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Abstrakt / Abstract

Při snaze matematicky popsat kvan-
tovou mechaniku vyvstalo mnoho pro-
blémů. V této práci se zaměříme na
problémy ze dvou různých oblastí.
Nejprve se budeme věnovat existenci
skrytých proměnných a následně bu-
deme zkoumat kvantové struktury, což
jsou algebraické struktury popisující
logiku kvantové mechaniky.

V práci je obsažena definitivní od-
pověď na déle než 25 let otevřenou
otázku, jestli je možné přiřadit nenu-
lovým vektorům z R3 nekonstantně
nuly a jedničky tak, že z každé trojice
ortogonálních vektorů je lichému počtu
z nich přiřazena 1.

Je zde také ukázan příklad ortokom-
plementovaného diferenčního svazu bez
stavů.

Klíčová slova: Bellova-Kochenova-
Speckerova věta; ortokomplementovaný
diferenční svaz; teorie skrytých pro-
měnných; Z2-stav; svaz podprostorů
R3

Překlad titulu: Kombinatorické me-
tody ve studiu kvantových struktur

There are challenging problems re-
lated to the mathematical description of
quantum mechanics. The thesis focuses
on such problems from two different
areas: The problems related to the
existence of hidden variables and prob-
lems arising in the study of quantum
structures, which are algebraic struc-
tures describing the logic of quantum
mechanics. In both of these directions,
we arrive at novel results.

A definitive answer is provided to a
question open for over 25 years, whether
there is a non-constant assignment of ze-
ros and ones to the non-zero vectors of
R3 such that from every three pairwise
orthogonal vectors, an odd number of
them is assigned 1. The answer is nega-
tive.

An example of an orthocomplemented
difference lattice admitting no states is
presented.

Keywords: Bell–Kochen–Specker
theorem; orthocomplemented differ-
ence lattice; hidden-variable theory;
Z2-state; lattice of subspaces of R3
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Chapter 1
Introduction

1.1 Motivation
We will deal with mathematical questions related to quantum mechanics. In this sec-
tion, we briefly outline the problems which we specify later.

Chapter 2 is devoted to the introduction to the mathematical aspects of quantum
mechanics and to the subsequent extensive motivation of the problems we will tackle.

. One of the fundamental questions in the interpretation of quantum mechanics is the
existence of hidden variables.

In 1935, Einstein conducted a thought experiment in [13], yielding a paradoxical
result which is known as EPR paradox. The seemingly absurd situation would occur
when we perform measurements on two entangled particles. Quantum mechanics
predicts the randomness of the outcome of an experiment. However, for entangled
particles, a measurement of one particle will determine the outcome of the same
measurement performed on the second particle, which may be arbitrarily distant.
Seemingly, there would occur a transfer of information faster than the speed of light.

A resolution to this paradox would be to assume that the outcomes of the mea-
surements are known beforehand but unknown to us; thus, the measurement will
only reveal the hidden variables, and no so-called spooky action at a distance occurs.. Unlike the classical case, Boolean algebras are not sufficient to describe the logic of
quantum mechanics. For example, quantum logic is not distributive; thus, we need
more general algebras for their description.

1.2 Goals of the Thesis

. Make a gentle introduction to the mathematical aspect of quantum physics.. Examine the modifications of Bell–Kochen–Specker theorem.. Study states on orthocomplemented difference lattices.. Solve some open problems related to states on quantum structures and Bell–Kochen–
Specker theorem.

1.3 State of the Art
Due to the nature of the problems, we will define the concepts, formulate questions and
review the literature in every chapter independently.
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Chapter 2
Quantum Physics

This chapter aims at a description of the nature of quantum mechanics in terms of
linear algebra, which will be used throughout the thesis.

The goal is not to explain physics; we are willing to introduce a (part of a) mathe-
matical formalism used to describe quantum mechanics matters. With this abstraction,
we motivate and formulate some of the questions we will study.

The notation commonly used for the mathematical description of quantum mechanics
is called a Bra-Ket notation (or also a Dirac notation). However, we will use a possibly
simpler notation that will be sufficient for our purpose. We will avoid the Bra-Ket
notation, as we expect the reader not to be familiar with it, for the cost of restricting
ourselves to finite vector spaces. Instead, we will use only the vector space Rn over the
field of real numbers with the standard vector addition and multiplication of a vector
by a scalar. We consider a vector to be a one-column matrix, but we will write it in
a row to save space. It should not bring any confusion since we will encounter only
vectors and square matrices.

We shall note that, although we approach quantum mechanics using so-called matrix
mechanics, introduced by Heisenberg, Born and Jordan in [9], it is also possible to
explain the phenomenons of quantum physics in terms of partial differential equations.
This direction was coined at almost the same time by Schrödinger in [42].

2.1 Mathematical Description of Quantum Mechanics
With every quantum system, may it be a particle, or a set of particles, is tied a Hilbert
space describing it. Hilbert space is a complete vector space equipped with an inner
product. The dimension of the Hilbert space may be finite or infinite; both cases
are important for physics. The Hilbert space represents every possible state (think of
position, momentum), which the quantum system may attain. We shall ground this in
the following definition:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 2.1. A quantum system is represented by a vector space H = Rn in the
following way:

. A state of a system is represented by a unit vector x ∈ H.. A measurement is represented by a symmetric matrix A ∈ Rn×n.. The outcome of a measurement is one of the eigenvalues of A. The probability of
measuring a certain eigenvalue λi equals xTPix, where Pi is the projector on the
eigenspace of A, corresponding to the eigenvalue λi and x is the state of the system
before the measurement.. After performing a measurement by a matrix A with outcome λ, the state changes,
and it becomes an eigenvector of A corresponding to the eigenvalue λ.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 EPR Paradox

For the sake of simplicity, we will not explicitly address the case when a measurement
matrix has eigenspaces of dimension greater than one. Treating the general case is
technical, and we do not need it for our outline of the principles of quantum mechanics;
hence we will be silent about the technical details.

Using the spectral theorem, we may rewrite a measurement A ∈ Rn×n as a sum of
dyads, A = λ1v1vT1 + λ2v2vT2 + . . .+ λnvnvTn , with pairwise orthogonal eigenvectors vi,
i = 1, . . . , n. Then the process of measurement may be seen as the state collapsing to
one of the eigenvectors of A with probability corresponding to (xT vi)2 for eigenvector
vi.

We will show a simple illustrative example of the process of performing measurements.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Example 2.1. Let the description of experiment be as follows:

. The system is H = R2.. The state of H is x = (1, 0).

. The measurement is M = 1
4

(
2 1
1 2

)
and its eigenvalues and eigenvectors are:

v1 =
√

2
2 (1, 1), λ1 = 3

4 .
v2 =

√
2

2 (1,−1), λ2 = 1
4 .

The probability of measuring the eigenvalue 3
4 is then (xT v1)2 = 0.5, with state

collapsing to eigenstate v1. Similarly, the probability of measuring 1
4 is (xT v2)2 = 0.5

and the state would collapse to v2.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2.2 EPR Paradox

Einstein, although one of its fathers, was skeptical about the completeness of the quan-
tum theory. He considered the probabilistic character of quantum measurements not
to be caused by nature but by our inability to determine reality. In a famous pa-
per [13], the authors (Einstein, Podolski, Rosen, hence the EPR paradox) supported
their skepticism by performing a thought experiment.

In the experiment, there are two observers, let us call them Alice and Bob. At the
start of the experiment, they are at the same place, and both of them are given a
particle, which is in an entangled state. We will get to the quantum entanglement
later; for now, we may consider the entangled particles to be identical. Now, Bob and
Alice walk away from each other several light-years. The paradox arises when Alice
measures her particle. The outcome of the measure is random, following the rules
described before. However, when Bob makes the exact measurement, he will get a (for
him) seemingly random outcome, but in fact, the outcome will be identical to Alice’s.
This phenomenon is observed whenever they make the measurements, possibly at the
same time, while being arbitrarily distant.

The information about the outcome of Alice’s measurement is propagated instantly
to Bob, which is faster than the speed of light. This was not a satisfactory result, and
the authors concluded that the interpretation of quantum mechanics is incomplete.

3



2. Quantum Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Hidden-Variable Theory
A solution to the paradox mentioned above would be an introduction of new vari-
ables that describe the system, but we cannot get to know them. The paradox will be
resolved if we introduce hidden variables. The paradox was built on quantum entangle-
ment, which requires the particles (loosely speaking) to be very close to each other at
some time. Hence, the particles could have agreed on how they would act on different
measurements performed in the future, hence on measurement, the particles would act
according to the agreement, and no transfer of information, faster than the speed of
light, would be necessary.

It may seem plausible to introduce such a concept to get rid of its randomness and
innocent at the same time, since there is no apparent difference between events being
random and events being deterministic but unknown to us beforehand. Einstein was
a great supporter of this interpretation and his famous quote:

God does not play dice
originates in this context.

It later turned out that such hidden variables do not describe the world well1, and
the outcomes of measurements are indeed random in their nature.

2.3.1 Informal Historical Overview
In 1932, von Neumann has proven in his book [46] that the hidden-variable theory is
wrong. However, it later turned out that he used an absurd assumption.

The flaw was noticed in 1935, in the paper [19], but it remained overlooked until the
sixties. Then, in the paper [3], Bell eventually pointed out von Neumann’s mistake.

In the year 1964, Bell proposed an experiment yielding different outcomes for
the theory with, and without, hidden variables. Later, in the years 1966 and 1967
respectively, Bell in [3], and independently Kochen and Specker in [22], have proven
the nonexistence of hidden variables in a more general way, and the theorem is called a
Bell–Kochen–Specker theorem (abbr. BKS theorem). We will inspect the BKS theorem
extensively in the following chapters.

The EPR paradox indicates that there may be occurring some communication be-
tween particles which is propagated faster than light. This is addressed by a so-called
no-communication theorem, see [39], which states that none of the observers is able to
influence the measurement of the other; hence no communication is occurring here.

Nevertheless, a pair of entangled particles may allow us to achieve results that would
be impossible if there were some hidden variables. Before showing such examples and
ruling out the hidden-variable theory, we shall precisely introduce the quantum entan-
glement first.

2.4 Quantum Entanglement
In the EPR paradox, Alice and Bob needed to have, in some sense, identical particles.
The phenomenon is called quantum entanglement and is described as follows. Let there
be two quantum systems, HA, and HB . The quantum system containing both, HA ∈ Rn
and HB ∈ Rm, can be written2 as H = HA ×HB ∈ Rm+n. Sometimes a state x ∈ H
1 There still exist several non-local hidden-variable theories, see [8] and its derivations for an example.
We will not be precise here.
2 The operators ⊗,× are the Kronecker product and Cartesian product respectively.

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Compatible Measurements

may be written as x = xA ⊗ xB for some xA ∈ HA, xB ∈ HB . In that case, we call
the state x to be separable. However, not all states are separable; in that case, we call
them entangled. Before we move on to the examples, we shall summarize this in the
upcoming definition.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 2.2. Let HA, HB , H = HA×HB be quantum systems. A state x ∈ H is called
an entangled state, if there are no states xA ∈ HA, xB ∈ HB such that x = xA ⊗ xB .
The systems (particles) HA, HB are then called entangled.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Example 2.2. Let HA, HB ∈ R2 be two quantum systems and H ∈ R4 be the composite
quantum system.

. A state (1, 0, 0, 0) can be written as (1, 0)⊗ (1, 0), hence it is a separable state.. A state 1√
2 (1, 0, 0, 1) is entangled, since it cannot be written as

(a, b)⊗ (c, d) = (a(c, d), b(c, d)) = (ac, ad, bc, bd)

because no element of {a, b, c, d} can be zero, but at the same time some of them has
to be zero.. A state 1√

2 (1, 0, 0, 1) can be written as a linear combination of separable states:

1√
2
(1, 0, 0, 1) = 1√

2
((1, 0, 0, 0) + (0, 0, 0, 1)) = 1√

2
((1, 0)⊗ (1, 0) + (0, 1)⊗ (0, 1)).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
When a state of H = HA ×HB is separable, we do not need to merge the systems.

Hence, in the first example, we can describe the system H, using the systems HA, HB

separately.
In the last example, we have shown a decomposition of an entangled state into a linear

combination of separable states. When both of the particles represented by HA, HB are

measured by M =
(

1 0
0 −1

)
, there are two possible outcomes:

. The entangled state x collapses to state (1, 0)⊗ (1, 0), and both measurements have
outcome 1.. The entangled state x collapses to state (0, 1)⊗ (0, 1), and both measurements have
outcome −1.

Both of the cases happen with 50 % probability, but as soon as one of the particles
is measured, the second outcome is deterministic.

The entangled particles need not behave the same way. The important property
is that a measurement of one particle affects the outcome of a measurement of the
entangled one.

2.5 Compatible Measurements
Although generally the process of taking a measurement affects the state, it may happen
that two measurements, A,B, are compatible, and we may perform multiple measure-
ments of one state. To be precise, we say that two measurements, A, B are compatible if
whenever we make consecutive measurements A, then B, and then again A, the outcome
of the first and the last measurement are equal.

5



2. Quantum Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 2.1. For any two measurements A, B, the following properties are equiva-
lent:

. They are compatible.. They share an eigenbasis.. The matrices A, B commute.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof.

(i ⇒ ii) After performing the measurement A, the state will collapse to eigenvector
vA of A. After measurement B, the state will be vB . If vA 6= vB , then the outcome
of measurement A of state vB would not equal to the first outcome with certainty.
Hence, they share every eigenvector, and the eigenbases are equal.
(ii ⇒ i) After the first measurement, the state will collapse to a common eigenvector
of A, B and will not be changed by any consecutive measurement of A or B.
(ii ⇒ iii) The matrices are symmetric and share an eigenbasis. We rewrite them
using the spectral theorem with orthogonal1 matrix V and diagonal (thus commuting)
matrices ΛA, ΛB . Then

AB = VΛAVTVΛBVT = VΛAΛBVT = VΛBΛAVT = VΛBVTVΛAVT = BA.

(iii ⇒ ii) For an eigenvector v of A corresponding to the eigenvalue λ it holds:
. Av = λv,
. ABv = BAv = λBv,

Hence both vectors, v and Bv, correspond to the same eigenvalue. We assumed
that the eigenspaces are one-dimensional, hence Bv = λv; thus v is also an eigenvector
of B. This holds for every eigenvector of A; thus, the eigenbases are equal.

�

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 2.2. Let A1,A2, . . . ,An, be pairwise compatible measurements, then the fol-
lowing propositions hold true:

. The measurements A1,A2, . . . ,An, together with the matrix A1A2 . . .An, share an
eigenbasis.. The product of outcomes of measurements A1,A2, . . . ,An is an eigenvalue of matrix
A1A2 . . .An.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2.6 Quantum Pseudo-Telepathy
Now we shall rule out the hidden-variable model. To be precise, we show a thought
experiment yielding different outcomes for the theories with hidden variables and those
without them. To eventually decide which model describes nature better, one must
experiment with reality, and it disproves the hidden-variable theory.
1 A matrix V ∈ Rn×n is called orthogonal, if it is regular and VT = V−1.

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Quantum Pseudo-Telepathy

We demonstrate the insufficiency of hidden-variable theory by using a phenomenon
called quantum pseudo-telepathy.

This phenomenon was first described in [35]; the following example is called a Peres–
Mermin square.

The phenomenon is called pseudo-telepathy since the result is similar to what we
would consider telepathy. However, on the other hand, we have already mentioned
the no-communication theorem. Hence no transfer of information is possible, and the
phenomenon instead bypasses the need for telepathy rather than enabling it.

Consider a game where Alice and Bob are trying to fill a 3 × 3 table by values ±1,
where Bob will fill one row and Alice one column. Bob and Alice may agree on a
strategy before the game, but they cannot communicate after the game starts.

When the game starts, Bob is given a number r ∈ {1, 2, 3}, determining which row
to fill. Similarly for Alice, she gets a number c ∈ {1, 2, 3}, determining the column.
Thus, both of them know their number but do not know the other.

They will win the game if the product of Alice’s numbers is −1, the product of Bob’s
numbers is 1, and they have assigned an equal number to the entry at position r, c.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Example 2.3. If Bob gets r = 1, Alice gets c = 3, then Bob’s assignment (1, 1, 1),
together with Alice’s assignment of (1, 1,−1) will result in Table 2.11, hence it is a
winning assignment.

1 1 1 1
1
−1
−1

Table 2.1. Example of a winning assignment

On the other hand, if Bob assigned the numbers (1, 1, 1) with r = 3 and Alice would
assign (1, 1,−1) with c = 3, they would lose, as illustrated in Table 2.2.

1
1

1 1 1 6= −1 1
−1

Table 2.2. Example of a losing assignment

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
It is impossible for them to win every game, even when they can communicate before

the game and share their strategies. If they could always win, it would mean that
they can fill the table before the game such that the values in every row multiply to
one, while the values in every row will multiply to minus one. Their assignment would
then correspond to the values of Table 2.3. E.g., Alice with c = 2 would assign values
(M1,2,M2,2,M3,2) to the second column.

It is not possible to fill such table since the product of all filled numbers should be
positive if we are multiplying the values by rows, but at the same time, it should be
1 The last column and row are the results of multiplication of numbers in the corresponding column or
row respectively.

7



2. Quantum Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M1,1 M1,2 M1,3 1
M2,1 M2,2 M2,3 1
M3,1 M3,2 M3,3 1
−1 −1 −1

Table 2.3. General assignment

negative if we multiply the values by columns. This is an apparent contradiction since
the multiplication of integers is associative. However, on the other hand, it is possible
to fill the table using matrices such that they multiply by rows to the identity matrix
and by columns to the negative identity matrix.

We introduce the following matrices. They are called Pauli matrices, and we use
their standard names:

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
,

and remind the identity for Kronecker product and matrix multiplication:

(A⊗ B)(C⊗D) = (AC)⊗ (BD).

Furthemore, it holds that X2 = Z2 = I2 and XZ = −ZX, where Ik ∈ Rk×k is the
identity matrix. The eigenvalues of matrices X,Z are ±1.

Now we can check that for Table 2.4

I2 ⊗ Z Z⊗ I2 Z⊗ Z I4
X⊗ I2 I2 ⊗ X X⊗ X I4
−X⊗ Z −Z⊗ X ZX⊗ XZ I4
−I4 −I4 −I4

Table 2.4. Table of measurements

The following properties hold:

. The product of matrices in every row is the identity matrix.. The product of matrices in every column is the negative identity matrix.. Every pair of matrices in every column commutes.. Every pair of matrices in every row commutes.. Every matrix in the table has eigenvalues ±1.

2.6.1 Winning Strategy
Let us describe the winning strategy for Bob and Alice. They will both have a particle,
which is entangled with the other such that the outcomes of the measurements will be
the same for both of them. The system of one particle is R4, so the composite system
is R8, but we will not go into technical details here.

Every element of Table 2.4 corresponds to a measurement. When Bob and Alice
want to fill an entry of the table, they perform the measurement associated with the
position, and they would assign the outcome of the measurement, which is ±1. The
matrices commute, hence the measurements are compatible, and it does not matter in
which order the measurements are made.

This is indeed a winning strategy. According to Corollary 2.2, the product of Alice’s
numbers will be an eigenvalue of matrix −I4, which can only be −1. Similarly for Bob,

8
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the product of his numbers is 1. Bob and Alice have entangled particles such that their
outcome of a common measurement will be the same; hence they would fill the same
number in the common position.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 2.3. Quantum mechanics allows a winning strategy for a game, for which
there is no winning strategy in a deterministic world.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2.7 Quantum Logic
In a later chapter of the thesis, we will deal with quantum logic, more precisely, with
certain algebraic structures, which could be used to describe the algebra of quantum
logic.

We are interested in the study of quantum structures themselves, rather than in their
connection with physics; hence we will only briefly review the reasons why the standard
logic (represented by a Boolean algebra) is insufficient in quantum mechanics.

2.7.1 Heisenberg Uncertainty Principle

Possibly the most explicit argument on the incompatibility of classical logic and quan-
tum logic is derived from the Heisenberg uncertainty principle. It states that the more
precisely we know a particle’s position, the less precisely we know its momentum1. We
show a heavily simplified example that demonstrates the fact that quantum logic is not
distributive. It is not meant to prove the non-distributivity; it should instead provide
the reader an intuition of why the distributivity may be violated.

We formulate the uncertainty principle as:

∆x∆p ≥ ~2 ,

Let us introduce the following logical variables, where we use units such that ~
2 = 1.5:

. A: 0 ≤ p ≤ 1, i.e., the momentum of a particle is between zero and one.. B: −1 ≤ p ≤ 0, i.e., the momentum of a particle is between minus one and zero.. C: 0 ≤ x ≤ 1, i.e., the position of a particle is between zero and one.

The uncertainty of position and momentum, respectively, is the length of the interval
in which they are known to be.

We recall the distributive law in propositional logic:

A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C).

Plugging in the logical variables2, we conclude that the formula on the right-hand-side
cannot be true, since neither (A∧B) nor (A∧C) can be measured due to the Heisenberg
uncertainty principle. On the other hand, the proposition on the left-hand-side may be
true; thus the quantum logics do not follow the distributive law.

1 But it also may be expressed using different quantities, such as time and energy.
2 The meaning of logical connectives ∧,∨ for the logical variables is hopefully intuitive, e.g., A∨B stands
for −1 ≤ p ≤ 1, A ∧ C stands for (p, x) ∈ [0, 1]2, etc.
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2.7.2 Observer E�ect

In the classical case, it is expected that the measurement does not change the state of
the system. For example, let us consider a car. We are able to measure its momentum
and position without affecting it.

It is not the case in quantum mechanics anymore. The act of measuring the position
of a particle is tied, e.g., with a photon interacting with the particle. The interaction
between the photon and the particle results in a change of the state of the particle.
Hence, the measured position is not the current but rather a past position of the
measured particle.

We have already discussed the compatibility of measurements in Section 2.5.
It may happen that several measurements are compatible; hence we can imagine

measuring them at the same time. On the other hand, this is not possible for every
pair of observables.

2.7.3 Quantum Structures
Von Neumann in [46], and later together with Birkhoff in [7], have shown (with the
use of heuristic arguments) that the propositions about quantum mechanics are well
described by the calculus of linear subspaces of a Hilbert space, which can be represented
using a modular ortholattice.

Later, it was shown that it is unnecessary to require the modularity condition, and
a weaker one, orthomodularity, suffices. There are also different algebraic structures
used to describe the quantum logic, for example, orthomodular posets, orthoalgebras
and (lattice) effect algebras. For more information about quantum logic, we refer the
reader to books [12, 44] written by physicists, or to [40], written by mathematicians.

We will study even more specific algebras, having potential in being applied in quan-
tum theory, which are orthocomplemented lattices with a symmetric difference, coined
in [24].

10



Chapter 3
Bell–Kochen–Specker Theorem

The Bell–Kochen–Specker theorem (abbr. BKS theorem) is a no-go theorem that in-
validates most of the hidden-variable theories in quantum mechanics. It was proven
independently by Bell in 1966 in [3] and by Kochen and Specker in 1967 in [22]. Bell’s
proof is simpler but only rules out hidden variables in four or higher dimensions. On
the other hand, the proof of Kochen and Specker addresses even the tree-dimensional
case; hence it is a more general result. Admittedly, the theorem is a simple corollary of
much more general Gleason’s theorem with which we will deal in Section 3.2. Gleason’s
theorem was proved in 1957 in [14] but was overlooked by the physicists’ community.

The theorem resolves the problem whether it is possible that the outcomes of mea-
surements are deterministic but unknown to us beforehand. We have already discussed
the hidden-variable theory in Section 2.3.

3.1 Statement
Here, we consider the following setup. Let there be a particle with state x ∈ Rn which
we want to measure. We can measure it in n orthogonal directions, and in precisely
one of those, the outcome will be 1, and in other directions, the outcome is always 0.
Our goal is to disprove the hidden-variable theory, according to which the outcomes of
measurements are already known (but not to us), and the measurement only reveals
those hidden states. If this was the case, then we could assign zeros and ones to
the vectors of Rn such that precisely one vector in every orthogonal basis would be
assigned 1. It turns out that it is not possible for n ≥ 3. Before going into details, we
make of this the upcoming theorem:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Theorem 3.1. There is no mapping v : Rn \{0} → {0, 1} such that for every orthogonal
basis x1, x2, . . . xn of Rn the following holds:

v(x1) + v(x2) + . . . + v(xn) = 1,

if and only if n ≥ 3.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Clearly, for any mapping v, every vector x ∈ Rn and scalar c ∈ R, c 6= 0, it holds that
v(x) = v(c · x); hence we may, without loss of generality, assume that we are assigning
values to one-dimensional subspaces, which we call rays. We will use rays and vectors
interchangeably. We will also refer to mapping v as a coloring.

Proof of Theorem 3.1. The case when n ≤ 1 is trivial. When n = 2, no two distinct
orthogonal bases share a vector; thus, we may assign one vector of every orthogonal
basis 0 and 1 to the other arbitrarily.

The case when n = 3 is complicated, and we dedicate Subsection 4.3.1 to it. For now,
assume that the theorem holds for n = 3, and we show that it holds for any dimension
m ≥ 4.

11



3. Bell–Kochen–Specker Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Assume to the contrary that there is a coloring v in Rm. There is also an orthogonal

basis {x1, x2, . . . xm}. Without loss of generality, v(xi) = 1 ⇐⇒ i = 1.
Consider the set Y = span({x1, x2, x3}). Every its orthogonal basis {y1, y2, y3} must

satisfy v(y1) + v(y2) + v(y3) = 1 since {y1, y2, y3, x4, x5, . . . xm} is an orthogonal basis of
Rm. Clearly, Y is isomorphic to R3, and we found a coloring of R3 which we assumed
to be impossible. �

Although the argument uses the fact that for n = 3 there is no coloring, it is clear that
an almost identical argument would conclude that there is no coloring of Rm,m > n, if
we show that there is no coloring of Rn.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Remark 3.2. Whenever v : Rn \ {0} → {0, 1} is a coloring, then also v′ defined as
v′(x) = v(Ux) for an orthogonal matrix U is a coloring since a transformation by an
orthogonal matrix preserves the dot product and hence preserves the orthogonality
relation.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Example 3.1. Let us have the following rays:

. x = (1, 1, 1),. y = (0, 1, 1),. z = (1, 1, 0).

We are also given the information that for every coloring v, v(x) + v(y) + v(z) = 1.
A mapping v : Rn \ {0} → {0, 1} defined as v′(x) = v(Ux) is also a coloring, where U

is a matrix representing the reflection by the plane orthogonal to the x-axis. Thus also

1 = v′(x) + v′(y) + v′(z)
= v(Ux) + v(Uy) + v(Uz)
= v((−1, 1, 1)) + v((0, 1, 1)) + v((−1, 1, 0)).

Similarly, for every coloring v it holds that v(x′) + v(y′) + v(z′) = 1, where x′ = Ux,
y′ = Uy, z′ = Uz for any orthogonal matrix U.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The original proofs by Bell and Kochen–Specker were based on a construction of a

set of vectors that cannot be colored. We discuss this approach more in Section 3.3.
The original proof by Kochen and Specker is very similar to the one we present in
Section 3.4.

3.2 Gleason’s Theorem
We will be dealing with finite sets of points which are not colorable; thus they serve as
a proof of BKS theorem. However, the theorem was actually proven by Gleason in [14]
in 1957. He has proven an even more general1 result, known as Gleason’s theorem:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Theorem 3.3. Let n ≥ 3; the only mapping v : Rn → [0, 1] such that for any orthonormal
basis {x1, x2, . . . xn} it holds that v(x1) + v(x2) + . . . + v(xn) = 1 is in the form
v(x) = xTAx where A is an arbitrary symmetric positive semi-definite matrix with unit

1 We do not show it in its full generality.
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trace.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The BKS theorem is then a trivial consequence. However, the proof of Gleason’s
theorem is known to be notoriously hard. On the other hand, there must be a finite
set of points that is not colorable. This is a corollary of Gödel’s completeness theorem.
Such sets were consequently found and we will show some later.

The proof of Gleason’s theorem has since been simplified and made more elementary,
but still there is no space here to write it down. See [40] for the proof.

The theorem is actually an equivalence. The direction that any positive semi-definite
matrix with unit trace defines the desired mapping is indeed easy.

Proof of one direction of Theorem 3.3. Take any orthonormal basis {x1, x2, . . . xm}
and stack the vectors (by columns) to a matrix X. The product XTX is an identity
matrix since by the definition of orthonormal basis:

(XTX)i,j = xTi xj =
{ 1 whenever i = j,

0 otherwise.
Thus X is an orthogonal matrix, X−1 = XT and XXT = Im. We further use the cyclic
property of trace:

m∑
i=1

v(xi) =
m∑
i=1

xTi Axi = tr(XTAX) = tr(AXXT ) = tr(A) = 1.

We conclude the proof by remarking that xTAx ≥ 0 for any x ∈ Rn and positivie
semi-definite matrix A; thus 0 ≤ v(x) ≤ 1. �

3.3 BKS Constructions
The original proof of Kochen and Specker consisted of a set of 117 vectors for which
there was no coloring. We do not list here the original construction, but we present a
gadget approach 3.4 to BKS constructions, and their idea was similar.

Later, Peres [36] found a non-colorable set of 33 vectors. We use the set to prove the
BKS theorem in Subsection 4.3.1. Later, a set of 31 vectors that cannot be colored was
found by Conway and Kochen [38], see Figure 3.1. The set consists of points (dots in
the figure) with integer coordinates on the surface of a cube [−2, 2]3.

3.4 Gadget Structures in BKS Graphs
In this section, we describe an approach to proving the BKS theorem. For convenience,
we represent the set of rays using a graph with vertices corresponding to rays and edges
denoting the orthogonality relation; thus, we will use vertices and corresponding rays
interchangeably.

The proof of the BKS theorem is a trivial consequence of the existence of a BKS
graph.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 3.1. A BKS graph is a graph G = (V,E) satisfying the following properties:

. For every vertex v ∈ V there is a corresponding ray v in R3 and if there is an edge
(x, y) ∈ E it holds that x is orthogonal to y.

13
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Figure 3.1. Conway–Kochen set

. The set of rays corresponding to the vertices is not colorable. That is, there is no
mapping v : V → {0, 1} such that for every edge (x, y) ∈ E, v(x) + v(y) ≤ 1, and for
every triangle1 x, y, z it holds that v(x) + v(y) + v(z) = 1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Recently, in [41], it was shown that every BKS graph has a colorable subgraph with

two distinguished vertices x, y which are not connected by an edge, and in every possible
coloring v it holds that v(x) + v(y) ≤ 1. More interestingly, they also showed that we
could construct a BKS graph from such subgraphs. It is not that surprising since
the original proof of Kochen and Specker adopted a similar construction, but they did
not describe the technique in general. The results of [41] are also more general since
their constructions work in arbitrary dimensions. We prove the results only in three
dimensions. Let us first show a construction of how to obtain a gadget from a BKS
graph.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 3.2. A graph G = (V,E) is called a gadget if it is colorable and there are
vertices x, y ∈ V such that (x, y) /∈ V and no coloring satisfies v(x) = v(y) = 1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Theorem 3.4. Let a graph G = (V,E) be a BKS graph. Then it contains a gadget as a
subgraph.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. The graph is not colorable. We will remove one edge from E at a time until

the removal of the next edge (x, y) would result in a colorable graph. We remove
the edge, and the resulting graph is a gadget. Every coloring necessarily satisfies
v(x) = v(y) = 1, otherwise it would be a valid coloring even before the removal. Since
v(x) = 1, it must be contained in a triangle, thus there is a triangle a,b,x and in every
coloring it necessarily holds that v(b) = 0. Thus v(y) + v(b) ≤ 1 and they are not
orthogonal, so it is indeed a gadget. �

1 A triangle is a complete subgraph on 3 vertices.
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The construction may be interesting from a graph-theoretical perspective. However,
on the other hand, the set of vertices, i.e., rays, remains the same, and the action of
deleting an edge makes no sense. According to [41], every known BKS graph contains
an induced subgraph that is a gadget. This is a much more interesting and stronger
result, but in general, it was not shown yet that it is possible for every BKS graph.

We proceed with a construction that produces a BKS graph from gadgets. We show
it on an example.

Let us first present a gadget captured in Figure 3.2.

a

b
c

d

e
f

g

h

Figure 3.2. Gadget “Specker’s bug”

Rays corresponding to vertices:. a = (1,−1, 1). b = (1, 1, 0). c = (0, 0, 1). d = (−1, 1, 0). e = (0, 1, 1). f = (1, 0, 0). g = (0, 1,−1). h = (1, 1, 1)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 3.5. The graph in Figure 3.2 is a gadget with distinguished vertices a, h.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. First we show that there is a coloring, then we show that there is no coloring

v, v(a) = v(h) = 1.
The mapping v defined as

v(x) =
{

1 if x ∈ {e, d},
0 otherwise,

is clearly a coloring.
For the other part, we proceed by contradiction. Assume to the contrary that there is

a coloring v such that v(a) = v(h) = 1. Then v(b) = v(d) = 0 and v(c) = 1. Similarly,
v(e) = v(g) and v(f) = 1; thus 1 = v(c) = v(f) which is a contradiction since they are
connected by an edge.

�

Now consider the four rays1:

. a. h. a× h. (a× h)× h

If v(a) = 1, then v(h) = v(a× h) = 0 and v((a × h) × h) = 1. Thus, we are able
to construct a graph with two distinguished vectors s, t such that whenever v(s) = 1,
1 Operator × stands for cross product. It produces a vector orthogonal to both operands.
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then also v(t) = 1. See the graph in Figure 3.3 for an extended graph from Figure 3.2
with omitted/renamed labels for brevity. We call such a graph a 11-gadget1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 3.3. A graph G = (V,E) is called a 11-gadget if it contains two vertices
s, t ∈ V such that in any coloring v(s) = 1 ⇒ v(t) = 1. We will also use a term
11θ-gadget, where the θ stands for the angle between rays corresponding to vertices s,
t. We will also call the distinguished vertices s and t.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

s t

Figure 3.3. 11-gadget

We can chain the 11-gadgets in the sense of Figure 3.4. The resulting graph is again
a 11-gadget since v(s1) = 1⇒ v(t2) = 1 for any coloring v.

s1
t1 = s2

t2

Figure 3.4. Chain of 11-gadgets

In this particular example, the rays corresponding to s1, s2 = t1, t2 are in a common
plane; thus the rays s1 and t2 make double the angle of the rays s1 and t1. The angle
may be smaller if the rays do not lie in a common plane.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Remark 3.6. Let us have two 11θ-gadgets with s, t being s1, s2 and t1, t2 respectively.
We may chain them so that t1 = s2; thus v(s1) = 1 ⇒ v(t2) = 1. The chain forms a
11θ′ -gadget, where θ′ is an arbitrary number from interval (0, 2θ] and is a 11-gadget.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Now we have all the tools needed to construct a BKS graph from a chain of 11θ gad-

gets. Take any orthogonal basis a,b, c and use the just constructed 11-gadget such that

1 Here 11 stands for “one-one”, not for eleven.
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v(a) = 1 ⇒ v(b) = 1, v(b) = 1 ⇒ v(c) = 1, v(c) = 1 ⇒ v(a) = 1. Then the resulting
graph will be a BKS graph.

Thus, we obtained a proof of the BKS theorem.
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3.5 Computational Aspects of Searching for BKS
Graphs

There is a research direction aiming at finding the smallest possible BKS graph. At the
time of writing, the smallest known BKS graph contains 31 vertices; we have already
presented the construction in Figure 3.1.

Recently, it was shown that no graph with 21 or fewer vertices is a BKS graph,
see [45]. The lower bounds on the number of vertices of a BKS graph are obtained by
an exhaustive generation of graphs and verifying that they are indeed not BKS graphs.
We decompose the general approach to verify that there is no BKS graph with a given
number of vertices into three problems, each of which is computationally demanding.

3.5.1 Exhaustive Generation of Graphs
The state-of-the-art approach generates all graphs up to a given size that does not
violate the necessary conditions for a graph to be a BKS graph, see 3.5.2. The process
of enumerating all possible graphs with a given number of vertices is intractable even
for small graphs with, e.g., 15 vertices since the graphs generally have a huge automor-
phism group. A solution to this problem is the isomorphism-free exhaustive generation,
see [30]. Unfortunately, no algorithm with polynomial time complexity is known for the
graph-isomorphism problem; thus, the isomorphism-free generation is computationally
extensive.

3.5.2 Embeddability of Graphs
Given a graph, it is not immediate if its vertices can be assigned rays of R3 such that
the edges follow the orthogonality relation. Therefore, we call a graph embeddable if
there is such an assignment.

There are known some necessary but not sufficient graph-theoretical properties of
the smallest possible BKS graph. For instance, it is 4-colorable and contains no cycle
of length 4.

To eventually decide if a graph G = (V,E) is embeddable, it is necessary to solve a
system of polynomial equations with three variables v1, v2, v3 for every vertex v ∈ V
determining the ray. There is one equation for every edge and one for every vertex.

. v2
1 + v2

2 + v2
3 = 1 for every vertex v ∈ V .. u1v1 + u2v2 + u3v3 = 0 for every edge (u, v) ∈ E.

That is a hard problem, see [1].

3.5.3 Coloring Verification
The last problem is to verify if a graph is colorable in the BKS sense or not. Unfortu-
nately, this is again an NP-hard problem. The problem can be reduced to the 3-coloring
problem, which is known to be NP-hard even if the graph is embeddable, we refer to [1].
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Chapter 4
Modifications of Bell–Kochen–Specker
Theorem

We review a handful of notable variants of the Bell–Kochen–Specker theorem. The
variants were often proposed by physicists but enjoyed great attention even in the
mathematical community.

4.1 Rational Measurements
The physicists’ community questioned the assumption of BKS theorem, which allowed
real measurements. They argued about the fact that the measurements are not exact;
hence it does not make sense to consider the measurements to be real. An additional
motivation to the consideration of the rational version of BKS theorem is the discrete
nature of quantum physics.

It is an easy corollary of [15] that the set of unit vectors with rational coordinates
in three dimensions is {0, 1}-colorable. It is subject to debate if this result nullifies the
BKS theorem or not; see [18, 31] for the respective arguments.

We will prove the theorem using analogical tools to those in [15]; hence also to those
in [18, 31]. We also use red/blue colors instead of zeros and ones for the sake of brevity.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Theorem 4.1. The set M = {x | xT x = 1, x ∈ Q3} can be colored in a way that for
every three pairwise orthogonal vectors precisely one of them is colored red and the
remaining two are colored blue.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Before we proceed with the proof, we note that if we scale every vector of M by

an arbitrary non-zero scalar, not necessarily the same for every vector, the new set
would be colorable if and only if the original set was colorable, since two scaled vectors
are orthogonal if and only if they were orthogonal before scaling. This leads us to the
observation that we can see the set M as the set of precisely those one-dimensional sub-
spaces of R3 that intersect with the unit rational sphere. First, we choose a convenient
representative for every vector of M .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 4.1. We call a triplet of integers x, y, z Pythagorean, if they are not all zeros
and there is an integer n such that x2 + y2 + z2 = n2. Let the set of all Pythagorean
triplets be P , and we will treat them as vectors in R3.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Lemma 4.2. There is the following correspondence between Pythagorean triples and
rational unit vectors:

. For every vector (a, b, c) ∈M there is a real α such that α(a, b, c) ∈ P .. For every triplet (x, y, z) ∈ P there is a real β such that β(x, y, z) ∈M .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof.

. By definition of M , we may rewrite

(a, b, c) =
(
p1

q1
,
p2

q2
,
p3

q3

)
for integers pi, qi, i ∈ {1, 2, 3}, and it also holds that:(

p1

q1

)2
+
(
p2

q2

)2
+
(
p3

q3

)2
= 1.

Thus we choose α = q1q2q3 and indeed

(p1q2q3)2 + (q1p2q3)2 + (q1q2p3)2 = (q1q2q3)2.

. We divide the equation x2 + y2 + z2 = n2 by n2 and get(x
n

)2
+
( y
n

)2
+
( z
n

)2
= 1,

hence ( xn ,
y
n ,

z
n ) is a unit vector and has rational coordinates and therefore is contained

in M .

�

Of course, the second claim of Lemma 4.2 is not needed to prove the theorem, and
we list it only for the sake of completeness. Lemma 4.2 allows us to identify vectors of
M with their scaled versions from P .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Lemma 4.3. For every Pythagorean triplet (x, y, z) ∈ P , it holds that at most one of
its coordinates is odd.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. Looking for a contradiction. Let there be two or three odd numbers among

(x, y, z) ∈ P , then x2 + y2 + z2 ≡ m (mod 4), m ∈ {2, 3}, but quadratic residues
modulo 4 are only 0, 1; a contradiction. �

Note that whenever a vector p ∈ P contains an odd element at position i, then, by
a simple corollary of the uniqueness of prime factorization, there is no scalar α such
that αp ∈ P has an odd element at coordinate j 6= i, where i, j ∈ {1, 2, 3}.

Proof of Theorem 4.1. We prove the theorem by giving an explicit coloring. Em-
ploying the Lemma 4.2, every vector x ∈ M is a scaled vector p ∈ P . Without loss of
generality, the greatest common divisor of elements of p is 1. Then the vector p has
precisely one odd element by Lemma 4.3. We color x by red if and only if the odd
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element of p is in its last position. We note that whenever two vectors are orthogonal,
then their corresponding Pythagorean vectors contain the odd element at different
positions. Otherwise, their inner product is odd and therefore non-zero; thus, no two
vectors colored red are orthogonal, and among every three pairwise orthogonal vectors,
there is one red, which concludes the proof. �

Clearly, we can obtain an even stronger result that the set M can be colored by three
colors such that every pair of orthogonal vectors is colored differently. This is indeed
the original result of Godsil and Zaks from [15].

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Remark 4.4. The choice of a set representing rational measurements M may seem to
be arbitrary; for instance, a vector (1, 1, 1) is not a vector from M , although it could
be considered rational. If we consider vectors with integer coordinates, we can find a
non-colorable set, e.g., Conway’s set.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4.2 Higher Dimensions
Now we inspect the proofs of BKS theorem in higher dimensions. The original construc-
tion from the proof of BKS theorem proved the nonexistence of hidden variables in three
dimensions, and after a trivial modification, the theorem rules out the hidden variables
even in higher dimensions. It is not a mathematical curiosity; the three dimensions do
not correspond to the dimensionality of the surrounding world. It corresponds to the
dimensionality of the quantum system. In the introductory chapter, we have already
made use of the 8-dimensional Hilbert space. Even infinite-dimensional Hilbert spaces
are considered in practice, hence proving the BKS theorem in any dimension would be
valuable for physics.

The proofs of BKS theorem in higher dimensions are interesting for their simplicity,
while they are almost as strong as those in three dimensions for the physicists. We shall
show two proofs, one with 18 vectors of R4, and the other with 21 vectors of C6. For
the latter, we emphasize that although we defined the coloring in Rn, its definition in
Cn is analogical, and we did not consider it only for the sake of simplicity.

4.2.1 Cabello’s Proof of BKS Theorem in Four Dimensions
Probably the most elegant proof of the BKS theorem is the Cabello’s proof in four
dimensions [11]. It considers 18 vectors. We stacked them in the following matrix:

0001 0001 11̄11̄ 11̄11̄ 0010 11̄1̄1 111̄1 111̄1 1111̄
0010 0100 11̄1̄1 1111 0100 1111 1111̄ 1̄111 1̄111
1100 1010 1100 101̄0 1001 1001̄ 11̄00 1010 1001
11̄00 101̄0 0011 0101̄ 1001̄ 011̄0 0011 0101̄ 011̄0

 (1)

For typographical reasons, we used 1̄, instead of −1, and every element of the matrix
corresponds to a vector in four dimensions. E.g., the element 011̄0 in the bottom-right
corner corresponds to the vector (0, 1,−1, 0).

Let us assume that there is a BKS coloring of the 18 vectors. Matrix (1) has two
significant properties:. Each of its nine columns contains an orthogonal basis of R4; thus, the sum of the

values of a state in every column is 1, and the sum of the values of a state over all
elements of the matrix is odd.
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. Every vector is contained in the table precisely twice; hence the sum of the values of

a state of all 36 elements of the matrix is even.

Therefore, we arrived at an apparent contradiction.
For the reader’s convenience, we identified the vectors with letters a . . . r and rewrote

the table using the letters to make it easier to verify that every vector was used twice.
a a j j b k l l d
b m k i m i d c c
g f g p h n o f h
o p e q n r e q r

 (2)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 4.5. There is no coloring of R4.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4.2.2 Proof With 7 Contexts inC6

The smallest possible BKS set in terms of contexts (number of bases used) is in six di-
mensions. It contains 7 contexts and 21 vectors. It was proposed in [23], where they
also claimed that it is the smallest BKS set possible in terms of contexts. We do not
list the vectors explicitly here because they are rather complicated. Instead, we refer
the reader to the paper for details. Therefore, we only present a hypergraph represent-
ing the set of vectors in Figure 4.1. Every dot in the figure corresponds to a vector,
and every straight line connects six dots which correspond to six vectors forming an
orthogonal basis.

Figure 4.1. BKS set in 6 dimensions.

The argument is similar to the one in four dimensions. There are seven orthogonal
bases, and every vector is contained in precisely two bases; thus, the sum of the doubles
of all values of a state should be even and odd at the same time.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 4.6. There is no coloring of C6.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4.3 Statistical Argument
Although all the mentioned approaches constructed a set of vectors, for which there was
no {0, 1}-coloring, there are also constructions showing that there can be {0, 1}-coloring
of R3, but it would contradict quantum mechanics in another way.

The following construction is from Yu and Oh [49]. The set S = {−1, 0, 1}3 ⊂ R3

contains 27 elements. One of them is zero which we discard, and for every other vector
x ∈ S, also −x ∈ S, so there are 13 rays in S.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Lemma 4.7. At most one vector from the collection:

. a = 111. b = 1̄11. c = 11̄1. d = 111̄

may be assigned 1.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Proof. We show that every assignment of two ones would lead to a contradiction.
We abuse the symmetry; hence it is sufficient to inspect the following two cases.

. v(1̄11) = v(111) = 1.

v(101) = v(101̄) = 0; hence v(010) = 1.
v(110) = v(11̄0) = 0; hence v(001) = 1, a contradiction.

. v(1̄11) = v(11̄1) = 1.

v(101) = v(101̄) = 0; hence v(010) = 1.
v(011) = v(011̄) = 0; hence v(100) = 1, a contradiction.

�

Thus in every possible assignment, v(a) + v(b) + v(c) + v(d) ≤ 1.
On the other hand, every of these rays corresponds to a projector to themselves and

quantum mechanics predicts1, that the expected value of v(h1) + v(h2) + v(h3) + v(h4)
should be an eigenvalue of

aaT
aTa + bbT

bTb + ccT
cT c + ddT

dTd = 4
3 I3.

It can only be 4/3, but 4/3 � 1; thus, the hidden variable theory is not compatible
with quantum mechanics.

1 We are not capable of describing this quantum mechanics prediction; we paraphrased the original paper
here.
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4.3.1 Proof of BKS Theorem in Three Dimensions

We use the Yu–Oh set to arrive at a contradiction. The resulting configuration is
known as Peres configuration [36], and it has 33 vectors. We do not provide the original
argument. We show a possibly clearer one, consisting of two steps, one of which was
already presented in Lemma 4.7.

Consider again the set of rays S = ({−1, 0, 1}3 \ {(0, 0, 0)}) ⊂ R3 containing 13
elements as discussed before. We will use the same notation for ray description as
before, additionally we use 2 as

√
2 for brevity; e.g., 12̄0 corresponds to the vector

(1,−
√

2, 0).
We take three copies of the set and rotate every copy by 45◦ with respect to the axes

x,y,z to obtain sets Sx, Sy and Sz respectively. Note that the vectors 100, 010, 001
are contained in all of the sets Sx, Sy, Sz; thus their union contains1 13 + 10 + 10 = 33
elements.

When a vector is rotated about an axis, its component remains unchanged in the
axis direction. For the remaining directions, they will rotate as follows:

11→ 20→ 11̄→ 02̄→ 1̄1̄→ 2̄0→ 1̄1→ 02→ 11.

We will employ Lemma 4.7; thus we list the needed vectors and their respective
images after rotation. We write ax for the image of a after rotation about x axis;
similarly for other vectors and axes. We will also use ei for the i-th standard basis
vector.

S Sx Sy Sz
a 111 120 210 201
b 1̄11 1̄20 012 021
c 11̄1 102 21̄0 02̄1
d 111̄ 102̄ 012̄ 201̄

Table 4.1. Rotated rays

We recall Lemma 4.7, that for any v : R3 → {0, 1} it holds that

. v(a) + v(b) + v(c) + v(d) ≤ 1.

Therefore, according to Remark 3.2 it also holds that:

. v(ax) + v(bx) + v(cx) + v(dx) ≤ 1,. v(ay) + v(by) + v(cy) + v(dy) ≤ 1,. v(az) + v(bz) + v(cz) + v(dz) ≤ 1,. v(e1) + v(e2) + v(e3) = 1.

However, we can form the following orthogonal bases:

. {ax, cy, e3},. {bx, ay, e3},
. {cx,dz, e2},. {dx, az, e2},

. {by, cz, e1},. {dy,bz, e1}.

1 It is clear that it contains at most 33 elements. We will not argue why is it exactly 33.
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Thus, the sum of values of elements in the bases is 6; let us write:

6 =
=1︷ ︸︸ ︷

v(ax) + v(cy) + v(e3) +
=1︷ ︸︸ ︷

v(bx) + v(ay) + v(e3) +
=1︷ ︸︸ ︷

v(cx) + v(dz) + v(e2)

+
=1︷ ︸︸ ︷

v(dx) + v(az) + v(e2) +
=1︷ ︸︸ ︷

v(by) + v(cz) + v(e1) +
=1︷ ︸︸ ︷

v(dy) + v(bz) + v(e1)

= v(ax) + v(bx) + v(cx) + v(dx)︸ ︷︷ ︸
≤1

+ v(ay) + v(by) + v(cy) + v(dy)︸ ︷︷ ︸
≤1

+ v(az) + v(bz) + v(cz) + v(dz)︸ ︷︷ ︸
≤1

+2 (v(e1) + v(e2) + v(e3))︸ ︷︷ ︸
=1

≤ 5

That is absurd; thus, the set Sx ∪ Sy ∪ Sz cannot be colored in the BKS sense.

4.4 Z2-Valued Assignment
Peres in [37] coined in a multiplicative version of BKS theorem. Consequently, there
were attempts to clarify if it is possible to assign (nontrivially) zeros and ones to vectors
of Rn such that in any orthogonal basis, an odd number of vectors is assigned 1. The
answer from [34] is that for n ≥ 4 it is impossible. The question for n = 3 was open and
arises in many contexts, see [17, 24, 26, 28–29, 33–34]. In Chapter 6 we give a definitive
answer that it is not possible.
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Chapter 5
Orthocomplemented Di�erence Lattices

In this chapter, we will study orthocomplemented difference lattices (abbr. ODLs).
They were introduced and consequently studied by Matoušek and Pták in their
works [24–29]. The aim of this chapter is to study states on ODLs. We give an
example of an ODL with no real-valued state; we also study Z2-states. The novelty
of this chapter lies in Section 5.5. The rest of the chapter is heavily based on the
abovementioned papers, but we make use of different techniques. In particular, we use
the connection between Boolean algebras and ODLs to provide proofs that are often
algorithmic.

5.1 Definitions
We provide the definition of an orthocomplemented difference lattice and inspect the
independence of the axioms of the symmetric difference operator. The orthocomple-
mented lattices were already heavily studied, see, e.g., [4, 21]; therefore, we do not dive
into the details of the axioms.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 5.1. An orthocomplemented difference lattice is a sextuplet (L,≤,4,′,0,1),
where ≤ is a binary relation on L; 4 and ′ are mappings 4 : L×L→ L and ′ : L→ L;
the elements 0, 1 ∈ L are the least and the greatest elements respectively, and the
following axioms hold:

. The tuple (L,≤,′ , 0, 1) forms an orthocomplemented lattice; that is for every elements
a, b, c ∈ L the following properties hold:

(L,≤) is a poset, i.e.,
. a ≤ a. (reflexivity)
. If a ≤ b and b ≤ a, then a = b. (antisymmetry)
. If a ≤ b and b ≤ c, then a ≤ c. (transitivity)

There is the supremum (denoted as a ∨ b) and the infimum (denoted as a ∧ b),
which is the least upper bound resp. the greatest lower bound; that is:
. If a ≤ c and b ≤ c, then a ∨ b ≤ c. (supremum)
. If c ≤ a and c ≤ b, then c ≤ a ∧ b. (infimum)

Thus, (L,≤) is a lattice.
Lattice (L,≤,′ , 0, 1) is orthocomplemented; i.e., it holds:
. a′ ∨ a = 1, a′ ∧ a = 0. (complement law)
. a′′ = a. (involution law)
. If a ≤ b, then b′ ≤ a′. (order reversing)
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. The 4 operator axiomatically introduces the symmetric difference operation in the
following way, that for arbitrary elements a, b, c ∈ L it holds:

a4 (b4 c) = (a4 b)4 c. (associativity)
a4 1 = a′.
14 a = a′.
a4 b ≤ a ∨ b.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The orthocomplemented lattice (L,≤,′ , 0, 1) is called the support of the ODL

(L,≤,4,′,0,1). The term “orthocomplemented” suggests that an orthogonality relation
is present here; we introduce it as follows:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 5.2. Let L be an ODL. Elements a, b ∈ L are orthogonal if a ≤ b′.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Whenever a ≤ b′ then also b ≤ a′; thus, the definition properly introduces a symmet-

ric binary relation.
We shall present some examples of ODLs. Any Boolean algebra with the standard

symmetric difference is an ODL. The converse is not true, and some ODLs are not
Boolean algebras.

For example, we take an ODL which is a Boolean algebra, and remove all inequality
relations that are not necessary; thus, the only remaining inequality relations will be
0 ≤ a and a ≤ 1 for any a ∈ L. The resulting algebra is not a Boolean algebra whenever
it has more than four elements.

When no ambiguity may occur, we write just L instead of the whole sextuplet when
considering an ODL.

For the sake of simplicity, we assume that L is finite. This assumption plays a role
only in a few cases to make the proofs more accessible. Notably, the assumption allows
us to develop the theory of ODLs without considering the controversial axiom of choice.

First, we shall inspect the axioms of symmetric difference. They are chosen such
that the symmetric difference would have similar properties to the standard symmetric
difference known from Boolean algebras. At first, we show that all four axioms of 4
are independent.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.1. The set of axioms of 4 is independent.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. We show examples of 4 such that they satisfy all but one axiom.
We define 4 on a four-element orthocomplemented lattice L = {0, x, x′, 1} where the

complemention and order are standard.

. The 4 operator defined by Table 5.1 satisfies every axiom but the first. The first is
violated since 1 = (x4 x′)4 1 6= x4 (x′ 4 1) = 0.

4 0 x x′ 1
0 0 0 0 1
x 0 0 0 x′

x′ 0 0 0 x
1 1 x′ x 0

Table 5.1. Example of 4 violating only the first axiom
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. The independence of the second axiom is a trivial consequence of the independence

of the third axiom, which we show in the sequel.. The 4 operator defined by Table 5.2 satisfies every axiom but the third. It is im-
mediate that the third is violated and that the second and fourth are satisfied. It is
more involved to show that the defined 4 is indeed associative; we split the proof
into multiple cases:

If any of the elements a, b, c is 0, then it holds since 04 e = e4 0 = e for any
element e ∈ L.
If the element c is x or x′, then it holds since e4 c = c for any element e ∈ L.
Otherwise c = 1 and it suffices to show that a4 b′ = (a4 b)′ which can be verified
in the table without much effort.

4 0 x x′ 1
0 0 x x′ 1
x x x x′ x′

x′ x′ x x′ x
1 1 x x′ 0

Table 5.2. Example of 4 violating only the third axiom

. The independence of the last axiom will be resolved later, see Corollary 5.12.

�

5.2 Basic Properties
The motivation behind introducing the symmetric difference on orthocomplemented
lattices is to obtain a natural class of algebras containing Boolean algebras while being
more general. This section shows certain nontrivial properties that hold for Boolean
algebras and hold for ODLs. We first show that De Morgan’s laws hold due to properties
of the orthocomplemented lattice; then, we proceed with properties specific to the
symmetric difference operator.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.2. (De Morgan’s laws) Let L be an ODL; the following identities hold
for every pair of elements a, b ∈ L:

. (a ∨ b)′ = a′ ∧ b′.. (a ∧ b)′ = a′ ∨ b′.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. Employing the order-reversing property, we get:

. a ≤ a ∨ b⇒ (a ∨ b)′ ≤ a′.. b ≤ a ∨ b⇒ (a ∨ b)′ ≤ b′.. (a ∨ b)′ ≤ a′ ∧ b′.

Similarly for a′, b′:

. a′ ∧ b′ ≤ a′ ⇒ a ≤ (a′ ∧ b′)′,. a′ ∧ b′ ≤ b′ ⇒ b ≤ (a′ ∧ b′)′,. a ∨ b ≤ (a′ ∧ b′)′ ⇒ a′ ∧ b′ ≤ (a ∨ b)′.
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Taking the last inequalities of both series, together with the antisymmetric property
of ≤, we arrive at (a ∨ b)′ = a′ ∧ b′, which concludes the first claim of the proposition.

For the second one, we note that the complementation operator ′ is bijective; thus,
to take the complements of both sides of the equations is an equivalent operation, and
the second claim immediately follows from the first one. �

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.3.

(i) a4 0 = a, 04 a = a.
(ii) a4 a = 0.
(iii) a4 b = b4 a.
(iv) a4 b′ = a′ 4 b = (a4 b)′.
(v) a′ 4 b′ = a4 b.
(vi) a4 b = 0 ⇐⇒ a = b.
(vii) (a ∧ b′) ∨ (b ∧ a′) ≤ a4 b ≤ (a ∨ b) ∧ (a′ ∨ b′).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof.

(i)

a4 0 = a4 (14 1) = (a4 1)4 1 = a′ 4 1 = a′′ = a.
04 a = (14 1)4 a = 14 (14 a) = 14 a′ = a′′ = a.

(ii) a4 a = a4 (14 a′) = (a4 1)4 a′ = a′ 4 a′, moreover we know:

a ≥ a4 a,
a′ ≥ a′ 4 a′ = a4 a,

hence a4 a ≤ a ∧ a′ = 0; thus a4 a = 0.
(iii) a4b = 04(a4b)40 = (b4b)4(a4b)4(a4a) = b4((b4a)4(b4a))4a = b4a.
(iv) a4 b′ = a4 (14 b) = (a4 1)4 b = a′ 4 b = 14 (a4 b) = (a4 b)′.
(v) a4 b = a4 b4 0 = a4 b4 14 1 = 14 a4 b4 1 = a′ 4 b′.
(vi) The right-to-left direction is already proven. For the converse, we have:

a = a4 0 = a4 (b4 b) = (a4 b)4 b = 04 b = b.

(vii) These properties follow from the preceding ones and from the axioms:

a4 b ≤ a ∨ b.
a4 b = a′ 4 b′ ≤ a′ ∨ b′.
(a4 b)′ = a4 b′ ≤ a ∨ b′.
(a4 b)′ = a′ 4 b ≤ a′ ∨ b.

We negate the latter two identities and simplify them using De Morgan’s laws.
Then we obtain:

(a ∧ b′) ∨ (a′ ∧ b) ≤ a4 b ≤ (a ∨ b) ∧ (a′ ∨ b′)

�

As discussed in Section 2.7, the underlying algebra for quantum logics should follow
the orthomodular law. We show that it is indeed the case for ODLs.
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Let us show that the orthomodular law (see [40]) is satisfied for any ODL L. The

orthomodular law is a weakened version of the modular law:

. If a ≤ c, then a ∨ (b ∧ c) = (a ∨ b) ∧ c,

which we enforce only for b = a′, hence the orthomodular law is:

. If a ≤ c, then a ∨ (a′ ∧ c) = c.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 5.3. Let L be an orthocomplemented lattice for which the orthomodular law
holds then L is an orthomodular lattice (abbr. OML).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.4. The support of any ODL L is an OML.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. We verify that the orthomodular law holds for every pair of elements

a, c ∈ L such that a ≤ c. We show equality using two inequalities.
The first is obvious; a∨ (a′ ∧ c) ≤ c∨ (a′ ∧ c) = c. For the second, we need to employ

the properties of symmetric difference. Using the Claim (vii) of Proposition 5.3, we get:

a′ ∧ c = (a ∧ c′) ∨ (a′ ∧ c) ≤ a4 c ≤ (a ∨ c) ∧ (a′ ∨ c′) = a′ ∧ c,

where we used the fact a ≤ c, hence c′ ≤ a′ and a ∧ c′ ≤ c ∧ a′; thus a4 c = a′ ∧ c and
finally:

c = a4 a4 c = a4 (a′ ∧ c) ≤ a ∨ (a′ ∧ c),

which is the other direction; the proof is completed. �

In the proof of Porposition 5.4 we note an interesting fact that if a ≤ c, then a4 c
may be defined in only one way. We later show that there are many pairs of elements
for which the symmetric difference may be defined uniquely. Before that, we will briefly
focus on OMLs.

5.3 Intermezzo about Orthomodular Lattices
Orthomodular lattices were extensively studied as quantum logics, see [4, 21, 40]. Ac-
cording to Proposition 5.4, ODLs are OMLs with a defined symmetric difference on
them; therefore, we will represent them using Greechie diagrams.

5.3.1 Greechie Diagrams

A common representation for an OML is a hypergraph representation called a Greechie
diagram, coined in [16]. We remind the reader that a hypergraph is a pair H = (V,E),
where V is a set of vertices and E is a set of edges such that for every edge e ∈ E,
e ⊆ V ; see [5] for more details. Thus, hypergraphs are a generalization of undirected
graphs where the edges may contain an arbitrary number of vertices.

An orthomodular lattice can be seen as a union of Boolean algebras; thus, a con-
venient representation is to use hypergraphs whose vertices correspond to the least
non-zero elements of the OML, which are called atoms; and every edge corresponds to
the set of atoms of a maximal Boolean subalgebra of the OML. A maximal Boolean
subalgebra of an OML is called a block; see [4, 21, 40].
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Not every hypergraph represents an OML in this sense. However, there is quite a
large class of hypergraphs, called Greechie diagrams, which represent OMLs. Not every
OML is representable by a Greechie diagram.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 5.4. Let H = (V,E) be a hypergraph. It represents an OML if the following
conditions hold:

. Every edge contains at least 2 vertices.. If an edge contains precisely 2 vertices, it does not intersect with any other edge.. No two edges have more than one vertex in common.. The length of every cycle1 is at least 5.

We call such hypergraph a Greechie diagram.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

We show several examples of Greechie diagrams in Figure 5.1, where dots correspond
to vertices and maximal straight line segments correspond to edges. The hypergraph in
the figure, as well as every its induced2 subhypergraph, corresponds to an orthomodular
lattice.

Figure 5.1. Example of an orthomodular lattice represented by a Greechie diagram

5.4 Boolean Algebras as Subalgebras of
Orthocomplemented Di�erence Lattices

OMLs can be seen as unions of Boolean algebras; thus, ODLs can be seen as unions
of Boolean algebras endowed with a symmetric difference operator. We note that
the axiomatic symmetric difference of ODLs necessarily corresponds to the standard
symmetric difference of Boolean algebras in every Boolean subalgebra of the ODL.

1 A cycle of length n ≥ 3 is an alternating sequence of distinct edges and vertices (with the exception
that the first and the last vertex are equal) v1, e1, v2, e2, . . . vnenv1 such that every vertex is contained in
the neighboring edges.
2 A hypergraph H2 = (V2, E2) is an induced subhypergraph of H = (V, E) if V2 ⊆ V , E2 ⊆ E and
∀e ∈ E, e ⊆ V2 ⇒ e ∈ E2.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.5. Let L be an ODL and x, y ∈ L its elements. The following conditions
are equivalent:

. x and y are contained in a Boolean subalgebra of L,. x = (x ∧ y) ∨ (x ∧ y′),. x = (x ∨ y) ∧ (x ∨ y′).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.6. Let L be an ODL and x, y ∈ L its elements contained in a block, then:

(x ∧ y′) ∨ (x′ ∧ y) = x4 y = (x ∨ y) ∧ (x′ ∨ y′).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. A simple corollary of the property (vii) of Proposition 5.3:

(x ∧ y′) ∨ (x′ ∧ y) ≤ x4 y ≤ (x ∨ y) ∧ (x′ ∨ y′),

and the fact that x, y are contained in a Boolean subalgebra. �

The connection between ODLs and Boolean algebras is even tighter. In some sense,
the symmetric difference operator of any ODL corresponds to a Boolean algebra. We
will be more precise later.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.7. Let L be an ODL; the cardinality of L is 2n for some natural n.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. We first introduce1 a ∆ : P(L)→ L operator as a shortcut for the symmetric

difference of multiple elements, that is e.g., ∆({x, y, z}) = x4 y4 z. The 4 operator
is commutative and associative; thus the definition is unambiguous. We further note
that 0 is the neutral element w.r.t. 4 operator; therefore ∆(∅) = 0.

Now, we show that there exists a set M ⊆ L such that for every element e ∈ L there
is a subset S ⊆M such that ∆(S) = e and at the same time, for no two distinct subsets
S1, S2 ⊆ M it holds that ∆(S1) = ∆(S2). We call the latter property that M is an
independent set.

We sketch an algorithm which constructs such M . It starts with M = ∅ and repeats
the following process until termination:

. Find an element e ∈ L such that there is no subset S ⊆M such that ∆(S) = e.

If there is no such element, we terminate the algorithm.
Otherwise, set M := M ∪ {e}.

Let us comment on the correctness of the algorithm. The details are omitted for the
sake of brevity.

. The algorithm terminates since L is a finite set.. When the algorithm terminates, then for every element e ∈ L there is a subset S ⊆M
such that ∆(S) = e.. The construction ensures that M is an independent set.

1 The set P(L) is the power set of L. That is the set of all subsets of L.
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Thus, the subsets of the final M are in a one-to-one correspondence with the elements
of L; consequently, L contains 2n elements for a natural n. �

Inspired by the proof, we may consider the (ordered) set M to serve as a basis of L,
where the elements of L have unique coordinates with respect to M ; the coordinates
will be either 0 or 1; thus, it is a vector space over Z2.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 5.8. Let L be an ODL. Then the set L is a vector space over the field Z2 with
the operators +, · defined as follows:. For a, b ∈ L, a+ b = a4 b.. For a ∈ L, 0 · a = 0 and 1 · a = a.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
We demonstrate this in the following example.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Example 5.1. Let L be an ODL with 32 elements and M = (a, b, c, d, e) ⊂ L be an
independent set. Then there is an element x ∈ L, x = a 4 c 4 e and x will have
coordinates (1, 0, 1, 0, 1).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This way, we may introduce a bijective mapping between an ODL and a Boolean

algebra such that the symmetric differences will coincide.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.9. Let L be an ODL and its number of elements be 2n. Let B = {0, 1}n
be a Boolean algebra. There is a bijective mapping f : L → B such that f(0) = 0,
f(1) = 1 and a 4 b = f−1(f(a) 4B f(b)) for a, b ∈ L, where 4B is the standard
symmetric difference in Boolean algebra B.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. The proposition is a simple corollary of the proof of Proposition 5.7. The only

thing we are to show is that there exists an ordered basis M such that 1 = ∆(M).
We construct M as in the proof of Proposition 5.7 and it either satisfies the property

and we are done; otherwise there is a non-empty subset S ⊂ M such that ∆(S) = 1
and there is an element e ∈ S. Then the set N = M \ {e} ∪ {∆(M \ {e})4 1} is the
desired basis.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Example 5.2. We show an example application of Proposition 5.9 on ODL L captured
in Figure 5.2. Let there also hold that b4 d = g which fully defines the 4 operator.
It can be seen that L contains 16 elements, that is 0, 1, together with seven atoms and
their complements. A desired mapping is the following:. a ∼ (1, 0, 0, 0),. b ∼ (0, 1, 0, 0),. c ∼ (0, 0, 1, 1),. d ∼ (0, 1, 0, 1),. e ∼ (0, 0, 1, 0),. f ∼ (0, 1, 1, 0),. g ∼ (0, 0, 0, 1),

. a′ ∼ (0, 1, 1, 1),. b′ ∼ (1, 0, 1, 1),. c′ ∼ (1, 1, 0, 0),. d′ ∼ (1, 0, 1, 0),. e′ ∼ (1, 1, 0, 1),. f ′ ∼ (1, 0, 0, 1),. g′ ∼ (1, 1, 1, 0).

a

b

c

d

e

f

g

Figure 5.2. Example of
an ODL
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Remark 5.10. According to Proposition 5.9, there is a bijective mapping between any
ODL and binary strings of certain length. The mapping may be interpreted as assigning
coordinates to the elements of L which is a vector space according to Corollary 5.8.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
It is not clear which OMLs may be endowed with a symmetric difference. In Proposi-

tion 5.7, we have shown that every ODL necessarily contains 2n elements. Even this is
not sufficient for OML to be extendable to ODL, we provide another simple necessary
condition in the upcoming proposition.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.11. Let L be an ODL, then there is no atom c ∈ L contained in precisely
two blocks.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. Assume to the contrary that there is such an atom in blocks B1, B2. Consider

two arbitrary atoms a ∈ B1 \ B2, b ∈ B2 \ B1. It holds that a ≤ c′ and b ≤ c′; then
also a4 b ≤ c′. The element c′ is contained only in blocks B1, B2, so must be a4 b.
Without loss of generality, let a4 b = d ∈ B1. Then a4 d = b, but Boolean subalgebra
is closed under the symmetric difference; a contradiction. �

Note that if the symmetric difference did not have the last axiom, i.e., a4 b ≤ a∨ b,
a, b ∈ L for an ODL L, then if L has 2n elements, any mapping m : L → {0, 1}n
would introduce a valid symmetric difference in the sense of Proposition 5.9. But it is
a simple corollary of 5.11 that not every OML with 2n elements can be endowed with
a symmetric difference.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 5.12. The set of axioms of the 4 operator is independent.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

5.5 Stateless Orthocomplemented Di�erence Lattice
We proceed with the main result of this chapter, which is an example of a stateless ODL.
We first define a state, then we show an OML and endow it with a partial symmetric
difference; then we conclude that it admits no state, and finally, we show that such a
symmetric difference exists.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 5.5. Let L be an ODL. A mapping s : L → [0, 1] is called a state if the
following holds:. s(x) + s(y) = s(x ∨ y), whenever x and y are orthogonal.. s(1) = 1.. s(x) + s(y) ≥ s(x4 y).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Although Proposition 5.9 suggests that from an ODL, we may obtain the associated

Boolean algebra, here we are interested in the converse. We take an OML with 2n
elements and associate every element with a binary string of length n, which determines
the symmetric difference.

In Figure 5.3, there is the OML L which we will endow with a symmetric difference
operator. It contains two blocks with 7 atoms, three blocks with 3 atoms, and 39601

1 3960 = (213 − 2− 3(23 − 2)− 2(27 − 2))/2

34



. . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Stateless Orthocomplemented Di�erence Lattice

blocks with two atoms, which are not shown in the figure for obvious reasons. The blocks
are represented by horizontal lines. The vertical dotted lines indicate the symmetric
difference in a way that if three vertices (atoms), e.g., a1, b1, c1 are connected by a
dotted line then a1 4 b1 4 c1 = 1; thus, a1 4 b1 = c′1.

a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6 b7

c1 c2 c3 d1 d2 d3 e1 e2 e3

Figure 5.3. Example of a stateless orthocomplemented difference lattice

For now, we assume that such a symmetric difference exists and we show that the
ODL does not admit any state. We rewrite the symmetric differences from the figure
explicitly:

. a1 4 b1 = c′1 = c2 ∨ c3,. a2 4 b2 = c′3 = c1 ∨ c2,. a3 4 b3 = d′1 = d2 ∨ d3,. a4 4 b4 = d′3 = d1 ∨ d2,. a5 4 b5 = e′1 = e2 ∨ e3,. a6 4 b6 = e′3 = e1 ∨ e2.

Assume that there exists a state s; then it satisfies:

. s(a1) + s(b1) ≥ s(a1 4 b1) = s(c2 ∨ c3) = s(c2) + s(c3),. s(a2) + s(b2) ≥ s(a2 4 b2) = s(c1 ∨ c2) = s(c1) + s(c2),. s(c1) + s(c2) + s(c3) = 1.

Together we have:

. s(a1) + s(a2) + s(b1) + s(b2) ≥ s(c1) + 2s(c2) + s(c3) ≥ 1.

Similarly we get:

. s(a3) + s(a4) + s(b3) + s(b4) ≥ 1,. s(a5) + s(a6) + s(b5) + s(b6) ≥ 1.

Summing them up:

. ∑6
i=1(s(ai) + s(bi)) ≥ 3.

On the other hand, we know:

. ∑7
i=1(s(ai) + s(bi)) = 2.

That is, together with the non-negativity of s, a contradiction.
We show that an ODL with such a symmetric difference indeed exists. We intro-

duce a mapping f : L → {0, 1}13 which assigns a binary string to every element of
L. Those binary strings will then determine the symmetric difference in the sense
of Proposition 5.9. It is sufficient to show the assignment of atoms since according to
Proposition 5.6, the value of f on every non-atom is determined.
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. f(a1) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). f(a2) = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). f(a3) = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). f(a4) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0). f(a5) = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0). f(a6) = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0). f(a7) = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1)

. f(b1) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0). f(b2) = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0). f(b3) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0). f(b4) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0). f(b5) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0). f(b6) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). f(b7) = (1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)

. f(c1) = (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1). f(c2) = (0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1). f(c3) = (1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1)

. f(d1) = (1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1). f(d2) = (1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1). f(d3) = (1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1)

. f(e1) = (1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1). f(e2) = (1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0). f(e3) = (1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0)

For the remaining two-atom blocks, we can go through them one-by-one and assign
an arbitrary binary string s, which is unassigned yet, to one atom, and the string 14 s
to the other.

We shall verify that the intersection of any two blocks is trivial; i.e., {0, 1}.
First, we see that the binary strings corresponding to elements of a block with atoms

ai (resp. bi) are constant in the last seven (resp. the first seven) entries. Clearly, the
only elements with this property from the blocks with atoms ci, di, ei are 0, 1.

The verification, that the intersection of blocks with atoms ai and bi is trivial, is
similar. The common element has to be constant in the first seven elements and in the
last seven elements at the same time. Thus, it is constant and can only be 0 or 1.

The remaining verification is immediate.
We emphasize that the resulting structure is indeed an ODL; the axioms of the

symmetric difference operator are satisfied.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Corollary 5.13. There exists a stateless ODL.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

We note that this is not just a mathematical curiosity. We motivated the study
of ODLs by their possible ability to describe quantum logic. Arguably, an ODL that
possesses no states clearly cannot describe any nontrivial system’s logic. However, an
example of a stateless OML from [16] led to a positive result showing that the state
space of OMLs can be an arbitrary convex compact set, see [43] for the precise meaning.

It is possible that a certain adaptation of the construction from [43] could be applied
for ODLs, however, the generalization from OMLs to ODLs is not immediate. It is only
clear that the state space of any ODL is compact and convex.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.14. Let L be an ODL. Then the set of all possible states S is compact
and convex in the following sense; for every s1, s2 ∈ S a mapping s : L→ [0, 1] defined
as s(x) = αs1(x)+ (1−α)s2(x) for every x ∈ L is a state, i.e., s ∈ S for any α ∈ [0, 1].

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The proof is straightforward and can be found in [20].
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5.6 Z2-States on Orthocomplemented Di�erence
Lattices

In the final section, we inspect Z2-valued states. We show that there is a close relation-
ship between the symmetric difference and such states. We start with listing definitions
and interesting properties.

5.6.1 Definitions

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 5.6. Let L be an ODL, and x, y ∈ L, x ≤ y be two of its elements, we call
the set {z | x ≤ z ≤ y, z ∈ L} an interval, and denote it by [x, y].

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
When no ambiguity can occur, for the sake of brevity, we may write s(M), where M

is a subset of L, and by this we mean s(M) = {s(x) | x ∈M}.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Proposition 5.15. Let L be an ODL and x ∈ L its element, then the interval [0, x] is
closed under 4.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. For any two elements a, b ∈ L such that a ≤ x, b ≤ x it holds that a ∨ b ≤ x

and a4 b ≤ a ∨ b ≤ x. �

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 5.16. Every interval has 2n elements.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 5.16 allows us to prove the fact that no atom is contained in exactly two

blocks.
Alternative proof of Proposition 5.11. Take an atom a which belongs to exactly

two blocks and compute the cardinality of the interval below its coatom, [0, a′]. It
is composed of two intervals in the blocks, with 2j , 2k elements for some j, k ≥ 2,
respectively, overlapping in another Boolean subalgebra with 2l elements, where l < j, k.
Thus the cardinality of [0, a′] is

2j + 2k − 2l = 2l (2j−l + 2k−l − 1) .

The number in the bracket is odd and it is not 1, thus not a power of 2. �

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 5.7. Let L be an ODL. A mapping s : L → Z2 is called a Z2-valued state
(abbr. Z2-state, or just state) if the following holds:

. s(x)⊕ s(y) = s(x ∨ y), whenever x, and y are orthogonal.. s(1) = 1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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5.6.2 Properties of Orthocomplemented Di�erence Lattices
Related toZ2-States

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Definition 5.8. Let L be an ODL. Then:

. L is called Z2-rich if for every two elements x, y ∈ L such that y � x, there is a
Z2-state s such that s([0, x]) = {0}, and s([y, 1]) = {1}.. L is called Z2-complete if for every two elements x, y ∈ L such that 0 6= y, x 6= 1,
x 6= y, there is a Z2-state s such that s(x) = 0, s(y) = 1.. L is called Z2-full if for every two elements x, y ∈ L, x 6= y, there is a Z2-state s such
that s(x) 6= s(y).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
In the literature, e.g., in [26], there is a different definition of Z2-fullness, which

corresponds to our Z2-completeness. We will later show that the properties are indeed
equivalent and that our definition of Z2-fullness is arguably more transparent.

Let us briefly comment on the properties. All of them require L to have for any pair
of elements x, y ∈ L a Z2-state, which distinguishes them in some sense whenever it is
not an apparent contradiction.

The property of Z2-fullness is the weakest since it requires a state distinguishing the
elements in an arbitrary way. Clearly, if an ODL L is Z2-rich or Z2-complete, then it
is also Z2-full.

The relation between Z2-richness, and Z2-completeness is not immediate. For a pair
of elements x, y such that 0 6= y, x 6= 1 and y < x, the property of Z2-completeness
requires a state s satisfying s(y) = 1, s(x) = 0, while the Z2-richness does not.

At first sight, the property of Z2-completeness might seem to be more restrictive
than the property of Z2-fullness, since we do not only require that, for every pair of
elements, there is a state that distinguishes them, but furthermore, it allows us to
choose the valuation on them. However, we shall show they are indeed equivalent.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Theorem 5.17. The properties of Z2-fullness a Z2-completeness are equivalent.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. The direction Z2-complete⇒ Z2-full is immediate. For the other direction, for

any x, y ∈ L, satisfying 0 6= y, x 6= 1, x 6= y, we give a construction of a state that fulfils
the property of Z2-completeness for x, y, i.e., s(x) = 0, s(y) = 1, given L is Z2-full. We
consider the three following Z2-states. If one of them satisfies 0 = si(x) 6= si(y) = 1,
we are done. Otherwise, the values on x, y are as follows:

. state s1, distinguishing x, y, i.e., s1(x) 6= s1(y), thus s1(x) = 1, and s1(y) = 0.. state s2, distinguishing x, 1, i.e., s2(x) 6= s2(1) = 1, thus s2(x) = 0, and hence
s2(y) = 0.. state s3, distinguishing 0, y, i.e., 0 = s3(0) 6= s3(y), thus s3(y) = 1, and hence
s3(x) = 1.

Now, a mapping s : L→ Z2 defined as s(e) = s1(e)⊕s2(e)⊕s3(e), e ∈ L is the desired
state. To see it, we shall verify that s is indeed a state, and 0 = s(x) 6= s(y) = 1. We
start with the latter,

. s(x) = s1(x)⊕ s2(x)⊕ s3(x) = 1⊕ 0⊕ 1 = 0.. s(y) = s1(y)⊕ s2(y)⊕ s3(y) = 0⊕ 0⊕ 1 = 1.
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That holds true. For the verification that s is truly a state, we first list the properties
of state and prove them for s in the sequel.

. s(x)⊕ s(y) = s(x ∨ y), whenever x, and y are orthogonal:

s(x)⊕ s(y) =
s(x)︷ ︸︸ ︷

s1(x)⊕ s2(x)⊕ s3(x)⊕
s(y)︷ ︸︸ ︷

s1(y)⊕ s2(y)⊕ s3(y)
= s1(x)⊕ s1(y)︸ ︷︷ ︸

s1(x∨y)

⊕ s2(x)⊕ s2(y)︸ ︷︷ ︸
s2(x∨y)

⊕ s3(x)⊕ s3(y)︸ ︷︷ ︸
s3(x∨y)

=s(x ∨ y),

. s(1) = 1:
s(1) = s1(1)⊕ s2(1)⊕ s3(1) = 1⊕ 1⊕ 1 = 1.

�

We shall also clarify why the Z2-richness is more restrictive than Z2-fullness, and
they are indeed not equivalent. See [29] for a study of Z2-rich OMLs and in particular
for an example of Z2-full OML that is not Z2-rich.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.18. The property of Z2-richness is strictly stronger than Z2-fullness.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
We may naturally obtain Z2-states from symmetric differences in the following sense:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.19. Let L be an ODL. According to Proposition 5.9, there is a bijection
f : L → {0, 1}n which induces the symmetric difference. A mapping s : L → {0, 1}
defined as s(x) = f(x)i for any x ∈ L is a Z2-state1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. The condition that s(1) = 1 is satisfied since f(1) = 1. We note that

s(x) ⊕ s(y) = s(x 4 y) for any x, y ∈ L. The second condition of a Z2-state is
s(x)⊕s(y) = s(x∨y) whenever x ≤ y′. Then it holds that x4y = (x∧y′)∨(x′∧y) = x∨y
and we are done. �

Proposition 5.19 suggests that we can always find Z2-states on ODLs. This con-
trasts with OMLs, where it is possible to construct such algebras that do not admit
any non-constant group-valued states, see [32, 48]. Furthermore, since we assigned a
unique binary string to every element of the ODL, then for every pair of states, there is
a position in which the respective binary strings differ; thus, we can construct a Z2-state
which distinguishes them.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 5.20. Every ODL is Z2-full.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 5.21. Let L be an ODL. A mapping s : L → {0, 1} satisfying s(1) = 1 and
s(x)⊕ s(y) = s(x4 y) is a Z2-state.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
It is not immediately clear if every Z2-state is in the form from Corollary 5.21.

Therefore, we first show that it is necessary for elements in a common block. Then we
1 f(x)i stands for the i-th element of the binary string f(x).
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show that there are other Z2-states not following the rule in general.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.22. Let L be an ODL and x, y ∈ L be contained in a common block,
then s(x)⊕ s(y) = s((x ∧ y′) ∨ (x′ ∧ y)) = s(x4 y) for any Z2-state on L.

Proof. Note that elements x ∧ y′, x′ ∧ y, and x ∧ y are pairwise orthogonal, clearly:

. x ∧ y′ ≤ (x′ ∧ y)′ = x ∨ y′,. x ∧ y′ ≤ (x ∧ y)′ = x′ ∨ y′,. x′ ∧ y ≤ (x ∧ y)′ = x′ ∨ y′.

As a consequence, for every Z2-state it holds:

. s(x ∧ y)⊕ s(x ∧ y′) = s(x),. s(x ∧ y)⊕ s(x′ ∧ y) = s(y),. s(x)⊕ s(y) = s(x′ ∧ y)⊕ s(x ∧ y′) = s((x′ ∧ y) ∨ (x ∧ y′)) = s(x4 y).

The proof is concluded. �

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proposition 5.23. There is an ODL L with elements x, y ∈ L such that there is a
Z2-state violating s(x4 y) = s(x)⊕ s(y).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. Take the ODL which is a union of three two-atom blocks. It admits 23 dif-

ferent Z2-states. On the other hand, there are only four states satisfying the property
s(x4 y) = s(x)⊕ s(y) for all pairs x, y. �

5.6.3 Lattice of Subspaces ofR3

It was a long-standing open question if the lattice of subspaces of R3 (L(R3)) admits
a non-constant Z2-state. We have already encountered this question in the context of
hidden-variable theory and BKS theorem in Section 4.4.

It is also connected to the ODLs. In the papers focusing on ODLs it was often
formulated as an open question, see e.g., [24, 26, 28–29]. It is the case because L(R3)
is a natural infinite OML with 3 atoms in every block. According to Corollary 5.20,
the study of Z2-states on it is closely related to the question whether it is possible to
endow the lattice with a symmetric difference.

In the upcoming chapter we show that there is no non-constant Z2-state on L(R3).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 5.24. The lattice of subspaces of R3 is not ODL-embeddable1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 Vaguely speaking, there is no ODL which has L(R3) as a sublattice. For the precise definition of
ODL-embeddability, we refer to [25].
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Chapter 6
Z2-Coloring of the Lattice of Subspaces ofR3

Throughout the thesis, we have encountered the question about the existence of non-
constant Z2-states on the lattice of subspaces of R3 (L(R3)) in different contexts. Once
with the connection to BKS theorem in Section 4.4, and then in the context of ODLs
in Subsection 5.6.3.

In this chapter, we give a definitive answer that the only Z2-state on L(R3) is the
constant one. The elements of L(R3) are subspaces of R3; the order is induced by
inclusion.

The chapter is almost identical to a part of the paper [47].

We adopt the notation from BKS constructions; thus, we call the state a coloring
and list the definitions in the spirit of Theorem 3.1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Definition 6.1.

. A Z2-coloring is a mapping m : R3\{0} → {0, 1} such that, for every three pairwisely
orthogonal vectors, u, v,w, it holds that m(u)⊕m(v)⊕m(w) = 1, where ⊕ denotes
addition modulo 2.. Two rays, u, v, are called isochromatic if m(u) = m(v) for all Z2-colorings m.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

6.1 Basic Construction

At first, a construction of 21 rays is shown. It contains three non pairwisely-orthogonal
rays, u, r, o such that in every coloring m, m(u)⊕m(r)⊕m(o) = 1. In Section 6.2, we
shall show that this property of three rays is sufficient for every coloring to be constant.

Figure 6.1 shows a hypergraph H = (V,E) that represents a set of rays used in
the proof of the main theorem. Vertices (dots) of the hypergraph represent rays. Its
edges (smooth curves) represent orthogonality relations in such a way that two vertices
contained in an edge are orthogonal. E.g., ray a is orthogonal to rays b, c, f, g.
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Figure 6.1. Orthogonality diagram

We shall show that there exist rays with these orthogonality relations. We do so by
the following explicit construction that ensures the orthogonality relations drawn by
straight lines in the figure. Each line represents three binary orthogonality relations,
ensured by the choice of vectors or by choosing one vector as the cross product of the
remaining two orthogonal vectors. The construction uses two non-zero real parameters,
x, y, which will be specified later.1

. a = (1, 0, 0). d = (x, 1, 0). f = (0, 1, y). h = e× g. k = b× i. n = f ×m. q = d× p. t = s× l

. b = (0, 1, 0). e = c× d = (−1, x, 0). g = a× f = (0,−y, 1). i = g × h. l = i× k. o = m× n. r = p× q. u = j× t

. c = (0, 0, 1)

. j = e× h. m = b× k. p = f × n. s = d× q

It remains to ensure the orthogonality relations drawn by round curves in the figure.
The last line of the table contains the respective two cross products whose arguments
need not be orthogonal. We shall achieve their orthogonality, s ⊥ l, j ⊥ t, by adjusting
the parameters x, y. This requires to solve the following system of two polynomial
equations:

l · s = 0 ,
t · j = 0 .

It has real roots, e.g., the following:

y = 1
3

√
1 + 3

√
163− 9

√
57 + 3

√
163 + 9

√
57 .= 1.14 ,

x = −

√
y2 +

√
4y8 + 16y6 + 25y4 + 16y2 + 4

2y2 + 2
.= −1.61 .

1 We evaluate the coordinates of the vectors only in simple cases; then the complexity of expressions
grows rapidly and they are omitted here.
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We remark that all the constructed vectors, a,b, . . . ,u, are non-zero; this can be
checked by a computer.

Suppose that there is a coloring, m. Then we sum its values over all vertices of all
13 edges:

s =
⊕
e∈E

⊕
v∈e

m(v) ≡ 13 ≡ 1 (mod 2)

Vertices from F =
⋃
E \ {r,u, o} are contained twice in the latter sum, thus their

coloring does not influence the result. Only vertices r,u, o are contained in a single
edge. We may rewrite the sum as

s = 2
(⊕

v∈F
m(v)

)
⊕m(r)⊕m(u)⊕m(o) = m(r)⊕m(u)⊕m(o) = 1 .

It remains to prove that the rays r,u, o are not all pairwisely orthogonal. We shall
verify that r 6⊥ o. According to [16], the hypergraphs representing orthomodular lat-
tices cannot contain cycles of lengths 3 or 4.1 As r, o already have distance 3 in our
hypergraph, they can be neither identified, nor connected by an edge, without breaking
this rule; hence r 6= o, r 6⊥ o.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Remark 6.1. We give a detailed argument for readers not familiar with the properties of
hypergraphs of orthomodular lattices (Greechie diagrams). Suppose that r ⊥ o. Then
r × n would be both o and p, but these are distinct.

We do not verify that there are no other orthogonality relations not drawn in the
figure, but this is not needed in the sequel. We could say more about the rays r,u, o:
they are distinct, not coplanar, etc.

However, the hypergraph techniques have limitations; the fact that o 6= u does not
follow from the hypergraph. Nevertheless, it was checked for our particular case by
computer algebra.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

6.2 Application to the Coloring Problem
The coloring is independent of the choice of a coordinate system. For any orthonormal
matrix U ∈ R3×3, if m is a coloring, then m′ : R3 \ {0} → {0, 1}, defined by m′(x) =
m(Ux), is also a coloring because the multiplication by an orthonormal matrix preserves
the dot product.

Rotations and reflextions are represented by orthonormal matrices. For any two pairs
of rays, (u, v), (u′, v′), such that ∠(u, v) = ∠(u′, v′), i.e., |u·v|

||u||||v|| = |u′·v′|
||u′||||v′|| , there exists an

orthonormal matrix U such that Uu = u′ and Uv = v′.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Corollary 6.2. If some pair of rays with angle θ is isochromatic, then every pair of rays
with angle θ is isochromatic.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 More exactly, cycles of lengths 3 or 4 may occur under special circumstances. This requires lattices of
height more than 3, which is not the case of the lattice of subspaces of R3 (dimension at least 4 is needed).
See [21] for details.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Theorem 6.3. If two different rays are isochromatic, then the only coloring is the
constant one.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. Let u, v be isochromatic rays, θ = ∠(u, v) 6= 0. We define S as the set of all

rays w such that ∠(u,w) = θ. All rays from S are isochromatic and their mutual angles
span the whole interval [0,min(π/2, 2θ)]. By Corollary 6.2, every pair of rays with angle
in [0,min(π/2, 2θ)] is isochromatic. We repeat this procedure, extending the result to
larger angles, and after blog2

π
2θ c repetitions we obtain that all rays are isochromatic. �

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Theorem 6.4. If there are three different rays u, v,w that are not all pairwisely orthogo-
nal and a constant c ∈ Z2 such that every coloring m satisfies m(u)⊕m(v)⊕m(w) = c,
then every coloring is constant.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. We split the proof into two cases. The first is when the three rays are coplanar.

Then there is a ray n orthogonal to all of u, v,w. (It need not be unique in singular
cases, which are allowed here.) The rotation by π/2 about n maps u 7→ u′, v 7→ v′,
w 7→ w′ and is represented by an orthonormal matrix U. We take an arbitrary coloring
m and construct a coloring m′, defined as m′(x) = m(Ux). The values on u, v,w are
summing up to c in any coloring; hence also for m′, then

c = m′(u)⊕m′(v)⊕m′(w) = m(Uu)⊕m(Uv)⊕m(Uw) = m(u′)⊕m(v′)⊕m(w′).

We say that rotation and reflection preserve coloring. Now we may continue with the
equations:

m(u)⊕m(u′)⊕m(n) = 1 ,
m(v)⊕m(v′)⊕m(n) = 1 ,
m(w)⊕m(w′)⊕m(n) = 1 ,

m(u)⊕m(v)⊕m(w)︸ ︷︷ ︸
c

⊕ m(u′)⊕m(v′)⊕m(w′)︸ ︷︷ ︸
c

⊕ m(n)⊕m(n)⊕m(n) = 1 ,
m(n) = 1 .

We determined the value of m at a single ray, n. As colorings are preserved by rotations,
the same arguments apply to the images of n (and all rays used in the construction)
under any rotation. Due to the spherical symmetry, n can be mapped to any other ray
by some rotation, and m attains the constant value 1 at all rays.

The other case is when the rays, u, v, w are not coplanar. If the vectors are not
pairwisely orthogonal, they contain a non-orthogonal pair. Without loss of generality,
we assume that it is (v,w), i.e., v 6⊥ w. The reflection w.r.t. the plane span({u, v})
maps u and v to themselves, but maps w to w′ 6= w. It preserves colorings, thus each
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coloring m satisfies
m(u)⊕m(v)⊕m(w) = c,

m(u)⊕m(v)⊕m(w′) = c,

m(w) = m(w′)

for two different rays w,w′. A direct application of Theorem 6.3 finishes the proof.
�

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Theorem 6.5. There is no non-constant Z2-coloring of a sphere in R3.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Proof. This is a straightforward consequence of Theorem 6.4, applied to rays u, r, o

from the construction described in Section 6.1. �

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Remark 6.6. The rays u, r, o, constructed in Section 6.1, are not coplanar. However, the
proof of this fact (cf. Rem. 6.1) is more complicated than the proof of the “coplanar”
part of Theorem 6.4, which, possibly, could find application elsewhere. We proved that
there are two distinct sufficient properties (see Theorems 6.3, 6.4) for the coloring to be
constant. Our collection of vectors satisfies the first one1, and by taking the union of
our collection with its reflected copy about the plane span({u, o}), we arrive at a set of
40 vectors2, satisfying the second3 property. We proved Theorem 6.4 in a more general
form than needed and for c not necessarily equal to 1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 There are three different vectors, not pairwisely orthogonal, summing up to a constant in every coloring.
2 Two of the 21 vectors belong to the plane of symmetry, the remaining 19 are reflected. Thus we use
2 + 2 · 19 vectors in total.
3 There is a pair of distinct isochromatic vectors.
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Chapter 7
Conclusions

7.1 Summary
We started with reviewing the mathematical aspects of quantum mechanics. Then we
progressed to study Bell–Kochen–Specker theorem, which rules out the hidden-variable
theory of quantum mechanics. Subsequently, we introduced orthocomplemented differ-
ence lattices. They are structures that could be used to describe the logic of quantum
mechanics. Finally, we showed that there is no non-constant measure on the lattice of
subspaces of R3.

7.2 Contribution
We list the two main results of the thesis:

. We constructed an orthocomplemented difference lattice admitting no state.. We showed that there is no non-constant measure on the lattice of subspaces of R3.
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