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Abstract

Homotopy Continuation is a method from
numerical algebraic geometry for solving
systems of polynomial equations. During
the Homotopy Continuation, the start-
ing system is gradually transformed into
the final problem and the solution to the
system is tracked. When the Homotopy
Continuation is finished, we obtain the
solution to the final problem.

In this thesis, we present two solvers
based on Homotopy Continuation, which
are used for the estimation of the relative
pose of two views from five points and
the relative pose of three views from four
points. Until now, the Homotopy Contin-
uation solvers have been too slow to be
used in RANSAC. The running time of
the solvers proposed in this thesis is com-
parable to the time of the Nistér solver,
which makes them eligible for RANSAC.
We have achieved the low running time by
selecting the starting problem with a Mul-
tilayer Perceptron, by tracking in the real
domain, and by an efficient evaluation of
systems of linear equations which arise in
the Homotopy Continuation method.

Keywords: homotopy continuation,
solution of equations, polynomial
equations, minimal geometric problems
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Abstrakt

Homotopické pokračování je metoda nu-
merické algebraické geometrie pro řešení
soustav polynomiálních rovnic. Během
homotopického pokračování se počáteční
soustava postupně transformuje na kon-
covou soustavu, během čehož se sleduje
řešení transformované soustavy. Když je
homotopické pokračování ukončeno, zís-
káme řešení koncové soustavy.

V této práci navrhujeme řešení úloh
nalezení relativní polohy dvou kamer z
pěti bodů a nalezení relativní polohy tří
kamer ze čtyř bodů pomocí homotopic-
kého pokračování. Doposud bylo řešení
pomocí homotopického pokračování příliš
pomalé na to, aby se dalo efektivně použít
ve schématu RANSAC. Čas potřebný pro
řešení prezentovaná v této práci je srov-
natelný s časem potřebným pro Nistérův
pětibodový algoritmus, tudíž jsou tato ře-
šení vhodná pro RANSAC. Takto nízkých
časů jsme dosáhli výběrem počátečního
řešení pomocí neuronové sítě, sledováním
řešení pouze v reálném oboru a efektivním
řešením soustav lineárních rovnic, které se
objevují při homotopickém pokračování.

Klíčová slova: homotopické metody,
řešení rovnic, polynomiální rovnice,
minimální geometrické problémy

Překlad názvu: Efektivní výpočet
geometrie kamer s použitím
homotopických metod
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Chapter 1

Introduction

A system of polynomial equations is called a minimal problem if it has
a finite nonzero number of complex solutions. Minimal problems arise in
numerous problems in computer vision, such as pose estimation or camera
calibration. The solution of minimal problems is often used in the RANSAC
scheme [BF81] to obtain an exact solution for a sample of points, which is
then verified using the remaining points. Until now, the solvers based on
Homotopy Continuation [SI05] have been too slow to be used in RANSAC.
Therefore, the solvers used in the RANSAC loop have been based on the
symbolical methods in Algebraic Geometry [CLO07], while the Homotopy
Continuation Solvers have been used to study the minimal problems In this
thesis, we propose two solvers based on Homotopy Continuation, which are
used to solve two minimal problems arising in the computer vision: the
Five-Point problem and the relaxed version of the Four-Point problem. The
running time of these solvers is comparable to the running time of the Nistér
algorithm, and therefore, they are suitable to be used in RANSAC.

1.1 Structure of the Thesis

In Chapter 1 the State of the art is reviewed, the notation used in the thesis
is presented, and the contributions of the thesis are summarized.

In Chapter 2 the Point-Line problems of five points in two views and four
points in three views are described. The depth formulation, which allows

1 ctuthesis t1606152353



1. Introduction .....................................
to convert the problems into systems of parametrized polynomial equations,
is introduced. For both problems, a generator of problem-solution pairs is
given.

In Chapter 3 the Homotopy Continuation method for solving systems of
polynomial equations is described. The predictor and corrector steps of the
homotopy continuation, as well as the concepts of Parametric Homotopy
Continuation and the Real Homotopy Continuation are given.

In Chapter 4 the Homotopy Continuation solver for the problem of five
points in two views is proposed. In Chapter 5 the Homotopy Continuation
solver for the problem of four points in three views is proposed.

In Chapter 6 the experiments, whose purpose is to evaluate the solvers
described in Chapters 4 and 5, are described.

1.2 Contributions

This work brings the following main contributions...1. We propose a new solver for the problem of five points in two views (Five-
Point problem) [Nis04] and for the problem of four points in three views
(Four-Point problem) [NS06]. Our solvers are based on Real Homotopy
Continuation [SI05] and their running time is comparable with the state-
of-the-art Nistér solver for the Five-Point problem [Nis04], which makes
them suitable for the use in RANSAC loop...2. In the solvers, we track only one solution to each input problem from a
starting problem-solution pair which is selected using a Neural Network
classifier. We show that it is possible to learn a very few starting points to
be able to solve realistic real data sets. This, together with the use of Real
Homotopy Continuation instead of Complex Homotopy Continuation
and with an efficient evaluation of the predictor and corrector, allows us
to achieve such low running time in tens of micro seconds...3. So far, the homotopy continuation solvers have been used predominantly
for an offline study of the minimal problems, as they have been too
slow for the use in the RANSAC loop. In this work, we present Homo-
topy Continuation solvers, which are fast enough for RANSAC. To our

ctuthesis t1606152353 2



................................... 1.3. State of the Art

best knowledge, this is the first time a Homotopy Continuation solver
for a minimal problem in Computer Vision achieves times below 100
microseconds...4. We evaluate our Five-Point Homotopy Continuation solver on a bench-
mark [Mys20]. The experiments show that the Homotopy Continuation
solver is slightly faster than the Nistér solver [Nis04], while its precision
is not much worse...5. A symbolic solver for the Four-Point problem has been proposed in
[NS06] but, to our best knowledge, there is no available implementation
of the solver. In this work, we propose a solver to the Four-Point problem
based on the Homotopy Continuation, whose average running time is
below 100 microseconds. We demonstrate this on the proposed Four-
Point Homotopy Continuation solver. The formulation of this problem
is simple but the solution is difficult...6. We demonstrate that Homotopy Continuation solvers may be generalized
to different minimal problems [DKLP19], [DKLP20], for which a symbolic
solution is difficult to find. Efficient Homotopy Continuation solvers for
other problems may be designed using the principles described in this
work.

1.3 State of the Art

1.3.1 Homotopy continuation

Homotopy Continuation [SI05], [Mor09], [BSHW13] is a method from the
Numerical Algebraic Geometry, which is used for solving systems of polynomial
equations. The principle of Homotopy Continuation is further described in
Chapter 3. Over the time, numerous general-purpose Homotopy Continuation
solvers have been developed, such as Bertini [BHSW], Hom4PS-3 [CLL14],
Numerical Algebraic Geometry for Macaulay2 [Ley09], PHPack [Ver99].

The Homotopy Continuation was used in the 1990s in the Computer
Vision for tracing of curves and surfaces in 3D [KP91], [KP92], computing
aspect graphs [KP89], [Pet99], motion estimation [HNH90], [BHN94], pose
estimation [RJH97], [HN94], camera calibration [MF92], [Luo92], [FLM92],
[PG99], Markov Random Field models for image restoration [NDP94]. More
recently, Homotopy Continuation has been used for [EJ10] shape from shading,
and for energy minimization [Sal13]. The implementation [Pol] of the solver
[KP91] is available as a part of the library VNL.

3 ctuthesis t1606152353



1. Introduction .....................................
1.3.2 Minimal Problems Solving

Minimal problems arise in numerous problems of Computer Vision, such as
pose estimation or camera calibration. The State-of-the-art minimal solvers
rely on symbolic methods of Algebraic Geometry [CLO07], [LOÅ+18]. A
solution to the Five-Point problem using Essential matrix has been proposed
in [Nis04].

The problem of estimation of the trifocal tensor has been studied in
[QTAM01] [QTM06], [Rod15], [LTD15], [Mar17], [AO14], [AT10]. Problems
of estimation of relative poses between more than three cameras have been
studied in [Mat16], [Oed15]. In [QTM06], a depth formulation of the problem
of the problem of four points in three views is described.

A solution to the problem of four points in three views has been proposed
in [NS06]. A solver for the estimation of a trifocal tensor from 10, 11, and
12 lines was proposed in [KOÅ14]. More recently, a minimal solver [LÅO17]
for estimation of a trifocal tensor from 9 lines was proposed. Solvers for
the estimation of a trifocal pose from a combination of points and lines are
proposed in papers [OZÅ04], [QN17]. In [VLZ19] a relative pose between two
stereo pairs is obtained from two points and two lines. In works [AL87], [RF91],
[CG00], [SZ00] the relative pose between three cameras is obtained from edges
or curves. In works [JOÅ02], [ZKHM20] the relative pose is computed from
points with one, two, or three lines incident to them. The orientation of
the SIFT features may be used as the line incident to a point [Fab10]. In
work [FKG12], the points incident to lines are used for the estimation of the
trifocal tensor in a calibrated setting. To our best knowledge, none of these
three view solvers is used in practice.

The Homotopy Continuation method has been used by the Computer Vision
community as an offline tool to study the structure of the solutions of minimal
problems, such as symmetry, number of real solutions, and decomposition of
varieties into irreducible components [Kor20]. A minimal problem with six
lines in three views was studied with homotopy continuation in [HN94]. In
[Kil17], minimal problems in three views, including the problem described
in Section 2.2.1, have been studied using a Homotopy Continuation system
Bertini [BHSW]. In [KGB19] the general homotopy continuation system
PHPack [Ver99] is compared against a symbolic solver based on resultants.

A more specific Homotopy Continuation procedure [DHJ+16] is used in
[FDF+20] to solve a problem "Chicago" of three points and two incident lines
in three views. In [DKLP19], a catalogue of all minimal problems in full
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visibility is given. Work [DKLP20] shows a similar catalogue of minimal
problems in partial visibility. The numbers of solutions of the problems in
both catalogues have been found using homotopy continuation.

1.3.3 Real Homotopy Continuation

In most of the applications, only the real solutions to the polynomial systems
are interesting. However, usually a vast majority of the solutions are nonreal.
In [HR18], the homotopy continuation is truncated if it appears to end in
a nonreal solution. In work [HR20] the structure of real solutions in a real
parametric space is studied. In [BHM+20], the structure of cells in the
parametric space, whose number of solutions is the same, is learned using
a neural network. If the real homotopy continuation tracks within one cell,
the track avoids the singularities between the cells, and therefore, there
hold similar guarantees as in the case of complex homotopy. The process
of determining the cell and tracking the real solutions is used to solve a
Kuramoto model with 3 and 4 oscillators. In [Die19], the real homotopy
continuation is used to solve the kinematics of a robot.

1.4 Notation

Now, we are going to describe the notation used in the thesis. If not stated
otherwise, the elements of matrices are indexed from 1. Sections 4.2 and
5.2, which describe a closed form solution of the sparse linear equations, use
indexing from 0.

A set of n points of dimension d is denoted as a matrix X ∈ Rd,n whose
columns are the points in the set. i-th coordinate of j-th point is denoted as
Xi,j . The j-th point is denoted as X:,j (like in MATLAB, j-th column of the
matrix) or by enumerating the coordinates like:

X1,j
...
Xd,j



The depths are denoted by a matrix λ whose i-th row contains the depths
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1. Introduction .....................................
in the i-th view. For the Five-Point problem, λ ∈ R2,5, for the Four-Point
problem λ ∈ R3,4.

The relative poses are denoted as (R, t), where R ∈ SO(3), t ∈ R3.

The invariantized points (Section 4.4, Section 5.4) are denoted as x̄, aligned
points (Section 4.5, Section 5.5) are denoted as x̂, and the anchors (Section
4.6.1, Section 5.6.1) are denoted as x̆. The corresponding depths are denoted
likewise. Homogeneous points are denoted with the superscript h as xh.
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Chapter 2

Minimal problems in Multi-View Geometry

ThePoint-Line-Problem [DKLP19] is given bym cameras. The projections
of p points, and l lines onto the cameras, as well as a set I ⊆ 1, ..., l×1, ..., p of
incidences between the points and the lines, are known. The task is to recover
the position of the p points and l lines in the 3D space, as well as to obtain the
set of relative poses between the m cameras. In the partial visibility version
of the problem [DKLP20], some of the points or lines may not be visible in
all m cameras. Then, we define for every camera i ∈ {1, ...,m} a set Oi of
the points and lines observed in the camera i. Every Point-Line-Problem
is defined by the numbers m, p, l and sets L, O. A calibrated setting is
assumed.

The Point-Line-Problem is minimal, if a generic instance of the problem
has a finite positive number of complex solutions.

2.1 Problem of five points in two views

The best known calibrated Point-Line Minimal Problem is the Five-Point
problem. The code of the Five-Point problem according to [DKLP19] is
50002, the number of complex solutions to this problem is 20. The problem
consists of projections of five points on two cameras. The task is to compute
the relative pose between the cameras and the coordinates of the 3D points
in the coordinate system of the first camera. No lines are assumed in the
problem and the visibility is complete. First, we will give the description of

7 ctuthesis t1606152353



2. Minimal problems in Multi-View Geometry ........................
the Five-Point problem. Let us introduce the notation which we will use in
this section.

X ∈ R3,5 Matrix whose rows represent five points in 3D.

(Rj , tj), j ∈ {1, 2} The poses of the cameras.

x ∈ R2,5 Matrix whose rows are 2D projections of the points onto the first
camera.

y ∈ R2,5 Matrix whose rows are 2D projections of the points onto the second
camera.

λ ∈ R2,5 Matrix of the depths of the points from X. Element λj,i is the
depth of the i-th point in the camera j. Let Xj

i be the coordinates of
point X:,i in the coordinate system of camera j, i.e. Xj

i = RjX:,i + tj .
The depth λj,i is the third coordinate of Xj

i .

Let us fix the first pose as R1 = I, t1 = ~0. We know x, y. The task is to
compute R2, t2, X, λ, such that there holds:

λ1,i

x1,i
x2,i
1

 = R1

X1,i
X2,i
X3,i

+ t1 =

X1,i
X2,i
X3,i

 ,∀i ∈ {1, ..., 5} (2.1)

λi,2

y1,i
y2,1
1

 = R2

X1,i
X2,i
X3,i

+ t2,∀i ∈ {1, ..., 5} (2.2)

C1 C2

X:,i

x:,i y:,i

λ1,ix:,i λ2,iy:,i

Figure 2.1: An example of the Five-Point problem. Five points Xi, i ∈ {1, ..., 5}
are projected onto two cameras C1, C2. The projections of the points are x:,i, y:,i,
and the depths are λ1,i in the first view and λ2,i in the second view.
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........................... 2.1. Problem of five points in two views

2.1.1 Nistér Solver

Now, we are going to briefly describe the solution to the Five-Point problem
due to Nistér [Nis04]. Let us introduce the notation which we will use in this
section.

x ∈ R2,5 Five calibrated points in the first camera.

y ∈ R2,5 Five calibrated points in the second camera.

(R, t) Relative pose between the cameras.

E ∈ R3,3 Essential matrix consistent with the points in x, y. There holds
E = [t]×R

The Nistér solver finds the solution to the Five-Point problem by computing
the essential matrix E which is consistent with the points x, y, i.e.:

[
y1,i y2,i 1

]
E

x1,i
x2,i
1

 = 0, ∀i ∈ {1, ..., 5} (2.3)

In addition to that, the essential matrix fulfills the following conditions:
detE = 0

2EETE − trace(EET )E = 0
(2.4)

We know the points x, y. The goal is to find the essential matrix E, which
would fulfill the equations (2.3), (2.4). Nistér solver solves this problem in two
steps. First, a four-dimensional linear subspace of matrices fulfilling equation
(2.3) is found. In the second step, the matrix from the linear subspace which
fulfills equations 2.4 is found.

When the essential matrix is obtained by the Nistér solver, the Essential
matrix can be decomposed into the rotation R and translation t according to
[Paj21]. We obtain two possible rotations R1, R2 and two possible translations
±t, out of which we select the pair of rotation and translation, for which all
five points are triangulated in front of both cameras.

2.1.2 Depth formulation

There are different ways to convert the Five-Point problem to a set of poly-
nomial equations. One of them is a depth formulation. In this formulation,
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2. Minimal problems in Multi-View Geometry ........................
the parameters are the projections x, y of the points to the cameras and
the unknowns are the depths λj,i, i ∈ {1, ..., 5}, j ∈ {1, 2}. If the depths are
known, we can easily compute the relative pose of the cameras (Sec. 4.7).
Now, we are going to formulate the depth formulation of the Five-Point
problem.

If the depths λj,i correspond to the correct solution, then the distances
between two points Xi, Xi′ are the same in both cameras for every pair
of indices i, i′ ∈ {1, ..., 5}, i 6= i′. The situation is shown in Figure 2.2 The
constraint can be written as the following set of polynomial equations:

∥∥∥∥∥∥∥λ1,i

x1,i
x2,i
1

− λ1,i′

x1,i′

x2,i′

1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥λ2,i

y1,i
y2,i
1

− λ2,i′

y1,i′

y2,i′

1


∥∥∥∥∥∥∥

2

∀i ∈ {1, ..., 5}, i′ ∈ {1, ..., 5}, i < i′

(2.5)

C1 C2

Xi′

Xi

x:,i

x:,i′
y:,i

y:,i′

‖Xi −Xi′‖
λ1,i′x:,i′

λ1,ix:,i

λ2,i′y:,i′

λ2,iy:,i

Figure 2.2: The illustration of the depth formulation of the five point problem.
Two pointsXi andXi′ together with their projections are depicted in the image. If
the depths λ are correct, the value ‖Xi−Xi′‖ is equal to both ‖λ1,ix:,i−λ1,i′x:,i′‖,
and ‖λ2,iy:,i − λ2,i′y:,i′‖. Therefore, these values are equal.

The problem is scale-invariant, i.e., if we multiply all correct depths λi,j by
the same coefficient α ∈ R, we obtain another solution to the equations (2.5).
Therefore, we have to fix the scale in order to have a set of equations with a
finite number of solutions. This is done by fixing the depth of the first point
in the first camera to unity: λ1,1 = 1. After that, the equations (2.5) have 9
variables.
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........................... 2.1. Problem of five points in two views

2.1.3 Generator of the instances of Five-Point problem

Now, we will describe the way the instances of the Five-Point problem together
with their solutions are generated. These generated solutions may be used as
the starting points for the Homotopy Continuation Solver (Section 4.1.3) or
for the training and evaluation of the solver (Section 4.6.3).

We generate the problems from the real 3D models from the ETH 3D
dataset 1. We use the datasets "courtyard", "meadow", and "pipes" for the
training and "delivery_area" for the validataion of the solvers. We generate
problems for every pair j, j′ of cameras in the dataset. Now, we will show
how to generate one problem with its solution from one pair of cameras j, j′.
Let us introduce the notation which we will use in this section.

n Number of points observed by both camera j and camera j′.

(R∗j , t∗j ) Ground truth pose of camera j.

(R∗j′ , t∗j′) Ground truth pose of camera j′.

(R∗, t∗) Ground truth relative pose between cameras j, j′. The relative
rotation R∗ is equal to R∗ = R∗j′(R∗j )T , the relative translation is
equal to t∗ = t∗j′ − (R∗j )T t∗j .

X∗ ∈ R3,n A matrix whose columns are n 3D points observed by both cam-
eras.

x∗ ∈ R2,n A matrix whose columns are correct 2D projections of the points
from X∗ onto the first camera j.

y∗ ∈ R2,n A matrix whose columns are correct 2D projections of the points
from X∗ onto the second camera j′.

εx ∈ R2,n Measurement errors of the observations x∗ of points X∗ by the
first camera j.

εy ∈ R2,n Measurement errors of the observations y∗ of points X∗ by the
second camera j′.

xε ∈ R2,n Observations of points from X∗ by the first camera. There holds
xε = x∗ + εx.

yε ∈ R2,n Observations of points from X∗ by the second camera. There holds
yε = y∗ + εy.

1https://www.eth3d.net/datasets
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2. Minimal problems in Multi-View Geometry ........................
I ∈ {1, ..., n}5 A set of five indices of the selected points.

x ∈ R2,5 A matrix whose columns are the columns from xε indexed by I.

y ∈ R2,5 A matrix whose columns are the columns from yε indexed by I.
The points are therefore in correspondence with points from x.

X ∈ R3,5 A matrix whose columns are the 3D points triangulated from the
points x, y in the coordinate system of the first camera.

λ ∈ R2,5 A matrix of the depths of points from x, y. The depths are such
that the values in λ are the solutions to the depth formulation of
the Five-Point problem (2.5) parametrized by x, y, all depths are
positive and the relative pose consistent with the depths is close
to the ground truth relative pose (R∗, t∗).

We know the observations xε, yε, and the ground truth poses (R∗j , t∗j ),
(R∗j′ , t∗j′) of both cameras. The task is to find the samples x, y of five corre-
sponding points from xε, yε and to compute the corresponding depths λ, such
that the relative pose consistent with the depths is close to the ground truth
relative pose (R∗j,j′ , t∗j,j′). This procedure may be repeated to obtain a set of
problem-solution pairs.

First, we sample five elements I from the set of indices {1, ..., n}. We obtain
the matrix x whose columns are the columns from xε indexed by I. Likewise,
we obtain the matrix y whose columns are the columns from xε indexed by I.
Then, we call the Nistér algorithm (Section 2.1.1) to obtain a set of k ≤ 10
essential matrices Ei, i ∈ {1, ..., k} between points x, y. We decompose each
essential matrix Ei according to [NS06] to obtain two rotations Ri1, Ri2 and
two translations ti, −ti.

Out of these four potential combinations of rotation and translation for
a given essential matrix Ei, we select the rotation Ri and translation ti,
for which all five 3D points Xi are triangulated in front of both cameras.
Then, we select the relative pose (Ri∗ , ti∗), i∗ ∈ {1, ..., k} which minimizes
the distance (6.3) from the ground truth relative pose (R∗, t∗). Finally, we
obtain the depths λ1,a, a ∈ {1, ..., 5} in the first view from the last row of
matrix Xi∗ and the depths λ2,a, a ∈ {1, ..., 5} in the second view from the last
row of matrix Ri∗Xi∗ + ti∗ . Then, the depths λ are a solution to the depth
formulation (2.5) parametrized by points x, y. The sampling procedure is
described in Algorithm 1.
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.......................... 2.2. Problem of four points in three views

Algorithm 1: Five-Point Problem Generator
input : xε, yε, (R∗j , t∗j ), (R∗j′ , t∗j′)
output : x, y, λ
Find the ground truth relative pose (R∗, t∗);
Sample five elements I from {1, ..., n};
x := points from xε indexed by I;
y := points from yε indexed by I;
Compute k < 10 essential matrices Ei between points x, y using
Nistér algorithm (Section 2.1.1);
i∗ := −1;
dist∗ :=∞;
for i ∈ {1, ..., k} do

Decompose Ei into two rotations Ri1, Ri2 and two translations ±ti;
(Ri, ti) := the relative pose for which all 5 3D points are
triangulated in front of both cameras;
Xi := points triangulated from points x, y and pose (Ri, ti);
dist := Distance (6.3) between (Ri, ti) and (R∗, t∗);
if dist < dist∗ then

i∗ := i;
dist∗ := dist;

end
end
Set the first row of λ as the last row of Xi∗ ;
Set the second row of λ as the last row of Ri∗Xi∗ + ti∗ ;

2.2 Problem of four points in three views

Now, we are going to describe the problem of four points in three views. As
the name suggests, we know the projections of four points into three cameras
and the task is to compute the relative poses between these cameras. This
problem, however, is overconstrained, i.e., a generic instance of the problem
has no solution.

First, we will describe the problem, then (Section 2.2.1), we will relax the
problem to a point-line minimal problem, which can be solved by homotopy
continuation. We will describe the depth formulation of the minimal relaxed
problem in Section 2.2.2. Finally, we will describe the generator of the
instances of the relaxed minimal problem together with their solutions in
Section 2.2.3. Let us introduce the notation which we will use in this section.
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2. Minimal problems in Multi-View Geometry ........................
X ∈ R3,4 Matrix whose rows represent four points in 3D.

(Rj , tj), j ∈ {1, 3} The poses of the cameras.

x ∈ R2,4 Matrix whose rows are 2D projections of the points onto the first
camera.

y ∈ R2,4 Matrix whose rows are 2D projections of the points onto the second
camera.

w ∈ R2,4 Matrix whose rows are 2D projections of the points onto the third
camera.

λ ∈ R3,5 Matrix of the depths of the points from X. Element λj,i is the
depth of the i-th point in the camera j. Let Xj

i be the coordinates of
point X:,i in the coordinate system of camera j, i.e. Xj

i = RjX:,i + tj .
The depth λj,i is the third coordinate of Xj

i .

C1 C3

C2

X:,i

x:,i w:,i

y:,i

λ1,ix:,i

λ3,iw:,i

λ2,iy:,i

Figure 2.3: An example of the Four-Point problem. Four points Xi, i ∈ {1, ..., 4}
are projected onto three cameras C1, C2, C3. The projections of the points are
x:,i, y:,i, w:,i, and the depths are λ1,i in the first view, λ2,i in the second view,
and λ3,i in the third view.
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Let us fix the first pose as R1 = I, t1 = ~0. We know x, y. The task is to
compute R2, t2, R3, t3, X, λ, such that there holds:

λ1,i

x1,i
x2,i
1

 = R1

X1,i
X2,i
X3,i

+ t1 =

X1,i
X2,i
X3,i

 , ∀i ∈ {1, ..., 4} (2.6)

λi,2

y1,i
y2,1
1

 = R2

X1,i
X2,i
X3,i

+ t2, ∀i ∈ {1, ..., 4} (2.7)

λi,3

w1,i
w2,1

1

 = R3

X1,i
X2,i
X3,i

+ t3, ∀i ∈ {1, ..., 4} (2.8)

2.2.1 Relaxation to a minimal problem

The system of equations (2.6), (2.7), (2.8) is overconstrained, therefore, its
generic instance does not have any solution. Now, we will describe how this
problem is relaxed to a partial visibility minimal problem from [DKLP20].
This problem consists of four points and one line incident to one of the points.
The line is observed by one of the cameras, while the point incident to the line
is observed by the other two cameras. The points which are not incident to
the line are observed by all three cameras. This problem is minimal and has
272 complex solutions in a generic case. The problem is depicted in Fig. 2.4.
Let us introduce the notation which we will use in this section.

X ∈ R3,4 Matrix whose rows represent four points in 3D.

(Rj , tj), j ∈ {1, 3} The poses of the cameras.

x ∈ R2,4 Matrix whose rows are 2D projections of X onto the first camera.

y ∈ R2,4 Matrix whose rows are 2D projections of X onto the second camera.

w ∈ R2,4 Matrix whose rows are 2D projections of X onto the third camera.

λ ∈ R3,5 Matrix of the depths of the pts. from X. λj,i is the depth of the
i-th point in cam. j. Let Xj

i = RjX:,i + tj be the coordinates of pt.
X:,i in the coord. system of cam. j. Then, λj,i is the third coord of Xj

i .

l ∈ R The oriented distance from the point w:,A to the true projection of the
last point onto the last camera.
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C1 C3

C2

X:,i
X:,4

x:,i
w:,i

y:,i

w:,4
l

λ1,ix:,i

λ3,iw:,i

λ2,iy:,i

Figure 2.4: Relaxation of the Four-Point problem to a minimal problem. Four
points Xi, i ∈ {1, ..., 4} are projected onto three cameras C1, C2, C3. The
projections of the points are x:,i, y:,i, w:,i, and the depths are λ1,i in the first
view, λ2,i in the second view, and λ3,i in the third view. The last point X:,i
projects in the third camera to a point with the same x-coordinate as w:,4, the
oriented distance from w:,4 to the projection is l.

The principle of the relaxation of the Four-Point problem to the minimal
problem is that the last observation w:,4 in the last view is relaxed to a vertical
line passing through the point w:,4. The last point X:,4 is then projected to a
point on this line. Apart from the variables λ, we introduce another variable
l, which is the oriented distance from the point w:,4 to the true projection of
the last point X:,4 to the last camera. The task is to compute R2, t2, R3, t3,
λ, l ∈ R, such that there holds:

λ1,i

x1,i
x2,i
1

 = R1

X1,i
X2,i
X3,i

+ t1 =

X1,i
X2,i
X3,i

 ,∀i ∈ {1, ..., 4} (2.9)

λ2,i

y1,i
y2,i
1

 = R2

X1,i
X2,i
X3,i

+ t2, ∀i ∈ {1, ..., 4} (2.10)

λ3,i

w1,i
e2,i
1

 = R3

X1,i
X2,i
X3,i

+ t3,∀i ∈ {1, ..., 3} (2.11)

λ3,4


w1,4
w2,4

1

+

0
l
0


 = R3

X1,4
X2,4
X3,4

+ t3 (2.12)
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.......................... 2.2. Problem of four points in three views

2.2.2 Depth formulation

Similarly to the Five-Point problem (Section 2.1.2), we convert the relaxed
Four-Point problem (2.9), (2.10), (2.11), (2.12) to a set of polynomial equa-
tions using a depth formulation. In this formulation, the unknowns are the
depths λ and the oriented distance l, the rotations and translations are elimi-
nated. If the depths and the oriented distance are known, we can compute
the relative poses according to Section 5.7.

If the depths λ and the oriented distance l correspond to the correct
solution, then the distances between two points X:.i, X:,i′ are the same in all
three cameras for every pair of indices i, i′ ∈ {1, ..., 4}, i 6= i′. The situation,
including the relaxed point w:,4, is shown in Figure 2.5. The constraint can
be written as the following system of polynomial equations:

∥∥∥∥∥∥∥λ1,i

x1,i
x2,i
1

− λ1,i′

x1,i′

x2,i′

1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥λ2,i

y1,i
y2,i
1

− λ2,i′

y1,i′

y2,i′

1


∥∥∥∥∥∥∥

2

∀i ∈ {1, ..., 4}, i′ ∈ {1, ..., 4}, i < i′

∥∥∥∥∥∥∥λ1,i

x1,i
x2,i
1

− λ1,i′

x1,i′

x2,i′

1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥λ3,i

w1,i
w2,i

1

− λ3,i′

w1,i′

w2,i′

1


∥∥∥∥∥∥∥

2

∀i ∈ {1, ..., 3}, i′ ∈ {1, ..., 3}, i < i′

∥∥∥∥∥∥∥λ1,i

x1,i
x2,i
1

− λ1,4

x1,4
x2,4
1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥λ3,i

w1,i
w2,i

1

− λ3,4


w1,4
w2,4

1

+

0
l
0



∥∥∥∥∥∥∥

2

∀i ∈ {1, ..., 3}∥∥∥∥∥∥∥λ2,i

y1,i
y2,i
1

− λ2,i′

y1,i′

y2,i′

1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥λ3,i

w1,i
w2,i

1

− λ3,i′

w1,i′

w2,i′

1


∥∥∥∥∥∥∥

2

∀i ∈ {1, ..., 3}, i′ ∈ {1, ..., 3}, i < i′

∥∥∥∥∥∥∥λ2,i

y1,i
y2,i
1

− λ2,4

y1,4
y2,4
1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥λ3,i

w1,i
w2,i

1

− λ3,4


w1,4
w2,4

1

+

0
l
0



∥∥∥∥∥∥∥

2

∀i ∈ {1, ..., 3}

(2.13)
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Figure 2.5: The illustration of the depth formulation of the four point problem.
The upper image depicts the situation where i < 4, i′ < 4, while the lower image
depicts the situation with the fourth point, which is projected onto a line in the
third camera and the oriented distance from w:,4 to the projection is l. If the
depths λ are correct, the equations in (2.13) hold.

The problem is scale-invariant, i.e., if we multiply all correct depths λ by
the same coefficient α ∈ R, we obtain another solution to the equations (2.13).
Therefore, we fix the scale in order to obtain a system of equations with a
finite number of solutions. Like in the case of the Five-Point problem, this is
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done by fixing the depth of the first point in the first camera to one: λ1,1 = 1.
After that, the equations (2.13) have 12 variables and a finite number of
solutions.

2.2.3 Generator of problem-solution pairs of Four-Point
problem

Now, we will describe how the instances of the relaxed Four-Point problem
(Section 2.2.1) together with their solutions are generated. These generated
solutions are supposed to be used as the starting points for the Homotopy
Continuation Solver (Section 5). Therefore, we need to have the problems
paired with the exact solution. The homotopy continuation is tracked after
both the start and the final problems are invariantized (Sec 5.4). The rotation
of the views, which is performed during the invariantization may change the
solution to the equations (2.13). Therefore, we first invariantize the sampled
points and then compute the depths of the invariantized points.

Like in the case of the Five-Point problem generator, we generate the prob-
lems from the real 3D models from the ETH 3D dataset 2. We generates
problems from every triplet j1, j2, j3 of cameras in the model for which a set
of 3D points observed by all three cameras exists. Now, we will show how
to generate one instance of the relaxed problem described in Section 2.2.1
together with its solution. Let us introduce the notation which we will use in
this section.

n Number of points observed by both camera j and camera j′.

(R∗1, t∗1) Ground truth pose of camera j1.

(R∗2, t∗2) Ground truth pose of camera j2.

(R∗3, t∗3) Ground truth pose of camera j3.

(R∗1,2, t∗1,2) Ground truth relative pose between cameras j1, j2. The relative
rotation R∗1,2 is equal to R∗1,2 = R∗2(R∗1)T , the relative translation
is equal to t∗1,2 = t∗2 −R∗2(R∗1)T t∗1.

(R∗1,3, t∗1,3) Ground truth relative pose between cameras j1, j3. The relative
rotation R∗1,3 is equal to R∗1,3 = R∗3(R∗1)T , the relative translation
is equal to t∗1,3 = t∗3 −R∗3(R∗1)T t∗1.

2https://www.eth3d.net/datasets
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(R∗2,3, t∗2,3) Ground truth relative pose between cameras j2, j3. The relative

rotation R∗2,3 is equal to R∗2,3 = R∗3(R∗2)T , the relative translation
is equal to t∗2,3 = t∗3 −R∗3(R∗2)T t∗2.

X ∈ R3,n A matrix whose columns are n 3D points observed by all three
cameras.

x∗ ∈ R2,n A matrix whose columns are correct 2D projections of the points
from X onto the first camera j1.

y∗ ∈ R2,n A matrix whose columns are correct 2D projections of the points
from X onto the second camera j2.

w∗ ∈ R2,n A matrix whose columns are correct 2D projections of the points
from X onto the third camera j3.

εx ∈ R2,n Measurement errors of the observations x∗ of points X by the first
camera j1.

εy ∈ R2,n Measurement errors of the observations y∗ of points X by the first
camera j2.

εw ∈ R2,n Measurement errors of the observations w∗ of points X by the first
camera j3.

xε ∈ R2,n Observations of points from X by the first camera. There holds
xε = x∗ + εx.

yε ∈ R2,n Observations of points from X by the second camera. There holds
yε = y∗ + εy.

wε ∈ R2,n Observations of points from X by the third camera. There holds
wε = w∗ + εw.

I ∈ {1, ..., n}5 A set of five indices of the sampled points.

xI ∈ R2,5 A matrix whose columns are the columns from xε indexed by I.

yI ∈ R2,5 A matrix whose columns are the columns from yε indexed by I.
The points are therefore in correspondence with points from xI .

wI ∈ R2,5 A matrix whose columns are the columns from wε indexed by I.
The points are therefore in correspondence with points from xI .

x̄I ∈ R2,5 Invariantized representation of five sampled points in the first view
obtained by Section 5.4.

ȳI ∈ R2,5 Invariantized representation of five sampled points in the second
view obtained by Section 5.4.

w̄I ∈ R2,5 Invariantized representation of five sampled points in the third
view obtained by Section 5.4.
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s ∈ Sym({1, 2, 3}) The permutation of the views induced by the invarianti-
zation according to Section 5.4.

RIx ∈ SO(3) 3D Rotation matrix induced by the invariantization, which
transforms the homogeneous coordinates of the first view to the
homogeneous coordinates of x̄.

RIy ∈ SO(3) 3D Rotation matrix induced by the invariantization, which
transforms the homogeneous coordinates of the second view to the
homogeneous coordinates of ȳ.

RIw ∈ SO(3) 3D Rotation matrix induced by the invariantization, which
transforms the homogeneous coordinates of the third view to the
homogeneous coordinates of w̄.

(R̄∗1,2, t̄∗1,2) Ground truth relative pose between invariantized views js(1), js(2).

(R̄∗1,3, t̄∗1,3) Ground truth relative pose between invariantized views js(1), js(3).

(R̄1,2, t̄1,2) Obtained relative pose between invariantized points x̄I , ȳI .

(R̄1,3, t̄1,3) Obtained relative pose between invariantized points x̄I , w̄I .

X̄ ∈ R3,5 Matrix whose columns are 3D points triangulated using the points
x̄I , ȳI and the relative pose (R̄1,2, t̄1,2) between the views.

x̄ ∈ R2,4 The output of the generator, the invariantized sample of four points
in the first view.

ȳ ∈ R2,4 The output of the generator, the invariantized sample of four points
in the second view.

w̄ ∈ R2,4 The output of the generator, the invariantized sample of four points
in the third view.

X̄w
:,4 The coordinates of the last point X̄:,4 in the coordinate system of

the third camera.

λ ∈ R3,5 A matrix of the depths of points from x̄, ȳ, w̄. The depths are such,
that the values in λ are the solutions to the depth formulation of
the Four-Point problem (2.13) parametrized by x, y, w, all depths
are positive and the relatives pose consistent with the depths is
close to the ground truth relative poses (R̄∗1,2, t̄∗1,2), (R̄∗1,3, t̄∗1,3).

l ∈ R The output of the generator, oriented distance from the observation
w̄:,4 to the exact projection of the last point X̄:,4 onto the last
invariantized camera js(3).

There is no exact solver available for the relaxed Four-Point problem. There-
fore, we are going to show how the problem-solution pairs of the relaxed
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Four-Point problem are generated without an access to the solver. We know
the observations xε, yε, wε, and the ground truth poses (R∗1, t∗1), (R∗2, t∗2),
(R∗3, t∗3) of all three cameras. The task is to find the invariantized samples
x̄, ȳ, w̄ of four corresponding points from xε, yε, wε and to compute the
corresponding depths λ and the oriented distance l.
First, we sample five elements I from the set of indices {1, ..., n} and obtain
matrices xI , yI , wI whose columns are the columns of matrices xε, yε, wε
indexed by I. Then, we invariantize the points in xI , yI , wI according to
Section 5.4 to obtain x̄I , ȳI , w̄I . This invariantization moves the center of
mass of the first four points to zero, permutes the views according to the
distance to the furthest point, orders the first four points counterclockwise in
the last view, and rotates the fourth view to the x-axis. During the invari-
antization, we also obtain the permutation s of the views and the rotation
matrices RIx, RIy, RIw which transform the homogeneous coordinates of points
xI , yI , wI to the homogeneous coordinates of points x̄I , ȳI , w̄I .

We obtain the ground truth relative poses (R̄∗1,2, t̄∗1,2), (R̄∗1,3, t̄∗1,3) between
the invariantized views in the following way. If the index of the new first view
s(1) is smaller than the index of the new second view s(2), then the relative
pose (R̄∗1,2, t̄∗1,2) between the views x̄I , ȳI is obtained as:

R̄∗1,2 = RIyR
∗
s(1),s(2)(R

I
x)T

t̄∗1,2 = RIyt
∗
s(1),s(2)

(2.14)

If, on the other hand, the index s(1) of the new first view is larger than
the index s(2) of the new second view, then the relative pose (R̄∗1,2, t̄∗1,2) is
obtained as:

R̄∗1,2 = RIy(R∗s(2),s(1))
T (RIx)T

t̄∗1,2 = −RIy(R∗s(2),s(1))
T ts(2),s(1)

(2.15)

Likewise, if the index s(1) of the new first view is smaller than the index s(3)
of the new third view, then the relative pose (R̄∗1,3, t̄∗1,3) between the views
x̄I , w̄I is obtained as:

R̄∗1,3 = RIwR
∗
s(1),s(3)(R

I
x)T

t̄∗1,3 = RIwt
∗
s(1),s(3)

(2.16)

And if the index index s(1) of the new first view is larger than the index s(3),
then relative pose (R̄∗1,3, t̄∗1,3) is computed as:

R̄∗1,3 = RIw(R∗s(3),s(1))
T (RIx)T

t̄∗1,3 = −RIw(R∗s(3),s(1))
T ts(3),s(1)

(2.17)

The relative pose (R̄∗2,3, t̄∗2,3) between the new second and the new third view
is obtained analogously.
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Then, we compute the set of k ≤ 10 essential matrices Ei, i ∈ {1, ..., k}
between views x̄I , ȳI using Nistér algorithm 2.1.1. We decompose each es-
sential matrix Ei according to [Paj21] to obtain two rotation matrices Ri1,
Ri2 and two translations ti, −ti. Out of these four potential combinations of
a rotation and a translation we select the rotation Ri and the translation
ti, for which all five 3D points X̄i are triangulated in front of both cameras.
Out of all relative poses (Ri, ti), i ∈ {1, ..., k}, we select the relative pose
(R̄1,2, t̄1,2) which minimizes the distance (6.3) from the ground truth relative
pose (R̄∗1,2, t̄∗1,2). 3D points X̄ are the points in the coordinate system of the
first camera which have been triangulated from the observations x̄I , ȳI with
the relative pose (R̄∗1,2, t̄∗1,2).

After that, we register the first three observations from w̄I to the first three
3D points from X̄ using PNP [Paj21]. This process gives us up to 3 real
poses. (R̄1,3, t̄1,3) is the pose obtained by PNP which minimizes the distance
(6.3) from the ground truth pose (R̄∗1,3, t̄∗1,3).

We obtain the resulting projections x̄ by taking the first four columns of x̄I
and the projections ȳ by taking the first four columns of ȳI . The first three
columns of w̄ are the first three columns of w̄I . The last column of w̄ is
obtained in the following way. First, the coordinates Xw

:,4 of the fourth 3D
point X̄:,4 in the coordinate system of the last camera are obtained as:

X̄w
:,4 = R̄1,3

X̄1,4
X̄2,4
X̄3,4

+ R̄1,3 (2.18)

Then, the fourth column of the observations w̄ in the last view is obtained as:

w̄:,4 =

 X̄w
1,4

X̄w
3,4

0

 (2.19)

And the oriented distance l from the projection of X̄:,4 to the last observation
in w̄ is obtained as:

l =
X̄w

2,4

X̄w
3,4

(2.20)

Then, the fourth point X̄:,4 is projected to the third camera s(3) to the point
X̄w

1,4
X̄w

3,4
X̄w

2,4
X̄w

3,4

 =

 X̄w
1,4

X̄w
3,4

0

+

 0
X̄w

2,4
X̄w

3,4

 = w̄:,4 +
[
0
l

]
(2.21)

which corresponds to the equations (2.13) which define the depth formulation
of the relaxed Four-Point problem. The depths λ1,a, a ∈ {1, ..., 4} of the first
4 points from X̄ in the first view are obtained from the last row of X̄. The
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depths λ2,a, a ∈ {1, ..., 4} of the first 4 points from X̄ in the second view are
obtained from the last row of R̄1,2X̄ + t̄1,2 and the depths λ3,a, a ∈ {1, ..., 4}
of the first 4 points from X̄ in the third view are obtained from the last row
of R̄1,3X̄ + t̄1,3. The whole procedure of generating problem-solution pairs of
the Four-Point problem is described in Algorithm 2.
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Algorithm 2: Four-Point Problem-Solution Pair Generator
input : Sets of matched observations xε, yε, zε, Relative poses

(R∗1,2, t∗1,2), (R∗1,3, t∗1,3), (R∗2,3, t∗2,3)
output :Four invariantized sampled points in three views: x̄, ȳ, z̄,

Depths λ, Oriented distance l
Find ground truth relative poses (R∗1,2, t∗1,2), (R∗1,3, t∗1,3), (R∗2,3, t∗2,3);
Sample five corresponding points xI , yI , wI from xε, yε, wε;
(x̄, ȳ, w̄) := Points x, y, w invariantized according to Section 5.4;
RIx, R

I
z , R

I
w := Rotations transforming x, y, w to (x̄, ȳ, w̄);

s := permutation of views induced by the invariantization;
Find the invariantized poses (R̄∗1,2, t̄∗1,2), (R̄∗1,3, t̄∗1,3) according to
(2.14), (2.15), (2.16), (2.17);
Compute k ≤ 10 essential matrices Ei between points x̄I , ȳI using
Nistér algorithm (Section 2.1.1);
i∗ := −1, dist∗ :=∞;
for i ∈ {1, ..., k} do

Decompose Ei into two rotations Ri1, Ri2 and two translations ±ti;
(Ri, ti) := the relative pose for which all 5 3D points are
triangulated in front of both cameras;
X̄i := 3D points triangulated from points x̄I , ȳI and pose (Ri, ti);
dist := Distance (6.3) between (Ri, ti) and (R̄∗1,2, t̄∗1,2);
if dist < dist∗ then

i∗ := i, dist∗ := dist;
end

end
(R̄1,2, t̄1,2) := (Ri∗ , ti∗), X̄ := X̄i∗ ;
Find k′ ≤ 3 relative poses (R′i, t′i) of first three points from w̄I

towards X̄ using PNP;
i∗ := −1, dist∗ :=∞;
for i ∈ {1, ..., k′} do

dist := Distance (6.3) between (R′i, t′i) and (R̄∗1,3, t̄∗1,3);
if dist < dist∗ then

i∗ := i, dist∗ := dist;
end

end
(R̄1,3, t̄1,3) := (R′i∗ , t′i∗);
Set x̄, ȳ, w̄ as the first 3 columnss of x̄I , ȳI , w̄I ;
Set the first row of λ as the first 4 entries in the last row of X̄;
Set the second row of λ as the last row of R̄1,2X̄ + t̄1,2;
Set the third row of λ as the last row of R̄1,3X̄ + t̄1,3;
Set the last column of w̄ and l according to (2.18), (2.19), (2.20);
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2.2.4 Generator of testing and training problems of
Four-Point problem

Now, we will describe how to generate the instances of the Four-Point which
are used for the training and testing of the Four-Point solver (Chapter 5).
The training and validation data should arise from a real distribution. The
problems obtained in Section 2.2.3 are modified by reprojection of the last
point into the last camera. Therefore, they do not reflect the distribution
of the real data exactly. In order to obtain the labels used in the training
of the classifier (Section 5.6.3), we compare the poses instead of the depths.
Therefore, we do not need to know the correct depths of the training problems.
Because of these reasons, we pair the points together with the ground truth
relative poses. Let us introduce the notation which we will use in this section.

n Number of points observed by both camera j and camera j′.

(R∗1, t∗1) Ground truth pose of camera j1.

(R∗2, t∗2) Ground truth pose of camera j2.

(R∗3, t∗3) Ground truth pose of camera j3.

(R∗1,2, t∗1,2) Ground truth relative pose between cameras j1, j2. The relative
rotation R∗1,2 is equal to R∗1,2 = R∗2(R∗1)T , the relative translation
is equal to t∗1,2 = t∗2 −R∗2(R∗1)T t∗1.

(R∗1,3, t∗1,3) Ground truth relative pose between cameras j1, j3. The relative
rotation R∗1,3 is equal to R∗1,3 = R∗3(R∗1)T , the relative translation
is equal to t∗1,3 = t∗3 −R∗3(R∗1)T t∗1.

(R∗2,3, t∗2,3) Ground truth relative pose between cameras j2, j3. The relative
rotation R∗2,3 is equal to R∗2,3 = R∗3(R∗2)T , the relative translation
is equal to t∗2,3 = t∗3 −R∗3(R∗2)T t∗2.

X ∈ R3,n A matrix whose columns are n 3D points observed by all three
cameras.

x∗ ∈ R2,n A matrix whose columns are correct 2D projections of the points
from X onto the first camera j1.

y∗ ∈ R2,n A matrix whose columns are correct 2D projections of the points
from X onto the second camera j2.

w∗ ∈ R2,n A matrix whose columns are correct 2D projections of the points
from X onto the third camera j3.
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εx ∈ R2,n Measurement errors of the observations x∗ of points X by the first
camera j1.

εy ∈ R2,n Measurement errors of the observations y∗ of points X by the first
camera j2.

εw ∈ R2,n Measurement errors of the observations w∗ of points X by the first
camera j3.

xε ∈ R2,n Observations of points from X by the first camera. There holds
xε = x∗ + εx.

yε ∈ R2,n Observations of points from X by the second camera. There holds
yε = y∗ + εy.

wε ∈ R2,n Observations of points from X by the third camera. There holds
wε = w∗ + εw.

I ∈ {1, ..., n}4 A set of four indices of the sampled points.

xI ∈ R2,4 A matrix whose columns are the columns from xε indexed by I.

yI ∈ R2,4 A matrix whose columns are the columns from yε indexed by I.
The points are therefore in correspondence with points from xI .

wI ∈ R2,4 A matrix whose columns are the columns from wε indexed by I.
The points are therefore in correspondence with points from xI .

x̄ ∈ R2,4 Invariantized representation of four sampled points in the first view
obtained by Section 5.4.

ȳ ∈ R2,4 Invariantized representation of four sampled points in the second
view obtained by Section 5.4.

z̄ ∈ R2,4 Invariantized representation of four sampled points in the third
view obtained by Section 5.4.

s ∈ Sym({1, 2, 3}) The permutation of the views induced by the invarianti-
zation according to Section 5.4.

RIx ∈ SO(3) 3D Rotation matrix induced by the invariantization, which
transforms the homogeneous coordinates of the first view to the
homogeneous coordinates of x̄.

RIy ∈ SO(3) 3D Rotation matrix induced by the invariantization, which
transforms the homogeneous coordinates of the second view to the
homogeneous coordinates of ȳ.

RIw ∈ SO(3) 3D Rotation matrix induced by the invariantization, which
transforms the homogeneous coordinates of the third view to the
homogeneous coordinates of w̄.

(R̄∗1,2, t̄∗1,2) Ground truth relative pose between invariantized views js(1), js(2).
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(R̄∗1,3, t̄∗1,3) Ground truth relative pose between invariantized views js(1), js(3).

(R̄∗2,3, t̄∗2,3) Ground truth relative pose between invariantized views js(2), js(3).

We know the observations xε, yε, wε, and the ground truth poses (R∗1, t∗1),
(R∗2, t∗2), (R∗3, t∗3) of all three cameras. The task is to find the invariantized
samples x̄, ȳ, w̄ of four corresponding points from xε, yε, wε and the ground
truth poses (R̄∗1,2, t̄∗1,2), (R̄∗1,3, t̄∗1,3), (R̄∗2,3, t̄∗2,3) between the invariantized views.

First, we sample four elements I from the set of indices {1, ..., n} and
obtain matrices xI , yI , wI whose columns are the columns of matrices xε, yε,
wε indexed by I. Then, we invariantize the points in xI , yI , wI according to
Section 5.4 to obtain x̄I , ȳI , w̄I . We also obtain the permutation s of the
views and the rotation matrices RIx, RIy, RIw which transform the homogeneous
coordinates of points xI , yI , wI to the homogeneous coordinates of points
x̄I , ȳI , w̄I .

Then, we obtain the ground truth relative poses (R̄∗1,2, t̄∗1,2), (R̄∗1,3, t̄∗1,3),
(R̄∗2,3, t̄∗2,3) between the invariantized views according to equations (2.14),
(2.15), (2.16), (2.17). The generator of the training and testing problems is
described in Algorithm 3.

Algorithm 3: Four-Point Training Problem Generator
input : Sets of matched observations xε, yε, zε, Relative poses

(R∗1,2, t∗1,2), (R∗1,3, t∗1,3), (R∗2,3, t∗2,3)
output :Four invariantized sampled points in three views: x̄, ȳ, z̄,

Ground truth poses (R̄∗1,2, t̄∗1,2), (R̄∗1,3, t̄∗1,3), (R̄∗2,3, t̄∗2,3)
between the invariantized points

Find ground truth relative poses (R∗1,2, t∗1,2), (R∗1,3, t∗1,3), (R∗2,3, t∗2,3);
Sample four corresponding points xI , yI , wI from xε, yε, wε;
(x̄, ȳ, w̄) := Points x, y, w invariantized according to Section 5.4;
RIx, R

I
z , R

I
w := Rotations transforming x, y, w to x̄, ȳ, w̄;

s := permutation of views induced by the invariantization;
Find the invariantized poses (R̄∗1,2, t̄∗1,2), (R̄∗1,3, t̄∗1,3), (R̄∗2,3, t̄∗2,3)
according to (2.14), (2.15), (2.16), (2.17);
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Chapter 3

Homotopy continuation

In this section, we will describe the homotopy continuation [SI05], [Mor09],
[BSHW13]. It is a method from numerical algebraic geometry which can
solve sets of polynomial equations by transforming the start problem with a
known solution to the final problem whose solutions we want to obtain. Let
us introduce the notation which we will use in this section.

f(z) A starting system of s polynomials in s variables.

s The size of the system.

g(z) A final system of s polynomials in s variables.

z∗0 ∈ C A solution of the starting set of polynomials, f(z∗0) = 0.

H(z, t) A homotopy which transforms the starting set f(z) to the final set
g(z).

t ∈ 〈0, 1〉 A "time" parameter of the homotopy.

z(t)∗, t ∈ 〈0, 1〉 A path of solutions for which there holds H(z(t)∗, t) = 0.

Hz(z, t) ∈ Cs,s Jacobian matrix of homotopy H(z, t) w.r.t. parameters z.

Ht(z, t) ∈ Cs,1 Jacobian matrix of homotopy H(z, t) w.r.t. parameter t.

We know the starting square set of polynomials f(z) with its solutions z∗0
and the final square set of polynomials g(z). We assume that the Jacobian
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3. Homotopy continuation ................................

Figure 3.1: The illustration of the prediction and correction step of the homotopy
continuation. The image is taken from [SI05].

matrix Hz(z(t)∗, t) is invertible for every t ∈ 〈0, 1〉. The task is to find a path
of solutions z(t)∗ such that z(0)∗ = z∗0 . Then, z(1) is a solution to the final
set of polynomials g(z).

Let us set a homotopy:

H(z, t) = (1− t)f(z) + tg(z) (3.1)

If the parameter t is equal to zero, there holds H(z, 0) = f(z). If t = 1, then
H(z, 1) = g(z).

Because there holds H(z(t)∗, t) = 0 for every t ∈ 〈0, 1〉, the values of the
homotopy over the track z(t)∗ are constant and the derivative of H(z(t)∗, t) =
0 with respect to t is equal to zero, as well. We can use the chain rule to
write:

dH(z(t)∗, t)
dt

= Hz(z(t)∗, t)
dz(t)∗

dt
+Ht(z(t)∗, t) = 0 (3.2)

Differential equation (3.2) is called Davidenko equation [SI05].

The goal is to find a track z(t)∗ which satisfies the Davidenko equation
(3.2). This is accomplished by alternating two steps, the prediction and the
correction. In the prediction step, the correct value of z(t)∗ in time t is known
and the task is to find the approximate value of z(t+ ∆t) in time t+ ∆t. In
the prediction step, we know the approximate value of z(t) in time t and the
task is to find the corrected value of z(t)∗ in the same time t. The homotopy
continuation is summarized in Algorithm 4.
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.................................3. Homotopy continuation

Algorithm 4: Homotopy Continuation
input : Starting polynomial system f(z), Final polynomial system

g(z), Starting solution z∗0 , Initial step size ∆t0, Maximal
number of corrector steps kmax, Corrector tolerance ε,
Number of successful steps for increase step succmax,
Increase step factor β, ∆min Minimal step size

output :Final solution z∗1
z∗ := z0, t := 0, ∆t := ∆t0, succ := 0;
while t < 1 do

Predict the solution z at time t+ ∆t according to Section 3.1;
k := 0;
while ‖H(z, t+ ∆t)‖ > ε and k < kmax do

Correct the solution z according to Section 3.2;
k := k + 1;

end
if ‖H(z, t+ ∆t)‖ ≤ ε then

z∗ := z, t := t+ ∆t, succ := succ+ 1 ; // Update
if succ == succmax then

∆t := β∆t ; // Increase step size
succ := 0;

end
else

∆t := 1
β∆t, succ := 0 ; // Decrease step size

if ∆t < ∆min then
return ∅;

end
end

end
return z∗;

The parameters of the homotopy continuation are as follows:

∆t0 ∈ R Initial step size of the homotopy continuation.

kmax ∈ N Maximal number of corrector steps.

ε ∈ R Corrector tolerance. If z is the output of the corrector and
‖H(z, t+ ∆t)‖ ≤ ε, the output of the corrector is accepted.

succmax ∈ N Number of consecutive successful steps after which the step size
is increased.

β ∈ R Increase step factor. Step size ∆t is increased to β∆t after
succmax consecutive successful steps, step size ∆t is decreased to
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1
β∆t after one unsuccessful step.

∆min Minimal step size.

3.1 Predictor step

Now, we will describe the predictor step of the homotopy continuation. We
know the correct value of z(t)∗ in time t. The task is to find an approximation
z(t + ∆t) of the value z(t + ∆t)∗. The value z(t + ∆t)∗ is the solution of
the differential equation (3.2). Therefore, we will obtain its approximation
z(t+∆t) with one step of a numerical method for solving differential equations.

One of the possibilities is to set up a Taylor polynomial of order 1 for the
homotopy H(z, t) as:

H(z(t)∗ + ∆z, t+ ∆t) ≈ H(z(t)∗, t) +Hz(z(t)∗, t)∆z +Ht(z(t)∗, t)∆t (3.3)

We search for such a value of ∆z that the Taylor polynomial for the time
t+ ∆t is equal to zero. Because we know that H(z(t)∗, t) = 0, we can set up
the equation as:

Hz(z(t)∗, t)∆z +Ht(z(t)∗, t)∆t = 0 (3.4)

This is a simple linear equation, whose solution is:

∆z = −Hz(z(t)∗, t)−1Ht(z(t)∗, t)∆t = 0 (3.5)

This is a step of the Euler method. The approximation of z(t+∆t) is obtained
as:

z(t+ ∆t) = z(t)∗ + ∆z (3.6)

Another possibility is to use a step of the Runge-Kutta method instead of
the Euler method. Then, the change of variables ∆z is obtained as:

dz1 = −Hz(z(t)∗, t)−1Ht(z(t)∗, t)∆t

dz2 = −Hz(z(t)∗ + 1
2dz1, t+ 1

2∆t)−1Ht(z(t)∗ + 1
2dz1, t+ 1

2∆t)∆t

dz3 = −Hz(z(t)∗ + 1
2dz2, t+ 1

2∆t)−1Ht(z(t)∗ + 1
2dz2, t+ 1

2∆t)∆t

dz4 = −Hz(z(t)∗ + dz3, t+ ∆t)−1Ht(z(t)∗ + dz3, t+ ∆t)∆t

∆z = 1
6(dz1 + dz2 + dz3 + dz4)

(3.7)
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The prediction z(t+ ∆t) is then obtained with Equation (3.6).

One step of the Runge-Kutta method is typically slower then one step of
the Euler method because Runge-Kutta method requires to solve 4 linear
equations while Euler method requires only one. However, Runge-Kutta
method is more precise than Euler, and therefore allows to use a larger step
size ∆t and computes the value of z(1)∗ using fewer steps than the Euler
method. In practice, the Runge-Kutta method is faster and produces more
accurate results.

3.2 Corrector step

Now, we will describe the corrector step of the homotopy continuation. We
know an approximate value of z(t) in time t which has been obtained during
the predictor step. The task is to compute the corrected value z(t)∗ such that
H(z(t)∗, t) = 0. We assume that the approximate value z(t) is close to the
correct value z(t)∗.

One step of the solution is again based on the Taylor polynomial of order 1
for the homotopy H(z, t):

H(z(t) + ∆z, t+ ∆t) ≈ H(z(t), t) +Hz(z(t), t)∆z +Ht(z(t), t)∆t (3.8)

This time, the parameter t is fixed, therefore the value ∆t is equal to zero.
The goal is to compute a value of ∆z such that the value of the Taylor
polynomial is equal to zero. The equation can be set up as:

∆z = −Hz(z(t), t)−1H(z(t), t) (3.9)

This is a step of a Newton method. The value z(t) is updated according to
equation 3.6. The corrector steps are repeated until the norm of H(z(t), t) is
smaller than a threshold ε. If the threshold is not reached in k steps (typically
k = 3), the corrector fails and the prediction is performed again with a smaller
step size ∆t.
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3.3 Parametric homotopy continuation

If both the start and the final problems are parametrized sets of polynomial
equations with the same shape, the method is called a parametric homo-
topy continuation. The parametric homotopy continuation has several
desirable properties, such that for the generic case, the number of complex
solutions of the start and final problems are the same. Let us introduce the
notation which we will use in this section.

s The size of the system.

h(z, p) A parametric system of s polynomials in s variables.

ps Parameters of the start system. There holds f(z) = h(z, ps).

pf Parameters of the final system. There holds g(z) = h(z, pf ).

In this case, we can set up the homotopy as:

H(z, p, t) = (1− t)h(z, ps) + th(z, pf ) (3.10)

This can be simplified as:

H(z, p, t) = h(z, (1− t)ps + tpf ) (3.11)

3.4 Real homotopy continuation

The homotopy continuation is typically performed in the complex space even
if only real solutions are required because even the tracks from a real solution
to another real solution may pass through complex values [SI05]. However,
in some cases, the track between two real solutions may lie entirely in real
numbers. In these cases, tracking in real space may lead to an acceleration
of the solver because the complex solutions are not tracked and because the
computations in real numbers are faster than the computations in complex
numbers.

The real homotopy H(z, t) is set up according to Equation (3.1), just as the
complex homotopy. In the case of the real homotopy continuation, however,
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.............................. 3.4. Real homotopy continuation

the coefficients of the sets of polynomials f(z), g(z), as well as the starting
solution z(0)∗ are real. The derivatives of the homotopy Hz(z, t), Ht(z, t) are
also real. Therefore, the computed steps ∆z, predicted solutions z(t) and
corrected solutions z(t)∗ are real as well.

The complex homotopy continuation is guaranteed to successfully finish for
a generic triplet of start system f(z), start solution z(0)∗, and final system
g(z). No such guarantee exists for the real homotopy continuation, if no real
track z(t)∗ starting z0 in exists between the sets of polynomials f(z), g(z),
the real homotopy continuation fails.

3.4.1 Possible results of the real homotopy continuation

For the start set of polynomials f(z), final set of polynomials g(z), starting
solution z0 to the system f(z) and expected solution z1 to the system z1,
there are three different possible results of the real homotopy continuation:

.Correct result The track finishes successfully and the result z(1)∗ is
equal to the expected result z1.. Incorrect result The track finishes successfully, but the result z(1)∗ is
different from the expected result z1.. Failed track The track fails and does not finish.
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Chapter 4

Efficient Homotopy Continuation Solver
for the Five-Point Problem

4.1 Description of the solver

In this section, we will propose a new solver for the Five-Point calibrated
problem based on the real homotopy continuation. The solver is meant to be
used in the RANSAC loop, therefore, it should be fast but it does not have
to finish correctly for all inputs. Moreover, it is desirable not to track the
inputs which consist of mismatched points. Therefore, we have decided to
use the real homotopy continuation (Section 3.4) in the solver. We use the
depth formulation of the Five-Point problem (Section 2.1.2).

The parametrization of the problem and the solution is described in Section
4.1.1. The homotopy continuation used in the solver is described in Section
4.1.2 and the solver itself is described in Section 4.1.3. Let us introduce the
notation which we will use in this section.

x ∈ R2,5 Five calibrated 2D points in the first camera of the final problem.

y ∈ R2,5 Five calibrated 2D points in the second camera of the final problem.

λ∗ ∈ R2,5 The depths of the points in both cameras. λ∗j,i is the depth of point
i in camera j. λ∗ are the solutions to the depth formulation of the
Five-Point problem (Equation 2.5) parametrized by x, y.
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4. Efficient Homotopy Continuation Solver for the Five-Point Problem .............
(R∗, t∗) A relative pose between the first and the second camera.

m The number of starting problem-solution pairs.

A = (x̆a, y̆a, λ̆a), a ∈ {1, ...,m}, x̆a ∈ R2,5, y̆a ∈ R2,5, λ̆a ∈ R2,5 A sequence of
anchors, i.e. starting problem-solution pairs. For every a, the values
in λ̆a are the solutions to the depth formulation of the Five-Point
problem (Equation 2.5) parametrized by x̆a, y̆a.

We know the calibrated points x, y in the first and the second cameras, as
well as the number of anchors m and the anchors (problem-solution pairs) A.
The task is to find the depths λ∗ and the relative pose (R∗, t∗), such that:

λ∗1,i

x1,i
x2,i
1

 = λ∗2,iR
∗

y1,i
y2,i
1

+ t∗ (4.1)

4.1.1 Parametrization of the problem and the solution

Now, we are going to describe the parametrizations of the problem and of
the solution vector. Let us introduce the notation which we will use in this
section.

ps ∈ R20 The parametrization of the initial problem.

pf ∈ R20 The parametrization of the final problem.

h(z, p) A square parametric system of polynomials from the depth formulation
of the Five-Point problem.

z0 ∈ R9 The solution to the initial problem parametrized by ps. There holds
h(z0, ps) = 0.

The parametrization of the instance of a Five-Point problem is a twenty-
dimensional vector p. This vector contains flattened points x, y which define
the instance, i.e., the first five elements are the x-coordinates of the points in
the first camera, the next five elements are the y-coordinates of the points in
the first camera. The last ten elements are the coordinates of the points in the
second camera in the same order. Let us have an instance x ∈ R2,5, y ∈ R2,5.
The parametrization p of the instance is:

∀i ∈ {1, ..., 5} : pi = x1,i, pi+5 = x2,i, pi+10 = y1,i, pi+15 = y2,i (4.2)
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................................4.1. Description of the solver

The depth formulation (2.5) of the Five-Point problem is scale-invariant,
therefore, the scale of the depths λ has to be fixed in order for the system of
equations (2.5) to have a finite number of solutions. We fix the depths by
setting the first depth in the first image λ1,1 to 1. The solution vector z ∈ R9

is therefore:

∀i ∈ {1, ...4} : zi = λ1,i+1
λ1,1

;∀i ∈ {1, ...5} : zi+4 = λ2,i
λ1,1

(4.3)

The depths λ ∈ R2,5 of the problem may be recovered from the solution
vector z ∈ R9 up to scale by setting λ1,1 to one and by copying the values
from the solution vector as:

∀i ∈ {1, ...4} : λ1,i+1 = zi; ∀i ∈ {1, ...5} : λ2,i = zi+4 (4.4)

4.1.2 Homotopy continuation used in the solver

Now, we are going to describe the parametric homotopy H(z, p, t) used to
track the solution z of the depth formulation (2.5) of the Five-Point problem.
The solution vector z has 9 elements but there are 10 equations in the depth
formulation (2.5). Therefore, one of the equations from (2.5) has to be
dropped in order to obtain a square system of independent equations. The
square system has the following form:∥∥∥∥∥∥∥λ1,i

x1,i
x2,i
1

− λi′,1
x1,i′

x2,i′

1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥λi,2
y1,i
y2,i
1

− λi′,2
y1,i′

y2,i′

1


∥∥∥∥∥∥∥

2

,

(i, i′) ∈ {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)}

(4.5)

If the values of matrices x, y, λ are replaced by the corresponding values of the
parametrization p and solution vector z according to (4.2) and (4.3), we obtain
the square parametrized system of polynomial equations h(z, p). Because the
parametrization of the start problem is ps and the parametrization of the
final problem is pf , we can set the parametric homotopy H(z, p, t) according
to:

H(z, p, t) = h(z, (1− t)ps + tpf ) (4.6)

The tracking of the homotopy H(z, p, t) with the start parametrization
z0 is performed according to Algorithm 4. The derivatives Hz(z(t), p, t) and
Hz(z(t), p, t) of the homotopy are obtained with a Straight-Line Program
(SLP) generated in Macaulay2.
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The largest amount of time on the solver is spent on the solution of the

linear equations (3.9), (3.7), (3.5) which are solved as part of the predictor
and the corrector. The left side of the equations is always the Jacobian matrix
Hz(z(t), p, t) of the value of the homotopy w.r.t. the variables z. Because the
matrix Hz(z(t), p, t) is relatively sparse, the closed form of the solution can
be obtained, which can significantly reduce the time spent on one track. This
closed-form solution is described in Section 4.2.

4.1.3 Overview of the solver

Let us introduce the notation which we will use in this section.

x ∈ R2,5 Five calibrated 2D points in the first camera of the final problem.

y ∈ R2,5 Five calibrated 2D points in the second camera of the final problem.

λ∗ ∈ R2,5 The depths of the points in both cameras. λ∗j,i is the depth of point
i in camera j. λ∗ are the solutions to the depth formulation of the
Five-Point problem (Equation 2.5) parametrized by x, y.

(R∗, t∗) A relative pose between the first and the second camera.

m The number of starting problem-solution pairs.

A = (x̆a, y̆a, λ̆a), a ∈ {1, ...,m}, x̆a ∈ R2,5, y̆a ∈ R2,5, λ̆a ∈ R2,5 A sequence of
anchors, i.e. starting problem-solution pairs. For every a, the values
in λ̆a are the solutions to the depth formulation of the Five-Point
problem (Equation 2.5) parametrized by x̆a, y̆a.

x̄ ∈ R2,5 Points in the first view invariantized according to Section 4.4.

ȳ ∈ R2,5 Points in the second view invariantized according to Section 4.4.

D ∈ R14 Low-dimensional representation of the problem defined by (x̄, ȳ).
The low-dimensional representation is obtained according to Section
4.6.2.

L ∈ A14,20 A transformation matrix which transforms a 20-dimensional (in-
variantized or aligned) representation p to a 14-dimensional represen-
tation D.

a∗ ∈ {0, ...,m} Index of the selected anchor. If a∗ = 0, the problem is not
tracked, otherwise, it is tracked from anchor a∗.

c : R14 → {0, ...,m} The classifier which for a low-dimensional representation
D of a problem gives the index a∗ of the selected anchor. The classifier
is described in Section 4.6.4.
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x̂ ∈ R2,5 Points in the first view aligned to the selected anchor a∗ according
to Section 4.5.

ŷ ∈ R2,5 Points in the second view aligned to the selected anchor a∗ according
to Section 4.5.

RIx ∈ SO(3), RIy ∈ SO(3) := Rotation matrices induced by the invariantiza-
tion according to Section 4.5.

s ∈ Sym{1, 2} Permutation of the views induced by the invariantization
(Section 4.5).

H(z, p, t) Parametric homotopy (4.6) for the square system (4.5). z ∈ R9 is
the parametrization of the solution, p ∈ R20 is the parametrization of
the problem and t ∈< 0, 1 > is the time parameter.

ps ∈ R20 A parametrization (4.2) of the starting problem x̆a∗ , y̆a∗

z0 ∈ R9 A parametrization (4.3) of the starting solution λ̆a∗

pf ∈ R20 A parametrization (4.2) of the aligned final problem x̂, ŷ

λ̂∗ The depths of the aligned problem defined by x̂, ŷ.

Now, we are going to describe the solver. The structure of the homotopy
continuation procedure used in the solver is inspired by the MINUS solver
[FDF+20], however, our solver is much faster because it operates in real
numbers only, because it tracks only one solution per problem and because
the LU-decomposition is replaced by a closed-form solution of the linear
equations, which is described in Section 4.2. Before the solver can be used,
the set of anchors A (starting problem-solution pairs) has to be generated and
the classifier c has to be trained. The generating of the anchors is described
in Section 4.6.1, the training of the classifier c is described in Section 4.6.4.

First, the invariantized representation x̄, ȳ of points x, y is obtained (Section
4.4) in order to have a unified representation of the problems, which can
simplify the training of the anchor selector and the alignment. Then, one
anchor a∗ ∈ {1, ...,m} is selected (Section 4.6). The aligned points x̂, ŷ are
obtained by permutation and rotation of the invariantized points x̄, ȳ in order
to minimize the Euclidean distance from the selected anchor x̆a∗ , y̆a∗ (Section
4.5), and therefore, to increase the probability of the successful track from
the selected anchor.

After that, the parametrizations ps of the start problem x̆a∗ , y̆a∗ and pf of
the aligned final problem x̂, ŷ are obtained by (4.2) and the parametrization z0
of the start solution λ̆a∗ is obtained by (4.3). Then, the parametric homotopy
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H(z, p, t) from Equation (4.6) is set up and tracked from z0 using Algorithm 4
with parameters from Section 4.3. If the track is successful, the solution λ̂∗ is
obtained from the final solution z(1)∗ by (4.4) and the relative pose (R∗, t∗)
is obtained by the procedure described in Section 4.7. The solver is described
in Algorithm 5.

Algorithm 5: Five-Point solver
input :Five points x, y in two views, Anchors A obtained according

to Section 4.6.1, Transformation matrix L (Section 4.6.2),
classifier c trained by Section 4.6.4

output :Relative pose (R∗, t∗) between x, y
/* Invariantize the problem */
x̄, ȳ := Invariantized representation of x, y obtained by Section 4.4;
RIx, R

I
y := Rotation matrices induced by the invariantization;

s := Permutation of the views induced by the invariantization;

/* Select the starting anchor */
D := Low dimensional representation of x, y (by Section 4.6.2, use L);
a∗ := c(D); // Select the starting point
if a∗ = 0 then

return ∅
end

/* Align the problem */
x̂, ŷ := Points from x, y aligned to anchor x̆a, y̆a by Section 4.5;
Rx, Ry := Rotation matrices induced by the alignment;

/* Parametrize the problems and the starting solution */
ps := parametrization of x̆a∗ , y̆a∗ by (4.2);
pf := parametrization of x̂, ŷ by (4.2);
z0 := parametrization of λ̆a∗ by (4.3);

/* TRACK the solution */
z1 := Track homotopy (4.6) from z0 by Algorithm 4 (Chapter 3);

/* Extract the depths and the relative pose */
if z1 6= ∅ then

λ̂∗ := Extract depths from z1 by (4.4);
(R∗, t∗) := Get relative pose from z1, Rx, Ry, RIx, RIy by Sec. 4.7;

end
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4.2 Efficient evaluation of the predictor and the
corrector

We have noticed that the largest amount of time of the MINUS solver
[FDF+20] is spent on the LU-decomposition, which is used to solve linear
equations (3.7), (3.9) which arise in the predictor and the corrector steps of the
homotopy continuation. We have therefore replaced the LU-decomposition
with the closed-form solution of the linear equations, which exploits the
sparsity of the linear equations in the Multi-View Geometry problems. The
average time for one track is 26.6µs if the method proposed in this section is
used. If the LU decomposition in real domain is used, the average time for
one track is 124.1µs. If the LU decomposition in complex domain is used,
the average time for one track is around 400µs. The number of successful
tracks is the same for both methods.

4.2.1 Structure of the Linear Equations in the Two-View
Problem

The linear equations (3.7), (3.9) are computed in order to perform the predic-
tor and corrector steps of the homotopy continuation. The linear equations
have the form Ax = b where the matrix A is always the derivative Hz(z, p, t)
of the homotopy H(z, p, t) (4.6) w.r.t. the solution parameters z. Irrespective
of the parameters z, p, t, the matrix Hz(z, p, t) has the following form:



A0,0 0 0 0 A0,4 A0,5 0 0 0
0 A1,1 0 0 A1,4 0 A1,6 0 0
A2,0 A2,1 0 A2,3 0 0 A2,6 0 0

0 0 A3,2 0 A3,4 0 0 A3,7 0
A4,0 0 A4,2 0 0 A4,5 0 A4,7 0

0 A5,1 A5,2 0 0 0 A5,6 A5,7 0
0 0 0 A6,3 A6,4 0 0 0 A6,8
A7,0 0 0 A7,3 0 A7,5 0 0 A7,8

0 A8,1 0 A8,3 0 0 A8,6 0 A8,8


(4.7)

The vector x of the variables can be written as:[
x0 x1 x2 x3 x4 x5 x6 x7 x8

]T
(4.8)
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The vector b of the right side can be written as:

[
b0 b1 b2 b3 b4 b5 b6 b7 b8

]T
(4.9)

4.2.2 Closed-Form Solution of the Linear Equations in the
Two-View Problem

Let us have a system of linear equations Ax = b whose matrix A has the form
of (4.7), vector x has the form of (4.8) and vector b has the form of (4.9).
Now, we are going to show the closed-form solution to this system.

First, we have noticed that the rows 0, 1, 3, 6 of matrix (4.7) have only
three nonzero entries. We can easily obtain the variables x1, x2, x3, x5 from
these equations and substitute them to the rest of the equations to obtain a
square system with 5 variables. The variables x1, x2, x3, x5 are obtained as:

x1 = b1 −A1,4x4 −A1,6x6
A1,1

x2 = b3 −A3,4x4 −A3,7x7
A3,2

x3 = b6 −A6,4x4 −A6,8x8
A6,3

x5 = b0 −A0,0x0 −A0,4x4
A0,5

(4.10)

After substituting of these into the rest of the equations, we obtain:

A2,0x0 + A2,1
A1,1

(b1 −A1,4x4 −A1,6x6) + A2,5
A0,5

(b0 −A0,0x0 −A0,4x4) +A2,6x6 = b2

A4,0x0 + A4,2
A3,2

(b3 −A3,4x4 −A3,7x7) + A4,5
A0,5

(b0 −A0,0x0 −A0,4x4) +A4,7x7 = b4

A5,1
A1,1

(b1 −A1,4x4 −A1,6x6) + A5,2
A3,2

(b3 −A3,4x4 −A3,7x7) +A5,6x6 +A5,7x7 = b5

A7,0x0 + A7,3
A6,3

(b6 −A6,4x4 −A6,8x8) + A7,5
A0,5

(b0 −A0,0x0 −A0,4x4) +A7,8x8 = b7

A8,1
A1,1

(b1 −A1,4x4 −A1,6x6) + A8,3
A6,3

(b6 −A6,4x4 −A6,8x8) +A8,6x6 +A8,8x8 = b8

(4.11)
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These five equations can be rewritten as:

(
A2,0 −

A2,5
A0,5

A0,0

)
x0 −

(
A2,1
A1,1

A1,4 + A2,5
A0,5

A0,4

)
x4 +

(
A2,6 −

A2,1
A1,1

A1,6

)
x6

= b2 −
A2,1
A1,1

b1 −
A2,5
A0,5

b0(
A4,0 −

A4,5
A0,5

A0,0

)
x0 −

(
A4,2
A3,2

A3,4 + A4,5
A0,5

A0,4

)
x4 +

(
A4,7 −

A4,2
A3,2

A3,7

)
x7

= b4 −
A4,2
A3,2

b3 −
A4,5
A0,5

b0(
−A5,1
A1,1

A1,4 −
A5,2
A3,2

A3,4

)
x4 +

(
A5,6 −

A5,1
A1,1

A1,6

)
x6 +

(
A5,7 −

A5,2
A3,2

A3,7

)
x7

= b5 −
A5,1
A1,1

b1 −
A5,2
A3,2

b3(
A7,0 −

A7,5
A0,5

A0,0

)
x0 −

(
A7,3
A6,3

A6,4 + A7,5
A0,5

A0,4

)
x4 +

(
A7,8 −

A7,3
A6,3

A6,8

)
x8

= b7 −
A7,3
A6,3

b6 −
A7,5
A0,5

b0(
−A8,1
A1,1

A1,4 −
A8,3
A6,3

A6,4

)
x4 +

(
A8,6 −

A8,1
A1,1

A1,6

)
x6 +

(
A8,8 −

A8,3
A6,3

A6,8

)
x8

= b8 −
A8,1
A1,1

b1 −
A8,3
A6,3

b6

(4.12)

We can simplify these equations by replacing the coefficients by Ci,j and the
right sides by di, where Ci,j is the coefficient in equation i at xj and di is the
right side of equation i. We obtain:

C0,0x0 − C0,4x4 + C0,6x6 = d0

C1,0x0 − C1,4x4 + C1,7x7 = d1

C2,4x4 + C2,6x6 + C2,7x7 = d2

C3,0x0 − C3,4x4 + C3,8x8 = d3

C4,4x4 + C4,6x6 + C4,8x8 = d4

(4.13)

Notice that every equation in this system has only three variables. We can
express the variables x6, x7, x8 from the equations 0, 1, 3 and substitute the
results to the remaining two equations to obtain a system of two equations
with two variables, which can be easily solved. The variables x6, x7, x8 are
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obtained as:

x6 = d0 − C0,0x0 + C0,4x4
C0,6

x7 = d1 − C1,0x0 + C1,4x4
C1,7

x8 = d3 − C3,0x0 + C3,4x4
C3,8

(4.14)

After substituting these into the two remaining equations, we obtain:

C2,4x4 + C2,6
C0,6

(d0 − C0,0x0 + C0,4x4) + C2,7
C1,7

(d1 − C1,0x0 + C1,4x4) = d2

C4,4x4 + C4,6
C0,6

(d0 − C0,0x0 + C0,4x4) + C4,8
C3,8

(d3 − C3,0x0 + C3,4x4) = d4

(4.15)

These equations can be rewritten as:

−
(
C2,6
C0,6

C0,0 + C2,7
1, 7 C1,0

)
x0 +

(
C2,4 + C2,6

C0,6
C0,4 + C2,7

C1,7
C1,4

)
x4

= d2 −
C2,6
C0,6

d0 −
C2,7
C1,7

d1

−
(
C4,6
C0,6

C0,0 + C4,8
3, 8 C3,0

)
x0 +

(
C4,4 + C4,6

C0,6
C0,4 + C4,8

C3,8
C3,4

)
x4

= d4 −
C4,6
C0,6

d0 −
C4,8
C3,8

d3

(4.16)

We can simplify these two equations by replacing the coefficients by Ei,j and
the right sides with fi, such, that Ei,j is the coefficient in equation i at xj
and fi is the right side of equation i. We obtain:

−E0,0x0 + E0,4x4 = f0

−E1,0x0 + E1,4x4 = f1
(4.17)

We can express the variable x4 from the first equation of (4.17) as:

x4 = f0 + E0,0x0
E0,4

(4.18)

Finally, we can substitute this to the second equation from (4.17) to obtain:

− E1,0x0 + E1,4
E0,4

(f0 + E0,0x0) = f1 (4.19)

Now, we can easily obtain the variable x0 from (4.19) as:

x0 =
f1 − E1,4

E0,4
f0

E1,4
E0,4

E0,0 − E1,0
(4.20)
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The full evaluation of the vector x (4.8) goes as follows: first, the coefficients
Ci,j and right sides di of the 5 × 5 system (4.13) are evaluated. Then, the
coefficients Ei,j and right sides fi of the 2 × 2 system (4.17) are evaluated.
After that, the variable x0 is obtained according to (4.20). When the value
of x0 is known, we can gradually evaluate the variables x4 from (4.18), x6,
x7, x8 from (4.14) and x1, x2, x3, x5 from (4.10).

4.3 Optimization of the homotopy continuation
parameters

Now, we are going to show the parameters of the homotopy continuation
described in Chapter 3. We have set the parameters empirically in order to
increase the number of correct tracks and decrease the time for one track.
The parameters are set as follows:

.∆t0 = 0.05. kmax = 3. ε = 1e− 5. succmax = 4. β = 3.∆min = 1e− 4

4.4 Invariantization of the problems

Now, we are going to describe the invariantization of the problems. The
purpose of the invariantization is to obtain a unified representation of the
problem and to prepare the problem for the alignment 4.5 which may contain
fewer steps and take a shorter time if the problem is properly invariantized
before the alignment. If the depths λ ∈ R2,5 are known, the invariantization
changes them as well. Let us introduce the notation which we will use in this
section.

x ∈ R2,5 Five calibrated 2D points in the first camera.
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y ∈ R2,5 Five calibrated 2D points in the second camera.

λ ∈ R2,5 The depths of the points in both cameras.

x̄ ∈ R2,5 Invariantized representation of points x.

ȳ ∈ R2,5 Invariantized representation of points y.

λ̄ ∈ R2,5 Depths consistent with the invariantized points x̄, ȳ.

RIx ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates of x to the homogeneous coordinates of x̄.

RIy ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates of y to the homogeneous coordinates of ȳ.

s ∈ Sym({1, 2}) The permutation of the views. s = {2, 1} if the views have
been swapped, s = {1, 2} otherwise.

We know the points x, y, and optionally also the depths λ. The task is to
obtain invariantized points x̄, ȳ, such that the center of mass of the points
in every view is in zero, the point farthest from the center of mass lies on
y-axis, and the rest of the points are ordered counterclockwise in the first
view. The point farthest from the center of mass should be more distant
from the center in the first view. Further, the task is to obtain the rotation
matrices RIx, RIy, and the permutation s of the views. If the depths λ are
known (such as during the invariantization of an anchor), the part of the
task is also to find new depths λ̄ consistent with the invariantized points x̄, ȳ.
The invariantization is described in Algorithm 6 and depicted in Figure 4.1.
The transformation of the depths is described in Section 4.4.4.

Algorithm 6: Invariantize Five-Point problem
input :Five points x, y in two views
output : Invariantized representation x̄, ȳ of x, y, Rotation matrices

RIx, RIy, Permutations s, r
xh,µ, yh,µ := Rotate x, y such that the center of mass of the points is
in zero (Section 4.4.1);
Rµx , R

µ
y := Rotation matrices which rotate the center of mass to zero;

xh,µ, yh,µ := Permute the points, views and rotation matrices RIx, RIx
according to Section 4.4.2;
s := permutation of the views, r := permutation of the points;
x̄, ȳ := Rotate the first point to y-axis (Section 4.4.3);
Rax, R

a
y := Rotation matrices which rotate the first point to y-axis;

RIx := RaxR
µ
x , RIy := RayR

µ
y ;
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x:,1

x:,2
x:,3

x:,4x:,5
y:,1

y:,2
y:,3

y:,4y:,5

(a)

xµ:,1

xµ:,2xµ:,3

xµ:,4xµ:,5

yµ:,1

yµ:,2
yµ:,3

yµ:,4
yµ:,5

(b)

xπ:,5

xπ:,3
xπ:,2

xπ:,4
xπ:,1

yπ:,5

yπ:,3yπ:,2

yπ:,4yπ:,1

(c)

x̄:,1

x̄:,2

x̄:,3
x̄:,4
x̄:,5

ȳ:,1

ȳ:,2

ȳ:,3 ȳ:,4

ȳ:,5

(d)

Figure 4.1: An illustration of the invariantization procedure. (a) The input
points x, y. (b) The points rotated such, that their center of mass is zero. (Section
4.4.1) (c) The points permuted according to Section 4.4.2 (d) The invariantized
points x̄, ȳ. The red and blue points symbolize the zero point.
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4.4.1 Moving the center of mass to zero

Let us introduce the notation which we will use in this section.

x ∈ R2,5 Five calibrated 2D points in the first camera.

y ∈ R2,5 Five calibrated 2D points in the second camera.

xh ∈ R3,5 Homogeneous representation of columns of x.

yh ∈ R3,5 Homogeneous representation of columns of y.

Rµx ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates xh of x such that their center of mass is equal to zero.

Rµy ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates yh of y such that their center of mass is equal to zero.

xh,µ ∈ R3,5 Homogeneous representation of points from x rotated such, that
their point of mass is in zero. There holds xh,µ ≈ Rµxxh.

yh,µ ∈ R3,5 Homogeneous representation of points from y rotated such, that
their point of mass is in zero. There holds yh,µ ≈ Rµyyh.

Now, we are going to describe how to move the center of mass to zero. We
know the points x ∈ R2,5, y ∈ R2,5. The goal is to find rotation matrices
Rµx ∈ SO(3), Rµy ∈ SO(3), such that the center of mass of the homogeneous
representative of columns of x multiplied by Rµx is equal to the homoge-
neous representative of zero, and the center of mass of the homogeneous
representative of columns of y multiplied by Rµy is equal to the homogeneous
representative of zero.

The procedure is performed iteratively. In every step, the center of mass µ
is computed and rotated to zero. This does not guarantee that the center of
mass of the transformed points is zero, however, if after about 3 - 4 iterations,
the distance between the center of mass and the zero vector is acceptable.

This procedure is the same for both views. We are going to describe it for
the first view, where the center of mass of points x is rotated to zero and the
accumulated rotation is stored into Rµx. The invariantization of points y is
done analogously, while the accumulated rotation is stored into Rµy . First,
the homogeneous representation xh ∈ R3,5 of points x is obtained.

xh =

x1,1 x1,2 x1,3 x1,4 x1,5
x2,1 x2,2 x2,3 x2,4 x2,5
1 1 1 1 1

 (4.21)
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The matrix Rµx is initialized to identity Rµx = I, the matrix of transformed
points xh,µ is initialized as xh,µ = xh.

At the beginning of every iteration, the center of mass µ is computed as:

µ = 1
5

5∑
i=1


xh,µ1,i
xh,µ2,i
xh,µ3,i

 (4.22)

With the knowledge of the center of mass µ, we can build the matrix M as:

M =

µ1 1 0
µ2 0 1
µ3 0 0

 (4.23)

Because µ3 = 1, matrix M is full-rank. Matrix M is decomposed using
a QR-decomposition into an orthogonal matrix Q and an upper-triangular
matrix R, such as M = QR. Because the entries R2,1, R3,1 of matrix R are
equal to zero, the center of mass µ, which is the first column of matrix M is
equal to the first column of matrix Q multiplied by a scalar R1,1 ∈ R. Because
the matrix Q is orthogonal, its second and third columns are orthogonal to
the center of mass µ. There holds:[

Q1,i Q2,i Q3,i
]
µ = 0, i ∈ {2, 3} (4.24)

If we multiply the matrix QT with the center of mass µ, we obtain:

QTµ =

Q1,1 Q2,1 Q3,1
Q1,2 Q2,2 Q3,2
Q1,3 Q2,3 Q3,3

µ =

σ0
0

 (4.25)

For some σ ∈ R.The goal is, however, to find a rotation matrix Rcur, such
that

Rcurµ =

0
0
α

 , α ∈ R (4.26)
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This can be achieved by multiplying the matrix QT by a matrix M1, such

as:

M1 =

0 1 0
0 0 1
1 0 0

 (4.27)

Then, there holds:

Rcurµ = M1Q
Tµ =

0 1 0
0 0 1
1 0 0


σ0

0

 =

0
0
σ

 (4.28)

Both matrices M1, QT are orthogonal, therefore, matrix Rcur = M1Q
T

is orthogonal as well. However, we search for a rotation matrix, which is
an orthogonal matrix with a determinant equal to 1. If the determinant
detRcur = −1, we can multiply Rcur from left by a matrix M2, such as:

M2 =

1 0 0
0 −1 0
0 0 −1

 (4.29)

After that, we obtain the rotation matrix Rcur as:

Rcur = M2Rcur = M2M1Q
T (4.30)

Now, Rcur is a rotation matrix because it is orthogonal and its determinant
is equal to 1.

This process is repeated 4 times, after each step, we update the rotation
matrix Rµx as RcurRµx and the homogeneous representation xh,µ according to
(4.31). The whole procedure is described in Algorithm 7.

xh,µ = Rcurx
h,µ

xh,µ1,i

xh,µ2,i

xh,µ3,i

 = 1
xh,µ3,i


xh,µ1,i

xh,µ2,i

xh,µ3,i


(4.31)
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Algorithm 7: Rotate the center of mass to zero
input :Five points x
output : xh,µ Homogeneous representation of points x rotated such,

that their point of mass is zero, Rµx Rotation matrix which
transforms x to xh,µ

xh := Homogeneous representation of x;
xh,µ := xh, Rµx := I ; // Initialize the values
M1 = Matrix (4.27), M2 = Matrix (4.29);
for j ∈ {1, ..., 4} do

µ := Point of mass of xh,µ according to (4.22);
M := Matrix (4.23);
Decompose M into M = QR using QR-Decomposition;
Rcur := M1Q

T ;
if detRcur < 1 then

Rcur := M2Rcur;
end
Rµx := RcurR

µ
x , Update xh,µ according to (4.31);

end

4.4.2 Permutation of the points

Let us introduce the notation which we will use in this section.

x ∈ R2,5 Five calibrated 2D points in the first camera.

y ∈ R2,5 Five calibrated 2D points in the second camera.

Rµx ∈ SO(3) The output of Section 4.4.1. A 3D rotation matrix which trans-
forms the homogeneous coordinates of x such that their center
of mass is zero.

Rµy ∈ SO(3) The output of Section 4.4.1. A 3D rotation matrix which trans-
forms the homogeneous coordinates of y such that their center
of mass is zero.

xh,µ ∈ R3,5 The output of Section 4.4.1. Homogeneous representation of
points from x rotated such, that their point of mass is in zero.
There holds xh,µ ≈ Rµxxh.

yh,µ ∈ R3,5 The output of Section 4.4.1. Homogeneous representation of
points from y rotated such, that their point of mass is in zero.
There holds yh,µ ≈ Rµyyh.
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r ∈ Sym({1, ..., 5}) The permutation of the points.

s ∈ Sym({1, 2}) The permutation of the views. s = {2, 1} if the views have
been swapped, s = {1, 2} otherwise.

xh,π ∈ R3,5 If s = {1, 2}, then xh,π are the points from xh,µ permuted by r,
otherwise xh,π are the points from yh,µ permuted by r.

yh,π ∈ R3,5 If s = {1, 2}, then xh,π are the points from xh,µ permuted by r,
otherwise xh,π are the points from yh,µ permuted by r.

Now, we assume that we have found matrices Rµx , Rµy (Section 4.4.1) which
transform the points of mass of homogeneous representations of points x, y
to zero. We further assume that we know the homogeneous representations
xh,µ ∈ R3,5, yh,µ ∈ R3,5 of the points x, y rotated such that their points of
mass are in zero.

The goal is to permute the points in such a way that the point whose
distance from the center of mass is the largest is the first and the remaining
points are ordered counterclockwise. Furthermore, we swap the views if
the first point is more distant in the second view. We want to find the
permutations r of the points and s of the views, as well as the permuted
points xh,π, yh,π.

First, we identify the index i1 of the point in the first view, whose distance
from zero is maximal:

i1 = arg max
i∈{1,...,5}

∥∥∥∥∥
[
xh,µ1,i
xh,µ2,i

]∥∥∥∥∥
2

(4.32)

Analogously, we identify the index i2 of the point in the second view, whose
distance from zero is maximal:

i2 = arg max
i∈{1,...,5}

∥∥∥∥∥
[
yh,µ1,i
yh,µ2,i

]∥∥∥∥∥
2

(4.33)

If the point i1 in the first view is further from zero than the point i2 in the
second view, we set i∗ = i1 and s = {1, 2}. Otherwise, we set i∗ = i2 and
s = {2, 1}, and we swap the views, such, that the new xh,µ is equal to the
original yh,µ and vice versa, new yh,µ is equal to the original xh,µ. In addition
to that, we also swap the rotation matrices Rµx and Rµy .
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Now, we are going to order the remaining points counterclockwise. We
compute the angles αi, i ∈ {1, ..., 5} of every point in the first view as:

αi = atan2(xh,µ2,i , x
h,µ
2,i ) (4.34)

If αi < 0, add π to it to obtain:

αi = αi + π (4.35)

For points i ∈ {1, ..., 5}, i 6= i∗, we compute the angle α′i relative to point
i∗ as:

α′i = αi − αi∗ (4.36)

If α′i < 0, add π to it to obtain:

α′i = α′i + π (4.37)

Now, we find the permutation r ∈ Sym({1, 2, 3, 4, 5}), such that the first
element r(1) of the permutation is the index of the most distant point i∗
and the remaining elements are sorted with an increasing value of α′i (4.36),
(4.37). We permute the columns of matrices xh,µ, yh,µ with this permutation
to obtain xh,π, yh,π.

4.4.3 Moving the first point to y-axis

Let us introduce the notation which we will use in this section.

x ∈ R2,5 Five calibrated 2D points in the first camera.

y ∈ R2,5 Five calibrated 2D points in the second camera.

Rµx ∈ SO(3) The output of Section 4.4.1. A 3D rotation matrix which trans-
forms the homogeneous coordinates of x such that their center of
mass is zero.

Rµy ∈ SO(3) The output of Section 4.4.1. A 3D rotation matrix which trans-
forms the homogeneous coordinates of y such that their center of
mass is zero.

xh,π ∈ R3,5 Points in the first view rotated such that their center of mass is
zero and permuted according to Section 4.4.2.

55 ctuthesis t1606152353



4. Efficient Homotopy Continuation Solver for the Five-Point Problem .............
yh,π ∈ R3,5 Points in the second view rotated such that their center of mass

is zero and permuted according to Section 4.4.2.

Rax ∈ SO(3) A rotation matrix which rotates the first point of xh,π to the
y-axis.

Ray ∈ SO(3) A rotation matrix which rotates the first point of yh,π to the
y-axis.

x̄ ∈ R2,5 Invariantized representation of points x.

ȳ ∈ R2,5 Invariantized representation of points y.

RIx ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates of x to the homogeneous coordinates of x̄.

RIy ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates of y to the homogeneous coordinates of ȳ.

We know the permuted points xh,π, yh,π and the rotation matrices Rµx , Rµy
which transform the center of mass to zero. The goal is to transform the
permuted points such that the first point lies on the y-axis. The outputs of
this section are the rotation matrices Rax, Ray, the invariantized points x̄, ȳ
and the rotation matrices RIx, RIy.

Now, we are going to find the matrix Rax which would transform the first
row of matrix xh,π to y-axis. This matrix represents a rotation around the
optical axis, therefore, the property that the center of mass of the points is
zero is preserved. Matrix Ray which rotates the first point in the second view
to the y-axis, is found analogously.

Let σ =
√

(xπ1,1)2 + (xπ2,1)2 be the norm of the first Euclidean (not homo-
geneous) point in the first view. The rotation matrix Rax is constructed as
follows:

Rax =


xh,π2,1
σ

−xh,π1,1
σ 0

xh,π1,1
σ

xh,π2,1
σ 0

0 0 1

 (4.38)

Matrix Rax is a rotation matrix because its columns are orthonormal and
because the determinant of Rax is equal to 1. The first point is transformed
by the matrix Rax as follows:

Rax

x
h,π
1,1
xh,π2,1
xh,π3,1

 =


xh,π2,1
σ

−xh,π1,1
σ 0

xh,π1,1
σ

xh,π2,1
σ 0

0 0 1


x

h,π
1,1
xh,π2,1
xh,π3,1

 =

 0
σ

xh,π3,1

 (4.39)
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We can see from equation (4.39), that matrix Rax rotates the first point to zero.
Because Rax is an extended 2D matrix, it represents a rotation around the
optical axis which passes through the center of mass of the points. Therefore,
the center of mass of points xh,π stays in zero after being transformed by Rax.

The rotation matrix RIx is obtained as:

RIx = RaxR
µ
x (4.40)

The homogeneous representation x̄h of the invariantized points x̄ is obtained
as:

x̄h = Raxx
h,π (4.41)

The Cartesian representation x̄ of the invariantized points is then obtained by
taking the first two rows of x̄h because the procedures described in Sections
4.4.1 and 4.4.2 and the character of matrix Rax guarantee that all entries in
the last row of x̄h are equal to 1.

Matrix Ray which rotates the first point in the second view to the y-axis is
obtained analogously to (4.38). The rotation matrix RIy is obtained as:

RIy = RayR
µ
y (4.42)

The homogeneous representation ȳh of the invariantized points ȳ is obtained
as:

ȳh = Rayy
h,π (4.43)

The Cartesian representation ȳ of the invariantized points is then obtained
by taking the first two rows of ȳh.

4.4.4 Obtaining invariantized depths

Let us introduce the notation which we will use in this section.

x ∈ R2,5 Five calibrated 2D points in the first camera.

y ∈ R2,5 Five calibrated 2D points in the second camera.

λ ∈ R2,5 The depths of the points in both cameras.

x̄ ∈ R2,5 Invariantized representation of points x.

ȳ ∈ R2,5 Invariantized representation of points y.
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RIx ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-

dinates of x to the homogeneous coordinates of x̄.

RIy ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates of y to the homogeneous coordinates of ȳ.

r ∈ Sym({1, ..., 5}) The permutation of the points, the output of Section
4.4.2.

s ∈ Sym({1, 2}) The output of Section 4.4.2. The permutation of the views.
s = {2, 1} if the views have been swapped, s = {1, 2} otherwise.

λ̄ ∈ R2,5 Depths consistent with the invariantized points x̄, ȳ.

xh,P ∈ R3,5 Points in the first view permuted according to r, s.

yh,P ∈ R3,5 Points in the second view permuted according to r, s.

λP ∈ R2,5 The depths from λ permuted by permutations r and s.

X1
i,j ∈ R3,5 Coordinates of the 3D points in the coordinate system of the first

camera.

X̄1
i,j ∈ R3,5 Coordinates of the 3D points in the coordinate system of the first

invariantized camera.

X2
i,j ∈ R3,5 Coordinates of the 3D points in the coordinate system of the

second camera.

X̄2
i,j ∈ R3,5 Coordinates of the 3D points in the coordinate system of the

second invariantized camera.

We know the points x, y, as well as their invariantized representations x̄, ȳ
and the transformation matrices RIx, RIy. We also assume, that the depths λ
are known. The goal is to find the depths λ̄ of the invariantized points.

In order to obtain the depths of the invariantized points, we first obtain
the homogeneous representatives xh and yh according to (4.21). Then, we
permute the columns of xh and yh according to r to obtain xh,P , yh,P . If
the permutation s of views is equal to s = {2, 1}, we swap the values from
xh,P and yh,P . Then, we permute the columns of λ by r and the rows by s
to obtain permuted depths λP .
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C1 C2

Xi

x:,r(i)
x̄:,i

y:,r(i) ȳ:,i

λs(1),r(i)x:,r(i) = λ̄1,ix̄:,i
λs(2),r(i)y:,r(i) = λ̄2,iȳ:,i

C̄1 C̄2

Figure 4.2: An illustration of the change of depths induced by the invariantiza-
tion. Original cameras C1, C2 are black and the invariantized cameras C̄1, C̄2
are orange. The rotation of the camera changes the point where the projection
plane of the camera intersects the ray containing the point. Therefore, the depth
of the point changes.

We multiply every column of xh,P by the corresponding depth from matrix
λP to obtain the coordinates X1 of the 3D points in the coordinate system
of camera 1 as:

X1
i,j = λP1,jx

h,P
i,j , j ∈ {1, ..., 5}, i ∈ {1, 2, 3} (4.44)

After that, we obtain the coordinates X̄1 of the 3D points in the coordinate
system of the first camera after the invariantization as:

X̄1 = RIxX
1 (4.45)

And we obtain the depths λ̄ of the invariantized points from the last row of
matrix X̄1 as:

λ̄1,j = X̄1
3,j , j ∈ {1, ..., 5} (4.46)

Similarly, we obtain the coordinates X2 of the 3D points in the coordinate
system of camera 2 as:

X2
i,j = λP2,jy

h,P
i,j , j ∈ {1, ..., 5}, i ∈ {1, 2, 3} (4.47)

Then, we obtain the coordinates X̄2 of the 3D points in the coordinate system
of the second camera after the invariantization as:

X̄2 = RIyX
2 (4.48)

And we obtain the depths λ̄ of the invariantized points from the last row of
matrix X̄2 as:

λ̄2,j = X̄2
3,j , j ∈ {1, ..., 5} (4.49)

59 ctuthesis t1606152353



4. Efficient Homotopy Continuation Solver for the Five-Point Problem .............
4.5 Alignment of the problems on the anchors

The invariantization step transforms the problems to a uniform shape. How-
ever, we have noticed that the sum of squared distances between two invari-
antized problems can often be suboptimal 4.3. Therefore, we add another
step of the problem preprocessing which would minimize the sum of squared
distances between the anchor and the final problem.

This alignment step increases the number of successful tracks significantly.
We have performed the experiment described in Algorithm 16 (Section 4.6.1)
with 2000 problem-solution pairs and counted the successful tracks. The
number of successful tracks with alignment was equal to 71014 successful
tracks out of 1999000, while the number of successful tracks without alignment
was equal to 13006 successful tracks out of 1999000. Let us introduce the
notation which we will use in this section.

x̄ ∈ R2,5 Invariantized representation of five calibrated 2D points in the
first camera.

ȳ ∈ R2,5 Invariantized representation of five calibrated 2D points in the
second camera.

λ̄ ∈ R2,5 Depths consistent with the invariantized points x̄, ȳ.

RIx ∈ SO(3) The output of Section 4.4. A 3D rotation matrix which trans-
forms the homogeneous coordinates of x to the homogeneous
coordinates of invariantized points x̄.

RIy ∈ SO(3) The output of Section 4.4. A 3D rotation matrix which trans-
forms the homogeneous coordinates of y to the homogeneous
coordinates of invariantized points ȳ.

(x̆a∗ , y̆a∗ , λ̆a∗), x̆a∗ ∈ R2,5, y̆a∗ ∈ R2,5, λ̆a∗ ∈ R2,5 The selected anchor (problem-
solution pair) from which the homotopy continuation should be
tracked. We assume that the points x̆a∗ , y̆a∗ have been invari-
antized according to section 4.4.

x̂ ∈ R2,5 Points in the first camera aligned to the anchor (x̆a∗ , y̆a∗ , λ̆a∗)

ŷ ∈ R2,5 Points in the second camera aligned to the anchor (x̆a∗ , y̆a∗ , λ̆a∗)

λ̂ ∈ R2,5 Depths consistent with the aligned points x̂, ŷ.

rA ∈ Sym({1, ..., 5}) A permutation of the points induced by the alignment.
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Rx ∈ SO(3) A 3D rotation matrix which transforms the homogeneous repre-
sentation of invariantized points x̄ to the homogeneous representa-
tion of aligned points x̂.

Ry ∈ SO(3) A 3D rotation matrix which transforms the homogeneous repre-
sentation of invariantized points ȳ to the homogeneous representa-
tion of aligned points ŷ.

x̆:,1

x̆:,2

x̆:,3

x̆:,4

x̆:,5

x̄:,1

x̄:,2

x̄:,3

x̄:,4

x̄:,5

x̆:,1

x̆:,2

x̆:,3
x̆:,4

x̆:,5

x̂:,1

x̂:,2

x̂:,3

x̂:,4

x̂:,5

Figure 4.3: The black points are the anchor x̆. The red points on the left are
the input points x̄. The green points on the right are the points x̂ aligned to x̆.

We know the invariantized points x̄, ȳ and the selected anchor (x̆a∗ , y̆a∗ , λ̆a∗).
The goal is to find the rotation matrices R∗x, R∗y, the permutation r∗A and
the aligned points x̂, ŷ, such that the sum of squared distances between
the aligned points and the anchor (x̆a∗ , y̆a∗ , λ̆a∗) is minimized. This can be
formulated as the following optimization task:

R∗x, R
∗
y, r
∗
A = arg min

Rx,Ry ,rA

5∑
i=1

∥∥∥∥∥∥∥
x̆a

∗
1,i
x̆a
∗

2,i
1

−Rx
x̄1,rA(i)
x̄2,rA(i)

1


∥∥∥∥∥∥∥

2

+
5∑
i=1

∥∥∥∥∥∥∥
y̆a

∗
1,i
y̆a
∗

2,i
1

−Ry
ȳ1,rA(i)
ȳ2,rA(i)

1


∥∥∥∥∥∥∥

2

(4.50)

Now, we are going to show how the optimization task (4.50) is solved.
We consider a subset S ⊆ Sym({1, ..., 5}) of all permutations in the group
Sym({1, ..., 5}). For every permutation rA ∈ S we fix the permutation and
find the optimal rotations Rx, Ry, which would minimize the expression
(4.50). Then, we select the permutation r∗A whose value of (4.50) is minimal.

In Section 4.5.1 we show, how the task (4.50) is minimized with a fixed
permutation rA. We also show that the optimal rotations Rx, Ry rotate
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around the optical axis. Therefore, the depths do not have to be adjusted
after the alignment, and the depths λ̂ are obtained by permuting the columns
of λ̄ by rA. In Section 4.5.2 we discuss the dependence of the result on the
size of the set S of all considered permutations. The alignment is described
in Algorithm 8.
Algorithm 8: Align Five-Point problem
input : Invariantized representation x̄, ȳ of x, y, Selected anchor

(x̆a∗ , y̆a∗ , λ̆a∗), Set of permutations S (from Section 4.5.2)
output :Aligned points x̂, ŷ, Rotation matrices R∗x, R∗y transforming

x̄, ȳ to x̂, ŷ, Permutation r∗A
distbest :=∞;
for rA ∈ S do

Rx, Ry := Rotation matrices minimizing (4.50) with fixed
permutation rA (Section 4.5.1);
dist := Distance (4.50) given by Rx, Ry, rA;
if dist < distbest then

dist := distbest, R∗x := Rx, R∗y := Ry, r∗A := rA
end

end
x̂, ŷ := Rotate the points x̄, ȳ with R∗x, R∗y and permute them with r∗A;

4.5.1 Minimization of the Squared Distance Between the
Problems

We know the invariantized points x̄, ȳ and the selected anchor (x̆a∗ , y̆a∗ , λ̆a∗).
We assume that the permutation rA is fixed. The goal is to find the rotation
matrices R∗x, R∗y, which would minimize the value of (4.50) with a fixed rA.

Then, the optimization task (4.50) breaks up into two independent problems,
one for each view:

R∗x = arg min
Rx∈SO(3)

5∑
i=1

∥∥∥∥∥∥∥
x̆a

∗
1,i
x̆a
∗

2,i
1

−Rx
x̄1,rA(i)
x̄2,rA(i)

1


∥∥∥∥∥∥∥

2

(4.51)

R∗y = arg min
Ry∈SO(3)

5∑
i=1

∥∥∥∥∥∥∥
y̆a

∗
1,i
y̆a
∗

2,i
1

−Ry
ȳ1,rA(i)
ȳ2,rA(i)

1


∥∥∥∥∥∥∥

2

(4.52)
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This is exactly the Orthogonal Procrustes problem [HC62]. Now, we are
going to show how the Orthogonal Procrustes problem is solved. We are
going to use the example of (4.51), problem (4.52) is solved analogously. The
Let x̆a∗,h ∈ R3,5 be the homogeneous representation of points from x̆a

∗ and
x̄h be the homogeneous representation of points from x̄. Matrix M is built
as:

M = x̆a
∗,h (x̄h)T (4.53)

Then, the matrix M is decomposed using SVD into M = UΣV T and the
optimal rotation matrix R∗x is obtained as:

R∗x = UV T (4.54)

Efficient evaluation of SVD

Now, we are going to describe how to obtain the optimal matrix R∗x efficiently.
Let µ̆a∗ ∈ R2 be the center of mass of points in x̆a∗ and µ̄ be the center of
mass of points in x̄. Because the last row of both x̆a∗,h and x̄h contain only
ones, matrix M (4.53) can be evaluated as:

M =
[
x̆a
∗ (x̄)T 5µ̆a∗
5µ̄T 5

]
(4.55)

Because we assume that both x̆a∗ and x̄ are invariantized, their centers of
mass µ̆a∗ , µ̄ are equal to zero and matrix M is equal to:

M =
[
x̆a
∗ (x̄)T 0

0 5

]
(4.56)

Let M ′ = x̆a
∗ (x̄)T be a top-left 2× 2 submatrix of M and let U ′Σ′V ′T be

its SVD decomposition. Then, the SVD decomposition of matrix M is equal
to:

M = UΣV T =
[
U ′ 0
0 1

] [
Σ′ 0
0 5

] [
V ′T 0

0 1

]
(4.57)

This means that the rotation R∗x which minimizes expression (4.51) repre-
sents a rotation around the optical axis. We can obtain the rotation R∗x by a
SVD decomposition of matrix M ′ and building:

R∗x = UV t =
[
U ′V ′T 0

0 1

]
(4.58)
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The SVD decomposition of a 2× 2 matrix M can be obtained in a closed

form according to [Bli96]. First, the scalar values E, F , G, H, Q, R are
computed as:

E =
M ′0,0 +M ′1,1

2

F =
M ′0,0 −M ′1,1

2

G =
M ′1,0 +M ′0,1

2

H =
M ′1,0 −M ′0,1

2
Q =

√
E2 +H2, R =

√
F 2 +G2

(4.59)

Then, the singular values sx, sy are obtained as:

sx = Q+R, sy = Q−R (4.60)

In order to obtain the angles φ, θ of the rotation matrices U ′, V ′T , we first
compute the values a1, a2 as:

a1 = atan2(G,F ), a2 = atan2(H,E) (4.61)

Then, the angles φ, θ are computed as:

φ = a2 + a1
2 , θ = a2 − a1

2 (4.62)

The SVD decomposition of matrix M ′ goes as follows:

M ′ = U ′Σ′V ′T =
[
cosφ − sinφ
sinφ cosφ

] [
sx 0
0 sy

] [
cos θ − sin θ
sin θ cos θ

]
(4.63)

This procedure can be further simplified. We are only interested in com-
puting the matrix U ′V ′T , therefore, matrix Σ′ and values sx, sy are not
interesting for us. The rotation matrix U ′V ′T ∈ R2, which is the top-left
submatrix of R∗x, can be obtained as:

U ′V ′T =
[
cosφ − sinφ
sinφ cosφ

] [
cos θ − sin θ
sin θ cos θ

]

=
[
cosφ cos θ − sinφ sin θ − cosφ sin θ − sinφ cos θ
sinφ cos θ + cosφ sin θ cosφ cos θ − sinφ sin θ

] (4.64)

Using trigonometric identities, the matrix U ′V ′T can be simplified as:

U ′V ′T =
[
cos (φ+ θ) − sin (φ+ θ)
sin (φ+ θ) cos (φ+ θ)

]
(4.65)
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Angle φ+ θ can be evaluated as:

φ+ θ = a2 + a1
2 + a2 − a1

2 = a2 = atan2(H,E) (4.66)

Because a2 = atan2(H,E) = arctan H
E , there holds:

tan a2 = sin a2
cos a2

= H

E
(4.67)

And the values of sin a2 and cos a2 are proportional to values of H, E.
Therefore, we introduce scalar values r1, r2, such that there holds:

r1 = cos a2 = E√
H2 + E2

, r2 = sin a2 = H√
H2 + E2

(4.68)

Then, we compute the matrix U ′V ′T as:

U ′V ′T =
[
r1 −r2
r2 r1

]
(4.69)

With the knowledge of matrix U ′V ′T , we compute matrix R∗x according to
(4.58).

4.5.2 Selecting the Subset of the Available Permutations

During the alignment, we try all permutations from a set S, which is a subset
of the symmetric group Sym({1, ..., 5}). Let us introduce the notation which
we will use in this section.

rA ∈ Sym({1, ..., 5}) A permutation of the points induced by the alignment.

S ⊆ Sym({1, ..., 5}) The subset of the possible permutations rA which are
considered in the alignment.

Si ⊆ Sym({1, ..., 5}), i ∈ {1, ..., 120} Set of i most successful permutations
from Sym({1, ..., 5})

P A set of 2000 problem-solution pairs generated according to
Section 2.1.3.

If we try all permutations (S = Sym({1, ..., 5})), we can obtain the global
minimum of function (4.50). However, although the procedure described in
4.5.1 is fairly fast, it is not efficient to evaluate it 120 times for every track.
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We have conducted the following experiment to select a meaningful subset S
of permutations which will be considered in the alignment.

First, we have generated a set P of 2000 problems according to Section 2.1.3,
then we have invariantized them (Section 4.4), aligned (Algorithm 8) with a
full symmetric group S = Sym({1, ..., 5}) and tracked from every problem
p ∈ P to every other problem p′ ∈ P, p 6= p′. After that, we have recorded
how many successful tracks have been performed after the permutation rA has
been selected in the alignment step. The result for up to 20 most successful
permutations is shown in Table 4.1.

rank rA # successful tracks
1 {0, 1, 2, 3, 4} 11964
2 {0, 4, 1, 2, 3} 7813
3 {0, 2, 3, 4, 1} 7534
4 {0, 3, 4, 1, 2} 6980
5 {0, 2, 1, 3, 4} 2315
6 {0, 1, 2, 4, 3} 2177
7 {0, 1, 3, 2, 4} 1990
8 {0, 4, 3, 1, 2} 1767
9 {0, 2, 4, 3, 1} 1624
10 {0, 3, 4, 2, 1} 1619
11 {0, 4, 1, 3, 2} 1602
12 {0, 4, 2, 1, 3} 1578
13 {0, 3, 2, 4, 1} 1561
14 {4, 0, 1, 2, 3} 1538
15 {1, 2, 3, 4, 0} 1518
16 {4, 1, 2, 3, 0} 1213
17 {0, 3, 1, 2, 4} 1179
18 {2, 3, 4, 0, 1} 1113
19 {1, 0, 2, 3, 4} 1113
20 {0, 1, 4, 2, 3} 1112
rest - 29688
total - 88998

Table 4.1: Numbers of successful tracks after selected permutations rA in the
alignment step

After that, we have ordered the permutations according to the number
of successful tracks in the experiment. For every i ∈ {1, ..., 20}, we have
considered the set Si of the i most successful permutations. We have tracked
from every problem p ∈ P to every other problem p′ ∈ P, p 6= p′, while the
set Si was considered in the alignment. The dependence between the size i
of the set of considered permutations S, the number of successful tracks and
the time needed for the alignment is shown in Table 4.2. We have decided

ctuthesis t1606152353 66



................................ 4.6. Selection of the Anchor

to use the first four permutations as the set of permutations considered in
the alignment because the number of successful tracks in Table 4.2 grows fast
until number 4, while it grows much faster after it. Therefore, the set S is
equal to S = {{0, 1, 2, 3, 4}, {0, 4, 1, 2, 3}, {0, 2, 3, 4, 1}, {0, 3, 4, 1, 2}}.

# Permutations Successful Tracks Alignment Time (µs)
1 39554 1.38
2 53456 1.45
3 64755 1.51
4 71014 1.65
5 72090 1.70
6 72981 1.92
7 73062 2.25
8 73711 2.32
9 74358 2.38
10 75102 2.38
11 75660 2.40
12 76325 2.65
13 76978 2.75
14 78199 2.85
15 79097 3.35
16 79912 3.48
17 80411 3.60
18 80416 3.62
19 81289 3.72
20 81587 3.74

Table 4.2: Numbers of successful tracks after the alignment where S contains i
top permutations from Table 4.1, i ∈ {1, ..., 20}.

4.6 Selection of the Anchor

Let us introduce the notation which we will use in this section.

(x̄, ȳ), x̄ ∈ R2,5, ȳ ∈ R2,5 The invariantized points in the first and the second
view.

m ∈ N The expected number of anchors.

A = (x̆a, y̆a, λ̆a), a ∈ {1, ...,m}, x̆a ∈ R2,5, y̆a ∈ R2,5, λ̆a ∈ R2,5 A sequence of
anchors, i.e. starting problem-solution pairs. For every a,
the values in λa are the solutions to the depth formulation
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of the Five-Point problem (2.5) parametrized by x̆a, y̆a. We
assume that the problem x̆a, y̆a is invariantized.

D ∈ R14 A low-dimensional representation of problem (x̄, ȳ)

c(D, θ) : R14 → Rm+1 The classifier which for every low-dimensional represen-
tation D of problem (x̄, ȳ) outputs a vector of probabilities
that the problem is successfully tracked from each anchor.
θ is a vector of parameters to the classifier.

We use a real homotopy continuation (Section 3.4) in our solver. In contrast
to the complex homotopy continuation, the real homotopy continuation has
no guarantee that the track will be successful. In addition to that, we perform
only one track and even if we succeed, there is no guarantee that we will end
up in the expected solution.

Therefore, we maintain a set A of anchors (problem-solution pairs), which
serve as the starting points for the homotopy continuation. We also train
a classifier c, which accepts an invariantized problem (x̄, ȳ) and outputs a
number a ∈ {0, ...,m}. If a = 0, we do not track the problem. Otherwise, we
track the problem from the anchor (x̆a, y̆a, λ̆a).

In Section 4.6.1 we describe how the set A of the anchors is generated.
In Section 4.6.2 we describe the preprocessing of the problem (x̄, ȳ), which
generates a low-dimensional representation D ∈ R14 of the problem. In
Section 4.6.3 we describe how the training data is generated. In Section 4.6.4
we describe the structure of the classifier c.

4.6.1 Anchor set generation

Now, we are going to describe how the set of anchors A is generated. Let us
introduce the notation which we will use in this section.

n The number of considered problems.

P = (xi, yi, λi), i ∈ {1, ...,m}, xi ∈ R2,5, yi ∈ R2,5, λi ∈ R2,5 A set of n problem-
solution pairs generated by Section 2.1.3.

P̄ = (x̄i, ȳi, λ̄i), i ∈ {1, ...,m}, x̄i ∈ R2,5, ȳi ∈ R2,5, λ̄i ∈ R2,5 A set of problem-
solution pairs invariantized according to 4.4.
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m ∈ N The expected number of anchors.

A = (x̆a, y̆a, λ̆a), a ∈ {1, ...,m}, x̆a ∈ R2,5, y̆a ∈ R2,5, λ̆a ∈ R2,5 A sequence of
anchors, i.e. starting problem-solution pairs. For every a,
the values in λ̆a are the solutions to the depth formulation
of the Five-Point problem (Equation 2.5) parametrized by
x̆a, y̆a. We assume that the problem x̆a, y̆a is invariantized.

G = (V, E) An undirected connectivity graph on the set P . The vertices
of G are equal to the problem-solution pairs in P (V = P).
Two problems pi, pi′ ∈ P are connected by an edge in E if
pi is correctly tracked from pi′ or vice versa.

We know the set P of n problem-solution pairs. We say that the problem-
solution pair (xi, yi, λi) is correctly tracked from (xa, ya, λa) if the homo-
topy continuation is successfully tracked and the resulting depth is equal to
the expected depth λi. The task is to find a subset of anchors A ⊆ P, |A| = m,
such that the number of problem-solution pairs from P which are correctly
tracked at least from one anchor from A is maximized.

We solve this problem in two stages. First, we build a connectivity graph
G = (V, E), whose vertices are equal to P. Two problems pi, pi′ ∈ P are
connected by an edge in E if pi is correctly tracked from pi′ or vice versa. The
building of the connectivity graph is described in Algorithm 9. The graph
is undirected because, according to theory [SI05], if there is a correct track
from problem pi to pi′ , then there is also a correct track from pi′ to pi.

In the second stage, we find a subset A of vertices in G, such that |A| = m
and the number of vertices from G which are covered by the vertices from
A is maximized. This is an NP-hard task, therefore, we use the heuristic
described in Algorithm 10.
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Algorithm 9: Building connectivity graph
input : Set P of n problem-solution pairs, Threshold θ
output :Connectivity graph G = (V, E). Two problem-solution pairs

pi, pi′ are connected if we can track correctly pi′ from pi
V := {1, ..., n}, E := ∅;
for i ∈ {1, ..., n} do

x̄i, ȳi := Invariantize xi, yi (Section 5.4);
λ̄i := Transform depths λi according to Section 4.4.4;

end
for i ∈ {1, ..., n} do

for j ∈ {i+ 1, ..., n}, j 6= i do
x̂j , ŷj := Align xj , yj on x̄i, x̄j (Section 4.5);
r∗A := Permutation of the points induced by the alignment;
λ̂j := Permute λ̄j according to r∗A and fix scale (Section 4.1.1);
ps := Parametrize (x̄i, ȳi) according to (4.2);
pf := Parametrize (x̂j , ŷj) according to (4.2);
z0 := Parametrize λ̄i according to (4.3);
z1 := Track homotopy (4.6) from z0 using Algorithm 4;
if z1 6= ∅ then

λ1 := Depths obtained from z1 according to (4.4);
if ‖λ1 − λ̂j‖ < θ then
E := E ∪ ({i, j};

end
end

end
end
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Algorithm 10: Heuristic for finding the anchors
input :Graph G = (V, E) obtained by Algorithm 9, number of

anchors m, Invariantized problems P̄
output : Sequence A of m anchors
n := number of vertices in G;
for i ∈ {1, ..., n} do

activei := 1 ; // Set all vertices as active
end
for i ∈ {1, ...,m} do

/* Find the node connected to most active nodes */
j∗ := 0, N ∗A := ∅;
for j ∈ {1, ..., n} do

/* Find all active nodes connected with j */
N := {v ∈ V | (j, v) ∈ E}; // Neighbors of vertex j
NA := ∅; // Active neighbors
for v ∈ N do

if activev == 1 then
NA := N ∪ {v};

end
end
if |NA| > |N ∗A| then
N ∗A := NA, j∗ := j;

end
end
(x̆i, y̆i, λ̆i) := (x̄j∗ , ȳj∗ , λ̄j∗); // Add a new anchor
for v ∈ N ∗A do

activev := 0; // Deactivate nodes connected with j∗

end
end

4.6.2 Problem preprocessing for the classifier

In this section, we are going to discuss how to uniquely represent the problem
(x, y) with a vector D ∈ R14, which will be used as the input to the classifier
c. We want to design the preprocessing such that the number of problems
correctly classified by the classifier c is as large as possible. Let us introduce
the notation which we will use in this section.

(x, y), x ∈ R2,5, y ∈ R2,5 The points in the first and the second view which
define an instance of the five-point problem.
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(x̄, ȳ), x̄ ∈ R2,5, ȳ ∈ R2,5 The invariantized points in the first and the second

view.

p ∈ R20 A 20-dimensional representation of five-point problem instance
(x̄, ȳ) obtained by (4.2).

D ∈ R14 A unique 14-dimensional representation of five-point problem
instance (x̄, ȳ).

L ∈ A14,20 A transformation matrix which transforms a 20-dimensional
(invariantized or aligned) representation p to a 14-dimensional
representation D.

P = (xi, yi, λi), i ∈ {1, ..., n}, xi ∈ R2,5, yi ∈ R2,5, λi ∈ R2,5 A set of n problem-
solution pairs generated by Section 2.1.3.

A A set of anchors obtained by the procedure described in Section
4.6.1.

K̄ ∈ R20,20 A covariance matrix of the invariantized points from P.

K̂ ∈ R20,20 A covariance matrix of the points from P aligned to the first
anchor (x̆1, y̆1) ∈ A.

We know the problem (x, y), we want to find the its representationD and the
transformation matrix L, which transforms the 20-dimensional representation
p of the problem to a 14-dimensional representation D. We are going to
describe two different low-dimensional representations of the points. One is
based on the invariantized points (x̄, ȳ), and the other one is based on the
points (x̂, ŷ) aligned on the first anchor (x̆1, y̆1).

Low dimensional representation of invariantized points

First, we invariantize the problem (x, y) according to Section 4.4 to obtain
the invariantized problem (x̄, ȳ). We are going to show, that all invariantized
instances (x̄, ȳ) of the Five-Point Problem live in a 14-dimensional linear
subspace of the linear space R2.

Points (x̄, ȳ) are invariantized according to Section 4.4, which means, that the
first coordinates of the first point x̄1,1, ȳ1,1 are equal to zero and the centers
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of mass of the points in both views are equal to zero as well. There holds:

x̄1,1 = 0
ȳ1,1 = 0

5∑
i=1

x̄1,i = 0

5∑
i=1

x̄2,i = 0

5∑
i=1

ȳ1,i = 0

5∑
i=1

ȳ2,i = 0

(4.70)

The invariantized points have to satisfy the equations (4.70). This is a set
of six homogeneous linear equations. The set of solutions to these equations
is a 14-dimensional linear subspace of the 20-dimensional linear space R20.
For every invariantized problem (x̄, ȳ) there exists a vector D ∈ R14 that can
represent the invariantized problem uniquely. Now, we are going to describe
how this vector can be obtained.

Let us have a set P of n problem-solution pairs generated according to
Section 2.1.3. First, we invariantize the points in P to obtain P̄. Then, we
obtain a 20-dimensional parametrization pi, i ∈ {1, ..., n} of every problem in
P̄ according to (4.2) and compute the covariance matrix K̄ ∈ R20,20 of the
invariantized points as:

K̄ = 1
n

n∑
i=1

pip
T
i (4.71)

Because the points pi, i ∈ {1, ..., n} live in a 14-dimensional subspace of the
linear space R20, the covariance matrix K has a rank 14. The matrix K is
symmetric, therefore, there exists a real eigendecomposition of matrix K:

K̄ = V ΛV T (4.72)

Because the matrix K has rank 14, its first six eigenvalues are equal to zero.
Let V ′ ∈ R20,14 be the matrix whose columns are the last 14 eigenvectors
of K, i.e. the last 14 columns of V . Let Λ′ ∈ R14,14 be a diagonal matrix
whose entries are the nonzero eigenvalues of K. Then, the matrix K can be
represented as:

K̄ = V ′Λ′V ′T (4.73)

Let us have a parametrization p ∈ R20 of an invariantized problem (x̄, ȳ)
according to (4.2). This parametrization lives in a 14-dimensional subspace
generated by V ′. The first six columns of V are orthogonal to p, therefore, the
first six coordinates of vector V T p are equal to zero. Vector d ∈ R14, d = V ′T p
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is therefore a unique representation of an invariantized problem p. We have
found empirically, that we can learn a better classifier if the resulting vector
d is multiplied by matrix Λ′−

1
2 . The transformation matrix L is equal to:

L = Λ′−
1
2V ′T (4.74)

Therefore, the 14-dimensional representation D of a problem (x̄, ȳ) is obtained
as:

D = Lp = Λ′−
1
2V ′T p (4.75)

Low dimensional representation of aligned points

Now, we are going to describe the second low-dimensional representation of
the problem (x, y) based on the points aligned on the first anchor (x̆1, y̆1).

We invariantize the points in P to obtain P̄ and align the points in P̄ to
the first anchor (x̆1, y̆1) according to (4.5) to obtain P̂. Then, we obtain
a 20-dimensional parametrization pi, i ∈ {1, ..., n} of every problem in P̂
according to (4.2) and compute the covariance matrix K̂ ∈ R20,20 of the
invariantized points as: invariantized points as:

K̂ =
n∑
i=1

pip
T
i (4.76)

We have found empirically, that the rank of matrix K̂ is equal to 14, therefore,
the points aligned to the first anchor live in a 14-dimensional subspace of R20.
We can obtain the eigendecomposition of the matrix K̂ = V ΛV T . Then, we
get the matrix V ′ ∈ R20,14 of the last 14 eigenvectors and the diagonal matrix
Λ′ ∈ R14,14 with the 14 largest eigenvalues. The transformation matrix L is
equal to:

L = Λ′−
1
2V ′T (4.77)

Therefore, we obtain the 14-dimensional representation D of problem (x̂, ŷ)
as:

D = Lp = Λ′−
1
2V ′T p (4.78)

The explanation of this approach is the same as in the low-dimensional
representation of invariantized points described in the previous subsection.

Comparison of the approaches

We have found empirically, that if the approach using the low-dimensional
representation of aligned points is used, then the resulting classifier is able
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to classify correctly approximately 5-10 % more problems than if the low-
dimensional representation of the invariantized points.

4.6.3 Training data generation

Let us introduce the notation which we will use in this section.

n The number of training data.

Pt = (xi, yi, λi), i ∈ {1, ..., n}, xi ∈ R2,5, yi ∈ R2,5, λi ∈ R2,5 Training data gen-
erated according to Section 2.1.3.

A = (x̆a, y̆a, λ̆a), a ∈ {1, ...,m}, x̆a ∈ R2,5, y̆a ∈ R2,5, λ̆a ∈ R2,5 A sequence of
anchors, i.e. starting problem-solution pairs. The
anchors are generated using a procedure from Section
4.6.1. For every a, the values in λ̆a are the solutions
to the depth formulation of the Five-Point problem
(Equation 2.5) parametrized by x̆a, y̆a. We assume
that the problem x̆a, y̆a is invariantized.

X = Di, i ∈ {1, ..., n}, Di ∈ R14 The set of input observations for the train-
ing of the classifier. Di is the 14 dimensional rep-
resentation of problem (xi, yi) from Pt obtained by
procedure from Section 4.6.2.

Y = ai, i ∈ {1, ..., n}, a0 ∈ {0, ...,m} The set of the labels for the training
of the classifier. The problem (xi, yi, λi) can be
correctly tracked from the anchor (x̆ai , y̆ai , λ̆ai) ∈ A.
If the problem cannot be tracked correctly from any
anchor in A, then ai = 0.

Now, we are going to describe how the training data for the classifier are
generated. We want to find the training observations X and the training
labels Y.

We start with empty sequences X ,Y . First, we generate a set of n problems
Pt according to Section 2.1.3. For every problem (xi, yi, λi) ∈ Pt we obtain
the 14-dimensional representation Di according to Section (4.6.2). For every
anchor (x̆a, y̆a, λ̆a) ∈ A, we invariantize the problem and align it to the anchor
(x̆a, y̆a, λ̆a) according to Section 4.5 to obtain an aligned problem (x̂i, ŷi, λ̂i).
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Then, we track the homotopy (4.6) from the parametrization ps of anchor

(x̆a, y̆a) to the parametrization pf of problem (x̂, ŷ). If the homotopy continu-
ation is correctly tracked, i.e. it is successfully tracked and the resulting
depth λ∗ is equal to the expected depth λ̂, then we add the 14-dimensional
representation Di of problem (xi, yi, λi) to the end of the sequence X and
the index a of the current anchor to the end of the sequence Y. If the
current problem cannot be successfully tracked from any anchor, we add its
14-dimensional representation Di to the end of X and zero to the end of
Y . The procedure of generating the training data is described in Algorithm 11.

Algorithm 11: Generating train data
input : Set Pt of n problem-solution pairs, Set A of m anchors,

Threshold θ
output :X Sequence of Low-rank representations of points in P, Y

Sequence of ids of anchors from which the problems from P
can be tracked

V := {1, ..., n}, E := ∅;
for i ∈ {1, ..., n} do

x̄i, ȳi := Invariantize xi, yi (Section 5.4);
λ̄i := Transform depths λi according to Section 4.4.4;
Di := Low-dim representation of xi, yi (Sec. 4.6.2);
tracked := 0;
for j ∈ {1, ...,m} do

x̂i, ŷi := Align xi, yi on x̆i, y̆i (Section 4.5);
r∗A := Permutation of the points induced by the alignment;
λ̂i := Permute λ̄i according to r∗A and fix scale (Section 4.1.1);
ps := Parametrize (x̆j , y̆j) according to (4.2);
pf := Parametrize (x̂i, ŷi) according to (4.2);
z0 := Parametrize λ̆j according to (4.3);
z1 := Track homotopy (4.6) from z0 using Algorithm 4;
if z1 6= ∅ then

λ1 := Depths obtained from z1 according to (4.4);
if ‖λ1 − λ̂i‖ < θ then

tracked := 1;
X := X ∪ {Di};
Y := Y ∪ {j};

end
end

end
if tracked == 0 then
X := X ∪ {Di};
Y := Y ∪ {0};

end
end
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4.6.4 The Anchor Selection Classifier

Let us introduce the notation which we will use in this section.

(x̄, ȳ), x̄ ∈ R2,5, ȳ ∈ R2,5 The invariantized points in the first and the second
view.

m ∈ N The expected number of anchors.

A = (x̆a, y̆a, λ̆a), a ∈ {1, ...,m}, x̆a ∈ R2,5, y̆a ∈ R2,5, λ̆a ∈ R2,5 A sequence of
anchors, i.e. starting problem-solution pairs. For every a, the values in
λ̆a are the solutions to the depth formulation of the Five-Point problem
(Equation 2.5) parametrized by x̆a, y̆a. We assume that the problem
x̆a, y̆a is invariantized.

D ∈ R14 A low-dimensional representation of problem (x̄, ȳ)

c(D, θ) : R14 → Rm+1 The classifier which for every low-dimensional repre-
sentation D of problem (x̄, ȳ) outputs a vector of probabilities that
the problem is successfully tracked from each anchor. θ is a vector of
parameters to the classifier.

s ∈ Rm+1 The vector of the outputs of the classifier c(D, θ). a∗ is the index
of the largest entry of vector s minus 1. If a∗ = 0, the problem is not
tracked. Otherwise, the problem is tracked from the anchor a∗.

X = Di, i ∈ {1, ..., n}, Di ∈ R14 The set of input observations for the train-
ing of the classifier obtained according to Section 4.6.3. Di is the 14
dimensional representation of a problem (xi, yi) from Pt obtained by
procedure from Section 4.6.2.

Y = ai, i ∈ {1, ..., n}, a0 ∈ {0, ...,m} The set of the labels for the training of
the classifier obtained according to Section 4.6.3. The problem (xi, yi, λi)
can be correctly tracked from the anchor (x̆ai , y̆ai , λ̆ai) ∈ A. If the
problem cannot be tracked correctly from any anchor in A, then ai = 0.

In this section, we describe the structure and the training of the classifier
for the selection of the anchor. The input to the classifier is a 14 dimensional
representation D ∈ R14 of a problem (x, y) obtained according to Section
4.6.2. The output of the classifier is a vector s ∈ Rn+1 of probabilities that
the problem can be successfully tracked from each anchor. When the vector
s is known, we can obtain the index a∗ ∈ {0, ...,m} of the selected anchor as
the index of the largest entry of vector s minus 1. If a∗ = 0, the problem
is not tracked. Otherwise, the problem is tracked from the anchor a∗. The
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task is to find such parameters θ of the classifier c(D, θ), that the classifier
maximizes the probability that the correct anchor a∗ is selected.

Now, we are going to describe the loss of the classifier. We use the cross-
entropy loss. Let si ∈ Rn be the output of the classifier c(Di, θ) on the i-th
element of the training data X . Let s′i be a vector with one on the position
ai ∈ Y and zeros on the other positions. The loss is defined as:

L(X ,Y, θ) = −
n∑
i=1

m∑
j=1

si,j log s′i,j (4.79)

Now, we are going to describe the classifier c(D, θ). We use a small fully
connected neural network with 7 linear layers as the classifier. The reason for
this is that the typical time for one homotopy continuation track is about 20 to
30 microseconds and the speed of the neural network is expected to be similar
or higher. If the neural network was too slow, it would be advantageous
to try all anchors instead. Another reason for using the fully connected
network is that the entries in the input vector D ∈ R14 do not form any
spatial sequence, therefore, the use of convolutional neural network does not
make sense. The size of the input layer is 14. The sizes of the hidden layers
are 200, 200, 200, 200, 100, 100. The size of the output layer is m + 1. The
nonlinearity used after the linear layers is PReLU. There is a dropout before
the last linear layer to prevent overfitting.

Now, we are going to describe how the classifier c is trained. Let us have
the training data X , Y generated according to Section 4.6.3. The goal is
to find the parameters θ of the classifier c(D, θ) which would minimize the
loss (4.79). This is achieved with the Stochastic Gradient Descent (SGD)
optimizer. The classifier is modeled and trained using PyTorch.

4.7 Computation of the Relative Pose

Let us introduce the notation which we will use in this section.

(x, y), x ∈ R2,5, y ∈ R2,5 The points in the first and the second view.

(x̄, ȳ), x̄ ∈ R2,5, ȳ ∈ R2,5 The invariantized points in the first and the second
view.
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(x̂, ŷ), x̂ ∈ R2,5, ŷ ∈ R2,5 The aligned points in the first and the second view.

(x̂h, ŷh), x̂h ∈ R3,5, ŷh ∈ R3,5 Homogeneous representation of he aligned points
(x̂, ŷ) in the first and the second view.

RIx ∈ SO(3) The 3D rotation matrix which transforms the homogeneous
representation of points x in the first view to the homogeneous
representations of the invariantized points x̄. (Section 4.4)

RIy ∈ SO(3) The 3D rotation matrix which transforms the homogeneous
representation of points y in the second view to the homogeneous
representations of the invariantized points ȳ. (Section 4.4)

Rx ∈ SO(3) The 3D rotation matrix which transforms the homogeneous
representation of invariantized points x̄ in the first view to the
homogeneous representations of the aligned points x̂. (Section 4.5)

Ry ∈ SO(3) The 3D rotation matrix which transforms the homogeneous
representation of invariantized points ȳ in the first view to the
homogeneous representations of the aligned points ŷ. (Section 4.5)

s ∈ Sym({1, 2}) The permutation of the views. s = {2, 1} if the views have
been swapped during the invariantization, s = {1, 2} otherwise.

λ̂∗ ∈ R2,5 The depths of the aligned points (x̂, ŷ). This is the output of the
homotopy continuation (Algorithm 4)

(R̂, t̂) The relative pose of the cameras of the aligned problem (x̂, ŷ).

(R∗, t∗) The relative pose of the cameras of the original problem (x, y).

X̂ ∈ R3,5 The coordinates of the 3D points in the coordinate system of the
first aligned camera.

Ŷ ∈ R3,5 The coordinates of the 3D points in the coordinate system of the
second aligned camera.

In this section, we are going to describe how the relative pose (R∗, t∗) is
obtained from the depths λ̂∗. In Section 4.7.1 we describe how the relative
pose of the aligned problem (x̂, ŷ) is obtained and in Section 4.7.2 we describe
how the relative pose of the aligned problem is transformed to the relative
pose of the original problem (x, y).

4.7.1 Getting the Relative Pose From the Depths

We know the aligned points (x̂, ŷ) and the depths λ̂∗ which are the result
of the depth formulation of the Five-Point problem (4.5) parametrized by
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the aligned points (x̂, ŷ). The depths have been obtained by the homotopy
continuation (Chapter 3). The goal is to find the rotation R̂ and translation
t̂ consistent with the points and with the depths, i.e. such (R, t), that the
equations (2.1), (2.2) hold.

This procedure is taken from [Paj21]. First, we obtain the coordinates of
the 3D points X̂ in the coordinate system of the first aligned camera and Ŷ in
the coordinate system of the second camera by multiplying the homogeneous
aligned points x̂h, ŷh by the depths λ̂∗ as:

X̂i,j = λ̂∗1,j x̂
h, Ŷi,j = λ̂∗2,j ŷ

h ∀i ∈ {1, 2, 3}, ∀j ∈ {1, ..., 5} (4.80)

We find such rotation R̂ and translation t̂, that:Ŷ1,j
Ŷ2,j
Ŷ3,j

 = R̂

X̂1,j
X̂2,j
X̂3,j

+ t̂ ∀j ∈ {1, ..., 5} (4.81)

Let us denote:

Z2 =

X̂1,2
X̂2,2
X̂3,2

−
X̂1,1
X̂2,1
X̂3,1

 , Z3 =

X̂1,3
X̂2,3
X̂3,3

−
X̂1,1
X̂2,1
X̂3,1


Z ′2 =

Ŷ1,2
Ŷ2,2
Ŷ3,2

−
Ŷ1,1
Ŷ2,1
Ŷ3,1

 , Z ′3 =

Ŷ1,3
Ŷ2,3
Ŷ3,3

−
Ŷ1,1
Ŷ2,1
Ŷ3,1


(4.82)

If (4.81) holds, then there holds:

Z ′2 =

Ŷ1,2
Ŷ2,2
Ŷ3,2

−
Ŷ1,1
Ŷ2,1
Ŷ3,1

 = R̂

X̂1,2
X̂2,2
X̂3,2

+ t̂− R̂

X̂1,1
X̂2,1
X̂3,1

− t̂ = R̂Z2

Z3 =

Ŷ1,3
Ŷ2,3
Ŷ3,3

−
Ŷ1,1
Ŷ2,1
Ŷ3,1

 = R̂

X̂1,3
X̂2,3
X̂3,3

+ t̂− R̂

X̂1,1
X̂2,1
X̂3,1

− t̂ = R̂Z ′3

(4.83)

We search for a rotation R̂, such that Z ′2 = R̂Z2 and Z ′3 = R̂Z3. Because R̂ is
a rotation, it transforms the cross-product of two vectors to a cross-product
of the transformed vectors, i.e.:

Z ′2 × Z ′3 = R̂(Z2 × Z3) (4.84)

Therefore, we can find the rotation R̂ as:

R̂
[
Z2 Z3 Z2 × Z3

]
=
[
Z ′2 Z ′3 Z ′2 × Z ′3

]
R̂ =

[
Z ′2 Z ′3 Z ′2 × Z ′3

] [
Z2 Z3 Z2 × Z3

]−1 (4.85)
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Then, we can find the translation t̂ according to (4.81) as:

t̂ =

Ŷ1,1
Ŷ2,1
Ŷ3,1

− R̂
X̂1,1
X̂2,1
X̂3,1

 (4.86)

4.7.2 Passing From the Solution of the Aligned Problem

Now, we are going to describe how the relative pose (R̂, t̂) of the aligned
problem (x̂, ŷ) is transformed to the relative pose (R∗, t∗) of the original
problem (x, y).

We know the relative pose (R̂, t̂) of the aligned problem, the rotation
matrices RIx, RIy transforming the original points to the invariantized points,
the rotation matrices Rx, Ry transforming the invariantized points to the
aligned points and the permutation s ∈ Sym({1, 2}) of the views during the
invariantization.

If the views have not been swapped (s = {1, 2}), then the relative rotation
R∗ of the original problem is obtained as:

R∗ = (RIy)TRTy R̂RxRIx (4.87)

And the relative translation t∗ of the original problem is obtained as:

t∗ = (RIy)TRTy t̂ (4.88)

If, on the other hand, the views have been swapped, i.e., s = {2, 1}, then
the relative rotation R∗ of the original problem is obtained as:

R∗ = (RIx)TRTx R̂TRyRIy (4.89)

And the relative translation t∗ is obtained as:

t∗ = −(RIx)TRTx R̂T t̂ (4.90)
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Chapter 5

Efficient Homotopy Continuation Solver
for the Four-Point Problem

5.1 Description of the solver

In this section, we will propose a new solver for the Four-Point calibrated
problem (Section 2.2) based on the real homotopy continuation. The solver
uses the same principles as the Five-Point solver described in Chapter 4. The
solver is meant to be used in the RANSAC loop, therefore, it should be fast
but it does not have to finish correctly for all inputs. Moreover, it is desirable
not to track the inputs which consist of mismatched points. Therefore, we
have decided to use the real homotopy continuation (Section 3.4) in the solver.
We use the depth formulation of the relaxed minimal version of the Four-Point
problem (Section 2.2.2).

The parametrization of the problem and the solution is described in Section
5.1.1. The homotopy continuation used in the solver is described in Section
5.1.2 and the solver itself is described in Section 5.1.3. Let us introduce the
notation which we will use in this section.

x ∈ R2,4 Four calibrated 2D points in the first camera of the final problem.

y ∈ R2,4 Four calibrated 2D points in the second camera of the final problem.

w ∈ R2,4 Four calibrated 2D points in the third camera of the final problem.
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λ∗ ∈ R3,4 The depths of the points in all three. λ∗j,i is the depth of point i in

camera j. λ∗ are the solutions to the depth formulation of the relaxed
minimal Four-Point problem (Equation 2.13) parametrized by x, y, w.

l∗ ∈ R The oriented distance between the observation w:,4 of the last point
in the last camera and the actual projection of the last point in the
last camera.

(R∗1,2, t∗1,2) A relative pose between the first and the second camera.

(R∗1,3, t∗1,3) A relative pose between the first and the third camera.

m The Number of starting problem-solution pairs.

A = (x̆a, y̆a, w̆a, λ̆a, l̆a), a ∈ {1, ...,m}, x̆a ∈ R2,4, y̆a ∈ R2,4, w̆a ∈ R2,4, λ̆a ∈ R2,4, l̆a ∈ R
A sequence of anchors, i.e. starting problem-solution pairs. For every
a, the values in λ̆a and l̆a are the solutions to the depth formulation
of the Four-Point problem (Equation 2.13) parametrized by x̆a, y̆a, w̆a.

We know the calibrated points x, y, w in all three cameras, as well as the
number of anchors m and the anchors (problem-solution pairs) A. The task is
to obtain the depths λ∗, oriented distance l and the relative poses (R∗1,2, t∗1,2),
(R∗1,3, t∗1,3), such that:

λ∗1,i

x1,i
x2,i
1

 = λ∗2,iR
∗
1,2

y1,i
y2,i
1

+ t∗1,2,∀i ∈ {1, ..., 4}

λ∗1,i

x1,i
x2,i
1

 = λ∗3,iR
∗
1,3

w1,i
w2,i

1

+ t∗1,3, ∀i ∈ {1, 2, 3}

λ∗1,4

x1,4
x2,4
1

 = λ∗3,4R
∗
1,3


w1,4
w2,4

1

+

0
l
0


+ t∗1,2

(5.1)

Structure of the set of solutions

The relaxed minimal Four-Point problem (Section 2.2.1) has 272 solutions.
Some of these solutions are often similar but not equal to the expected
solution. In addition to that, if the views or the points are permuted or if the
last view is rotated, then the relative position of the line towards the points
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is changed, which may change the solution, as well. Therefore, the definition
of a correct solution is more relaxed when compared with the Five-Point
problem solver. Namely, the solution is viewed as correct, if the distance
(6.3) between the expected relative poses (R∗1,2), (R∗1,3) and the relative poses
obtained by the solver is smaller than 5 degrees.

5.1.1 Parametrization of the problem and the solution

Now, we are going to describe the parametrizations of the problem and of
the solution vector. Let us introduce the notation which we will use in this
section.

ps ∈ R24 The parametrization of the initial problem.

pf ∈ R24 The parametrization of the final problem.

h(z, p) A square parametric system of polynomials from the depth formulation
of the Four-Point problem (Section 2.2.2).

z0 ∈ R12 The solution to the initial problem parametrized by ps. There holds
h(z0, ps) = 0.

The parametrization of the instance of a Four-Point problem is a twenty-
four-dimensional vector p. This vector contains flattened projections x, y, w
which define the instance, i.e., the first four elements are the x-coordinates of
the points in the first camera, the next four elements are the y-coordinates of
the points in the first camera. The next eight elements are the coordinates of
the points in the second camera in the same order, and the last eight elements
are the coordinates of the points in the third camera. Let us have an instance
x ∈ R2,4, y ∈ R2,4, w ∈ R2,4. The parametrization p of the instance is:

∀i ∈ {1, ..., 4} :
pi = x1,i, pi+4 = x2,i, pi+8 = y1,i, pi+12 = y2,i, pi+16 = w1,i, pi+20 = w2,i

(5.2)

The depth formulation (2.13) of the Four-Point problem is scale-invariant,
therefore, the scale of the depths λ has to be fixed in order for the system
of equations (2.13) to have a finite number of solutions. We fix the depths
by setting the first depth in the first image λ1,1 to 1. The last element of
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the solution vector z is the oriented depth l. The solution vector z ∈ R12 is
therefore:

∀i ∈ {1, ...3} : zi = λ1,i+1
λ1,1

∀i ∈ {1, ...4} : zi+3 = λ2,i
λ1,1

∀i ∈ {1, ...4} : zi+7 = λ3,i
λ1,1

z12 = l

(5.3)

The depths λ ∈ R3,4 of the problem may be recovered from the solution
vector z ∈ R12 up to scale by setting λ1,1 to one and by copying the values
from the solution vector as:

∀i ∈ {1, ...3} : λ1,i+1 = zi

∀i ∈ {1, ...4} : λ2,i = zi+3

∀i ∈ {1, ...4} : λ3,i = zi+7

(5.4)

5.1.2 Homotopy continuation used in the solver

Now, we are going to describe the parametric homotopy H(z, p, t) used to
track the solution z of the depth formulation (2.13) of the relaxed Four-Point
problem. The solution vector z has 12 elements but there are 18 equations in
the depth formulation (2.13). The last 6 equations, which relate the second
and the third views, may be expressed from the first 12 equations. If we drop
these last 6 equations, we obtain the following square system:
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∥∥∥∥∥∥∥λ1,i

x1,i
x2,i
1

− λ1,i′

x1,i′

x2,i′

1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥λ2,i

y1,i
y2,i
1

− λ2,i′

y1,i′

y2,i′

1


∥∥∥∥∥∥∥

2

∀i ∈ {1, ..., 4}, i′ ∈ {1, ..., 4}, i < i′

∥∥∥∥∥∥∥λ1,i

x1,i
x2,i
1

− λ1,i′

x1,i′

x2,i′

1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥λ3,i

w1,i
w2,i

1

− λ3,i′

w1,i′

w2,i′

1


∥∥∥∥∥∥∥

2

∀i ∈ {1, ..., 3}, i′ ∈ {1, ..., 3}, i < i′

∥∥∥∥∥∥∥λ1,i

x1,i
x2,i
1

− λ1,4

x1,4
x2,4
1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥λ3,i

w1,i
w2,i

1

− λ3,4


w1,4
w2,4

1

+

0
l
0



∥∥∥∥∥∥∥

2

∀i ∈ {1, ..., 3}

(5.5)

If the values from x, y, w, λ, l are replaced by the corresponding values of the
parametrization p and solution vector z according to (5.2) and (5.3), we obtain
the square parametrized system of polynomial equations h(z, p). Because the
parametrization of the start problem is ps and the parametrization of the
final problem is pf , we can set the parametric homotopy H(z, p, t) according
to:

H(z, p, t) = h(z, (1− t)ps + tpf ) (5.6)

The tracking of the homotopy H(z, p, t) with the start parametrization z0
is performed according to 4. The derivatives Hz(z(t), p, t) and Hz(z(t), p, t)
of the homotopy are obtained with a Straight-Line Program (SLP) generated
in Macaulay2.

The largest amount of time on the solver is spent on the solution of the
linear equations (3.9), (3.7), (3.5) which are solved as a part of the predictor
and the corrector. The left side of the equations is always the Jacobian matrix
Hz(z(t), p, t) of the value of the homotopy w.r.t. the variables z. Because the
matrix Hz(z(t), p, t) is relatively sparse, the closed form of the solution can
be obtained, which can significantly reduce the time spent on one track. This
closed-form solution is described in Section 5.2.
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5.1.3 Overview of the solver

Let us introduce the notation which we will use in this section.

x ∈ R2,4 Four calibrated 2D points in the first camera of the final problem.

y ∈ R2,4 Four calibrated 2D points in the second camera of the final problem.

w ∈ R2,4 Four calibrated 2D points in the third camera of the final problem.

λ∗ ∈ R2,5 The depths of the points in all three cameras. λ∗j,i is the depth of
point i in camera j. λ∗ are the solutions to the depth formulation
of the relaxed Four-Point problem (Equation 2.13) parametrized by
x, y, w.

l∗ ∈ R The oriented distance between the observation w:,4 of the last point
in the last camera and the actual projection of the last point in the
last camera. Together with the depths λ∗, this is the solution to the
relaxed Four-Point problem parametrized by x. y, w.

(R∗1,2, t∗1,2) A relative pose between the first and the second camera.

(R∗1,3, t∗1,3) A relative pose between the first and the third camera.

m The number of starting problem-solution pairs.

A = (x̆a, y̆a, w̆a, λ̆a, l̆a), a ∈ {1, ...,m}, x̆a ∈ R2,4, y̆a ∈ R2,4, w̆a ∈ R2,4, λ̆a ∈ R2,4, l̆a ∈ R
A sequence of anchors, i.e. starting problem-solution pairs. For every
a, the values in λ̆a and l̆a are the solutions to the depth formulation
of the Four-Point problem (Equation 2.13) parametrized by x̆a, y̆a, w̆a.

x̄ ∈ R2,4 Points in the first view invariantized according to Section 5.4.

ȳ ∈ R2,4 Points in the second view invariantized according to Section 5.4.

w̄ ∈ R2,4 Points in the third view invariantized according to Section 5.4.

D ∈ R15 Low-dimensional representation of the problem defined by (x̄, ȳ, w̄).
The low-dimensional representation is obtained according to Section
5.6.2.

L ∈ A15,24 A transformation matrix which transforms a 24-dimensional in-
variantized representation p to a 15-dimensional representation D.

a∗ ∈ {0, ...,m} Index of the selected anchor. If a∗ = 0, the problem is not
tracked, otherwise, it is tracked from anchor a∗.

c : R15 → {0, ...,m} The classifier which for a low-dimensional representation
D of a problem gives the index a∗ of the selected anchor. The classifier
is described in Section 5.6.4.
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x̂ ∈ R2,4 Points in the first view aligned to the selected anchor a∗ according
to Section 4.5.

ŷ ∈ R2,4 Points in the second view aligned to the selected anchor a∗ according
to Section 4.5.

ŵ ∈ R2,4 Points in the second view aligned to the selected anchor a∗ according
to Section 4.5.

H(z, p, t) Parametric homotopy (5.6) for the square system (5.5). z ∈ R12 is
the parametrization of the solution, p ∈ R24 is the parametrization of
the problem and t ∈< 0, 1 > is the time parameter.

ps ∈ R24 A parametrization (5.2) of the starting problem x̆a∗ , y̆a∗ , w̆a∗

z0 ∈ R12 A parametrization (5.3) of the starting solution λ̆a∗ , l̆a∗ .

pf ∈ R24 A parametrization (5.2) of the aligned final problem x̂, ŷ, ŵ.

λ̂∗ The depths of the aligned problem defined by x̂, ŷ, ŵ.

l̂∗ ∈ R The oriented distance between the observation ŵ:,4 of the last point
in the last camera and the actual projection of the last point onto the
last camera.

Now, we are going to describe the solver. The solver is based on the same
principles as the solver for the Five-Point problem, which is described in
Chapter 4. The solver operates in real numbers only and tracks only one
solution per problem. The predictor and corrector steps of the homotopy
continuation used in the solver use a closed-form solution of the linear equa-
tions (3.9), (3.7), (3.5), which is described in Section 5.2. Before the solver
can be used, the set of anchors A (starting problem-solution pairs) has to be
generated and the classifier c has to be trained. The generating of the anchors
is described in Section 5.6.1, the training of the classifier c is described in
Section 5.6.4.

First, the invariantized representation x̄, ȳ, w̄ of points x, y, w is obtained
(Section 5.4) in order to have a unified representation of the problems, which
can simplify the training of the anchor selector and the alignment. Then,
one anchor a∗ ∈ {1, ...,m} is selected (Section 5.6). The aligned points
x̂, ŷ, ŵ are obtained by permutation of the invariantized points x̄, ȳ, w̄ in order
to minimize the Euclidean distance from the selected anchor x̆a∗ , y̆a∗ , w̆a∗
(Section 5.5), and therefore, to increase the probability of the successful track
from the selected anchor.

After that, the parametrizations ps of the start problem x̆a∗ , y̆a∗ , w̆a∗ and pf
of the aligned final problem x̂, ŷ, ŵ are obtained by (5.2) and the parametriza-
tion z0 of the start solution λ̆a∗ , l̆a∗ is obtained by (5.3). Then, the parametric
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homotopy H(z, p, t) from Equation (5.6) is set up and tracked from z0. If the
track is successful, the solution λ̂∗, l̂∗ is obtained from the final solution z(1)∗
by (5.4) and the relative pose (R∗, t∗) is obtained by the procedure described
in Section 5.7. The solver is described in Algorithm 12.

Algorithm 12: Five-Point solver
input :Four points x, y, w in three views, Anchors A obtained

according to Section 5.6.1, Transformation matrix L
(Section 5.6.2), classifier c trained by Section 5.6.4

output :Relative poses (R∗1,2, t∗1,2), (R∗1,3, t∗1,3), (R∗2,3, t∗2,3) between
x, y, w

/* Invariantize the problem */
x̄, ȳ, w̄ := Invariantized representation of x, y, w obtained by Sec. 5.4;
RIx, R

I
y, R

I
w := Rotation matrices induced by the invariantization;

s := Permutation of the views induced by the invariantization;

/* Select the starting anchor */
D := Low-dim representation of x, y, w (by Section 5.6.2, use L);
a∗ := c(D); // Select the starting point
if a∗ = 0 then

return ∅
end

/* Align the problem */
x̂, ŷ, ŵ := Points from x, y, w aligned to anchor x̆a, y̆a, w̆a by Sec. 5.5;

/* Parametrize the problems and the starting solution */
ps := parametrization of x̆a∗ , y̆a∗ , w̆a∗ by (5.2);
pf := parametrization of x̂, ŷ, ŵ by (5.2);
z0 := parametrization of λ̆a∗ , l̆a∗ by (5.3);

/* TRACK the solution */
z1 := Track homotopy (5.6) from z0 by Algorithm 4 (Chapter 3);

/* Extract the depths and the relative poses */
if z1 6= ∅ then

λ̂∗ := Extract depths from z1 by (5.4);
(R∗1,2, t∗1,2), (R∗1,3, t∗1,3), (R∗2,3, t∗2,3) := Get relative poses from z1,
RIx, R

I
y, R

I
w by Sec. 5.7;

end
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5.2 Efficient evaluation of the predictor and the
corrector

We have noticed that the largest amount of time of the MINUS solver
[FDF+20] is spent on the LU-decomposition, which is used to solve linear
equations (3.7), (3.9) which arise in the predictor and the corrector steps
of the homotopy continuation. We have solved this in the same way as in
the Five-Point problem solved (Chapter 4) and we have replaced the LU-
decomposition with the closed-form solution of the linear equations, which
exploits the sparsity of the linear equations in the relaxed Four-Point problem.
If the method described in this section is used, the average time for one track
is 36.1µs. If the LU decomposition is used, the average time for one track is
172.7µs.

5.2.1 Structure of the Linear Equations in the Three-View
Problem

The linear equations (3.7), (3.9) are computed in order to perform the predic-
tor and corrector steps of the homotopy continuation. The linear equations
have the form Ax = b where the matrix A is always the derivative Hz(z, p, t)
of the homotopy H(z, p, t) (5.6) w.r.t. the solution parameters z. Irrespective
of the parameters z, p, t, the matrix Hz(z, p, t) has the following form:



A0,0 0 0 A0,3 A0,4 0 0 0 0 0 0 0
0 A1,1 0 A1,3 0 A1,5 0 0 0 0 0 0

A2,0 A2,1 0 0 A2,4 A2,5 0 0 0 0 0 0
0 0 A3,2 A3,3 0 0 A3,6 0 0 0 0 0

A4,0 0 A4,2 0 A4,4 0 A4,6 0 0 0 0 0
0 A5,1 A5,2 0 0 A5,5 A5,6 0 0 0 0 0

A6,0 0 0 0 0 0 0 A6,7 A6,8 0 0 0
0 A7,1 0 0 0 0 0 A7,7 0 A7,9 0 0

A8,0 A8,1 0 0 0 0 0 0 A8,8 A8,9 0 0
0 0 A9,2 0 0 0 0 A9,7 0 0 A9,10 A9,11

A10,0 0 A10,2 0 0 0 0 0 A10,8 0 A10,10 A10,11
0 A11,1 A11,2 0 0 0 0 0 0 A11,9 A11,10 A11,11


(5.7)

The vector x of the variables can be written as:[
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

]T
(5.8)

The vector b of the right side can be written as:
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[
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

]T
(5.9)

5.2.2 Closed-Form Solution of the Linear Equations in the
Three-View Problem

Let us have a system of linear equations Ax = b whose matrix A has the form
of (5.7), vector x has the form of (5.8) and vector b has the form of (5.9).
Now, we are going to show the closed-form solution to this system.

First, we have noticed that the rows 0, 1, 3, 6, 7 of matrix (5.7) have only
three nonzero entries. We can easily obtain the variables x4, x5, x6, x8, x9
from these equations and substitute them to the rest of the equations to
obtain a square system with 7 variables. The variables x4, x5, x6, x8, x9 are
obtained as:

x4 = b0 −A0,0x0 −A0,3x3
A0,4

x5 = b1 −A1,1x1 −A1,3x3
A1,5

x6 = b3 −A3,2x2 −A3,3x3
A3,6

x8 = b6 −A6,0x0 −A6,7x7
A6,8

x9 = b7 −A7,1x1 −A7,7x7
A7,9

(5.10)

Now, we are going to split the remaining equations into two groups. The first
group consists of equations 2, 4, 5, the second one consists of equations 8, 9,
10, 11. After substituting the expressions from (5.10) into the first group of
equations, we obtain:

A2,0x0 +A2,1x1 + A2,4
A0,4

(b0 −A0,0x0 −A0,3x3) + A2,5
A1,5

(b1 −A1,1x1 −A1,3x3) = b2

A4,0x0 +A4,2x2 + A4,4
A0,4

(b0 −A0,0x0 −A0,3x3) + A4,6
A3,6

(b3 −A3,2x2 −A3,3x3) = b4

A5,1x1 +A5,2x2 + A5,5
A1,5

(b1 −A1,1x1 −A1,3x3) + A5,6
A3,6

(b3 −A3,2x2 −A3,3x3) = b5

(5.11)
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These three equations can be rewritten as:(
A2,0 −

A2,4A0,0
A0,4

)
x0 +

(
A2,1 −

A2,5A1,1
A1,5

)
x1 +

(
−A2,4A0,3

A0,4
− A2,5A1,3

A1,5

)
x3

= b2 −
A2,4
A0,4

b0 −
A2,5
A1,5

b1(
A4,0 −

A4,4A0,0
A0,4

)
x0 +

(
A4,2 −

A4,6A3,2
A3,6

)
x2 +

(
−A4,4A0,3

A0,4
− A4,6A3,3

A3,6

)
x3

= b4 −
A4,4
A0,4

b0 −
A4,6
A3,6

b3(
A5,1 −

A5,5A1,1
A1,5

)
x1 +

(
A5,2 −

A5,6A3,2
A3,6

)
x2 +

(
−A5,5A1,3

A1,5
− A5,6A3,3

A3,6

)
x3

= b5 −
A5,5
A1,5

b1 −
A5,6
A3,6

b3

(5.12)

We can simplify these equations by replacing the coefficients by Ci,j and the
right sides by di, where Ci,j is the coefficient in equation i at xj and di is the
right side of equation i. We obtain:

C0,0x0 + C0,1x1 + C0,3x3 = d0

C1,0x0 − C1,2x2 + C1,3x3 = d1

C2,1x1 + C2,2x2 + C2,3x3 = d2

(5.13)

Now, we are going to express the variables x1, x2 from the first two equations
from (5.13):

x1 = d0 − C0,0x0 − C0,3x3
C0,1

x2 = d1 − C1,0x0 − C1,3x3
C1,2

(5.14)

If we substitute these expressions to the third equation from (5.13), we obtain:

C2,1
C0,1

(d0−C0,0x0−C0,3x3)+ C2,2
C1,2

(d1−C1,0x0−C1,3x3)+C2,3x3 = d2 (5.15)

We can rewrite this equation as:

−
(
C2,1
C0,0

C0,1 + C2,2
C1,0

C1,2

)
x0+

(
−C2,1C0,3

C0,1
− C2,2
C1,3

C1,2 + C2,3

)
x3 = d2−

C2,1
C0,1

d0−
C2,2
C1,2

d1

(5.16)
And we can simplify it by replacing the coefficients with e3,0, e3,3 and the
right side with f3 to obtain:

− e3,0x0 + e3,3x3 = f3 (5.17)
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Now, we can express the variable x3 from the equation as:

x3 = e3,0x0 + f3
e3,3

(5.18)

Now, we are going to substitute the expression (5.18) into the expressions
(5.14). Using this, we are able to express the variables x1, x2 using only x0
as:

x1 = d0 − C0,0x0
C0,1

− C0,3(e3,0x0 + f3)
C0,1e3,3

x2 = d1 − C1,0x0
C1,2

− C1,3(e3,0x0 + f3)
C1,2e3,3

(5.19)

We can rewrite these equations as:

x1 =
(
−C0,0
C0,1

− C0,3e3,0
C0,1e3,3

)
x0 +

(
d0
C0,1

− C0,3f3
C0,1e3,3

)

x2 =
(
−C1,0
C1,2

− C1,3e3,0
C1,2e3,3

)
x0 +

(
d1
C1,2

− C1,3f3
C1,2e3,3

) (5.20)

And we can simplify them by replacing the coefficients by e1, e2 and the
constant terms by f1, f2 to obtain:

x1 = e1x0 + f1

x2 = e2x0 + f2
(5.21)

Now, we can return back to the second group of the original equation
Ax = b, which consists of the equations number 8, 9, 10, 11. First, we are
going to substitute the expressions from (5.10), (5.21) into the equation 8 to
obtain:

(A8,0+A8,1e1)x0+A8,1f1+A8,8
A6,8

(b6−A6,0x0−A6,7x7)+A8,9
A7,9

(b7−A7,1(e1x0+f1)−A7,7x7) = b8

(5.22)
We can rewrite this equation as:(
−A8,8
A6,8

A6,7 −
A8,9
A7,9

A7,7

)
x7 =

(
−A8,0 −A8,1e1 + A8,8

A6,8
A6,0 + A8,9

A7,9
A7,1e1

)
x0

+
(
b8 −A8,1f1 −

A8,8
A6,8

b6 −
A8,9
A7,9

(b7 −A7,1f1)
)

(5.23)

And we can simplify it by replacing the coefficients with C4,0, C4,7 and the
constant term with d4 to obtain:

C4,7x7 = C4,0x0 + d4 (5.24)
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We can express the variable x7 as:

x7 = C4,0x0 + d4
C4,7

(5.25)

We are going to substitute the expressions (5.10), (5.21), (5.25) into the last
remaining equations from Ax = b, i.e. to the equations 9, 10, 11. After that,
we obtain:

A9,2(e2x0 + f2) + C9,7
C4,7

(C4,0x0 + d4) +A9,10x10 +A9,11x11 = b9

A10,0x0 +A10,2(e2x0 + f2) + A10,8
A6,8

(b6 −A6,0x0 −
A6,7
C4,7

(C4,0x0 + d4))

+A10,10x10 +A10,11x11 = b10

A11,1(e1x0 + f1) +A11,2(e2x0 + f2) +A11,10x10 +A11,11x11

+A11,9
A7,9

(
b7 −A7,1(e1x0 + f1)− A7,7

A4,7
(C4,0x0 + d4)

)
= b11

(5.26)

We group all coefficients belonging to the same variable together to obtain:(
A9,2e2 + A9,7C4,0

C4,7

)
x0 +A9,10x10 +A9,11x11 = b9 −A9,2f2 −

A9,7
C4,7

d4(
A10,0 +A10,2e2 −

A10,8A6,0
A6,8

− A10,8A6,7C4,0
A6,8C4,7

)
x0 +A10,10x10 +A10,11x11

= b10 −A10,2f2 −
A10,8
A6,8

b6 + A10,8A6,7
A6,8c4,7

d4(
A11,1e1 +A11,2e2 −

A11,9A7,1e1
A7,9

− A11,9A7,7C4,0
A7,9C4,7

)
x0 +A11,10x10 +A11,11x11

= b11 −A11,1f1 −A11,2f2 −
A11,9
A7,9

b7 + A11,9A7,1
A7,9

f1 + A11,9A7,7
A7,9C4,7

d4

(5.27)

This is a system of 3 equations with 3 variables. We can simplify it by
replacing the coefficients of the variable x0 with Ci,0 and the right sides with
di, where Ci,0 is the coefficient in equation i at x0 and di is the right side of
equation i. We obtain:

C9,0x0 +A9,10x10 +A9,11x11 = d9

C10,0x0 +A10,10x10 +A10,11x11 = d10

C11,0x0 +A11,10x10 +A11,11x11 = d11

(5.28)

We express the variable x11 from the first equation of (5.28) as:

x11 = d9 − c9,0x0 −A9,10x10
A9,11

(5.29)
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Then, we substitute the expression (5.29) to the second equation of (5.28) to
obtain:(

C10,0 −
A10,11c9
A9,11

)
x0+

(
C10,10 −

A10,11A9,10
A9,11

)
x10 = d10−

A10,11d9
A9,11

(5.30)

We simplify this equation by replacing the variables with e0,10, e10,10 and the
right side with f10:

e0,10x0 + e10,10x10 = f10 (5.31)

We express the variable x10 from this equation as:

x10 = f10 − e0,10x0
e10,10

(5.32)

Now, we substitute the expressions (5.29) and (5.32) to the last equation
from (5.28) to obtain an equation in one variable x0:(

C11,0 −
A11,10e0,10
e10,10

− A11,11C9,0
A9,11

+ A11,11A9,10e0,10
A9,11e10,10

)
x0

= d11 −
A11,10f10
e10,10

− A11,11d9
A9,11

+ A11,11A9,10f10
A9,11e10,10

(5.33)

We replace the coefficient in this equation with g and the right side with h
and obtain the variable x0 as:

x0 = g

h
(5.34)

The full evaluation of the vector x (5.8) goes as follows: first, the coefficients
Ci,j and the right sides di of the equations (5.13) are evaluated. Then,
the coefficients e3,0, e3,3 and the constant f3 are obtained from 5.17 and
the coefficients e1, e2 and constants f1, f2 are obtained from (5.21). The
coefficients C4,0, C4,7 and the constant d4 are obtained from (5.24). After
that, the coefficients Ci,0 and the right sides di are obtained from (5.28), the
coefficients e0,10, e10,10 and the right side f10 are obtained from (5.31) and
the coefficients g, h are obtained from (5.34).

After that, the variable x0 is obtained from the equation (5.34). The
variable x10 is obtained from (5.32) and the variable x11 is obtained from
(5.29). Then, the variable x7 is obtained from (5.25), variable x3 is obtained
from (5.18) and variables x1, x2 are obtained from (5.21). Finally, we evaluate
the equations (5.10) to obtain the variables x4, x5, x6, x8, x9.
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5.3 Optimization of the homotopy continuation
parameters

Now, we are going to show the parameters of the homotopy continuation
described in Chapter 3. We have set the parameters empirically in order to
increase the number of correct tracks and decrease the time for one track.
The parameters are set as follows:

.∆t0 = 0.05. kmax = 9. ε = 4e− 2. succmax = 4. β = 3.∆min = 1e− 4

5.4 Invariantization of the problems

Now, we are going to describe the invariantization of the problems. The
purpose of the invariantization is to obtain a unified representation of the
problems, to make the problems "more similar" and to put the last point,
through which the line passes to x-axis, which would increase the probability
of a successful track. If the depths λ ∈ R3,4 and oriented distance l ∈ R
are known, the invariantization changes them as well. Let us introduce the
notation which we will use in this section.

x ∈ R2,4 Four calibrated 2D points in the first camera.

y ∈ R2,4 Four calibrated 2D points in the second camera.

w ∈ R2,4 Four calibrated 2D points in the third camera.

λ ∈ R2,5 The depths of the points in both cameras.

l ∈ R The oriented distance between the observation w:,4 and the pro-
jection of the last point onto the last camera.
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x̄ ∈ R2,4 Invariantized representation of points x.

ȳ ∈ R2,4 Invariantized representation of points y.

w̄ ∈ R2,4 Invariantized representation of points w.

RIx ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates of x to the homogeneous coordinates of x̄.

RIy ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates of y to the homogeneous coordinates of ȳ.

RIw ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates of w to the homogeneous coordinates of w̄.

s ∈ Sym({1, 2, 3}) The permutation of the views. The new view at position
i is equal to the old view at position s(i).

We know the points x, y, w. The task is to obtain invariantized points x̄, ȳ,
w̄, such that the center of mass of the points in every view is zero, the point
farthest from the center of mass lies on x-axis, and the rest of the points are
ordered counterclockwise in the last view. The views should be ordered in
such a way that the first view contains the point farthest from the center of
mass. The two following views are ordered according to the distance of this
point from the center of mass. Furthermore, the task is to obtain the rotation
matrices RIx, RIy, RIz , and the permutation s of the views. The depths λ and
the oriented distance l change if the invariantization is applied. However,
when the problem-solution pairs are generated (Section 2.2.3), the values
λ, l are determined after the invariantization and therefore, we do not need
to know the way the change of λ, l induced by the invariantization. The
invariantization is described in Algorithm 13.

Algorithm 13: Invariantize Five-Point problem
input :Four points x, y, w in three views
output : Invariantized representation x̄, ȳ, w̄ of x, y, w, Rotation

matrices RIx, RIy, RIw, Permutations s, r
xh,µ, yh,µ, wh,µ := Rotate x, y such that the center of mass of the
points is in zero (Section 5.4.1);
Rµx, R

µ
x , R

µ
w := Rotation matrices which rotate the center of mass to

zero;
xh,µ, yh,µ, wh,µ := Permute the points, views and rotation matrices
RIx, R

I
y, R

I
w according to Section 5.4.2;

s := permutation of the views, r := permutation of the points;
x̄, ȳ, w̄ := Rotate the first point to x-axis (Section 5.4.3);
Rax, R

a
y, R

a
w := Rotation matrices which rotate the first point to y-axis;

RIx := RaxR
µ
x , RIy := RayR

µ
y , RIw := RawR

µ
w;
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x:,1

x:,2

x:,3

x:,4

y:,1

y:,2
y:,3

y:,4

w:,1

w:,2

w:,3
w:,4

(a)

x:,1

x:,2

x:,3
x:,4

y:,1

y:,2

y:,3
y:,4

w:,1

w:,2

w:,3
w:,4

(b)

x:,1

x:,2
x:,3

x:,4 y:,4

y:,1

y:,3
y:,2

w:,4

w:,1

w:,3
w:,2

(c)

x:,1x:,2
x:,3 x:,4

y:,1y:,2
y:,3 y:,4

w:,1w:,2

w:,3
w:,4

(d)

Figure 5.1: An illustration of the invariantization procedure. (a) The input
points x, y. (b) The points rotated such, that their center of mass is zero. (Section
5.4.1) (c) The points permuted according to Section 5.4.2 (d) The invariantized
points x̄, ȳ. The red, green, and blue dots depict the zero point.

5.4.1 Moving the center of mass to zero

Let us introduce the notation which we will use in this section.

x ∈ R2,4 Four calibrated 2D points in the first camera.

y ∈ R2,4 Four calibrated 2D points in the second camera.
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w ∈ R2,4 Four calibrated 2D points in the third camera.

xh ∈ R3,4 Homogeneous representation of columns of x.

yh ∈ R3,4 Homogeneous representation of columns of y.

wh ∈ R3,4 Homogeneous representation of columns of w.

Rµx ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates xh of x such that their center of mass is equal to zero.

Rµy ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates yh of y such that their center of mass is equal to zero.

Rµw ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates wh of w such that their center of mass is equal to zero.

xh,µ ∈ R3,4 Homogeneous representation of points from x rotated such, that
their point of mass is in zero. There holds xh,µ ≈ Rµxxh.

yh,µ ∈ R3,4 Homogeneous representation of points from y rotated such, that
their point of mass is in zero. There holds yh,µ ≈ Rµyyh.

wh,µ ∈ R3,4 Homogeneous representation of points from w rotated such, that
their point of mass is in zero. There holds wh,µ ≈ Rµwwh.

Now, we are going to describe how to move the center of mass to zero. We
know the points x ∈ R2,4, y ∈ R2,4, w ∈ R2,4. The goal is to find rotation
matrices Rµx ∈ SO(3), Rµy ∈ SO(3), Rµw ∈ SO(3), such that the center of
mass of the homogeneous representative of columns of x multiplied by Rµx , the
center of mass of the homogeneous representative of columns of y multiplied
by Rµy , and the center of mass of the homogeneous representative of columns
of w multiplied by Rµw are all equal to the homogeneous representative of
zero.

This procedure is the same as the procedure described in Section 4.4.1,
which is part of the invariantization of the Five-Point problem. The only
difference is that the procedure in Section 4.4.1 operates with 5 points, while
this procedure operates with 4 points. The procedure is performed iteratively.
In every step, the center of mass µ is computed and rotated to zero. After
about 3 - 4 iterations, the distance between the center of mass and the zero
vector is acceptable.

This procedure is the same for all three views. We are going to describe it
for the first view, where the center of mass of points x is rotated to zero and
the accumulated rotation is stored into Rµx . The invariantization of points y
and w is done analogously, while the accumulated rotations are stored into
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Rµy and into Rµw. First, the homogeneous representation xh ∈ R3,4 of points
x is obtained. The matrix Rµx is initialized to identity Rµx = I, the matrix of
transformed points xh,µ is initialized as xh,µ = xh.

At the beginning of every iteration, the center of mass µ is computed as:

µ = 1
4

4∑
i=1


xh,µ1,i
xh,µ2,i
xh,µ3,i

 (5.35)

And the matrix M is built as:

M =

µ1 1 0
µ2 0 1
µ3 0 0

 (5.36)

Then, the matrix M is decomposed using a QR-decomposition into an or-
thogonal matrix Q and an upper-triangular matrix R, such as M = QR. We
obtain the rotation matrix Rcur for the current iteration step by multiplying
matrix QT by a matrix M1, such as:

M1 =

0 1 0
0 0 1
1 0 0

 (5.37)

Then, there holds:
Rcur = M1Q

T (5.38)

Both matrices M1, QT are orthogonal, therefore, matrix Rcur = M1Q
T

is orthogonal as well. However, we search for a rotation matrix, which is
an orthogonal matrix with a determinant equal to 1. If the determinant
detRcur = −1, we can multiply Rcur from left by a matrix M2, such as:

M2 =

1 0 0
0 −1 0
0 0 −1

 (5.39)

After that, we obtain the rotation matrix Rcur as:

Rcur = M2Rcur = M2M1Q
T (5.40)

Now, Rcur is a rotation matrix because it is orthogonal and its determinant
is equal to 1.

This process is repeated 4 times, after each step, we update the rotation
matrix Rµx as RcurRµx and the homogeneous representation xh,µ according to
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(5.41). The whole procedure is described in Algorithm 14. The reason why
this works is explained in Section 4.4.1.

xh,µ = Rcurx
h,µ

xh,µ1,i

xh,µ2,i

xh,µ3,i

 = 1
xh,µ3,i


xh,µ1,i

xh,µ2,i

xh,µ3,i


(5.41)

Algorithm 14: Rotate the center of mass to zero
input :Four points x
output : xh,µ Homogeneous representation of points x rotated such,

that their point of mass is zero, Rµx Rotation matrix which
transforms x to xh,µ

xh := Homogeneous representation of x;
xh,µ := xh, Rµx := I ; // Initialize the values
M1 = Matrix (5.37), M2 = Matrix (5.39);
for j ∈ {1, ..., 4} do

µ := Point of mass of xh,µ according to (5.35);
M := Matrix (5.36);
Decompose M into M = QR using QR-Decomposition;
Rcur := M1Q

T ;
if detRcur < 1 then

Rcur := M2Rcur;
end
Rµx := RcurR

µ
x , Update xh,µ according to (5.41);

end

5.4.2 Permutation of the points

Let us introduce the notation which we will use in this section.

x ∈ R2,4 Four calibrated 2D points in the first camera.

y ∈ R2,4 Four calibrated 2D points in the second camera.
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w ∈ R2,4 Four calibrated 2D points in the third camera.

Rµx ∈ SO(3) The output of Section 5.4.1. A 3D rotation matrix which trans-
forms the homogeneous coordinates of x such that their center
of mass is zero.

Rµy ∈ SO(3) The output of Section 5.4.1. A 3D rotation matrix which trans-
forms the homogeneous coordinates of y such that their center
of mass is zero.

Rµy ∈ SO(3) The output of Section 5.4.1. A 3D rotation matrix which trans-
forms the homogeneous coordinates of y such that their center
of mass is zero.

Rµw ∈ SO(3) The output of Section 5.4.1. A 3D rotation matrix which
transforms the homogeneous coordinates of w such that their
center of mass is zero.

xh,µ ∈ R3,4 The output of Section 5.4.1. Homogeneous representation of
points from x rotated such, that their point of mass is in zero.
There holds xh,µ ≈ Rµxxh.

yh,µ ∈ R3,4 The output of Section 5.4.1. Homogeneous representation of
points from y rotated such, that their point of mass is in zero.
There holds yh,µ ≈ Rµyyh.

wh,µ ∈ R3,4 The output of Section 5.4.1. Homogeneous representation of
points from w rotated such, that their point of mass is in zero.
There holds wh,µ ≈ Rµwwh.

r ∈ Sym({1, ..., 4}) The permutation of the points.

s ∈ Sym({1, 2, 3}) The new view at the position i is equal to the old view at
the position s(i).

xh,π ∈ R3,4 The points from the original view s(1). The points are permuted
by r.

yh,π ∈ R3,4 The points from the original view s(2). The points are permuted
by r.

wh,π ∈ R3,4 The points from the original view s(3). The points are permuted
by r.

Now, we assume that we have found matrices Rµx, Rµy , Rµw (Section 5.4.1)
which transform the points of mass of homogeneous representations of points
x, y, w to zero. We further assume that we know the homogeneous repre-
sentations xh,µ ∈ R3,4, yh,µ ∈ R3,4, wh,µ ∈ R3,4 of the points x, y, w rotated
such that their points of mass are in zero.
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The goal is to permute the points in such a way, that the point with the

largest distance from the center of mass is the last and the remaining points
are ordered counterclockwise. Further, we permute the views according to
the distance from the first point to zero. We want to find the permutations r
of the points and s of the views, as well as the permuted points xh,π, yh,π,
wh,π.

First, we identify the index i1 of the point in the first view, whose distance
from zero is maximal:

i1 = arg max
i∈{1,...,4}

∥∥∥∥∥
[
xh,µ1,i
xh,µ2,i

]∥∥∥∥∥
2

(5.42)

Analogously, we identify the index i2 of the point in the second view, whose
distance from zero is maximal and the index i3 of the point in the third view,
whose distance from zero is maximal:

i2 = arg max
i∈{1,...,4}

∥∥∥∥∥
[
yh,µ1,i
yh,µ2,i

]∥∥∥∥∥
2

(5.43)

i3 = arg max
i∈{1,...,4}

∥∥∥∥∥
[
wh,µ1,i
wh,µ2,i

]∥∥∥∥∥
2

(5.44)

If the point i1 in the first view is further from zero than the points i2 in
the second view and i3 in the third view, then we set i∗ = i1. If the point i2
in the second view is further from zero than the points i1 in the first view
and i3 in the third view, then we set i∗ = i2. Otherwise, we set i∗ = i3. We
find the permutation s ∈ Sym({1, 2, 3}, such that the permuted views are
ordered according to the descending distance of the point indexed by i∗ from
zero. We permute the rotation matrices Rµx , Rµy and Rµw according to s.

Now, we find the permutation r ∈ Sym({1, 2, 3, 4}), such that the last
element r(4) of the permutation is the index of the most distant point i∗
and the remaining elements are sorted counterclockwise in the new third
view. For further details on how the permutation r is obtained, please see
Section 4.4.2. We permute the columns of matrices xh,µ, yh,µ, wh,µ with this
permutation to obtain xh,π, yh,π, wh,π.

5.4.3 Moving the last point to x-axis

Let us introduce the notation which we will use in this section.
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x ∈ R2,4 Four calibrated 2D points in the first camera.

y ∈ R2,4 Four calibrated 2D points in the second camera.

w ∈ R2,4 Four calibrated 2D points in the third camera.

Rµx ∈ SO(3) The output of Section 5.4.1. A 3D rotation matrix which trans-
forms the homogeneous coordinates of x such that their center of
mass is zero.

Rµy ∈ SO(3) The output of Section 5.4.1. A 3D rotation matrix which trans-
forms the homogeneous coordinates of y such that their center of
mass is zero.

Rµw ∈ SO(3) The output of Section 5.4.1. A 3D rotation matrix which
transforms the homogeneous coordinates of w such that their
center of mass is zero.

xh,π ∈ R3,4 Points in the first view rotated such that their center of mass is
zero and permuted according to Section 5.4.2.

yh,π ∈ R3,4 Points in the second view rotated such that their center of mass
is zero and permuted according to Section 5.4.2.

wh,π ∈ R3,4 Points in the third view rotated such that their center of mass is
zero and permuted according to Section 5.4.2.

Rax ∈ SO(3) A rotation matrix which rotates the last point of xh,π to the
x-axis.

Ray ∈ SO(3) A rotation matrix which rotates last point of yh,π to the x-axis.

Raw ∈ SO(3) A rotation matrix which rotates last point of wh,π to the x-axis.

x̄ ∈ R2,5 Invariantized representation of points x.

ȳ ∈ R2,5 Invariantized representation of points y.

w̄ ∈ R2,5 Invariantized representation of points w.

RIx ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates of x to the homogeneous coordinates of x̄.

RIy ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates of y to the homogeneous coordinates of ȳ.

RIw ∈ SO(3) A 3D rotation matrix which transforms the homogeneous coor-
dinates of w to the homogeneous coordinates of w̄.

We know the permuted points xh,π, yh,π, wh,π and the rotation matrices Rµx ,
Rµy , Rµw which transform the center of mass to zero. The goal is to transform
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the permuted points such that the last point lies on the x-axis. The outputs
of this section are the rotation matrices Rax, Ray , Raw, the invariantized points
x̄, ȳ, w̄ and the rotation matrices RIx, RIy, RIw.

Now, we are going to find the matrix Rax which would transform the last
row of matrix xh,π to x-axis. This matrix represents a rotation around the
optical axis, therefore, the property that the center of mass of the points is
zero is preserved. Matrices Ray and Raw which rotate the last point in the
second view to the x-axis, are found analogously.

Let σ =
√

(xπ1,4)2 + (xπ2,4)2 be the norm of the last Euclidean (not homo-
geneous) point in the first view. The rotation matrix Rax is constructed as
follows:

Rax =


xh,π1,4
σ

xh,π2,4
σ 0

−xh,π2,4
σ

xh,π1,4
σ 0

0 0 1

 (5.45)

Matrix Rax is a rotation matrix because its columns are orthonormal and
because the determinant of Rax is equal to 1. Matrix Rax rotates the last
point to zero. Because Rax is an extended 2D matrix, it represents a rotation
around the optical axis which passes through the center of mass of the
points. Therefore, the center of mass of points xh,π stays in zero after being
transformed by Rax.

The rotation matrix RIx is obtained as:

RIx = RaxR
µ
x (5.46)

The homogeneous representation x̄h of the invariantized points x̄ is obtained
as:

x̄h = Raxx
h,π (5.47)

The Cartesian representation x̄ of the invariantized points is then obtained by
taking the first two rows of x̄h because the procedures described in Sections
5.4.1 and 5.4.2 and the character of matrix Rax guarantee that all entries in
the last row of x̄h are equal to 1.

5.5 Alignment of the problem on the anchors

The invariantization step transforms the problems to a uniform shape. How-
ever, the sum of squared distances between two invariantized problems may
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sometimes be improved. Therefore, we add another step of the problem
preprocessing, after which the sum of squared distances between the anchor
and the final problem decreases, which may improve the probability of a
successful track from the anchor to the final problem.

The alignment for the Five-Point problem described in Section 4.5 minimizes
the distance between two views by rotation and permutation of the views. In
the case of the Four-Point problem, the rotation of the views decreases the
probability of a successful track, probably because the last point, through
which the line passes, is displaced. Therefore, we introduce here a simplified
version of the alignment, which only selects a permutation of the points
for which the sum of squared distances between the corresponding points
in the anchor and in the final problem is minimal. Although the effect of
the alignment is smaller than in the case of the Five-Point problem, it still
increases the number of successful tracks from 32456 out of 1398306 to 36615
out of 1398306. Let us introduce the notation which we will use in this
section.

x̄ ∈ R2,4 Invariantized representation of four calibrated 2D points in the
first camera.

ȳ ∈ R2,4 Invariantized representation of four calibrated 2D points in the
second camera.

w̄ ∈ R2,4 Invariantized representation of four calibrated 2D points in the
second camera.

RIx ∈ SO(3) The output of Section 5.4. A 3D rotation matrix which trans-
forms the homogeneous coordinates of x to the homogeneous
coordinates of invariantized points x̄.

RIy ∈ SO(3) The output of Section 5.4. A 3D rotation matrix which trans-
forms the homogeneous coordinates of y to the homogeneous
coordinates of invariantized points ȳ.

RIw ∈ SO(3) The output of Section 5.4. A 3D rotation matrix which trans-
forms the homogeneous coordinates of w to the homogeneous
coordinates of invariantized points ȳ.

(x̆a∗ , y̆a∗ , w̆a∗ , λ̆a∗ , l̆a∗), x̆a∗ ∈ R2,4, y̆a∗ ∈ R2,4, w̆a∗ ∈ R2,4, λ̆a∗ ∈ R3,4, l̆a∗ ∈ R
The selected anchor (problem-solution pair) from which the homo-
topy continuation should be tracked. We assume that the points
x̆a∗ , y̆a∗ , w̆a∗ have been invariantized according to section 5.4.

x̂ ∈ R2,4 Points in the first camera aligned to the anchor (x̆a∗ , y̆a∗ , λ̆a∗)

ŷ ∈ R2,4 Points in the second camera aligned to the anchor (x̆a∗ , y̆a∗ , λ̆a∗)
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ŵ ∈ R2,4 Points in the third camera aligned to the anchor (x̆a∗ , y̆a∗ , λ̆a∗)

rA ∈ Sym({1, ..., 4}) A permutation of the points induced by the alignment.

We know the invariantized points x̄, ȳ, w̄ and the selected anchor
(x̆a∗ , y̆a∗ , w̆a∗ , λ̆a∗ , l̆a∗). The goal is to find the permutation r∗A and the aligned
points x̂, ŷ, ŵ, such that the sum of squared distances between the aligned
points and the anchor (x̆a∗ , y̆a∗ , w̆a∗ , λ̆a∗ , l̆a∗) is minimized. We consider a
subset S ⊆ Sym({1, ..., 4}) of permutations in the group Sym({1, ..., 4}) which
keep the last point on its original position, i.e. S = {{1, 2, 3, 4}, {1, 3, 2, 4},
{2, 1, 3, 4}, {2, 3, 1, 4}, {3, 1, 2, 4}, {3, 2, 1, 4}}. This task can be formulated as
the following optimization problem:

r∗A = arg min
rA∈S

4∑
i=1

∥∥∥∥∥∥∥
x̆a

∗
1,i
x̆a
∗

2,i
1

−
x̄1,rA(i)
x̄2,rA(i)

1


∥∥∥∥∥∥∥

2

+
4∑
i=1

∥∥∥∥∥∥∥
y̆a

∗
1,i
y̆a
∗

2,i
1

−
ȳ1,rA(i)
ȳ2,rA(i)

1


∥∥∥∥∥∥∥

2

+
4∑
i=1

∥∥∥∥∥∥∥
w̆a

∗
1,i

w̆a
∗

2,i
1

−
w̄1,rA(i)
w̄2,rA(i)

1


∥∥∥∥∥∥∥

2 (5.48)

For every permutation rA ∈ S we evaluate the expression (4.50). Then,
we select the permutation r∗A whose value of (4.50) is minimal. Because the
last point, through which the vertical line passes, remains in its place, the
oriented distance l does not change and the depths λ are only permuted by
the optimal permutation r∗A. The alignment is summarized in Algorithm 15.
Algorithm 15: Align Four-Point problem
input : Invariantized representation x̄, ȳ, w̄ of x, y, w, Selected

anchor (x̆a∗ , y̆a∗ , w̆a∗ , λ̆a∗ , l̆a∗), Set of permutations S
output :Aligned points x̂, ŷ, ŷ, Permutation r∗A
distbest :=∞;
for rA ∈ S do

dist := Distance (5.48) given by rA;
if dist < distbest then

dist := distbest, r∗A := rA
end

end
x̂, ŷ, ŵ := Permute the points x̄, ȳ, w̄ with r∗A;
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5.6 Selection of the Anchor

Let us introduce the notation which we will use in this section.

(x̄, ȳ, w̄), x̄ ∈ R2,4, ȳ ∈ R2,4, w̄ ∈ R2,4 The invariantized points in the first, the
second and the third view.

m ∈ N The expected number of anchors.

A = (x̆a, y̆a, w̆a, λ̆a, l̆a, a ∈ {1, ...,m}, x̆a ∈ R2,4, y̆a ∈ R2,4, w̆a ∈ R2,4, λ̆a ∈ R3,4, l̆a ∈ R
A sequence of anchors, i.e. starting problem-solution pairs.
For every a, the values in λa and l are the solutions to
the depth formulation of the Four-Point problem (2.13)
parametrized by x̆a, y̆a, w̆a. We assume that the problem
x̆a, y̆a, w̆a is invariantized.

D ∈ R15 A low-dimensional representation of problem (x̄, ȳ, w̄)

c(D, θ) : R15 → Rm The classifier which for every low-dimensional representa-
tion D of problem (x̄, ȳ, w̄) outputs a vector of probabilities
that the problem is successfully tracked from each anchor.
θ is a vector of parameters to the classifier.

We use a real homotopy continuation (Section 3.4) in our solver. The real
homotopy continuation does not guarantee that the track will be successful.
In addition to that, we perform only one track and even if we succeed, there
is no guarantee that we will end up in the expected solution.

Like in the Five-Point solver, we maintain a set A of anchors (problem-
solution pairs), which serve as the starting points for the homotopy continu-
ation. We also train a classifier c, which accepts an invariantized problem
(x̄, ȳ, w̄) and outputs a number a ∈ {1, ...,m}. Then, we track the problem
from the anchor (x̆a, y̆a, λ̆a).

In Section 5.6.1 we describe how the set A of the anchors is generated. In
Section 5.6.2 we describe the preprocessing of the problem (x̄, ȳ, w̄), which
generates a low-dimensional representation D ∈ R15 of the problem. In
Section 5.6.3 we describe how the training data is generated. In Section 5.6.4
we describe the structure of the classifier c.
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5.6.1 Anchor set generation

Let us introduce the notation which we will use in this section.

n The number of considered problems.

P̄ = (x̄i, ȳi, w̄i, λ̄i, l̄i), i ∈ {1, ...,m}, x̄i ∈ R2,4, ȳi ∈ R2,4, w̄i ∈ R2,4, λ̄i ∈ R3,4, l̄i ∈ R
A set of n problem-solution pairs generated by Section 2.2.3.
These problem-solution pairs are invariantized according to
5.4.

m ∈ N The expected number of anchors.

A = (x̆a, y̆a, w̆a, λ̆a), l̆a), a ∈ {1, ...,m}, x̆a ∈ R2,4, y̆a ∈ R2,4, w̆a ∈ R2,4, λ̆a ∈ R3,4, l̆a ∈ R
A sequence of anchors, i.e. starting problem-solution pairs.
For every a, the values in λ̆a, l̆a are the solutions to the
depth formulation of the Four-Point problem (Equation 2.13)
parametrized by x̆a, y̆a, w̆a. We assume that the problem
x̆a, y̆a, w̆a is invariantized.

G = (V, E) A directed connectivity graph on the set P. The vertices
of G are equal to the problem-solution pairs in P̄ (V = P̄).
There is an edge in E from a problem pi ∈ P̄ to a problem
pi′ ∈ P̄ pi′ is correctly tracked from pi.

Now, we are going to describe how the set of anchors A is generated. The
procedure is similar to the procedure of anchor generation for the Five-Point
problem solver, which is described in Section 4.6.1.

We know the set P̄ of n invariantized problem-solution pairs. We say
that the problem-solution pair (xi, yi, wi, λi, li) is correctly tracked from
(xa, ya, wa, λa, la) if the homotopy continuation is successfully tracked and the
distance (6.3) between the relative poses obtained from the resulting depths
and the relative poses obtained from the ground truth depth λi is ≤ 5◦. Both
relative poses are obtained according to Sec. 5.7. We want to find a subset of
anchors A ⊆ P̄, |A| = m, such that the number of problem-solution pairs from
P which are correctly tracked at least from one anchor from A is maximized.

Like in Section 4.6.1, we solve this problem in two stages. First, we build a
directed connectivity graph G = (V, E) according to Algorithm 16. In the
case of the Four-Point problem, the graph is directed because the relaxed
definition of the correct track allows the existence of a correct track in one
direction but not in another. In the second stage, we find a subset A of
vertices in G, such that |A| = m and the number of vertices from G which are
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covered by the vertices from A is maximized. This is an NP-hard task, for
which we use the same heuristic as in the Five-Point Solver (Section 4.6.1).
The heuristic is described in Algorithm 10.

Algorithm 16: Building connectivity graph
input : Set P̂ of n invariantized problem-solution pairs
output :Connectivity graph G = (V, E). Two problem-solution pairs

pi, pi′ are connected if we can track correctly pi′ from pi
V := {1, ..., n}, E := ∅;
for i ∈ {1, ..., n} do

for j ∈ {1, ..., n}, j 6= i do
x̂j , ŷj , ŵj := Align xj , yj , wj on x̄i, x̄j , w̄j (Section 5.5);
ps := Parametrize (x̄i, ȳi, w̄i) according to (5.2);
pf := Parametrize (x̂j , ŷj , ŵj) according to (5.2);
z0 := Parametrize λ̄i, l̄i according to (5.3);
z1 := Track homotopy (5.6) from z0 using Algorithm 4;
if z1 6= ∅ then

λ1 := Depths obtained from z1 according to (5.4);
(R1,2, t1,2), (R1,3, t1,3), (R2,3, t2,3) := Relative poses
obtained from depths λ1 according to Section 5.7;

(R∗1,2, t∗1,2), (R∗1,3, t∗1,3), (R∗2,3, t∗2,3) := Ground Truth relative
poses obtained from depths λ̄j according to Section 5.7;
d1 := Distance (6.3) between (R1,2, t1,2), (R∗1,2, t∗1,2);
d2 := Distance (6.3) between (R1,3, t1,3), (R∗1,3, t∗1,3);
d3 := Distance (6.3) between (R2,3, t2,3), (R∗2,3, t∗2,3);
if 1

3(d1 + d2 + d3) < 5◦ then
E := E ∪ (i, j);

end
end

end
end

5.6.2 Problem preprocessing for the classifier

In this section, we are going to discuss how to uniquely represent the problem
(x, y) with a vector D ∈ R15, which will be used as the input to the classifier
c. We want to design the preprocessing such that the number of problems
correctly classified by the classifier c is as large as possible. Let us introduce
the notation which we will use in this section.
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(x, y, w), x ∈ R2,4, y ∈ R2,4, w ∈ R2,4 The points in the first, the second and

the third view which define an instance of the Four-Point
problem.

(x̄, ȳ, w̄), x̄ ∈ R2,4, ȳ ∈ R2,4, w̄ ∈ R2,4 The invariantized points in all three
views

D ∈ R15 A unique 15-dimensional representation of Four-Point problem
instance (x̄, ȳ, w̄).

p ∈ R24 A 20-dimensional representation of Four-Point problem instance
(x̄, ȳ, w̄) obtained by (5.2).

L ∈ A15,24 A transformation matrix which transforms a 24-dimensional in-
variantized representation p to a 15-dimensional representation
D.

P̄ = (xi, yi, wi, λi, li), i ∈ {1, ..., n}, xi ∈ R2,4, yi ∈ R2,4, wi ∈ R2,4, λi ∈ R2,4, l ∈ R
A set of n problem-solution pairs generated by Section 2.2.3.
These problem-solution pairs are invariantized according to
Section 5.4.

A A set of anchors obtained by the procedure described in Section
5.6.1.

K̄ ∈ R24,24 A covariance matrix of the invariantized points from P.

We know the problem (x, y, w), we want to find its representation D. We
are going to describe a low-dimensional representation of the points based on
the invariantized points (x̄, ȳ, w̄).

First, we invariantize the problem (x, y) according to Section 4.4 to obtain
the invariantized problem (x̄, ȳ). We are going to show, that all invariantized
instances (x̄, ȳ) of the Five-Point Problem live in a 14-dimensional linear
subspace of the linear space R2.

Points (x̄, ȳ, w̄) are invariantized according to Section 5.4, which means,
that the second coordinates of the last point x̄2,4, ȳ2,4, w̄2,4 are equal to zero
and the centers of mass of the points in both views are equal to zero, as well.
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There holds:

x̄2,4 = 0
ȳ2,4 = 0
w̄2,4 = 0

4∑
i=1

x̄1,i = 0

4∑
i=1

x̄2,i = 0

4∑
i=1

ȳ1,i = 0

4∑
i=1

ȳ2,i = 0

4∑
i=1

w̄1,i = 0

4∑
i=1

w̄2,i = 0

(5.49)

The invariantized points have to satisfy the equations (5.49). This is a set of
nine homogeneous linear equations. The set of solutions to these equations is
a 15-dimensional linear subspace of the 24-dimensional linear space R24. For
every invariantized problem (x̄, ȳ, w̄) there exists a vector D ∈ R15 that can
represent the invariantized problem uniquely. Now, we are going to describe
how this vector can be obtained.

Let us have a set P̄ of n problem-solution pairs generated according to
Section 2.2.3. These problems are invariantized according to Section 5.4. We
obtain a 24-dimensional parametrization pi, i ∈ {1, ..., n} of every problem in
P̄ according to (5.2) and compute the covariance matrix K̄ ∈ R24,24 of the
invariantized points as:

K̄ =
n∑
i=1

pip
T
i (5.50)

Matrix K̄ is symmetric and has rank 15. There exists a real eigendecomposi-
tion of K̄:

K̄ = V ΛV T (5.51)

Because the matrix K has rank 15, its first 9 eigenvalues are equal to zero.
Let V ′ ∈ R20,15 be the matrix whose columns are the last 15 eigenvectors
of K, i.e. the last 15 columns of V . Let Λ′ ∈ R15,15 be a diagonal matrix
whose entries are the nonzero eigenvalues of K. Then, the matrix K can be
represented as:

K̄ = V ′Λ′V ′T (5.52)
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The transformation matrix L is equal to:

L = Λ′−
1
2V ′T (5.53)

The 15-dimensional representation D of a problem (x̄, ȳ, w̄) is then obtained
as:

D = Lp = Λ′−
1
2V ′T p (5.54)

The reason this gives the desired result is the same as in Section 4.6.2.

5.6.3 Training data generation

Let us introduce the notation which we will use in this section.

n The number of training data.

P̄t = (x̄i, ȳi, w̄, (R∗1,2, t∗1,2)i, (R∗1,3, t∗1,3)i, (R∗2,3, t∗2,3)i), i ∈ {1, ..., n}, x̄i ∈ R2,4, ȳi ∈ R2,4

Invariantized training data generated together with
their ground truth poses according to Section 2.2.4.

A = (x̆a, y̆a, w̆a, λ̆a, l̆a), a ∈ {1, ...,m}, x̆a ∈ R2,4, y̆a ∈ R2,4, w̆a ∈ R2,4, λ̆a ∈ R3,4, l̆a ∈ R
A sequence of anchors, i.e. starting problem-solution
pairs. The anchors are generated using a procedure
from Section 5.6.1. For every a, the values in λ̆a,
l̆a are the solutions to the depth formulation of the
Four-Point problem (Equation 2.13) parametrized by
x̆a, y̆a, w̆a. The problem x̆a, y̆a, w̆a is invariantized.

X = Di, i ∈ {1, ..., n}, Di ∈ R15 The set of input observations for the training
of the classifier. Di is the 15 dimensional represen-
tation of problem (xi, yi, wi) from Pt obtained by
procedure from Section 5.6.2.

Y = ai, i ∈ {1, ..., n}, a0 ∈ {1, ...,m} The set of the labels for the training of
the classifier. The problem (x̄i, ȳi, w̄, λ̄i, l̄i) can be
correctly tracked from the anchor
(x̆ai , y̆ai , w̆ai , λ̆ai , l̆ai) ∈ A.

Now, we are going to describe how the training data for the classifier are
generated. We want to find the training observations X and the training
labels Y. The principle of the training data generation is the same as in the
case of the Five-Point problem (Section 4.6.3).

ctuthesis t1606152353 114



................................ 5.6. Selection of the Anchor

We start with empty sequences X ,Y. First, we generate a set of n problems
P̄t according to Section 2.2.4. For every problem (xi, yi, λi) ∈ P̄t we obtain
the 15-dimensional representation Di according to Section (5.6.2). For every
anchor (x̆a, y̆a, w̆a, λ̆a, l̆a) ∈ A, we align the problem to the anchor according
to Section 5.5 to obtain an aligned problem (x̂i, ŷi, ŵi, λ̂i l̂i).

Then, we track the homotopy (5.6) from the parametrization ps of anchor
(x̆a, y̆a, w̆a) to the parametrization pf of problem (x̂, ŷ, ŵ). If the homotopy
continuation is correctly tracked, i.e. it is successfully tracked and the
distance (6.3) between the obtained pose and the ground truth pose is smaller
than 5 degrees, then we insert the 15-dimensional representation Di of prob-
lem (x̄i, ȳi, w̄i, λ̄i, l̄i) to the end of the sequence X and the index a of the
current anchor to the end of the sequence Y. The procedure of generating
the training data is described in Algorithm 17

Algorithm 17: Generating training data
input : Set Pt of n invariantized problems with Ground Truth

relative poses, Set A of m anchors
output :X Sequence of Low-rank representations of points in P̄t, Y

Sequence of ids of anchors from which the problems from P̄t
can be tracked

V := {1, ..., n}, E := ∅;
for i ∈ {1, ..., n} do

Di := Low-dim representation of x̄i, ȳi, w̄i (Sec. 5.6.2);
for j ∈ {1, ...,m} do

x̂i, ŷi, ŵi := Align x̄i, ȳi, w̄i on x̆i, y̆i, w̆i (Section 5.5);
ps := Parametrize (x̆j , y̆j , w̆j) according to (5.2);
pf := Parametrize (x̂i, ŷi, ŵi) according to (5.2);
z0 := Parametrize λ̆j , l̆j according to (5.3);
z1 := Track homotopy (5.6) from z0 using Algorithm 4;
if z1 6= ∅ then

λ1 := Depths obtained from z1 according to (4.4);
(R1,2, t1,2), (R1,3, t1,3), (R2,3, t2,3) := Relative poses
obtained from depths λ1 according to Section 5.7;
d1 := Distance (6.3) between (R1,2, t1,2), (R∗1,2, t∗1,2)i;
d2 := Distance (6.3) between (R1,3, t1,3), (R∗1,3, t∗1,3)i;
d3 := Distance (6.3) between (R2,3, t2,3), (R∗2,3, t∗2,3)i;
if 1

3(d1 + d2 + d3) < 5◦ then
X := X ∪ {Di};
Y := Y ∪ {j};

end
end

end
end
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5.6.4 The Anchor Selection Classifier

Let us introduce the notation which we will use in this section.

(x̄, ȳ, w̄), x̄ ∈ R2,4, ȳ ∈ R2,4, w̄ ∈ R2,4 The invariantized points in all three
views.

m ∈ N The expected number of anchors.

A = (x̆a, y̆a, w̆a, λ̆a, l̆a), a ∈ {1, ...,m}, x̆a ∈ R2,4, y̆a ∈ R2,4, w̆a ∈ R2,4, λ̆a ∈ R3,4, l̆a ∈ R
A sequence of anchors, i.e. starting problem-solution pairs. The an-
chors are generated using a procedure from Section 5.6.1. For every a,
the values in λ̆a, l̆a are the solutions to the depth formulation of the
Four-Point problem (Equation 2.13) parametrized by x̆a, y̆a, w̆a. The
problem x̆a, y̆a, w̆a is invariantized.

D ∈ R15 A low-dimensional representation of problem (x̄, ȳ, w̄)

c(D, θ) : R15 → Rm The classifier which for every low-dimensional represen-
tation D of problem (x̄, ȳ, w̄) outputs a vector of probabilities that the
problem is successfully tracked from each anchor. θ is a vector of param-
eters to the classifier.

s ∈ Rm The vector of the outputs of the classifier c(D, θ). a∗ is the index of
the largest entry of vector s. The problem is tracked from anchor a∗.

X = Di, i ∈ {1, ..., n}, Di ∈ R15 The set of input observations for the train-
ing of the classifier obtained according to Section 5.6.3. Di is the 15
dimensional representation of a problem (xi, yi, wi) from P̄t obtained by
procedure from Section 5.6.2.

Y = ai, i ∈ {1, ..., n}, a0 ∈ {1, ...,m} The set of the labels for the training
of the classifier obtained according to Section 5.6.3. The problem
(xi, yi, wi, λi, li) can be correctly tracked from the anchor (x̆a, y̆a, w̆a, λ̆a, l̆a) ∈
A.

In this section, we describe the structure and the training of the classifier
for the selection of the anchor. The input to the classifier is a 15 dimensional
representation D ∈ R15 of a problem (x, y) obtained according to Section
5.6.2. The output of the classifier is a vector s ∈ Rn of probabilities that the
problem can be successfully tracked from each anchor. When the vector s
is known, we obtain the index a∗ ∈ {0, ...,m} of the selected anchor as the
index of the largest entry of vector s. The problem is then tracked from the
anchor a∗. The task is to find such parameters θ of the classifier c(D, θ), that
the classifier maximizes the probability that the correct anchor a∗ is selected.
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Like in the Five-Point problem case (Section 4.6.4), we use the cross-
entropy loss (4.79). The classifier c(D, θ) itself is a fully connected network
with a similar architecture as in the Five-Point problem case. The size of the
input layer is 15. The neural network has six hidden layers, whose sizes are
200, 200, 200, 200, 100, 100. The size of the output layer is m. We use PReLU
as the nonlinearity. There is a dropout layer before the last linear layer in
order to prevent overfitting.

Now, we are going to describe how the classifier c is trained. Let us have
the training data X , Y generated according to Section 5.6.3. The goal is
to find the parameters θ of the classifier c(D, θ) which would minimize the
loss (4.79). This is achieved with the Stochastic Gradient Descent (SGD)
optimizer. The classifier is modeled and trained in PyTorch.

5.7 Computation of the relative poses

Let us introduce the notation which we will use in this section.

(x, y, w), x ∈ R2,4, y ∈ R2,4, w ∈ R2,4 The points in all three views.

(x̄, ȳ, w̄), x̄ ∈ R2,4, ȳ ∈ R2,4, w̄ ∈ R2,4 The invariantized points in all three
views.

(x̂, ŷ, ŵ), x̂ ∈ R2,4, ŷ ∈ R2,4, ŵ ∈ R2,4 The aligned points in all three views.

(x̂h, ŷh, ŵh), x̂h ∈ R3,4, ŷh ∈ R3,4, ŵh ∈ R3,4 Homogeneous representation of
he aligned points (x̂, ŷ, ŵ).

RIx ∈ SO(3) The 3D rotation matrix which transforms the homogeneous
representation of points x in the first view to the homogeneous
representations of the invariantized points x̄. (Section 5.4)

RIy ∈ SO(3) The 3D rotation matrix which transforms the homogeneous
representation of points y in the second view to the homogeneous
representations of the invariantized points ȳ. (Section 5.4)

RIw ∈ SO(3) The 3D rotation matrix which transforms the homogeneous
representation of points w in the third view to the homogeneous
representations of the invariantized points w̄. (Section 5.4)

s ∈ Sym({1, 2, 3}) The permutation of the views induced by the invariantiza-
tion. The new view at position i is equal to the old view at position
s(i).
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λ̂∗ ∈ R3,4 The depths of the aligned points (x̂, ŷ, ŵ). This is the output of

the homotopy continuation (4.6).

(R̂1,2, t̂1,2) The relative pose of the cameras between the first two aligned
views x̂, ŷ.

(R̂1,3, t̂1,3) The relative pose of the cameras between the first aligned view x̂
and the third aligned view ŵ.

(R̂2,3, t̂2,3) The relative pose of the cameras between the second aligned view
ŷ and the third aligned view ŵ.

(R∗1,2, t∗1,2) The relative pose of the cameras between the first two original
views x, y.

(R∗1,3, t∗1,3) The relative pose of the cameras between the first orignal view x
and the third original view w.

(R∗2,3, t∗2,3) The relative pose of the cameras between the second original view
y and the third original view w.

X̂ ∈ R3,4 The coordinates of the 3D points in the coordinate system of the
first aligned camera.

Ŷ ∈ R3,4 The coordinates of the 3D points in the coordinate system of the
second aligned camera.

Ŵ ∈ R3,4 The coordinates of the 3D points in the coordinate system of the
third aligned camera.

In this section, we are going to describe how the relative poses (R∗1,2, t∗1,2),
(R∗1,2, t∗1,3) are obtained from the depths λ̂∗. In Section 5.7.1 we describe
how the relative poses of the aligned problem (x̂, ŷ, ŵ) is obtained and in
Section 5.7.2 we describe how the relative poses of the aligned problem are
transformed to the relative pose of the original problem (x, y, w).

5.7.1 Getting the Relative Pose From the Depths

We know the aligned points (x̂, ŷ, ŵ) and the depths λ̂∗ which are the result
of the depth formulation of the Four-Point problem (2.13) parametrized by
the aligned points (x̂, ŷ, ŵ). The depths have been obtained by the homotopy
continuation (5.6). The goal is to find the relative poses (R̂1,2, t̂1,2), (R̂1,3, t̂1,3),
(R̂2,3, t̂2,3) consistent with the points and with the depths, i.e. such relative
poses that the equations (2.6), (2.7), (2.8) hold.

ctuthesis t1606152353 118



........................... 5.7. Computation of the relative poses

This procedure is taken from [Paj21]. First, we obtain the coordinates of
the 3D points X̂ in the coordinate system of the first aligned camera, Ŷ in
the coordinate system of the second camera and Ŵ in the coordinate system
of the third camera by multiplying the homogeneous aligned points x̂h, ŷh,
ŵh by the depths λ̂∗ as:

X̂i,j = λ̂∗1,j x̂
h, Ŷi,j = λ̂∗2,j ŷ

h Ŵi,j = λ̂∗3,jŵ
h ∀i ∈ {1, 2, 3}, ∀j ∈ {1, ..., 4}

(5.55)

Then, we find the relative pose (R̂1,2, t̂1,2) according to Section 4.7.1. The
relative poses (R̂1,3, t̂1,3) and (R̂2,3, t̂2,3) are obtained analogously.

5.7.2 Passing From the Solution of the Aligned Problem

Now, we are going to describe how the relative poses of the aligned problem
(x̂, ŷ, ŵ) are transformed to the relative poses of the original problem (x, y, w).

We know the relative poses (R̂1,2, t̂1,2), (R̂1,3, t̂1,3) and (R̂2,3, t̂2,3) of the
aligned problem, the rotation matrices RIx, RIy, RIw transforming the original
points to the invariantized points and the permutation s ∈ Sym({1, 2, 3}) of
the views during the invariantization. The task is to find the relative poses
(R∗1,2, t∗1,2), (R∗1,3, t∗1,3), (R∗2,3, t∗2,3).

In this section, we utilize a permutation s−1 ∈ Sym({1, 2, 3}), which is an
inverse to the permutation s. First, we are going to show how the relative
pose (R∗1,2, t∗1,2) is obtained. If the index s−1(1) is smaller than s−1(2), then
the relative pose (R∗1,2, t∗1,2) is obtained as:

R∗1,2 = (RIy)T R̂s−1(1),s−1(2)R
I
x

t∗ = (RIy)T t̂s−1(1),s−1(2)
(5.56)

If, on the other hand, the index s−1(1) is greater than s−1(2), then the relative
pose (R∗1,2, t∗1,2) is obtained as:

R∗1,2 = (RIx)T R̂Ts−1(1),s−1(2)R
I
y

t∗ = −(RIx)T R̂Ts−1(1),s−1(2)t̂s−1(1),s−1(2)
(5.57)

The relative poses (R∗1,3, t∗1,3), (R∗2,3, t∗2,3) are computed analogously.
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Chapter 6

Experiments

6.1 Evaluation metrics

6.1.1 Distance between two relative poses

Now, we are going to describe the distance between two relative poses. The
distance is taken from [Mys20]. Let us have two relative poses (R1.t1), (R2, t2).
We want to find a distance dist ∈ R which would measure the dissimilarity
of the poses. The rotation distance distR is an angle of a rotation matrix
R1R

T
2 . We obtain the rotation distance as follows:

Rdiff = R1R
T
2

distR = arccos
(
trace(Rdiff )− 1

2

) (6.1)

The translation distance distT is the angle between two translation vectors.
It is obtained as follows:

distT = arccos
(

tT1 t2
‖t1‖‖t2‖

)
(6.2)

Then, the distance dist between two poses is obtained as the maximum of
these two distances:

dist = max{distR, distT } (6.3)
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6.1.2 Mean Average Accuracy

Now, we are going to describe the Mean Average Accuracy score, which is
used for the evaluation of the Five-Point Solver in the benchmark described
in Section 6.3. The input is a sequence of N errors (6.3) disti, i ∈ {1, ..., N}.
The task is to compute one aggregated score from the set of errors. The
larger the mAA is, the more acurate the results are. The computation of
mAA is shown in Algorithm

Algorithm 18: Mean Average Accuracy, (mAA)
input :A sequence disti, i ∈ {1, ..., N} of N errors (in degrees).
output :Mean Average Accuracy α
α := 0;
for i ∈ {1, ..., N} do

α := α+ max(0, ceil(10−disti
10 );

end
α := 1

Nα;

6.1.3 Sampson Error

Now, we are going to describe the Sampson Error. This error is used in the
RANSAC scheme to approximate the reprojection error without having to
actually reproject the points. Let us have a Fundamental matrix F ∈ R3,3

and two tentatively matched points x, y in two views, which are related by
the Fundamental matrix F . Let x ∈ R3 be the homogeneous representation
of a point in the first view, and y ∈ R3 be the homogeneous representation of
a point in the second view. The task is to compute the Sampson error of the
match x, y with respect to Fundamental matrix F .

Let us define a matrix S as follows:

S =

1 0 0
0 1 0
0 0 0

 (6.4)

Then, the Sampson error is computed as:

yTFx√
‖SFx‖2 + ‖SF T y‖2

(6.5)
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6.2 Training and evaluation of the Five-Point
problem

In this section, we are going to describe the results obtained during the
training and evaluation of the Five-Point solver. The training of the classifier
consists of the generation of the set of anchors according to 4.6.1 and the
training of the classifier according to 4.6.4. In the evaluation part, we describe
the success rate of the solver.

6.2.1 Generation of the anchors

We have generated the anchors according to Section 4.6.1 from a set of 10000
points generated according to Section 2.1.3. A problem is covered by a
set of anchors, if there is an anchor in the set, from which the problem is
correctly tracked. In Table 6.1 we show the dependence between the number
of considered anchors m and the portion of problems covered by the anchors.
For further experiments, we have considered 26 anchors.

# Anchors 1 8 26 72 130 465
Problems covered 14.0 % 51.2 % 75.4 % 90.0 % 95.0 % 100 %

Table 6.1: Percentage of problems from the generated dataset which are covered
by different numbers of anchors.

We would like to know how do these anchors generalize to different sets of
problem-solution pairs. Therefore, we have generated another set of points
according to Section 2.1.3. The set consists of 37700 problems. In Table 6.2
we show how many problems are covered by anchor sets of different sizes. We
can see from the table that the anchors generalize well to different problems.

# Anchors 1 8 26 72 130 465
Covered 12.86% 50.30% 73.81% 87.36% 91.67% 95.91%

Table 6.2: Percentage of problems from a different dataset which are covered by
anchor sets of various sizes.
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6.2.2 Training of the classifier

For training of the classifier, we have generated 1015870 training problems
and 32589 validation problems according to Section 2.1.3. Then, we have
transformed the problems into the training and testing data according to
Section 4.6.3 and we have trained the classifier using this data according to
Section 4.6.4. We have trained the neural network using SGD optimizer with
learning rate 0.001, momentum 0.9 and batch size 32. We have trained the
network for 110 epochs and, eventually, we have selected the intermediate
result which classifies correctly the highest number of problems from the
validation dataset. The final neural network is able to classify correctly 6958
out of 32589 validation problems.

6.2.3 Evaluation of the solver

We have trained the solver described in Chapter 5 according to Sections
6.2.1 and 6.2.2. Then, we have generated a set of 195464 testing problems
according to Section 2.1.3 from the ETH dataset "Facade". We have used
the trained solver to solve every problem from the testing dataset. Then,
we have measured the average running time of the solver and the number of
successfully solved problems. The number of problems successfully solved
with the solver is 43050, which is about 22% of all problems.

6.3 Benchmark of the Five-Point Solver

Now, we are going to describe how the Five-Point solver (Chapter 4) is
evaluated. We use a benchmark described in [Mys20] for the evaluation of our
solver. The input to the benchmark is a sequence of camera pairs. For every
camera pair, we know a set of tentative matches between the cameras, the
camera calibration matrix, and the ground truth relative pose between the
cameras. For every camera pair, we want to compute the relative pose from
the tentative matches and to evaluate the distance between the computed
relative pose and the ground truth pose. Let us introduce the notation which
we will use in this section.

T = {(xUi , yUi ,K1i,K2i, R
∗
i , t
∗
i )}i∈[1,N ] The sequence of N testing camera

pairs, each of which consists of Mi tentative correspondences.
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xεi , y
ε
i ∈ R2,Mi are tentatively matched uncalibrated points,K1i,K2i ∈

R3,3 are the calibration cameras, and R∗i , t∗i is the ground truth
relative pose.

xCi , y
C
i ∈ R2,ni Calibrated matched points obtained from the uncalibrated

points xUi , yUi

(Ri, ti) Relative pose obtained from the matches xCi , yCi using a RANSAC
procedure.

disti Distance (6.3) between the obtained relative pose (Ri, ti) and the
ground truth pose (R∗i , t∗i ) from T .

τi ∈ R Time needed for the RANSAC procedure to computate (Ri, ti).

α ∈ R mAA score (Section 6.1.2) obtained from the sequence of errors
disti, i ∈ {1, ..., N}

µ ∈ N The number of samples considered in the RANSAC loop.

θ ∈ R The threshold used in the RANSAC loop. If the Sampson error
measured on the uncalibrated pair of matched points is ≤ τ , the
match is considered an inlier.

xCi,j ∈ R2,5 A sample of five points from xCi obtained in the j-th step of
RANSAC.

yCi,j ∈ R2,5 A sample of five points from yCi obtained in the j-th step of
RANSAC. The points are matched with points in yCi,j .

Ei,j,k ∈ R3,3 k-th essential matrix obtained in the j-th step of the RANSAC
loop solving the i-th problem from T .

Fi,j,k ∈ R3,3 Fundamental matrix obtained from the essential matrix Ei,j,k.
There holds Fi,j,k = K−T2 Ei,j,kK

−T
1 .

Ei,j Set of n essential matrices Ei,j,k obtained by the Five-Point solver.
For our solver n ∈ {0, 1}, for the Nistér solver n ≤ 10.

In the benchmark, the tentative correspondences are calibrated using
K1i,K2i as follows: [

xCi
~1T

]
= K−1

1i

[
xUi
~1T

]
[
yCi
~1T

]
= K−1

2i

[
yUi
~1T

] (6.6)

Where ~1T is a row vector of ones. Then, the relative pose between the cameras
is obtained using the RANSAC scheme. Then, the quality of the obtained
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relative pose is evaluated using the distance (6.3). Finally, the Mean Average
Accuracy (mAA) score is obtained according to Section 6.1.2.

In order to evaluate our solver, we plug it into the RANSAC scheme in-
stead of the Nistér solver. The generic benchmark is described in Algorithm
19. The original RANSAC Scheme using the Nistér solver is described in Al-
gorithm 20. The RANSAC scheme using our solver is described in Algorithm
21. The results of the benchmark are shown in Section 6.3.1.

Algorithm 19: Benchmark
input : Sequence T = {(xUi , yUi ,K1i,K2i, R

∗
i , t
∗
i )} of N testing

camera pairs, the number of samples µ, threshold θ.
output : Sequence disti of distances (6.1.1) between the obtained

poses, sequence of processing times τi and the mAA score α
for i ∈ {1, ..., N} do

xCi , y
C
i := Calibrate the points in xUi , yUi according to (6.6);

Ei := Essential matrix computed from xCi , y
C
i using the RANSAC

procedure with parameters µ, θ;
τi := Time spent on the RANSAC procedure;
(Ri, ti) := Relative pose consistent with Ei which reconstructs all
points in front of both cameras;
disti := Distance (6.3) between (Ri, ti) and (R∗i , t∗i );

end
α := mAA score obtained from sequence disti (Section 6.1.2);

In the RANSAC procedure using the Nistér solver, µ iterations are per-
formed. In every iteration j ∈ {1, ..., µ}, five matched points xCi,j , yCi,j are
sampled from the calibrated points xCi , yCi . Then, we obtain a set of n ≤ 10
essential matrices Ei,j = Ei,j,k, k ∈ {1, ..., n} using the Nistér solver (Section
2.1.1). We build the fundamental matrix Fi,j,k from the essential matrix Ei,j,k
as:

Fi,j,k = K−T2i Ei,j,kK
−T
1i (6.7)

After that, we compute the Sampson error (6.5) for every pair of matched
uncalibrated points from xUi , y

U
i . The match is considered as the inlier, if the

Sampson error on the point is smaller than or equal to threshold θ. At the end,
we output the essential matrix Ei,j,k which has the highest number of inliers.
The RANSAC procedure for the Nistér solver is described in Algorithm 20.

For the evaluation of our solver, we replace the Nistér solver with it. In this
case, the set Ei,j of the essential matrices obtained by the solver contains at
most one essential matrix Ei,j or is empty, if the homotopy continuation has
failed. We do not have to decompose the final essential matrix into rotation
and translation, as these are obtained directly by the solver. RANSAC proce-
dure for our solver is described in Alg. 21.
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Algorithm 20: RANSAC Nistér
input :Tentatively matched calibrated points xCi , yCi , Camera

calibration matrices K1i,K2i, Tentatively matched
uncalibrated points xUi , yUi , the number of samples µ,
threshold θ.

output :Ei the essential matrix relating the points in xCi , yCi
scorebest := 0;
for j ∈ {1, ..., µ} do

xCi,j , y
C
i,j := Sample five points from xCi , y

C
i ;

Ei,j := Find a set of Essential matrices consistent with xCi,j , yCi,j
using Nistér algorithm (Section 2.1.1);
for Ei,j,k ∈ Ei,j do

Fi,j,k := K−T2i Ei,j,kK
−T
1i ;

score := Number of matches from xUi , y
U
i whose Sampson

error (6.5) with Fundamental matrix Fi,j,k is ≤ θ ;
if score < scorebest then

Ei := Ei,j,k, scorebest := score;
end

end
end

Algorithm 21: RANSAC Homotopy
input :Tentatively matched calibrated points xCi , yCi , Camera

calibration matrices K1i,K2i, Tentatively matched
uncalibrated points xUi , yUi , the number of samples µ,
threshold θ.

output :Ei the essential matrix relating the points in xCi , yCi
scorebest := 0;
for j ∈ {1, ..., µ} do

xCi,j , y
C
i,j := Sample five points from xCi , y

C
i ;

Ei,j := Find an Essential matrix consistent with xCi,j , yCi,j using our
homotopy continuation solver (Section 4);
if Ei,j 6= ∅ then

Fi,j := K−T2i Ei,jK
−T
1i ;

score := Number of matches from xUi , y
U
i whose Sampson

error (6.5) with Fundamental matrix Fi,j is ≤ θ ;
if score < scorebest then

Ei := Ei,j , scorebest := score;
end

end
end
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6.3.1 Evaluation of the benchmark

We have evaluated the benchmark described in Algorithm 19 on the data from
[Mys20]. We have evaluated the benchmark for both the Nistér algorithm and
our solver and we have compared the resulting errors, mAA and running times.

First, we are going to describe the data. The benchmark contains two valida-
tion datasets "St. Peter’s Square" and "Sacre Coeur" and 11 test datasets,
which are described in Table 6.3. Most of the datasets consist of 4950 camera
pairs.

ID Name # Camera Pairs Type
V01 St. Peter’s Square 4950 Validation
V02 Sacre Coeur 4950 Validation
T01 British Museum 4950 Test
T02 Florence Cathedral Side 4950 Test
T03 Lincoln Memorial Statue 4950 Test
T04 London Bridge 4950 Test
T05 Milan Cathedral 4950 Test
T06 Mount Rushmore 4950 Test
T07 Piazza San Marco 4950 Test
T08 Reichstag 2701 Test
T08 Sagrada Familia 4950 Test
T10 St. Pauls Cathedral 4950 Test
T11 United States Capitol 4950 Test

Table 6.3: Overview of the datasets used in the benchmark

We have evaluated the benchmark on all datasets in Table 6.3 for both the
Nistér algorithm and our solver. In the case of our solver, we distinguish two
cases. In the first case (LHC single), only one anchor is considered, i.e., the
problems are always tracked from the same starting problem. In the second
case (LHC NN), we consider 26 anchors, and the starting point is selected
according to Section 4.6.4. We use parameters µ = 1000, θ = 3 for all three
methods. The resulting mAA scores are shown in Table 6.4 and average
running times in Table 6.5. More detailed evaluation of the rotation errors
is shown in Figures 6.1, 6.2, 6.3. The evaluation of the translation errors is
shown in Figures 6.4, 6.5, 6.6. The Figures show that the Nistér solver is
able to output poses with higher precision than the homotopy continuation
solver, which could be expected, as the Nistér solver succeeds in almost all
cases and outputs all solutions to the problem. The experiments also show
that the Homotopy Continuation solver with the Neural Network is faster
and its precision is not much worse than the precision of the Nistér solver.
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The Homotopy Continuation solver may be generalized to different minimal
problems, for which a symbolic solution is difficult to find.

ID LHC single LHC NN Nistér
V01 0.420727 0.47703 0.547232
V02 0.567919 0.670525 0.760465
T01 0.490465 0.520828 0.527495
T02 0.631333 0.688909 0.712465
T03 0.506909 0.600384 0.709596
T04 0.224222 0.30099 0.354384
T05 0.628606 0.646505 0.656242
T06 0.294101 0.339556 0.372061
T07 0.321374 0.357051 0.377192
T08 0.612181 0.640133 0.717623
T09 0.554364 0.593253 0.644566
T10 0.556182 0.592889 0.658505
T11 0.10503 0.162162 0.277495

Table 6.4: Table of Mean Average Accuracy of the methods LHC single, LHC
NN, and Nistér on every dataset from 6.3.

ID LHC single LHC NN Nistér
V01 31.68 ms 31.56 ms 41.95 ms
V02 31.89 ms 32.84 ms 46.41 ms
T01 31.34 ms 33.32 ms 51.36 ms
T02 31.03 ms 34.89 ms 51.94 ms
T03 30.54 ms 32.61 ms 46.73 ms
T04 32.54 ms 32.62 ms 44.50 ms
T05 31.06 ms 34.22 ms 50.75 ms
T06 31.08 ms 31.76 ms 51.00 ms
T07 33.68 ms 34.40 ms 42.80 ms
T08 32.27 ms 33.69 ms 49.22 ms
T09 32.06 ms 36.98 ms 52.94 ms
T10 32.24 ms 35.52 ms 48.90 ms
T11 31.68 ms 31.56 ms 41.95 ms

Table 6.5: Table of Average running time of RANSAC using the methods LHC
single, LHC NN, and Nistér on every dataset from 6.3.
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Figure 6.1: Histogram of the rotation errors of the problems in dataset V01
(a), V02 (b), T01 (c), T02 (d), T03 (e). The results of Nistér solver are red,
the results of our solver with Neural network are green, and the results of our
method with a single anchor are blue.
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Figure 6.2: Histogram of the rotation errors of the problems in dataset T04
(a), T05 (b), T06 (c), T07 (d), T08 (e). The results of Nistér solver are red,
the results of our solver with Neural network are green, and the results of our
method with a single anchor are blue.
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Figure 6.3: Histogram of the rotation errors of the problems in dataset T09
(a), T10 (b), T11 (c). The results of Nistér solver are red, the results of our
solver with Neural network are green, and the results of our method with a single
anchor are blue.
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Figure 6.4: Histogram of the translation errors of the problems in dataset V01
(a), V02 (b), T01 (c), T02 (d), T03 (e). The results of Nistér solver are red,
the results of our solver with Neural network are green, and the results of our
method with a single anchor are blue.
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Figure 6.5: Histogram of the translation errors of the problems in dataset T04
(a), T05 (b), T06 (c), T07 (d), T08 (e). The results of Nistér solver are red,
the results of our solver with Neural network are green, and the results of our
method with a single anchor are blue.
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Figure 6.6: Histogram of the translation errors of the problems in dataset T09
(a), T10 (b), T11 (c). The results of Nistér solver are red, the results of our
solver with Neural network are green, and the results of our method with a single
anchor are blue.

6.4 Training and evaluation of the Four-Point
problem

In this section, we are going to describe the results obtained during the
training and evaluation of the Four-Point solver. The training of the classifier
consists of the generation of the set of anchors according to 5.6.1 and the
training of the classifier according to 5.6.4. In the evaluation part, we describe
the success rate of the solver, as well as its running time.
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6.4.1 Generation of the anchors

We have generated the anchors according to Section 5.6.1 from a set of
10773 points generated according to Section 2.2.3. We say that a problem
is covered by a set of anchors, if there exists an anchor in the set, from
which the problem is correctly tracked. In Table 6.6 we show the dependence
between the number of considered anchors m and the portion of problems
covered by the anchors. For further experiments, we have considered 62
anchors.

# Anchors 1 17 43 62 93 134 400
Problems covered 5.4 % 50 % 75 % 83 % 90 % 95 % 100 %

Table 6.6: Percentage of problems from the generated dataset which are covered
by different numbers of anchors.

We would like to know how do these anchors generalize to real problems.
Therefore, we have also generated two sets of points according to Section 2.2.4.
The first set (Real) consists of the points generated with measurement errors
just according to Section 2.2.4. The second set (Exact) consists of the same
points reprojected to the ground truth cameras, therefore, the measurement
error is zero. Both sets consist of 6054 problems. In Table 6.7 we show how
many problems have been covered by anchor sets of different sizes. In most of
experiments, the resulting pose is considered correct if the distance from the
ground truth is ≤ 5◦. Here, we have considered multiple different thresholds
for the result to be considered correct: 1◦, 5◦, 10◦, 20◦.

# Anchors 1 17 43 62 93 134 400
Real 1◦ 0.23% 3.35% 5.80% 6.99% 8.37% 9.60% 13.58%
Real 5◦ 2.15% 23.13% 35.15% 40.27% 44.91% 48.94% 58.46%
Real 10◦ 5.32% 42.24% 58.80% 64.06% 69.24% 73.06% 82.04%
Real 20◦ 11.78% 66.52% 83.02% 87.03% 90.01% 92.17% 95.99%
Exact 1◦ 2.08% 24.33% 41.91% 50.20% 58.61% 64.90% 80.46%
Exact 5◦ 4.87% 44.91% 66.91% 74.64% 81.95% 86.64% 95.18%
Exact 10◦ 7.66% 58.03% 79.86% 86.42% 91.15% 94.20% 98.46%
Exact 20◦ 13.68% 74.81% 91.67% 95.00% 97.44% 98.45% 99.39%

Table 6.7: Percentage of problems from the real datasets which are covered by
different numbers of anchors.

We can see from Table 6.7, that the anchors generalize well in the case of
the exact problems. In the case of the real problems, the small change of
projected points may cause a significant change of depths in the obtained
solution, which may then cause a significant change of the relative pose.
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Therefore, the results on the real dataset have bigger errors than the results
on the exact dataset. Still, the number of problems covered by the anchors
with the tolerance of 10◦ and 20◦ is similar to the coverage of the original
dataset in Table 6.6. We believe that with errors of this magnitude we are
able to obtain a better solution using local optimization.

6.4.2 Training of the classifier

For training of the classifier, we have generated 772054 training problems
and 32028 validation problems according to Section 2.2.4. Then, we have
transformed the problems into training and testing data according to Section
5.6.3 and we have trained the classifier using this data according to Section
5.6.4. We have trained the neural network using SGD optimizer with learning
rate 0.001, momentum 0.9 and batch size 32. We have trained the network
for 40 epochs and, eventually, we have selected the intermediate result which
classifies correctly the highest number of problems from the validation dataset.
The final neural network is able to classify correctly 3019 out of 32028
validation problems.

6.4.3 Evaluation of the solver

We have trained the solver described in Chapter 5 according to Sections 6.4.1
and 6.4.2. Then, we have generated a set of 16752 testing problems according
to Section 2.2.4 from the ETH dataset "Facade". We have used the solver to
solve every problem from the testing dataset. Then, we have measured the
average running time of the solver and the percentage of successfully solved
problems. We have considered different variants of the solver: NN1 is the
solver described in Section 5, NN2 selects for each input problem two anchors
with the highest score given by the neural network and tracks each problem
from two anchors, NN4 tracks each problem from four top anchors. Like in
Section 6.4.1, we have considered multiple thresholds for accepting the result:
5◦, 10◦, 20◦. The results are given in Table 6.8.

Method 5◦ 10◦ 20◦ Time
NN1 13.34% 17.57% 22.92% 56.7µs
NN2 19.77% 25.88% 33.83% 82.8µs
NN4 27.50% 36.26% 47.29% 139.2µs

Table 6.8: Evaluation of the trained Four-Point solver.
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Table 6.8 shows that the success rate of the solver is about 13% with

threshold of 5◦ and a single track for every problem. If the results are
evaluated with a more relaxed threshold or multiple tracks are performed for
each problem, we can achieve the same or even better success rate than in
the case of the Five-Point problem.
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Chapter 7

Conclusion

In the thesis, we have studied the problem of estimation of the relative pose
from five points in two views, and the problem of estimation of the relative
pose from four points in three views. We have designed generators of problem-
solution pairs for the problems. Then, we have proposed two solvers for the
considered problems based on Homotopy Continuation. We have performed
several experiments to evaluate the proposed solvers.

Instead of tracking all solutions to the problem, we track only one solution
for every input problem from one starting problem, which has been selected
using a neural network. This, together with the tracking in the real domain
only and with an efficient evaluation of the linear equations arising in the
Homotopy Continuation, allows us to achieve the high speed of the solvers.
Therefore, the solvers are eligible for use in the RANSAC scheme, which has
been shown in the experiments.

In the future, we would like to design better classifiers, which would allow
us to select the starting solutions with a higher success rate.

139 ctuthesis t1606152353



ctuthesis t1606152353 140



Bibliography

[AL87] N. Ayache and L. Lustman, Fast and reliable passive trinocular
stereo vision, 1st International Conference on Computer Vision
(1987), 422–427.

[AO14] Chris Aholt and Luke Oeding, The ideal of the trifocal variety,
Math. Comput. 83 (2014), no. 289, 2553–2574.

[AT10] Alberto Alzati and Alfonso Tortora, A geometric approach to the
trifocal tensor, J. Math. Imaging Vis. 38 (2010), no. 3, 159–170.

[BF81] Robert C. Bolles and Martin A. Fischler, A ransac-based approach
to model fitting and its application to finding cylinders in range
data, Proceedings of the 7th International Joint Conference on
Artificial Intelligence, IJCAI ’81, Vancouver, BC, Canada, August
24-28, 1981 (Patrick J. Hayes, ed.), William Kaufmann, 1981,
pp. 637–643.

[BHM+20] Edgar A. Bernal, Jonathan D. Hauenstein, Dhagash Mehta, Mar-
garet H. Regan, and Tingting Tang, Machine learning the real
discriminant locus, CoRR abs/2006.14078 (2020).

[BHN94] Alfred M. Bruckstein, Robert J. Holt, and Arun N. Netravali,
How to catch a crook, J. Vis. Commun. Image Represent. 5 (1994),
no. 3, 273–281.

[BHSW] Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese,
and Charles W. Wampler, Bertini: Software for numerical alge-
braic geometry, Available at bertini.nd.edu with permanent doi:
dx.doi.org/10.7274/R0H41PB5.

141 ctuthesis t1606152353



7. Conclusion......................................
[Bli96] J. Blinn, Consider the lowly 2 x 2 matrix, IEEE Computer Graph-

ics and Applications 16 (1996), no. 2, 82–88.

[BSHW13] Daniel J. Bates, Andrew J. Sommese, Jonathan D. Hauenstein,
and Charles W. Wampler, Numerically solving polynomial systems
with bertini, Software, environments, tools, vol. 25, SIAM, 2013.

[CG00] Roberto Cipolla and Peter J. Giblin, Visual motion of curves and
surfaces, Cambridge University Press, 2000.

[CLL14] Tianran Chen, T. Lee, and T. Li, Hom4ps-3: A parallel numerical
solver for systems of polynomial equations based on polyhedral
homotopy continuation methods, ICMS, 2014.

[CLO07] David A. Cox, John Little, and Donal O’Shea, Ideals, varieties,
and algorithms: An introduction to computational algebraic ge-
ometry and commutative algebra, 3/e (undergraduate texts in
mathematics), Springer-Verlag, Berlin, Heidelberg, 2007.

[DHJ+16] Timothy Duff, Cvetelina Hill, Anders Nedergaard Jensen, Kisun
Lee, Anton Leykin, and Jeff Sommars, Solving polynomial
systems via homotopy continuation and monodromy, CoRR
abs/1609.08722 (2016).

[Die19] Marc Diesse, On local real algebraic geometry and applications to
kinematics, CoRR abs/1907.12134 (2019).

[DKLP19] Timothy Duff, Kathlén Kohn, Anton Leykin, and Tomás Pajdla,
PLMP - point-line minimal problems in complete multi-view visi-
bility, 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019, IEEE, 2019, pp. 1675–1684.

[DKLP20] , Pl1p - point-line minimal problems under partial visibility
in three views, Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part
XXVI (Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-
Michael Frahm, eds.), Lecture Notes in Computer Science, vol.
12371, Springer, 2020, pp. 175–192.

[EJ10] Ady Ecker and Allan D. Jepson, Polynomial shape from shading,
The Twenty-Third IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18
June 2010, IEEE Computer Society, 2010, pp. 145–152.

[Fab10] Ricardo Fabbri, Multiview differential geometry in application to
computer vision, Ph.D. thesis, Division Of Engineering, Brown
University, Providence, 2010.

ctuthesis t1606152353 142



...................................... 7. Conclusion

[FDF+20] Ricardo Fabbri, Timothy Duff, Hongyi Fan, Margaret H. Re-
gan, David da Costa de Pinho, Elias P. Tsigaridas, Charles W.
Wampler, Jonathan D. Hauenstein, Peter J. Giblin, Benjamin B.
Kimia, Anton Leykin, and Tomás Pajdla, TRPLP - trifocal rel-
ative pose from lines at points, 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, IEEE, 2020, pp. 12070–12080.

[FKG12] Ricardo Fabbri, Benjamin B. Kimia, and Peter J. Giblin, Cam-
era pose estimation using first-order curve differential geometry,
Computer Vision - ECCV 2012 - 12th European Conference on
Computer Vision, Florence, Italy, October 7-13, 2012, Proceed-
ings, Part IV (Andrew W. Fitzgibbon, Svetlana Lazebnik, Pietro
Perona, Yoichi Sato, and Cordelia Schmid, eds.), Lecture Notes
in Computer Science, vol. 7575, Springer, 2012, pp. 231–244.

[FLM92] Olivier D. Faugeras, Quang-Tuan Luong, and Stephen J. May-
bank, Camera self-calibration: Theory and experiments, Com-
puter Vision - ECCV’92, Second European Conference on Com-
puter Vision, Santa Margherita Ligure, Italy, May 19-22, 1992,
Proceedings (Giulio Sandini, ed.), Lecture Notes in Computer
Science, vol. 588, Springer, 1992, pp. 321–334.

[HC62] John R. Hurley and Raymond B. Cattell, The procrustes program:
Producing direct rotation to test a hypothesized factor structure,
Behavioral Science 7 (1962), no. 2, 258–262.

[HN94] Robert J. Holt and Arun N. Netravali, Motion and structure from
line correspondences: Some further results, Int. J. Imaging Syst.
Technol. 5 (1994), no. 1, 52–61.

[HNH90] R. J. Holt, A. Netravali, and T. Huang, Experience in using
homotopy methods to solve motion estimation problems, Other
Conferences, 1990.

[HR18] Jonathan D. Hauenstein and Margaret H. Regan, Adaptive strate-
gies for solving parameterized systems using homotopy continua-
tion, Appl. Math. Comput. 332 (2018), 19–34.

[HR20] , Real monodromy action, Appl. Math. Comput. 373
(2020), 124983.

[JOÅ02] Björn Johansson, Magnus Oskarsson, and Kalle Åström, Struc-
ture and motion estimation from complex features in three views,
ICVGIP 2002, Proceedings of the Third Indian Conference on
Computer Vision, Graphics & Image Processing, Ahmadabad,
India, December 16-18, 2002 (Subhasis Chaudhuri, Andrew Zis-
serman, Anil K. Jain, and Kantilal L. Majumder, eds.), Allied
Publishers Private Limited, 2002.

143 ctuthesis t1606152353



7. Conclusion......................................
[KGB19] Yoni Kasten, Meirav Galun, and Ronen Basri, Resultant based

incremental recovery of camera pose from pairwise matches, IEEE
Winter Conference on Applications of Computer Vision, WACV
2019, Waikoloa Village, HI, USA, January 7-11, 2019, IEEE, 2019,
pp. 1080–1088.

[Kil17] Joe Kileel, Minimal problems for the calibrated trifocal variety,
SIAM J. Appl. Algebra Geom. 1 (2017), no. 1, 575–598.

[KOÅ14] Yubin Kuang, Magnus Oskarsson, and Karl Åström, Revisiting
trifocal tensor estimation using lines, Pattern Recognition (ICPR),
2014 22nd International Conference on, IEEE - Institute of Elec-
trical and Electronics Engineers Inc., 2014, 22nd International
Conference on Pattern Recognition (ICPR 2014) ; Conference
date: 24-08-2014 Through 28-08-2014, pp. 2419–2423 (English).

[Kor20] Viktor Korotynskiy, Using monodromy to simplify polynomial
systems, Master’s thesis, Czech Technical University in Prague,
2020.

[KP89] D.J. Kriegman and J. Ponce, Computing exact aspect graphs of
curved objects: solids of revolution, [1989] Proceedings. Workshop
on Interpretation of 3D Scenes, 1989, pp. 116–122.

[KP91] David J. Kriegman and Jean Ponce, A new curve tracing algorithm
and some applications, p. 267–270, Academic Press Professional,
Inc., USA, 1991.

[KP92] David J. Kriegman and Jean Ponce, Geometric modeling for
computer vision, Curves and Surfaces in Computer Vision and
Graphics II (Martine J. Silbermann and Hemant D. Tagare, eds.),
vol. 1610, International Society for Optics and Photonics, SPIE,
1992, pp. 250 – 260.

[LÅO17] Viktor Larsson, Kalle Åström, and Magnus Oskarsson, Efficient
solvers for minimal problems by syzygy-based reduction, 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, IEEE Computer
Society, 2017, pp. 2383–2392.

[Ley09] Anton Leykin, Numerical algebraic geometry for macaulay2,
CoRR abs/0911.1783 (2009).

[LOÅ+18] Viktor Larsson, Magnus Oskarsson, Kalle Åström, Alge Wallis,
Zuzana Kukelova, and Tomás Pajdla, Beyond grobner bases:
Basis selection for minimal solvers, 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018, IEEE Computer Society,
2018, pp. 3945–3954.

ctuthesis t1606152353 144



...................................... 7. Conclusion

[LTD15] Spyridon Leonardos, Roberto Tron, and Kostas Daniilidis, A met-
ric parametrization for trifocal tensors with non-colinear pinholes,
IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, IEEE Computer
Society, 2015, pp. 259–267.

[Luo92] Q.-T. Luong, Matrice fondamentale et calibration visuellesur
l’environnement-vers une plus grande autonomie des systemes
robotiques., Ph.D. thesis, Universitè de Paris-Sud, Centre d’Orsay,
1992.

[Mar17] Evgeniy V. Martyushev, On some properties of calibrated trifocal
tensors, J. Math. Imaging Vis. 58 (2017), no. 2, 321–332.

[Mat16] J. Mathews, Multi-focal tensors as invariant differential forms.,
arXiv e-prints (2016), 1610.0429.

[MF92] Stephen J. Maybank and Olivier D. Faugeras, A theory of self-
calibration of a moving camera, Int. J. Comput. Vis. 8 (1992),
no. 2, 123–151.

[Mor09] A. Morgan, Solving polynomial systems using continuation for
engineering and scientific problems, Classics in Applied Mathe-
matics, Society for Industrial and Applied Mathematics (SIAM,
3600 Market Street, Floor 6, Philadelphia, PA 19104), 2009.

[Mys20] Dmytro Myshkin, Benchmarking robust estimation methods.

[NDP94] P. K. Nanda, Uday B. Desai, and P. G. Poonacha, A homotopy
continuation method for parameter estimation in MRF models
and image restoration, 1994 IEEE International Symposium on
Circuits and Systems, ISCAS 1994, London, England, UK, May
30 - June 2, 1994, IEEE, 1994, pp. 273–276.

[Nis04] David Nistér, An efficient solution to the five-point relative pose
problem, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004), no. 6,
756–777.

[NS06] David Nistér and Frederik Schaffalitzky, Four points in two or
three calibrated views: Theory and practice, Int. J. Comput. Vis.
67 (2006), no. 2, 211–231.

[Oed15] Luke Oeding, The quadrifocal variety, CoRR abs/1501.01266
(2015).

[OZÅ04] Magnus Oskarsson, Andrew Zisserman, and Kalle Åström, Mini-
mal projective reconstruction for combinations of points and lines
in three views, Image Vis. Comput. 22 (2004), no. 10, 777–785.

[Paj21] Tomáš Pajdla, Elements of geometry for robotics.

145 ctuthesis t1606152353



7. Conclusion......................................
[Pet99] Sylvain Petitjean, Algebraic geometry and computer vision: Poly-

nomial systems, real and complex roots, J. Math. Imaging Vis. 10
(1999), no. 3, 191–220.

[PG99] Marc Pollefeys and Luc Van Gool, Stratified self-calibration with
the modulus constraint, IEEE Trans. Pattern Anal. Mach. Intell.
21 (1999), no. 8, 707–724.

[Pol] Marc Pollefeys, Vnl realnpoly: A solver to compute all the roots
of a system of n polynomials in n variables through continua-
tion, Available at https://github.com/vxl/vxl/blob/master/
core/vnl/algo/vnl_rnpoly_solve.h.

[QN17] Ashraf Qadir and Jeremiah Neubert, A line-point unified solu-
tion to relative camera pose estimation, CoRR abs/1710.06495
(2017).

[QTAM01] Long Quan, Bill Triggs, Marc-André Ameller, and Bernard Mour-
rain, Uniqueness of minimal euclidean reconstruction from 4
points.

[QTM06] Long Quan, Bill Triggs, and Bernard Mourrain, Some results
on minimal euclidean reconstruction from four points, J. Math.
Imaging Vis. 24 (2006), no. 3, 341–348.

[RF91] Luc Robert and Olivier D. Faugeras, Curve-based stereo: figural
continuity and curvature, IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, CVPR 1991, 3-6
June, 1991, Lahaina, Maui, Hawaii, USA, IEEE, 1991, pp. 57–62.

[RJH97] Arun N. Netravali Robert J. Holt, Number of solutions for motion
and structure from multiple frame correspondence, Int. J. Comput.
Vis. 23 (1997), no. 1, 5–15.

[Rod15] Volker Rodehorst, Evaluation of the metric trifocal tensor for
relative three-view orientation, Aug 2015.

[Sal13] Mathieu Salzmann, Continuous inference in graphical models with
polynomial energies, 2013 IEEE Conference on Computer Vision
and Pattern Recognition, Portland, OR, USA, June 23-28, 2013,
IEEE Computer Society, 2013, pp. 1744–1751.

[SI05] Andrew J. Sommese and Charles W. Wampler II, The numerical
solution of systems of polynomials - arising in engineering and
science, World Scientific, 2005.

[SZ00] Cordelia Schmid and Andrew Zisserman, The geometry and
matching of lines and curves over multiple views, Int. J. Comput.
Vis. 40 (2000), no. 3, 199–233.

ctuthesis t1606152353 146

https://github.com/vxl/vxl/blob/master/core/vnl/algo/vnl_rnpoly_solve.h
https://github.com/vxl/vxl/blob/master/core/vnl/algo/vnl_rnpoly_solve.h


...................................... 7. Conclusion

[Ver99] Jan Verschelde, Algorithm 795: Phcpack: a general-purpose solver
for polynomial systems by homotopy continuation, ACM Trans.
Math. Softw. 25 (1999), no. 2, 251–276.

[VLZ19] Alexander Vakhitov, Victor S. Lempitsky, and Yinqiang Zheng,
Stereo relative pose from line and point feature triplets, CoRR
abs/1907.00276 (2019).

[ZKHM20] Ji Zhao, Laurent Kneip, Yijia He, and Jiayi Ma, Minimal case
relative pose computation using ray-point-ray features, IEEE Trans.
Pattern Anal. Mach. Intell. 42 (2020), no. 5, 1176–1190.

147 ctuthesis t1606152353


	Introduction
	Structure of the Thesis
	Contributions
	State of the Art
	Homotopy continuation
	Minimal Problems Solving
	Real Homotopy Continuation

	Notation

	Minimal problems in Multi-View Geometry
	Problem of five points in two views
	Nistér Solver
	Depth formulation
	Generator of the instances of Five-Point problem

	Problem of four points in three views
	Relaxation to a minimal problem
	Depth formulation
	Generator of problem-solution pairs of Four-Point problem
	Generator of testing and training problems of Four-Point problem


	Homotopy continuation
	Predictor step
	Corrector step
	Parametric homotopy continuation
	Real homotopy continuation
	Possible results of the real homotopy continuation


	Efficient Homotopy Continuation Solver for the Five-Point Problem
	Description of the solver
	Parametrization of the problem and the solution
	Homotopy continuation used in the solver
	Overview of the solver

	Efficient evaluation of the predictor and the corrector
	Structure of the Linear Equations in the Two-View Problem
	Closed-Form Solution of the Linear Equations in the Two-View Problem

	Optimization of the homotopy continuation parameters
	Invariantization of the problems
	Moving the center of mass to zero
	Permutation of the points
	Moving the first point to y-axis
	Obtaining invariantized depths

	Alignment of the problems on the anchors
	Minimization of the Squared Distance Between the Problems
	Selecting the Subset of the Available Permutations

	Selection of the Anchor
	Anchor set generation
	Problem preprocessing for the classifier
	Training data generation
	The Anchor Selection Classifier

	Computation of the Relative Pose
	Getting the Relative Pose From the Depths
	Passing From the Solution of the Aligned Problem


	Efficient Homotopy Continuation Solver for the Four-Point Problem
	Description of the solver
	Parametrization of the problem and the solution
	Homotopy continuation used in the solver
	Overview of the solver

	Efficient evaluation of the predictor and the corrector
	Structure of the Linear Equations in the Three-View Problem
	Closed-Form Solution of the Linear Equations in the Three-View Problem

	Optimization of the homotopy continuation parameters
	Invariantization of the problems
	Moving the center of mass to zero
	Permutation of the points
	Moving the last point to x-axis

	Alignment of the problem on the anchors
	Selection of the Anchor
	Anchor set generation
	Problem preprocessing for the classifier
	Training data generation
	The Anchor Selection Classifier

	Computation of the relative poses
	Getting the Relative Pose From the Depths
	Passing From the Solution of the Aligned Problem


	Experiments
	Evaluation metrics
	Distance between two relative poses
	Mean Average Accuracy
	Sampson Error

	Training and evaluation of the Five-Point problem
	Generation of the anchors
	Training of the classifier
	Evaluation of the solver

	Benchmark of the Five-Point Solver
	Evaluation of the benchmark

	Training and evaluation of the Four-Point problem
	Generation of the anchors
	Training of the classifier
	Evaluation of the solver


	Conclusion
	Bibliography

