b0
https://azure.com/e/4a4ed8a194f1431e84e0fd4bd2aed339
https://azure.com/e/4a4ed8a194f1431e84e0fd4bd2aed339
https://azure.com/e/21388a95cb3c4e519745669acbce7fe4
https://azure.com/e/21388a95cb3c4e519745669acbce7fe4
https://azure.com/e/67d9f020991042dea91280946c963884
https://azure.com/e/67d9f020991042dea91280946c963884
https://cloud.google.com/products/calculator/#id=8a76a3fd-c79d-46b0-b3f4-d01df5e69d82
https://cloud.google.com/products/calculator/#id=8a76a3fd-c79d-46b0-b3f4-d01df5e69d82
https://cloud.google.com/products/calculator/#id=061c11ec-d986-42e4-aefd-0e32bafef849
https://cloud.google.com/products/calculator/#id=061c11ec-d986-42e4-aefd-0e32bafef849
https://gitlab.fit.cvut.cz/learnshell-2.0/ls/tree/bap-pejchdan
https://gitlab.fit.cvut.cz/learnshell-2.0/ls/tree/bap-pejchdan

Appendix C
Contents of enclosed CD

README.md........the file with the CD contents description in md format
thesis.pdf...............................the thesis text in PDF format
sourcesdirectory with source codes

ls the directory with a clone of my branch from GitLab
ls-ps1-generator......the directory with LS generator from GitLab

thesis..................the directory of LATEX source codes of the thesis

51

	Introduction
	Goals
	Theoretical part
	Literature
	Technology in LearnShell
	Docker
	Celery
	Redis
	PostgreSQL and Django
	Python
	GraphQL and Django Describer

	Practical part
	Current architecture analysis
	Proposing improvements
	Conceptual design
	Defining property calculations
	Time complexity

	Implementing the improvements
	Creating the analytics module
	Generating the GraphQL API
	Optimisations
	Testing, Fixes and other Improvements

	Cloud service provider selection

	Accomplishments
	Report of improvements, Future re-evaluation
	Documentation

	Conclusion
	Bibliography
	Acronyms
	List of hyperlinks
	Contents of enclosed CD

