
Instructions

After the very successful feasibility study conducted as a Bachelor thesis, the task of this project is to

implement a Higgs Boson Portal (HBP). The HBP will be useful to a large number of Higgs boson

researchers at CERN and other high-energy physics institutes, phenomenologists and theorists. The

HBP will also bring the discovery and the current research in the field of Higgs bosons closer to the

general public. This project offers the collaboration in a worldwide renowned international

organization and a visit of CERN and the Large Hadron Collider where the Higgs Boson was

discovered.Tasks:

1) Familiarize yourself with the results of the feasibility study.

2) Implement the suggested framework.

3) Develop an automated update system for new publications.

4) Implement a categorization system for the publications.

5) Implement a statistical analysis of the publications.

6) Test the HBP and refine the look and feel.

Bonus:

Visualize the development of the measurement precisions.

Electronically approved by Ing. Michal Valenta, Ph.D. on 16 October 2020 in Prague.

Assignment of bachelor’s thesis

Title: Implementation of a Portal Dedicated to Higgs Bosons for Experts and the

General Public

Student: Peter Žáčik

Supervisor: doc. Dr. André Sopczak

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2021/2022

ProjectsFIT https://projects.fit.cvut.cz/theses/369/assignment-print

1 of 1 4/8/21, 13:57

Bachelor’s thesis

Implementation of a Portal Dedicated to
Higgs Bosons for Experts and the General
Public

Peter Žáčik

Department of Software Engineering
Supervisor: doc. Dr. André Sopczak

May 13, 2021

Acknowledgements

I would like to thank my supervisor, doc. Dr. André Sopczak, for all the time
and resources he dedicated to me and this project.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Peter Žáčik. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Žáčik, Peter. Implementation of a Portal Dedicated to Higgs Bosons for Ex-
perts and the General Public. Bachelor’s thesis. Czech Technical University
in Prague, Faculty of Information Technology, 2021.

Abstrakt

Tato práce prezentuje implementaci webového portálu věnovaného výzkumu
Higgsových bozon̊u. Pomoćı API dokumentového serveru CERN-u a metod
web scrapingu je vytvořena souhrnná databáze v́ıce než 1000 relevantńıch
článk̊u. Databáze je automaticky aktualizována, když jsou dostupné nové
výsledky ve výzkumu Higgsova bozonu. S využit́ım zpracováńı přirozeného
jazyka jsou články automaticky kategorizovány podle vlastnost́ı Higgsova bo-
zonu a daľśıch kritéríı. Proces návrhu a implementace portálu ”Higgs Boson
Portal” (HBP) je v práci detailně popsán. Komponenty HBP jsou nasazeny na
CERN Web Services za použit́ı cloudové platformy OpenShift. Webový portál
je funkčńı a dostupný na adrese https://cern.ch/higgs.

Kĺıčová slova Higgs̊uv bozon, CERN, webová aplikace, implementace, au-
tomatizace, kategorizace, statistická analýza, React, Flask, MongoDB

vii

https://cern.ch/higgs

Abstract

This thesis presents the implementation of a web portal dedicated to Higgs
boson research. A database is created with more than 1000 relevant articles,
using CERN Document Server API and web scraping methods. The database
is automatically updated when new results on the Higgs boson become avail-
able. Using natural language processing, the articles are categorised according
to properties of the Higgs boson and other criteria. The process of designing
and implementing the Higgs Boson Portal (HBP) is described in detail. The
components of the HBP are deployed to CERN Web Services using the Open-
Shift cloud platform. The web portal is operational and freely accessible on
https://cern.ch/higgs.

Keywords Higgs boson, CERN, web application, implementation, automa-
tisation, categorization, statistical analysis, React, Flask, MongoDB, Open-
Shift

viii

https://cern.ch/higgs

Contents

Introduction 1

1 Goal 3

2 The Higgs Boson 5
2.1 The Standard Model . 5
2.2 Beyond the Standard Model . 5
2.3 History of Searches . 6
2.4 Current Research . 6
2.5 Production Modes . 7
2.6 Decay Modes . 7

3 State-of-the-art 9
3.1 Scientific Resources . 9

3.1.1 Journals and Preprints 9
3.1.2 ATLAS and CMS . 10
3.1.3 ALEPH, DELPHI, L3, OPAL 10
3.1.4 CDF and DØ . 10
3.1.5 Development of Measurements 10

3.2 Outreach to the Public . 11

4 Design, Tools and Architecture 13
4.1 Requirements . 13

4.1.1 Functional requirements 13
4.1.2 Non-functional requirements 14

4.2 Methodology . 14
4.2.1 Web Scraping . 14
4.2.2 Natural Language Processing 15

4.2.2.1 Text Classification 15
4.2.2.2 Named Entity Recognition 17

ix

4.2.3 Web Services and the Cloud 17
4.3 Architecture . 18

4.3.1 Database . 18
4.3.2 Client-server architecture 19
4.3.3 HTTP and REST . 19

4.4 Tools . 20
4.4.1 Git . 20
4.4.2 Python . 20
4.4.3 MongoDB . 21
4.4.4 Scrapy . 21
4.4.5 NLTK, Scikit-learn and spaCy 21
4.4.6 Flask . 22
4.4.7 React . 23

4.5 Services . 23
4.5.1 MongoDB Atlas . 23
4.5.2 CERN Web Services and OpenShift 23

5 Implementation 25
5.1 Environment . 25
5.2 Flask Server . 25
5.3 CLI Commands . 26
5.4 Filling/Updating the Database 27

5.4.1 Getting Articles via the CDS API 27
5.4.2 Scraping CDF and DØ articles 28
5.4.3 Updating the database 29

5.5 Categorisation . 30
5.5.1 Text Classification . 31

5.5.1.1 Training Data 31
5.5.1.2 Training the Model 32

5.5.2 Named Entity Recognition 33
5.5.2.1 Training Data 33
5.5.2.2 Training the Model 33

5.6 Web API . 34
5.6.1 Resources . 34
5.6.2 Authentication and Authorisation 35

5.7 Web Client . 36
5.7.1 Environment . 36
5.7.2 Design . 36
5.7.3 Administration . 37

5.8 Deployment . 38
5.8.1 Production Environment 38
5.8.2 Continuous Delivery . 39

6 Testing 41

x

6.1 Automated Tests . 41
6.2 Statistical Analysis . 42

6.2.1 Text Classification . 42
6.2.2 Named Entity Recognition 43

Conclusion 45

Bibliography 47

A Acronyms 53

B Contents of enclosed media 55

xi

List of Figures

4.1 UML component diagram of the HBP 24

5.1 HBP Home page . 36
5.2 HBP Articles page . 37

xiii

List of Tables

6.1 Results from the naive Bayes classification test 42
6.2 Results from the NER categorisation test. 43

xv

Introduction

Following the proposal of the existence of a new elementary particle in 1964
and a subsequent worldwide search, the Higgs boson was first observed in 2012
by the ATLAS and CMS collaborations using data from the Large Hadron
Collider (LHC). The Higgs boson is a part of the Standard Model of particle
physics, a theory that describes all known elementary particles and three of
the four fundamental interactions. The Standard Model does not explain all
phenomena of the universe. It is used as a basis and a gateway to more diverse
theories.

Researchers studying the Higgs boson have already produced hundreds
of scientific articles, and new discoveries are still being made. Several col-
laborations participated in the research, two of which are still active today,
the ATLAS and CMS experiments. As a result of the many searches for the
Higgs boson and a massive technology advancement in the recent years, the
information about the particle is scattered.

For scientists, it can be difficult to find all the relevant articles for their
specific Higgs boson research, as each experiment has a different way of pre-
senting their results. There is no simple way for staying up to date with the
latest news in the field. And nine years after the discovery, the public is still
largely unfamiliar with the research being conducted at these facilities. A
complete portal dedicated to the Higgs boson could help physicists with their
work, as well as spread more knowledge about the Higgs boson to the general
public.

This thesis follows on a feasibility study conducted as bachelor’s thesis by
Martin Kupka: Feasibility Study of a Portal to Provide Knowledge About the
Higgs Boson to the General Public and Experts. This thesis closely follows
Kupka’s suggestions and the structure for creating the Higgs Boson Portal
(HBP).

1

Introduction

The thesis consists of six chapters. The first chapter describes the goals
and objectives of this thesis. In the second chapter, the physics behind the
Higgs boson is introduced. Necessary parts are explained in more detail. In the
third chapter, the feasibility study is inspected and current scientific resources
for the Higgs boson research are listed and analysed. A solution to gather
information from these sources is proposed. The fourth chapter describes the
design and architecture of the Higgs Boson Portal, as well as tools necessary
for implementation, testing and deployment. The fifth chapter focuses on
technical challenges and the implementation of the portal. In the last chapter
the test of the portal and a statistical analysis of the gathered information is
presented.

2

Chapter 1
Goal

The goal of this thesis is to design, implement and test an online portal ded-
icated to the ongoing research about a discovered particle – the Higgs Bo-
son. The Higgs Boson Portal will be useful to a large number of researchers
at CERN, Fermilab and other high-energy physics institutes. Such a portal
could also bring the latest news in the Higgs boson field closer to the public.
The Higgs Boson Portal will automatically collect and unify all published pa-
pers and articles about the boson and present it to the user in an organized
manner. Filtering and sorting by various categories will be possible, as well
as linking related articles. A brief description of the history of the particle,
ongoing experiments and future plans will also be presented to the public in
a graphically appealing way.

Firstly, it is necessary to become familiar with the current situation of the
Higgs boson research and the results of the feasibility study. The next step is
to outline the architecture and design of the portal and decide which tools and
services are suitable. The final task is the implementation and deployment of
the portal.

3

Chapter 2
The Higgs Boson

The Higgs boson, named after the the physicist Peter Higgs, is a subatomic
particle. It is the manifestation of the Higgs field, a quantum field that is
present everywhere throughout the Universe. Certain particles interact with
the Higgs field field via the Higgs mechanism and as a result obtain mass. The
Higgs boson is the result of an excitation in this field [1, 2].

2.1 The Standard Model

The Standard Model of particle physics is the most successful theory in ex-
plaining the phenomena of the universe. It describes six quarks and six lep-
tons. The quarks and three of the leptons couple to the Higgs field and obtain
mass. The W and Z bosons, carriers of the electroweak interaction also couple
to the Higgs field [3, 4].

Until 2012, the Higgs boson was the last missing piece of the Standard
Model. However, the discovery alone did not conclude the research. The
Standard model has been rigorously tested and verified but some challenges
still remain unsolved. The theory of gravity does not fit into this model
and neither does it explain dark matter. To expand our understanding it is
necessary to do more research. Precision measurements of the Higgs boson
properties could point in the right direction. Observing the behaviour and
measuring various properties of the boson leads to new discoveries even today.

2.2 Beyond the Standard Model

There are many theories beyond the Standard Model as theorists believe that
the Standard Model is incomplete. The Standard model only contains one
Higgs boson. Other theories however predict Higgs bosons with different prop-
erties to exist as well, such as lighter, heavier, or charged Higgs bosons. None
of these additional Higgs bosons have been discovered yet.

5

2. The Higgs Boson

2.3 History of Searches

In 1964, in order to answer the question of why some particles have mass, a
mechanism involving a new quantum field was proposed. Particles that would
interact with this field would as a result acquire the property of mass. After
the discovery of the W and Z bosons and the top quark, the Higgs boson was
the last remaining piece of the Standard Model to be found. Observing it
would prove the existence of the Higgs field.

This was first attempted at CERN, in the Large Electron Positron (LEP)
collider by four collaborations: ALEPH, DELPHI, L3 and OPAL between the
years 1989 and 2000. Scientists at LEP excluded a Higgs boson with a mass
below 114 GeV1 with a high confidence level. Theory does not predict the
mass of the Higgs boson and therefore it must be measured experimentally.

The search was then extended at the Tevatron collider in the United States,
by the CDF and DØ collaborations at Fermilab. The data from the Tevatron
experimentally excluded the presence of the Higgs boson in the mass range
147-180 GeV [5].

Finally, in 2012, only three years after the completion of the Large Hadron
Collider, a new particle with a mass of approximately 125 GeV was observed
by both the ATLAS and CMS collaborations at CERN. A year later it was
confirmed that this was the Higgs boson and Peter Higgs and François Englert
received a Nobel prize.

2.4 Current Research

Today, the only active experiments today in the Higgs boson research are
ATLAS and CMS. There are other experiments at CERN but they are not
studying the Higgs boson, for example ALICE or LHCb. ATLAS and CMS
study the boson’s properties, but also actively look for “new physics”, beyond
the Standard Model.

When the Large Hadron Collider is active, it produces around 90 petabytes
of collision data per year [6]. This data then needs to be filtered and pro-
cessed. When doing research, only potentially interesting collision events are
selected [6]. For example, one may only want to study a certain decay (section
2.6) or production mode (section 2.5) of the Higgs boson. Consequently, when
a new article is published, it can be classified in different ways.

Different particle accelerators operate at different energies, also called
centre-of-mass energies. The centre-of-mass energy describes the total en-
ergy of one collision [7]. It is an important parameter when analysing collision
data, because it affects the likelihood of certain events to occur.

The number of collisions per unit time produced in an accelerator is given
by the so-called luminosity of the accelerator. Integrating the delivered lumi-

1An electronvolt (eV) is a unit of energy/mass most commonly used in particle physics.

6

2.5. Production Modes

nosity over time gives the integrated luminosity. It is a measure of the total
number of interactions in a detector [8]. The integrated luminosity is also an
important parameter in analytical articles, effectively describing the size of
the data set.

2.5 Production Modes

The Standard Model Higgs boson is produced in energetic particle collisions
in multiple different ways – production modes. These are distinguished by
the particles that fused together to form the Higgs boson or the particles that
were produced along with the Higgs boson. Currently observed production
modes are listed below, ordered from most common to least common [9].

• Gluon gluon fusion (ggF)

• Vector boson fusion (VBF)

• Vector boson associated production (WH+ZH)

• top-top Higgs production (ttH)

Other production processes might be possible but are not yet verified, such
as Higgs boson pair production [10].

2.6 Decay Modes

The Higgs boson is a short-lived particle. It decays almost immediately to
lighter particles, which are then analysed to reconstruct the original Higgs
boson. Below is a list of observed decay modes, ordered from most probable
to least probable [9].

• H → bb (two bottom quarks)

• H →WW ∗ (two W bosons)

• H → ττ (two tau leptons)

• H → ZZ∗ (two Z bosons)

• H → γγ (two photons)

• H → µµ (two muons)

Theories beyond the Standard Model suggest the existence of a Higgs
boson with more exotic decay modes, but this is still a subject of research in
particle physics.

7

Chapter 3
State-of-the-art

3.1 Scientific Resources

The current state of scientific resources for information about the Higgs boson
has been well described in Martin Kupka’s bachelor’s thesis: Feasibility Study
of a Portal to Provide Knowledge About the Higgs Boson to the General Public
and Experts [11]. In his thesis, Kupka presented multiple options for experts to
stay up-to-date with current research. The most prominent for CERN results
are the systems hosted by the respective experiments, such as ATLAS [12] and
CMS [13]. For the legacy experiments at CERN, the CERN Document Server
(CDS) is deemed most useful [11]. Both Tevatron experiments, CDF [14] and
DØ [15], host their own respective websites for publishing results.

It is important to make a distinction between the different stages an article
can be in. First, it enters the “preliminary” stage, which means that it has
not yet been verified by a journal. After submitting it to the journal, it enters
the “submitted” phase. This means it has been accepted for review by the
journal. When accepted, the journal publishes the article and it enters the
“published” phase.

3.1.1 Journals and Preprints

Scientific journals are a good source of information for experts. The most
commonly used by particle physicists is Inspire [11]. Inspire offers advanced
searching options and various additional information about articles. It is ded-
icated to all high-energy physics, not only to the Higgs boson, and therefore
lacks specific categorisation for Higgs boson articles. Preprints are typically
first made available in arXiv.org.

9

arXiv.org

3. State-of-the-art

3.1.2 ATLAS and CMS

The ATLAS and CMS collaborations each host a website for publishing their
results from the Higgs boson research. These websites are continuously up-
dated with new publications and preliminary results.

The CMS web portal provides categorisation and filtering for their arti-
cles by production mode, decay mode and centre-of-mass energy. However,
these filters cannot be combined. The ATLAS web portal provides more cat-
egorisation options, such as centre-of-mass energy, minimal luminosity, type
of analysis and the decay mode. These filters can be combined with “AND”
logic and, in case of the decay mode, also “OR” logic.

Both web portals make a clear distinction between preliminary, submitted
and published articles. They include the date of publication, journal refer-
ence and a hyperlink to the article’s PDF file. They also include all figures
and tables with the corresponding caption. The system available for ATLAS
publications is generally more preferred by experts [11].

It is important to note that the CERN Document Server is also updated
with new results and provides the same information as the ATLAS and CMS
portals, but without the categorisation options. However, CDS exposes an
API that can be used to gather the information automatically [16].

3.1.3 ALEPH, DELPHI, L3, OPAL

The four LEP experiments took data between 1989 and 2000 and published
their final results in the subsequent years. Thus, no new articles are expected
to be published. The optimal way to look through the information accumu-
lated by these experiments is via the CDS. CDS provides the title, date of
publication, abstract, list of authors and a list of files related to the publica-
tion.

3.1.4 CDF and DØ

The CDF and DØ experiments are not related to CERN. They are a part of the
Fermi National Accelerator Laboratory (Fermilab), located near Chicago, in
the United States. As such, the information is not available through the CDS.
Both collaborations host their own website, where new results are presented.
These websites are obsolete and provide little categorisation options [11]. The
Tevatron accelerator was shut down in 2011 and no more articles related to
the Higgs boson are expected to be published.

3.1.5 Development of Measurements

There are many technology improvements of the accelerators and detectors.
More data is collected over the years and therefore measurements of various

10

3.2. Outreach to the Public

properties of the Higgs boson improve over time. In search for the Higgs bo-
son, the four LEP experiments continuously updated the lower mass limit of
the Higgs boson, up to 114.4 GeV [17]. Experiments at Fermilab developed
an upper mass limit of the Higgs boson, finally excluding a mass range be-
tween 147 and 180 GeV. [5] After the discovery, ATLAS and CMS continue to
improve the precision of the mass measurement of the Higgs boson. The idea
of visualising these developments is generally well received by the scientific
community [11].

3.2 Outreach to the Public

The general public is mostly familiar with the discovery of the Higgs boson
in 2012. The continuing research of the Higgs boson is not well known. One
page on the CERN’s official website is dedicated to the Higgs boson and
some information is available in the Higgs boson’s Wikipedia article. Using
graphically appealing presentation, the Higgs Boson Portal could help bring
the research closer to the general public [11].

11

Chapter 4
Design, Tools and Architecture

In this chapter, the requirements for the Higgs Boson Portal are listed, and
respective solutions proposed. Required methods and tools are chosen and are
briefly described. Figure 4.1 outlines the architecture of the HBP using the
UML Component diagram.

4.1 Requirements

4.1.1 Functional requirements

The HBP must be able to automatically collect information from the web
and update it in reasonable intervals. It must classify collected articles into
various categories with high precision and display the classifying information.
Articles that are superseeded by newer versions must be marked, and a link
to the new version has to be provided.

The portal must be accessible via an adequate User Interface that enables
filtering and searching through the collected articles. Users must be able to
send feedback to the administrators of the portal.

Administration of the portal must be possible through the web browser.
The administration tasks include:

• removing non-relevant articles,

• adjusting categorisation information,

• reviewing and responding to feedback,

• checking the automatic updates to the HBP,

• approving other administrators.

Several nice-to-have features are proposed. Users should have an option
to save the URL of a specific article to come back to it later. References to

13

4. Design, Tools and Architecture

the articles from other sources should be included. Figures, plots and other
graphical information related to an article could be displayed directly on the
portal.

4.1.2 Non-functional requirements

The HBP has to be available on the Internet with little downtime. Loading
times have to be kept as short as possible. The content of the web-portal must
be well organised and consistent.

The source code must be organised in a modular manner and easily ex-
tensible. Good software development practices and design patterns must be
applied.

4.2 Methodology

This section introduces tools and methods that are utilised to fulfill the above
mentioned requirements.

4.2.1 Web Scraping

In order to update the HBP periodically, it is necessary to develop an auto-
mated update system. Such a system has to scan the web and then download,
process and save relevant information. Some data can be collected using the
CERN Document Server’s API. In case of the Tevatron experiments, scraping
(crawling) their websites is the only viable option [11].

“In theory, web scraping is the practice of gathering data through any
means other than a program interacting with an API. (or, obviously, through a
human using a web browser). This is most commonly accomplished by writing
an automated program that queries a web server, requests data (usually in the
form of HTML and other files that compose web pages), and then parses that
data to extract needed information” [18].

To be effective in web scraping it is important to be familiar with the
target website. The CDF and DØ websites are simple HTML pages without
dynamically loaded content. All information can be parsed using an XML
tree parser from a single HTML file.

Web-scraping can potentially harm the target website by sending many
requests in short period of time, therefore it must be applied with caution.
An excessive number of requests could overload the server and cause denial of
service. Websites usually provide a robots.txt file in the root directory of the
website, which contains a list of restrictions for search engines, as well as web
scrapers. Although these rules are not an enforcement standard, not abiding
by them might be illegal in some cases and they should be followed by an
ethical scraper [19]. Both CDF and DØ collaborations include a robots.txt
file, but the restrictions are not limiting to the activity of the HBP.

14

4.2. Methodology

4.2.2 Natural Language Processing

The raw downloaded data is meaningless without processing. One goal of the
HBP is to classify scientific articles into various categories. To the author
or an informed reader this classifying information is obvious. Despite that,
assigning categories is not a trivial task for the computer [20]. There are many
approaches one can take to automatically process human written text.

The naive solution is to manually create rules that determine the cate-
gories. This method generally involves searching for keywords in a selected
part of the text. Because of the variability of the natural human language,
this method often lacks the needed precision [21].

More complex solutions involve artificial intelligence (AI) and Natural Lan-
guage Processing (NLP). “Natural Language Processing (NLP) is an area of
research and application that explores how computers can be used to under-
stand and manipulate natural language text or speech” [20]. NLP is a branch
of Artificial Intelligence, which relies on deriving meaning from human lan-
guages.

4.2.2.1 Text Classification

To classify articles into predefined categories it is efficient to use a probabilistic
classifier. A probabilistic classifier is a classifier that given some input will
return the probability of that input being in all of the predefined classes.
The class with the highest probability is chosen as the result. Classification
is performed using a collection of labeled data, known as the training data.
New examples are classified by selecting the class that is most likely to have
generated the result. The simplest probabilistic classifier is the naive Bayes
classifier [22]. The naive Bayes classifier assumes that all features (words)
of the text are independent of each other. While this assumption is clearly
wrong, the classifier still performs reasonably well compared to keyword based
solutions [21].

A text can be expressed as a vector of words – features. This is com-
monly called the bag of words approach [23]. Before classification, it might be
beneficial to pre-process the text by removing stopwords, which are the most
frequently used words in the given language. English examples are “the”,
“and” or “from”. These words do not play any role in classifying the arti-
cle [24]. The remaining words undergo stemming, which involves reducing the
words to their root form, e.g. “decaying” to “decay”. Context of individual
words is lost during the pre-processing. However, this method can still be
used to classify the text as a whole.

Articles are often tens of pages long, therefore it is computationally inef-
fective to apply NLP methods to the full text of the article. In case of the
HBP, only the title and the abstract of an article are selected for processing.
This also eliminates the need for having access to the full text of the article.

15

4. Design, Tools and Architecture

Given a finite vector of features (words) D = 〈di〉; i ∈ N with a length of
n and a set of classes C = {c1, c2, . . . , ck}, the classification is the assignment
of a class c ∈ C to the vector D, denoted as c∗(D). The likelihood of some
class c ∈ C being assigned to D can be formulated as:

P (c |D). (4.1)

The final result of the classification can be expressed with the following equa-
tion, given 1 ≤ j ≤ k:

c∗(D) = arg max
j

P (cj |D). (4.2)

Using Bayes’ theorem, equation 4.1 can be rewritten as [25]:

P (c |D) = P (c)P (D | c)
P (D) , (4.3)

where P (c) is the likelihood of encountering class c. This can be estimated
from the training data. P (D) is the likelihood of encountering the vector D.
P (D) is impossible to calculate, but because its value does not depend on the
class c, it can be ignored. P (D | c) is the likelihood encountering the vector D,
given that its assigned class is c. Assuming features di, i ∈ N are independent
of each other (the naive assumption), P (D | c) can be calculated as a product
of likelihoods of individual features di appearing in the vector D, which has
been assigned the class c:

P (D | c) =
∏

i

P (di | c). (4.4)

P (di | c) can be estimated from the training data. Applying the naive assump-
tion to equation 4.3 yields:

P (c |D) = P (c) ∏
i P (di | c)

P (D) . (4.5)

The assigned class can then be calculated as:

c∗(D) = arg max
j

P (cj) ∏
i P (di | c)

P (D) . (4.6)

P (D) is positive and identical for every class c ∈ C, therefore it can be dis-
missed and the final result can be calculated as [26]:

c∗(D) = arg max
j

P (cj)
∏

i

P (di | c). (4.7)

Once the model is trained, this calculation is extremely fast because it con-
sists only of multiplication. In practice, loglikelihoods are used instead of
likelihoods to simplify computation and mitigate precision errors.

16

4.2. Methodology

The Higgs Boson Portal utilises a naive Bayes classifier to distinguish be-
tween articles studying the Standard Model of particle physics and articles
searching beyond the Standard Model. These two directions of research gen-
erally use slightly different wording, which allows for the classification process
to be accurate, For example, the word “search” appears more often when
searching beyond the Standard Model. It is not necessary to know these dif-
ferences beforehand.

4.2.2.2 Named Entity Recognition

To extract more concrete information from the articles, e.g. integrated lumi-
nosity, centre-of-mass energy, decay products or production modes, a different
method must be employed. These entities are dependent on the context in
which they are used. For example, in the text: “Measurements of gluon fusion
and vector-boson-fusion production of the Higgs boson in H →WW ∗ → eνµν
decays using pp collisions at

√
s = 13TeV with the ATLAS detector” [27], two

production modes are mentioned – gluon fusion and vector boson fusion. The
decay mode is expressed using the notation “H →WW ∗”. The centre-of-mass
energy (

√
s) is given as the number “13” combined with the “TeV” unit.

The process of automatically recognising and extracting meaningful words,
phrases or numeric values is called Named Entity Recognition (NER). “Named
entity recognition (NER) is the problem of locating and categorizing important
nouns and proper nouns in a text” [28].

NER has to recognize syntactic structures of the text, and therefore is
language specific. Most scientific articles are written in English, therefore the
HBP uses a NER model pre-trained on the English language. The training
can be extended for specific needs of the domain.

After extracting entities from the text, they have to be parsed or cate-
gorised. When numeric values are expected, the number and unit are parsed
algorithmically using a set of predetermined rules. In case of the decay mode
and the production mode, the category is decided by identifying keywords
and special characters in the extracted named entity. Identifying keywords
and special characters only in the named entity yields better results that
searching in the full text, where the context of the keywords are ignored.

4.2.3 Web Services and the Cloud

The gathered information needs to be presented in a conventional and a mod-
ern way. Hosting a website with the HBP is the preferred way to provide
accessibility for any user with an Internet connection and an Internet browser.
Traditionally, to host a website, it is necessary to dedicate hardware to run
the web server and then buy the domain dame, e.g. hbp.com. While this
provides a lot of control over the infrastructure, it takes more time and money
to set up.

17

4. Design, Tools and Architecture

An alternative is to use an existing cloud service provider to host the
portal. Using such a service, it is possible to set up a production ready web
server in a short time and eliminate the need for own dedicated hardware.
These services are usually paid, but many offer a starting tier which is free to
use. The free services are limited in terms of capacity and performance, but
these limits typically far exceed the needs of the HBP. The downsides are the
need to rely on a 3rd party to keep the system up and running, and having
only limited control over the infrastructure of the system.

The last option is to host the application on the internal hosting service
of CERN. The CERN Application Hosting Service allows for deployment of
applications with the Platform-as-a-Service (PaaS) paradigm [29]. This service
provides the benefits of a cloud-based deployment, while maintaining high
control over the application infrastructure. It is therefore recommended that
the application is hosted on this service.

4.3 Architecture

This section outlines the top-level architecture of the Higgs Boson Portal.

4.3.1 Database

The collected data needs to be readily accessible to users. Therefore, it must
be saved in a database. Traditionally, relational (SQL) databases were used
to handle storage and querying. Relational databases rely on a predefined
schema, which needs to be updated to propagate a change in the domain
model [30]. On the other hand, the HBP is expected to evolve continuously,
and the domain model might change during development. Also, the structure
of the database is expected to be very simple. Therefore, a NoSQL (Not Only
SQL) database is more suited for the task. It does not use a predefined schema
and allows for easy changes in the domain [30].

A document-oriented NoSQL database operates with collections and doc-
uments. Collections can be thought of as the tables of a relational database,
and documents as the rows [30]. Unlike relational databases, collections do
not enforce strict rules for the properties of the documents. Collections typ-
ically group together similar documents, e.g. articles, and provide querying
and searching functionalities.

The format of a document in a NoSQL database is not as normalised as
in relational databases. It varies under different database implementations.
For example, a document can be stored in XML, JSON, or a custom format
derived from these basic types.

The format of a document is not normalised, therefore a database driver
is required. The driver is typically a software library, which converts docu-
ments into their native representation in the chosen programming language.

18

4.3. Architecture

Generally, drivers also provide methods for creating, updating, deleting and
querying documents in a collection.

A database is fairly simple to set up using an existing database cloud
service. Having a cloud-hosted database eliminates the need for a dedicated
server and enhances availability, scalability and security [31].

4.3.2 Client-server architecture

The HBP is using multilayered architecture. This architecture is consistent
with the “separation of concerns” (SoC) design principle. The SoC principle
dictates that separate sections of a software application should address sepa-
rate concerns [32]. Three layers are implemented. The service layer handles
the core logic of the HBP. The controller layer is responsible for transferring
data between the server and the client. Finally, the role of the presentation
layer is to display the processed content to the user.

The first two layers are the responsibility of the server, and the presentation
layer is implemented by the client. This is the client-server architecture [33].

The client-server architecture is the most common type of architecture
used in modern web applications. In this environment, personal computers
of the users are the clients, and one central computer – server communicates
with the clients [33].

The server handles the core business logic of the HBP – fetching articles,
categorisation, database management and authentication. It accepts requests
from the clients and sends back responses. The server can be deployed to
a CERN hosting service, which handles the initial setup and provides the
infrastructure for the HBP service to be immediately available.

The client of the HBP is a website, more precisely a Single Page Applica-
tion (SPA). It consists of a single HTML file and uses Javascript to dynami-
cally fetch content from the server and display it to the user. The client does
not handle any computational logic. This separation allows for independent
development of the client and the server.

4.3.3 HTTP and REST

The client and server are separate entities and therefore they need to com-
municate using a selected protocol. The obvious choice is the Hypertext
Transfer Protocol (HTTP). “The Hypertext Transfer Protocol (HTTP) is an
application-level protocol for distributed, collaborative, hypermedia informa-
tion systems. HTTP has been in use by the World-Wide Web global informa-
tion initiative since 1990” [34]. Specifically, HBP uses the encrypted version
– HTTPS.

HTTPS works on the request-response principle and is supported by all
modern web browsers. It supports multiple data formats, such as plain text,

19

4. Design, Tools and Architecture

JSON, XML, image data and more. For the Higgs Boson Portal, the JSON
format is used because of its simplicity.

In order to retrieve information from the server, clients need to access the
server Application Programming Interface (API). An API exposes a set of
resources and functions that facilitate interactions between the client and the
server. The API listens to client requests and responds adequately.

The REST architectural style is commonly applied to web APIs. The
REST style outlines multiple constraints that need to be applied in order for
an API to be classified as a RESTful API, or REST API. The most important
constraint is statelessness. It dictates that the server is not required to mem-
orize the state of the client application. Conforming to the REST principles
makes code more readable and testable [35]. The Higgs Boson Portal uses a
REST API for interactions between the client and the server.

4.4 Tools

Building the proposed web application from scratch is not feasible. Third
party services, tools and libraries have to be used during development [11].
Using adequate external tools also allows future developers to familiarise them-
selves quickly with the source code without the need for extensive documen-
tation.

4.4.1 Git

All source code of the Higgs Boson Portal is versioned using the Git versioning
system and stored remotely in two GitHub repositories. The two repositories
are dedicated to the web server and the web client respectively. This allows
for independent development of the two components. After completing the
project, the source code will be transferred to internal CERN Gitlab reposi-
tories.

4.4.2 Python

The server side (back-end) of the Higgs Boson Portal uses Python 3.8 as
the main language. Python is a popular programming language, used for
web-development, software development, AI, statistics, system scripting and
more [36]. Python has been chosen because of its extensive library ecosystem
and ease of use. To install and upgrade dependencies, the pipenv package is
used. The pipenv package creates a virtual environment to store project de-
pendencies and therefore does not interfere with the system environment [37].

20

4.4. Tools

4.4.3 MongoDB

The HBP uses the MongoDB database. MongoDB is a NoSQL, document-
oriented database. A document is stored in a format similar to a JSON ob-
ject that allows for primitive types, nested object types and array types [38].
There is no predefined schema for a document, therefore documents can be
arbitrarily modified or extended. This allows for quick iterations and rapid
development [39]. MongoDB offers a powerful query language, aggregations,
indexing and file storage [38].

MongoDB offers a cloud-based production database that is free to use for
small projects. An alternative is to run the database on the server computer.
For development and testing on Linux/Ubuntu, a MongoDB database can be
instantiated locally.

4.4.4 Scrapy

It is possible to create a simple HTML parsing tool to scrape the target web-
sites. However, there are already multiple Python libraries and frameworks to
choose from, such as Scrapy or BeautifulSoup. The Higgs Boson Portal utilises
the Scrapy framework to collect data from the Tevatron experiments.

“Scrapy is a fast high-level web crawling and web scraping framework, used
to crawl websites and extract structured data from their pages. It can be used
for a wide range of purposes, from data mining to monitoring and automated
testing” [40].

Scrapy uses so-called “spiders” to operate. A spider must be provided with
a list of website URLs to download and a function to extract the needed data
from the response [40]. The HTML file is parsed using the XPath library,
which provides querying methods to extract specific HTML nodes [41].

Scrapy is able handle multiple concurrent scraping tasks, which increases
efficiency [40]. This additional speed bonus is required when running Scrapy
on the cloud, where computing time and power are limited by the provider.

The result can be either saved to a file or processed further. In case of the
HBP, it is saved directly to the database.

4.4.5 NLTK, Scikit-learn and spaCy

After the relevant data is collected, the classification methods are applied.
Each item (article) is passed through a pipeline that extracts various infor-
mation from the text. Multiple open source Python libraries are used for this
task, mainly NLTK, Scikit-learn and spaCy.

NLTK stands for Natural Language Toolkit. It is a “leading platform for
building Python programs to work with human language data” [42]. NLTK is a
diverse library, but the Higgs Boson Portal uses it only for text pre-processing,
such as filtering stopwords and stemming.

21

4. Design, Tools and Architecture

Scikit-learn is a library that provides machine learning utilities for Python.
Scikit-learn also offers simple and efficient tools for data analysis [43]. The
tool used by the HBP is classification. If given labelled training data, Scikit-
learn is able to train a model that can classify new examples. The naive Bayes
classifier, described in section 4.2.2.1, is implemented in this library.

Implementing Named Entity Recognition, described in section 4.2.2.2, is
achieved using the spaCy library. According to the documentation, “spaCy
is a free open-source library for Natural Language Processing in Python” [44].
The spaCy library be used to can train a model based manually annotated
training data. The trained model is saved to a file, which is then used for
recognising entities in new examples [44].

After the HBP extracts all available information from the articles, they
are updated in the database to include the categorisation information.

4.4.6 Flask

The HBP server uses Python as the main language. By itself, Python does
not provide utilities to easily run a production HTTP server. Typically, a
web framework must be used to accept requests from clients and send back
responses. A sophisticated web framework abstracts away the technical details
and enables developers to focus on the business logic of the web application.

The most popular Python web frameworks include Django, Flask, FastAPI.
The required functionality of the Higgs Boson Portal can be achieved using any
of these frameworks. Flask is chosen because of its minimalistic architecture
and high level of customisability.

Flask is a microframework. “The “micro” in microframework means Flask
aims to keep the core simple but extensible” [45].

The main responsibility of Flask is the controller layer. There can be mul-
tiple controllers in the controller layer. One of the controllers is the REST
API. Flask uses a routing mechanism that maps the destination URLs of
HTTPS requests (e.g. /api/articles or /api/users) to Python function
calls. Therefore, the service layer can be implemented using pure Python func-
tionalities and other external libraries. The other controller is the command
line interface (CLI). This interface is used to trigger commands directly. The
CLI commands are also mapped to Python functions. Commands are used to
manually trigger the search for articles and the subsequent classification.

To serve a Flask application, an HTTP server must be used. Flask provides
a development HTTP server, but it is not suitable for production use. When
deploying the application, a production-ready WSGI server must be used along
with Flask [45]. The Web Server Gateway Interface (WSGI) is a standard for
Python web servers [46]. Web frameworks that implement the WSGI standard
can be easily ran using a WSGI server, such as gunicorn [47].

22

4.5. Services

4.4.7 React

The HBP client is Single Page Application displayed in a web browser. Web
browsers can only display pages written in HTML and CSS. Javascript can
be used to implement dynamic loading, advanced animations and content
manipulation. It is possible to create a web portal with just these tools, but
using a high level front-end framework can increase development efficiency [48].

React is a JavaScript library for creating user interfaces [49]. It can be
classified as a model-view-viewmodel (MVVM) framework [11, 50]. React
is centered around the concept of components. Components are the main
building blocks of a React-based application [48]. They encapsulate a specific
section and allow it to be reused across the application. Examples of React
components are: Button, Navigation, DropdownMenu. The encapsulation
adheres to the SoC principle [32].

To use React in production, the source code is compiled into static HTML,
CSS and Javascript files. These files can be served from the Flask WSGI
server [45]. Serving these static files from the Python server is not efficient,
but it allows for both the server API and the client to be hosted under the same
domain (origin). This prevents cross-origin safety issues in web browsers [51].
An alternative is to set up a reverse proxy to handle incoming traffic. A reverse
proxy could only dispatch specific requests to server and serve the static files
directly. The expected traffic on the HBP is small, therefore setting up the
proxy is not required.

4.5 Services

This section introduces tools that are not software libraries, but rather services
– businesses, that the HBP employs to fulfill the mentioned requirements.

4.5.1 MongoDB Atlas

MongoDB Atlas is a global service offering a fully managed MongoDB cloud
database [52]. It provides a browser user interface for creating and managing
databases, collections and documents. The user interface also enables query-
ing, searching and basic data analysis. HBP uses the Mongo Atlas as its
production database solution.

4.5.2 CERN Web Services and OpenShift

The application source code must be stored to a server, where it is ran without
stopping. The CERN Web Services are used to deploy the application to the
Internet. Specifically, CERN Web Services utilise the OpenShift platform.
The OpenShift platform allows for building, deploying, running and managing
applications [53].

23

4. Design, Tools and Architecture

OpenShift
cluster

«component»
HBP Server

«component»
Service Layer

«component»
Controller Layer

DB driver

«component»
Update Scheduler

CLI Interface

REST API

MongoDB
Atlas

«component»
HBP Database

Web
browser

«component»
HBP Client

Figure 4.1: UML component diagram of the HBP

The OpenShift platform deploys the components of the applications in
customisable Docker containers, which can be ran on multiple physical ma-
chines concurrently. OpenShift handles the orchestration of the containers
automatically [53].

Applications deployed to the CERN Web Services are accessible within the
cern.ch domain. By default, this domain communicates using the HTTPS
protocol and therefore is secured. Registration of a new TLS/SSL certificate
is not required [53].

24

Chapter 5
Implementation

In this chapter the implementation procedure of the Higgs Boson Portal is de-
scribed. Technical challenges encountered during development are introduced
and the solutions presented.

5.1 Environment

It is important for the system to work predictably on different machines or
operating systems. Therefore, the environment is virtualised. This means that
rather than relying on system libraries and configurations, a virtual Python
environment is created using Pipenv. In order to run commands within the
Pipenv environment, the Pipenv shell is used. A command is ran in the Pipenv
shell [37] by

pipenv run <command>.

Alternatively, it is possible to switch to the pipenv shell using the command
pipenv shell, which ensures that all following commands will be ran in the
correct environment [37].

For the client application a similar solution is implemented using the NPM
package manager. However, the NPM environment is only necessary for the
development phase. The client project is compiled for production and the
resulting static files are provided by the server. No external dependencies
need to be present in the live environment, because they are already included
in the compiled files.

5.2 Flask Server

The Flask application is initialised in the app.py file in the root project di-
rectory, using the following commands [45] (name is a built-in Python vari-
able):

25

5. Implementation

app.py
from flask import Flask

app = Flask(__name__)

To run this application locally, the Flask development server is used [45].
This server will listen to requests at localhost:5000. Execution under the
Pipenv environment is achieved by:

pipenv run flask run

5.3 CLI Commands

Flask provides a functionality to register CLI commands to the controller
layer. Multiple commands are employed by the HBP. An example is given for
the update command. The commands are created in commands.py using the
click package, which is installed along with Flask.

commands.py
import click
from flask.cli import with_appcontext
from service import HBPService
from database import mongo

service = HBPService(mongo)

@click.command("update")
@with_appcontext
def update():

print("Updating...")
service.update()

The command is registered to the main Flask application:

app.py
from commands import update

app.cli.add_command(update)

Running the command is possible from the shell terminal using pipenv
run flask update. The command is dispatched to the service layer, where
the update method is defined. The update process consists of multiple steps,
which are described in detail in the following section.

26

5.4. Filling/Updating the Database

5.4 Filling/Updating the Database

5.4.1 Getting Articles via the CDS API

As mentioned in sections 3.1.2 and 3.1.3, the CDS API can be used to fetch
articles from the legacy LEP experiments, as well as the ongoing ATLAS
and CMS experiments. The CDS API is available in the XML and JSON
formats [16]. The data available slightly differs between the two formats. For
example, the date of creation of an article in not present in the XML API
responses. Both formats are therefore used to extract required information.

The API works similarly to the search page of the CDS. Search parameters
are given in the URL of the request to the API. In case of the XML API, the
article properties must be specifically requested with tags. A tag is three digit
number that is used to request specific information from the API [16]. The
tags required for the HBP are:

tags = {
"title": "245",
"supersedes": "780",
"superseded": "785",
"abstract": "520",
"report_number": "037",
"doi": "024",
"cds_id": "001",
"files": "856",

}

The complete search parameters are:

• cc – category, e.g. ATLAS Papers or CMS Physics Analysis Summaries,

• of – the output format, "xm" for XML,

• ln – language, "en" is used,

• ot – the output tags, separated by a comma,

• rg – number of results, maximum is 200,

• jrec – the index of the first result, used for pagination,

• p1 – the search pattern, "higgs" is used,

• f1 – location of the p1 pattern, "title" is used.

27

5. Implementation

An example of the request is:

http://cds.cern.ch/search?cc=ATLAS+Papers&of=xm&
ot=245,780,785,520&ln=en&jrec=1&rg=200&p1=higgs&f1=title

The requests are sent using the built-in Python requests package. The
body of the response is used to create an XML tree object from the xml
library. The object contains a collection of articles. The CDS JSON API works
similarly, except instead of tags, names of the properties must be supplied.
The HBP requires the creation date attribute. The API is queried multiple
times, because the maximum number of articles per one request is limited.

cds/search.py
import requests
from xml.etree import ElementTree

xml_response = requests.get(url, xml_params)
collection = ElementTree.fromstring(xml_response.text)

json_response = requests.get(url, json_params).get()
dates = [item["creation_date"] for item in json_response]

5.4.2 Scraping CDF and DØ articles

As mentioned in section 4.2.1, article data from the Tevatron experiments
must be collected via a web scraping method. Scrapy is used to simplify
the creation of scrapers. The following code is the implementation of the
CdfScraper class.

import re
import scrapy
import urllib.parse as urlparse

extend the default scrapy.Spider class
class CdfScraper(scrapy.Spider):

supply a list of URLs to download
urls = ["https://www-cdf.fnal.gov/physics/new/hdg/
Published_files/widget1_markup.html"]

method called by Scrapy to start sending requests
def start_requests(self):

28

5.4. Filling/Updating the Database

for url in self.urls:
yield scrapy.Request(

url=url,
callback=self.parse

)

def parse(self, response, **kwargs):

The parse method is used to extract information from the downloaded
HTML file. For example, to get the titles of all articles:

def parse(self, response, **kwargs):
Select all articles
for paper in response.xpath(’//body/p’):

title = paper.xpath(’.//b//text()’).get().strip()

The same method is applied to the rest of the required data. The web
scraping task is ran only once when initially filling the database. During the
periodic updates to the HBP, only fetching data from the CDS API is required.

5.4.3 Updating the database

Articles collected by both above described methods are represented with the
same format – a Python dictionary. This format is accepted by pymongo
(MongoDB driver), which converts the articles to the native database format.
When querying the database, the articles are converted back to dictionaries.

First, the database connection is initialised, using the DB URI environment
variable, which contains a link and a password to the HBP cloud database.
The environment variable is not versioned using Git, because it contains sen-
sitive information that grants direct access to the HBP database.

import pymongo
from dotenv import load_dotenv

Load environment variables
load_dotenv()

db_uri = os.getenv("DB_URI")

Initialise connection to the database
mongo = pymongo.MongoClient(db_uri)

29

5. Implementation

Select the "articles" collection
articles = mongo.hbp.articles

Inserting new articles into the database is straightforward. However, when
updating existing articles, they need to be uniquely identified to prevent du-
plicates in the database. Only the ATLAS and CMS articles are updated,
therefore the identification number of the article within the CDS can be used:

for article in articles:
if "cds_id" in article:

Articles from the CDS API
papers.update_one(

{ "cds_id": article["cds_id"] }, # Filter
{ "$set": article }, # Update query
upsert=True # Insert if article does not exist

)
else:

Scraped articles (only present when filling
the database for the first time)
papers.insert_one(article)

The first argument of the update one method is the filter that selects the
article to be updated. The second argument is the update query. The $set
operator replaces existing fields with the new fields from the article dictionary.
Fields that are not present in the dictionary are not modified. The keyword
argument upsert=True guarantees that if the filter does not find the article
which has to be updated, it is inserted into the database as a new document.

5.5 Categorisation

Categorisation of new articles is triggered after every update to the HBP
database. It can be also launched manually with the registered categorise
command, which updates all articles. This command would be used in case the
categorisation rules were to change, without the need to search the Internet
for new updates. Registering a command is described in section 5.3.

Articles that need to be categorised are passed through a pipeline that
extracts all required information. The categorisation pipeline is defined in
pipeline.py.

30

5.5. Categorisation

pipeline.py

def categorisation_pipeline(article, pipes):
for pipe in pipes:

article = pipe(article)
return article

Any classification task can be expressed as a function (pipe) that modifies
the original article dictionary. Usually, the pipe function adds new properties
(fields) to the dictionary. For example, the classify model pipe creates the
model property, which specifies whether an article is describing the Standard
Model or searching beyond the Standard Model. Running all classification
tasks is achieved by calling the categorisation pipeline function and sup-
plying a list of pipes:

pipeline.py

def categorise(article):
return categorisation_pipeline(

article,
[classify_model, extract_entities,
extract_luminosity, extract_energy,
extract_collision, extract_production,
extract_decay_a, extract_decay_b,
extract_decay_particles,
delete_entities, classify_stage]

)

5.5.1 Text Classification

This sections presents the implementation of the naive Bayes classification
model, described in section 4.2.2.1.

5.5.1.1 Training Data

The training data in the .csv format is prepared first. It has two columns,
which represent the text of the article and the physics model. The train-
ing data is created manually by labeling the article text (title + abstract),
with either “SM” for “Standard Model”, or “BSM” for “beyond the Standard
Model”.

31

5. Implementation

5.5.1.2 Training the Model

First, the texts are pre-processed with the NLTK library, in order the train
the model. The pre-processing consists of removing stopwords, pronouns,
numbers and punctuation.

Then, a vectorizer is created. A vectorizer transforms text into a feature
vector. There are two common approaches on how to represent feature vectors.
In the simple solution, elements of the vector represent the frequencies of words
in a given document.

A more advanced solution should also take into account how often a certain
word occurs in the whole collection of documents. Words that occur in too
many documents should have reduced deciding power. This is named the
Term Frequency - Inverse Document Frequency measure (TF-IDF) [54]. In
TF-IDF, elements of the feature vector represent how relevant a word is to a
given document. The value is proportional to the frequency of the word in
a document, but inversely proportional to the frequency of the word in the
whole collection. In a TF-IDF matrix, each column represents one term and
each row represents one document.

The TF-IDF measure is implemented by the TfidfVectorizer class in the
Scikit-learn library. The fit transform method causes the vectorizer to learn
the vocabulary and construct the TF-IDF matrix of the training data [54].

from sklearn.feature_extraction.text import TfidfVectorizer
from util import preprocess_text

texts = [preprocess_text(text) for text in texts]
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(texts)

Lastly, the classifier is trained. A variant of the naive Bayes classifier
is used – the complement naive Bayes classifier. This type of classifier out-
performs other types when classifying text data [55]. The complement naive
Bayes classifier is implemented by the ComplementNB class in Scikit-learn. The
classifier is trained by the fit method. The first argument is the TF-IDF ma-
trix constructed by the vectorizer. The second argument is an array of labels
(“SM” or “BSM”), corresponding to the rows of the TF-IDF matrix [54].

from sklearn.naive_bayes import ComplementNB

classifier = ComplementNB()
classifier.fit(tfidf_matrix, models)

Both the vectorizer and classifier are saved into a file once the training is
complete. In order to classify new articles, they are loaded from a file without
the need to go through the training process again. It is possible to make a
prediction with the following function:

32

5.5. Categorisation

def predict_model(text):
processed_text = preprocess_text(text)
tfidf_matrix = vectorizer.transform([processed_text])
model = classifier.predict(tfidf_matrix)

return model[0]

The vectorizer transform method accepts an iterable of documents. If
only one document is present, it must passed as a singleton array. The clas-
sifier makes the prediction with the predict method. It returns an array of
predictions with a single element.

5.5.2 Named Entity Recognition

A training process is also applied to the NER model, described in section 4.2.2.2.

5.5.2.1 Training Data

The training data for the NER is labelled manually. It consists of text docu-
ments, each with a list of corresponding named entities and their positions in
the document (annotations).

A training document might look like: “Search for charged Higgs bosons
produced via vector boson fusion and decaying into a pair of W and Z bosons
using proton-proton collisions at

√
s = 13TeV ” [56]. The highlighted phrases

are the named entities. Each named entity has a type, offset from the be-
ginning of the document and a length. In this example, the types would be
“PRODUCTION”, “DECAY” and “ENERGY”.

5.5.2.2 Training the Model

The model has to recognise the entities automatically, therefore it must be
familiar with the syntax of the English language. In spaCy, a blank language
model can be initialised. This model is pre-trained for the syntactical analysis,
but does not yet recognise any entities:

import spacy

nlp = spacy.blank("en") # initialise blank English model
nlp.add_pipe("ner") # add NER step to the pipeline

The model is trained in multiple iterations. Seeing the training data only
once is not sufficient for the model to be accurate. The number of iterations
cannot be set too high in order to avoid over-fitting [44]. For the HBP, 50 iter-
ations are performed. In each iteration, the training documents are randomly
batched into groups of 8. The model is updated after every batch.

33

5. Implementation

import random
from spacy.training import Example
from spacy.util import minibatch

Create examples from training data
examples = [

Example.from_dict(nlp.make_doc(text), annotations)
for text, annotations in train_data

]

nlp.initialize()

for i in range(200):
random.shuffle(examples)

for batch in minibatch(examples, size=8):
nlp.update(batch)

The trained model is saved to a file to be used later. A similar model
is trained to recognise decay products (particles) within a “DECAY” entity,
displayed in the example in section 5.5.2.1.

In order to run the recogniser on new articles, the model is loaded from a
file and applied to the text of the article. It returns a list of named entities,
along with their types. These entities are processed further in the pipeline,
e.g. parsing numeric values.

5.6 Web API

This section details the implementation of the HBP API.

5.6.1 Resources

A fundamental concept of RESTful APIs are resources. A resource is an
object with a type, associated data and a set of methods that operate on
it [57]. The methods typically correspond to the GET, POST, PUT, PATCH
and DELETE methods of the HTTP protocol.

The core resource of the HBP are the articles. For articles, all API methods
are implemented, except POST and PUT, which are used for inserting or
completely replacing resource objects. Both these methods are replaced by
the automated update system.

The API component is implemented as a Flask blueprint. A Flask blueprint
is a module that can be attached to the core application [58]. The API meth-
ods are registered in the API blueprint using the Flask routing mechanism [45].

34

5.6. Web API

api.py
from flask import Blueprint

api = Blueprint("api", __name__)

@api.route("/papers", methods=["GET"])
def get_papers():

Retrieve all papers from the service layer

@api.route("/papers/<id>", methods=["PATCH"])
def patch_paper(id):

Update paper by id

The blueprint is then registered to the main application.

app.py
from api import api

app.register_blueprint(api, url_prefix="/api")

All routes within the blueprint are prefixed with the name of the blueprint.
For example, to retrieve all articles, the following HTTP request must be sent:

GET /api/papers/ HTTP 1.1

5.6.2 Authentication and Authorisation

Administrators of the HBP must be able to delete articles and modify article
categorisation information manually. These actions are available through the
PATCH and DELETE methods of the API. However, these methods require
authentication and authorisation to prevent destructive actions.

Administrators can create an account on the HBP via the /api/register
API route. This account is initially not active, until it is verified by an already
existing administrator.

Authentication is implemented using JSON Web Tokens (JWT) [59]. When
an administrator logs in with his username and password, he receives a short-
lived (one hour) JWT token. This token is sent with every subsequent request
to the server, in order to identify the administrator. The JWT token expires
after a set time period, after which it must be refreshed. The identity of the
administrator can be read from the token and various levels of permissions
can be granted.

It is not safe for the administrator to handle the token manually. After
logging in, it is automatically stored in the web browser cookies. When sending

35

5. Implementation

Figure 5.1: HBP Home page

requests, the browser attaches the token to the request. The cookie “SameSite”
attribute is set to “Strict”, which means it is only available to the HBP domain
to prevent cross-site request forgery (CSRF) attacks [60].

Administrator accounts are stored in the database in the “users” collection.
A document in this collection consists of the name of the administrator, e-mail
and an encrypted hash of his password.

5.7 Web Client

In this section, the process of implementing the web client using the React
framework is described.

5.7.1 Environment

A new React application is initialised using the create-react-app package.
This will create a Node.js environment. Node.js is required to compile the ap-
plication to Javascript that can be then ran in a web browser. The application
uses the NPM package manager to install and manage external dependencies.
The application is compiled by running npm run build.

5.7.2 Design

The user interface is composed of multiple pages. A brief description of the
Higgs boson is given on the “Home” page. Below, both completed and ongoing
experiments are listed with a short description. The Home page is displayed
in Figure 5.1.

36

5.7. Web Client

Figure 5.2: HBP Articles page

The main component of the HBP is the database of categorised articles.
These can be viewed on the “Articles” page, displayed in Figure 5.2. The
articles can be filtered by date, name of experiment, luminosity, center-of-
mass energy, decay products, production modes, stage and the physics model
(SM or BSM). Any of the filters can be combined. Additionally, searching for
keywords in the title or abstract manually is possible.

Detailed information about a specific article, including the categorisation
information, attached files and related articles can be viewed by clicking on
the article.

The “History” page details the development of various measurements.
These include the lower and upper mass limits of the Higgs boson, and the
precision of the Higgs boson mass measurement.

The “Feedback” page allows users to send feedback to the administrators.

5.7.3 Administration

A log-in form is available for administrators of the portal. When logged in,
administrators are able to perform tasks mentioned in section 4.1.1.

37

5. Implementation

5.8 Deployment

5.8.1 Production Environment

In order to run the server application with a production WSGI server, a
wsgi.py file is created:

wsgi.py
from app import app

if __name__ == "main":
app.run()

This setup can be then launched using the gunicorn package from shell.
In order to configure OpenShift to run this application, a Dockerfile must be
provided.

Dockerfile
FROM python:3.8

COPY ./requirements.txt ./

RUN pip install -r requirements.txt

COPY . .

EXPOSE 8080

RUN chmod +x start_server.sh

CMD start_server.sh

This file is used to create the Docker image of the application. The CMD
command specifies the process that is ran when the container is launched.
The HBP server is launched with the following shell script:

start_server.sh

python update_scheduler.py &
gunicorn --bind 0.0.0.0:8080 wsgi:app

The python update scheduler.py & instruction in the above shell script
launches a scheduling task in the background. This process triggers a flask
update command every 24 hours. The second command starts a gunicorn
web server listening on the port 8080.

38

5.8. Deployment

In order to import the application to the OpenShift platform, an OpenShift
project is first created. A new application is created within this project via
the OpenShift command line tool, by using the command

oc new-app ssh://git@github.com:zacikpet/hbp.git
--strategy=docker
--source-secret=hbp

The source repository is private, therefore the new-app command must
be authenticated using an SSH key pair. The private key is stored in the
OpenShift environment and the public key is stored in the GitHub repository.

Running the new-app command pulls the code from the repository and
builds the application on the OpenShift platform. A set number of containers
(replicas) is deployed. The traffic on the HBP is expected to be relatively
small, therefore only one replica is necessary.

To make the application publicly available via the domain name, an Open-
Shift route is created, using the following command of the OpenShift CLI:

oc create route edge
--service=hbp
--insecure-policy=Redirect
--hostname=higgs.web.cern.ch

The edge option specifies how the traffic is encrypted. Internal traffic
within the OpenShift project cluster is not required to be encrypted.

The insecure-policy=Redirect option guarantees that non-encrypted
connections will be automatically redirected to HTTPS.

By default, CERN Web Services only allow connections from within the
CERN Intranet. The route is made visible to the Internet with the following
command:

oc annotate route hbp \
router.cern.ch/network-visibility=Internet

5.8.2 Continuous Delivery

The compiled files of the web client must be replaced in the HBP server repos-
itory after every update to the client. Instead of manually copying the files to
the server repository, an automated workflow is set up with GitHub Actions.

GitHub Actions are able to run pre-defined tasks after publishing a new
version to the remote GitHub repository. Pushing a new version to the
hbp-client repository triggers an automatic build by running npm run build.
Then, the resulting build folder is copied to the main hbp repository. After
copying, the files are automatically committed.

39

5. Implementation

The OpenShift project is set to automatically publish new versions from
the hbp GitHub repository. Therefore, running git push in either repository
automatically integrates the changes to the production version of the portal.

40

Chapter 6
Testing

6.1 Automated Tests

The core logic of the HBP is implemented in the service layer. This layer needs
to be tested independently of the database implementation and the controller
layer.

The service layer follows the Inversion of Control (IoC) pattern. It has one
dependency – the database client. The database client instance is passed to
the service layer on initialisation. The service layer logic works independently
of the database client instance.

When testing, the real database client is substituted by a testing instance
from the package mongomock. The testing database is an in-memory database,
that behaves similarly to a regular MongoDB database. Data in this database
is erased on program shutdown. Unit tests of service methods are performed
by creating a new instance of the HBPService and providing the test database:

import mongomock
from unittest import TestCase
from service import HBPService

class TestReadPapers(TestCase):
def setUp(self):

self.mongo = mongomock.MongoClient() # Create mock DB
self.service = HBPService(self.mongo) # Initialise service

def test_read_all_papers_empty(): # Test empty database
all_papers = self.service.read_all_papers()
assert len(all_papers) == 0

41

6. Testing

TP FP FN precision (%) recall (%) F1-score (%)
Model 26 4 6 86.67 81.25 83.87

Table 6.1: Results from the naive Bayes classification test

6.2 Statistical Analysis

In this section, result of the categorisation accuracy are presented.

6.2.1 Text Classification

The naive Bayes text classifier (implementation in section 5.5.1) that decides
whether an article belongs to the “SM” or “BSM” category is trained on a
random set of 50 labelled articles. The test is performed on a different set of 50
articles. Results are evaluated with the F1-score measure, where the F1-score
is the harmonic mean of precision and recall of the model [61]. The quality
is assumed to be positive when the article is a search beyond the Standard
model. Therefore, the F1-score measure can be applied by setting:

• True Positives (TP): Correctly identified BSM articles

• True Negatives (TN): Correctly identified SM articles

• False Positives (FP, Type I errors): SM articles incorrectly labelled BSM

• False Negatives (FN, Type II errors): BSM articles incorrectly labelled
SM

Precision, recall and F1-score of the model are calculated as [61]:

precision = |{true positives}|
|{true positives} ⋃

{false positives}| (6.1)

recall = |{true positives}|
|{true positives} ⋃

{false negatives}| (6.2)

F1 = 2 · precision · recall
precision + recall (6.3)

Out of the 50 testing articles, 40 were classified correctly, resulting in a
success rate of 80 %. Detailed results are displayed in Table 6.1. This result
could be potentially improved by training the classifier with a larger data set.

42

6.2. Statistical Analysis

TP FP FN precision (%) recall (%) F1-score (%)
Luminosity 51 2 7 96.23 87.93 91.9

CoM Energy 51 0 9 100 85 91.9
Production mode 52 8 9 86.67 85.25 85.95

Decay product 71 17 19 80.69 78.89 79.78

Table 6.2: Results from the NER categorisation test.

6.2.2 Named Entity Recognition

The NER model (section 5.5.2) is trained on 100 training articles. The test is
performed on 75 testing articles.

Instead of checking the recognised named entities directly, the extracted
named entities are first processed algorithmically. The final categorisation
results are reviewed. When testing, the entities are processed by the same
algorithms that are used in the production environment.

It is possible that one article describes multiple decay modes or production
modes. Additionally, multiple data sets with different integrated luminosities
or centre-of-mass energies might be analysed in one article. Therefore, the
categorisation accuracy is not evaluated per-article, but rather per-category,
e.g. how many decay modes mentioned in an article are correctly identified.

The standard F1-score measure is used for evaluating binary classifica-
tion models [61]. However, it can be applied to this classification model, by
setting [62]:

• True Positives (TP): correctly identified categories,

• False Negatives (FP, Type II errors): undetected categories,

• False Positives (FP, Type I errors): incorrectly predicted categories that
are not mentioned in the text.

Precision, recall and F1-score of the model are calculated identically to the
definition in section 6.2.1. Complete results of the categorisation accuracy are
displayed in Table 6.2.

43

Conclusion

This thesis describes how the goal was achieved to implement a web portal
dedicated to Higgs boson research. The portal presents categorised infor-
mation about the Higgs boson useful for particle physicists. Additionally, a
description and various facts about the research are provided to make the
portal attractive to the public.

The arguments for and against currently available resources were sum-
marised. Requirements for the new portal were outlined, along with other
nice-to-have features. A major part of the portal – the automatic categorisa-
tion of scientific articles based on the information in the title and abstract,
was implemented.

The architecture of the portal is detailed in the thesis. Tools, software
libraries and services required for running and maintaining the portal were
introduced.

The implementation of the Higgs Boson Portal has been completed and
documented. Multiple types of Artificial Intelligence text classifiers were used
to categorise scientific articles efficiently. The training process of the classifiers
was demonstrated. In this thesis, the front-end of the portal, in the form of a
website, is documented.

The portal has been deployed to the Internet using the CERN web hosting
services. The integrated database is updated automatically on a daily basis.
Manual interventions can be performed using the OpenShift administration
tools. Amendments to the web portal itself can be achieved through the
synchronisation with Github/Gitlab.

An initial analysis of the performance of the new portal has been per-
formed. The categorisation accuracy is deemed high enough for the portal to
be useful, and it can be further improved, for example, by training on a larger
dataset.

Concluding, all tasks of the thesis assignments regarding design, implemen-
tation, deployment and testing of the new web portal have been completed.

45

Bibliography

[1] CERN. The Higgs boson [online]. [Cited 2021-03-27]. Available from:
https://home.cern/science/physics/higgs-boson

[2] Organtini, G. Unveiling the Higgs mechanism to students. European Jour-
nal of Physics, volume 33, no. 5, jul 2012: pp. 1397–1406, doi:10.1088/
0143-0807/33/5/1397. Available from: https://doi.org/10.1088/0143-
0807/33/5/1397

[3] CERN. The Standard model [online]. [Cited 2021-03-28]. Available from:
https://home.cern/science/physics/standard-model

[4] Cottingham, W.; Greenwood, D.; et al. An Introduction to Nu-
clear Physics. An Introduction to Nuclear Physics, Cambridge Uni-
versity Press, 2001, ISBN 9780521657334. Available from: https://
books.google.sk/books?id=0VIpJPn-qWoC

[5] Sopczak, A. Status of Higgs boson searches at the beginning of the LHC
era. Journal of Physics G: Nuclear and Particle Physics, volume 39,
no. 11, oct 2012: p. 113001, doi:10.1088/0954-3899/39/11/113001. Avail-
able from: https://doi.org/10.1088/0954-3899/39/11/113001

[6] CERN. CERN Storage [online]. [Cited 2021-03-30]. Available from:
https://home.cern/science/computing/storage

[7] LHC. Relativity, Taking a closer look at LHC [online]. [Cited 2021-03-31].
Available from: https://www.lhc-closer.es/taking_a_closer_look_
at_lhc/0.relativity

[8] LHC. Luminosity, Taking a closer look at LHC [online]. [Cited 2021-
03-31]. Available from: https://www.lhc-closer.es/taking_a_closer_
look_at_lhc/0.luminosity

47

https://home.cern/science/physics/higgs-boson
https://doi.org/10.1088/0143-0807/33/5/1397
https://doi.org/10.1088/0143-0807/33/5/1397
https://home.cern/science/physics/standard-model
https://books.google.sk/books?id=0VIpJPn-qWoC
https://books.google.sk/books?id=0VIpJPn-qWoC
https://doi.org/10.1088/0954-3899/39/11/113001
https://home.cern/science/computing/storage
https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.relativity
https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.relativity
https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.luminosity
https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.luminosity

Bibliography

[9] Sopczak, A. Precision Measurements in the Higgs Sector at ATLAS and
CMS. PoS, volume FFK2019, 2020: p. 006, doi:10.22323/1.353.0006,
hep-ex/2001.05927.

[10] Binoth, T.; Karg, S.; et al. Multi-Higgs boson production in the Stan-
dard Model and beyond. Phys. Rev. D, volume 74, 2006: p. 113008,
doi:10.1103/PhysRevD.74.113008, hep-ph/0608057.

[11] Kupka, M. Feasibility Study of Portal to Provide Knowledge about Higgs
Boson to General Public and Experts. Bachelor’s thesis, Czech Technical
University in Prague, Faculty of Information Technology, 2020.

[12] ATLAS. ATLAS Publications [online]. [Cited 2021-04-09]. Available from:
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Publications

[13] CMS. CMS Publications [online]. [Cited 2021-04-09]. Available from:
http://cms-results.web.cern.ch/cms-results/public-results/
publications/HIG/index.html

[14] CDF. CDF publications [online]. [Cited 2021-04-09]. Available from:
https://www-cdf.fnal.gov/physics/new/hdg/Published.html

[15] D0. The DØ Collaboration’s Publications [online]. [Cited 2021-04-09].
Available from: https://www-d0.fnal.gov/d0_publications/d0_pubs_
list_bydate.html

[16] CDS. Search Engine API [online]. [Cited 2021-04-09]. Available from:
https://cds.cern.ch/help/hacking/search-engine-api?ln=en

[17] Barate, R.; Bruneliere, R.; et al. Search for the Standard Model Higgs
Boson at LEP. Phys. Lett. B, volume 565, no. hep-ex/0306033. CERN-
EP-2003-011. CERN-L3-271, Mar 2003: pp. 61–75. 23 p, doi:10.1016/
S0370-2693(03)00614-2, 22 pages, 10 figures Report-no: CERN-EP/2003-
011. Available from: http://cds.cern.ch/record/610122

[18] Mitchell, R. Web Scraping with Python: Collecting Data from the Modern
Web. O’Reilly Media, Inc., first edition, 2015, ISBN 1491910291.

[19] Sun, Y.; Zhuang, Z.; et al. A Large-Scale Study of Robots.Txt. In Proceed-
ings of the 16th International Conference on World Wide Web, WWW
’07, New York, NY, USA: Association for Computing Machinery, 2007,
ISBN 9781595936547, p. 1123–1124, doi:10.1145/1242572.1242726. Avail-
able from: https://doi.org/10.1145/1242572.1242726

[20] Chowdhury, G. Natural language processing. ARIST, volume 37, 01 2005:
pp. 51–89, doi:10.1002/aris.1440370103.

48

hep-ex/2001.05927
hep-ph/0608057
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Publications
http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/index.html
http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/index.html
https://www-cdf.fnal.gov/physics/new/hdg/Published.html
https://www-d0.fnal.gov/d0_publications/d0_pubs_list_bydate.html
https://www-d0.fnal.gov/d0_publications/d0_pubs_list_bydate.html
https://cds.cern.ch/help/hacking/search-engine-api?ln=en
http://cds.cern.ch/record/610122
https://doi.org/10.1145/1242572.1242726

Bibliography

[21] Androutsopoulos, I.; Koutsias, J.; et al. An Experimental Comparison of
Naive Bayesian and Keyword-Based Anti-Spam Filtering with Personal e-
Mail Messages. In Proceedings of the 23rd Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
SIGIR ’00, New York, NY, USA: Association for Computing Machinery,
2000, ISBN 1581132263, p. 160–167, doi:10.1145/345508.345569. Avail-
able from: https://doi.org/10.1145/345508.345569

[22] Mccallum, A.; Nigam, K. A Comparison of Event Models for Naive Bayes
Text Classification. Work Learn Text Categ, volume 752, 05 2001.

[23] Zhang, Y.; Jin, R.; et al. Understanding bag-of-words model: A statistical
framework. International Journal of Machine Learning and Cybernetics,
volume 1, 12 2010: pp. 43–52, doi:10.1007/s13042-010-0001-0.

[24] Wilbur, W. J.; Sirotkin, K. The automatic identification of stop words.
Journal of Information Science, volume 18, no. 1, 1992: pp. 45–
55, doi:10.1177/016555159201800106. Available from: https://doi.org/
10.1177/016555159201800106

[25] Joyce, J. Bayes’ Theorem. In The Stanford Encyclopedia of Phi-
losophy, edited by E. N. Zalta, Metaphysics Research Lab, Stan-
ford University, spring 2019 edition, 2019. Available from: https://
plato.stanford.edu/archives/spr2019/entries/bayes-theorem/

[26] Zhang, W.; Gao, F. An Improvement to Naive Bayes for Text Classi-
fication. Procedia Engineering, volume 15, 2011: pp. 2160–2164, ISSN
1877-7058, doi:https://doi.org/10.1016/j.proeng.2011.08.404, cEIS 2011.
Available from: https://www.sciencedirect.com/science/article/
pii/S1877705811019059

[27] Aaboud, M.; Aad, G.; et al. Measurements of gluon–gluon fusion
and vector-boson fusion Higgs boson production cross-sections in the
H → WW∗ → eυµυ decay channel in pp collisions at s=13TeV with
the ATLAS detector. Physics Letters B, volume 789, Feb 2019: p.
508–529, ISSN 0370-2693, doi:10.1016/j.physletb.2018.11.064. Available
from: http://dx.doi.org/10.1016/j.physletb.2018.11.064

[28] Zitouni, I. Natural Language Processing of Semitic Languages. 01 2014,
ISBN 978-3-642-45357-1, doi:10.1007/978-3-642-45358-8.

[29] CERN. CERN Web Services [online]. [Cited 2021-05-11]. Available from:
https://webservices.web.cern.ch/webservices/

[30] Venkatraman, S.; Fahd, K.; et al. SQL Versus NoSQL Movement
with Big Data Analytics. International Journal of Information Tech-
nology and Computer Science, volume 8, 2016: pp. 59–66. Avail-
able from: https://www.semanticscholar.org/paper/SQL-Versus-

49

https://doi.org/10.1145/345508.345569
https://doi.org/10.1177/016555159201800106
https://doi.org/10.1177/016555159201800106
https://plato.stanford.edu/archives/spr2019/entries/bayes-theorem/
https://plato.stanford.edu/archives/spr2019/entries/bayes-theorem/
https://www.sciencedirect.com/science/article/pii/S1877705811019059
https://www.sciencedirect.com/science/article/pii/S1877705811019059
http://dx.doi.org/10.1016/j.physletb.2018.11.064
https://webservices.web.cern.ch/webservices/
https://www.semanticscholar.org/paper/SQL-Versus-NoSQL-Movement-with-Big-Data-Analytics-Venkatraman-Fahd/ff1e0618d9dcad292af5ccf05cd11dfcafecce19
https://www.semanticscholar.org/paper/SQL-Versus-NoSQL-Movement-with-Big-Data-Analytics-Venkatraman-Fahd/ff1e0618d9dcad292af5ccf05cd11dfcafecce19
https://www.semanticscholar.org/paper/SQL-Versus-NoSQL-Movement-with-Big-Data-Analytics-Venkatraman-Fahd/ff1e0618d9dcad292af5ccf05cd11dfcafecce19

Bibliography

NoSQL-Movement-with-Big-Data-Analytics-Venkatraman-Fahd/
ff1e0618d9dcad292af5ccf05cd11dfcafecce19

[31] Al Shehri, W. Cloud Database Database as a Service. International Jour-
nal of Database Management Systems, volume 5, 04 2013: pp. 1–12, doi:
10.5121/ijdms.2013.5201.

[32] Hürsch, W. L.; Lopes, C. V. Separation of Concerns. Technical report,
03 1995. Available from: https://www.researchgate.net/publication/
2821402_Separation_of_Concerns

[33] Sulyman, S. Client-Server Model. IOSR Journal of Computer Engineer-
ing, volume 16, 01 2014: pp. 57–71, doi:10.9790/0661-16195771.

[34] Fielding, R. T.; Gettys, J.; et al. Hypertext Transfer Protocol –
HTTP/1.1 [online]. RFC 2616, RFC Editor, June 1999. Available from:
http://www.rfc-editor.org/rfc/rfc2616.txt

[35] Masse, M. REST API Design Rulebook: Designing Consistent REST-
ful Web Service Interfaces. O’Reilly Media, 2011, ISBN 9781449319908.
Available from: https://books.google.sk/books?id=eABpzyTcJNIC

[36] Van Rossum, G.; et al. Python [software]. 1991, [Cited 2021-04-08].
Available from: https://courses.minia.edu.eg/Attach/16028python_
lecture1.pdf

[37] Pipenv: Python Development Workflow for Humans [software]. [Cited
2021-04-08]. Available from: https://pypi.org/project/pipenv/

[38] MongoDB [software]. [Cited 2021-04-08]. Available from: https://
www.mongodb.com/

[39] Chodorow, K. MongoDB: The Definitive Guide: Powerful and Scal-
able Data Storage. O’Reilly Media, 2013, ISBN 9781449344825. Available
from: https://books.google.sk/books?id=uGUKiNkKRJ0C

[40] Scrapy [software]. 2021, [Cited 2021-04-08]. Available from: https://
docs.scrapy.org/en/latest/index.html

[41] Clark, J, ed. and DeRose, S, ed. XML Path Language [online]. 2016,
[Cited 2021-04-09]. Available from: https://www.w3.org/TR/1999/REC-
xpath-19991116/

[42] Natural Language Toolkit [software]. 2021, [Cited 2021-04-08]. Available
from: https://www.nltk.org/

[43] Scikit-learn: machine learning in python [software]. 2021, [Cited 2021-04-
08]. Available from: https://scikit-learn.org/stable/

50

https://www.semanticscholar.org/paper/SQL-Versus-NoSQL-Movement-with-Big-Data-Analytics-Venkatraman-Fahd/ff1e0618d9dcad292af5ccf05cd11dfcafecce19
https://www.semanticscholar.org/paper/SQL-Versus-NoSQL-Movement-with-Big-Data-Analytics-Venkatraman-Fahd/ff1e0618d9dcad292af5ccf05cd11dfcafecce19
https://www.semanticscholar.org/paper/SQL-Versus-NoSQL-Movement-with-Big-Data-Analytics-Venkatraman-Fahd/ff1e0618d9dcad292af5ccf05cd11dfcafecce19
https://www.semanticscholar.org/paper/SQL-Versus-NoSQL-Movement-with-Big-Data-Analytics-Venkatraman-Fahd/ff1e0618d9dcad292af5ccf05cd11dfcafecce19
https://www.researchgate.net/publication/2821402_Separation_of_Concerns
https://www.researchgate.net/publication/2821402_Separation_of_Concerns
http://www.rfc-editor.org/rfc/rfc2616.txt
https://books.google.sk/books?id=eABpzyTcJNIC
https://courses.minia.edu.eg/Attach/16028python_lecture1.pdf
https://courses.minia.edu.eg/Attach/16028python_lecture1.pdf
https://pypi.org/project/pipenv/
https://www.mongodb.com/
https://www.mongodb.com/
https://books.google.sk/books?id=uGUKiNkKRJ0C
https://docs.scrapy.org/en/latest/index.html
https://docs.scrapy.org/en/latest/index.html
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.nltk.org/
https://scikit-learn.org/stable/

Bibliography

[44] Honnibal, M.; Montani, I.; et al. spaCy: Industrial-strength
Natural Language Processing in Python [software]. 2020, doi:
10.5281/zenodo.1212303. Available from: https://doi.org/10.5281/
zenodo.1212303

[45] Flask [software]. 2021, [Cited 2021-04-08]. Available from: https://
flask.palletsprojects.com/en/1.1.x/

[46] Gardner, J. The Web Server Gateway Interface (WSGI). 01 2009, ISBN
978-1-59059-934-1, doi:10.1007/978-1-4302-0534-0 16.

[47] Gunicorn. Gunicorn [software]. [Cited [2021-04-12]. Available from:
https://gunicorn.org/

[48] Gackenheimer, C. Introduction to React. USA: Apress, first edition, 2015,
ISBN 1484212460.

[49] React - A Javascript library for building user interfaces [software]. 2021,
[Cited 2021-04-08]. Available from: https://reactjs.org/

[50] Syromiatnikov, A.; Weyns, D. A journey through the land of model-
view-design patterns. In 2014 IEEE/IFIP Conference on Software Archi-
tecture, IEEE, 2014, pp. 21–30.

[51] MD Web Docs. Cross-Origin Resource Sharing. [Cited 2021-05-21]. Avail-
able from: https://developer.mozilla.org/en-US/docs/Web/HTTP/
CORS

[52] MongoDB Atlas [online]. [Cited 2021-04-09]. Available from: https://
www.mongodb.com/cloud/atlas

[53] Redhat, OpenShift. OpenShift Container Platform 4.7 Docu-
mentation [software]. [Cited 2021-05-11]. Available from: https:
//docs.openshift.com/container-platform/3.11/cli_reference/
index.html

[54] Buitinck, L.; Louppe, G.; et al. API design for machine learning software:
experiences from the scikit-learn project. In ECML PKDD Workshop:
Languages for Data Mining and Machine Learning, 2013, pp. 108–122.

[55] Scikit-learn. Naive Bayes – scikit-learn 0.24.1 documentation [on-
line]. [Cited [2021-04-10]]. Available from: https://scikit-learn.org/
stable/modules/naive_bayes.html

[56] Sirunyan, A.; Tumasyan, A.; et al. Search for Charged Higgs Bosons
Produced via Vector Boson Fusion and Decaying into a Pair of W
and Z Bosons Using pp Collisions at

√
s = 13 TeV. Physical Review

Letters, volume 119, no. 14, Oct 2017, ISSN 1079-7114, doi:10.1103/

51

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/
https://gunicorn.org/
https://reactjs.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://docs.openshift.com/container-platform/3.11/cli_reference/index.html
https://docs.openshift.com/container-platform/3.11/cli_reference/index.html
https://docs.openshift.com/container-platform/3.11/cli_reference/index.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html

Bibliography

physrevlett.119.141802. Available from: http://dx.doi.org/10.1103/
PhysRevLett.119.141802

[57] RESTful API design: Resources [online]. [Cited 2021-04-12]. Avail-
able from: https://restful-api-design.readthedocs.io/en/latest/
resources.html

[58] Flask. Modular Applications with Blueprints [online]. [Cited 2021-04-
12]. Available from: https://flask.palletsprojects.com/en/1.1.x/
blueprints/

[59] Jones, M.; Bradley, J.; et al. JSON Web Token (JWT). RFC
7519, May 2015, doi:10.17487/RFC7519. Available from: https://rfc-
editor.org/rfc/rfc7519.txt

[60] MDN Web Docs. SameSite cookies [online]. [Cited 2021-04-21]. Avail-
able from: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Set-Cookie/SameSite

[61] Chinchor, N. MUC-4 Evaluation Metrics. In Proceedings of the 4th
Conference on Message Understanding, MUC4 ’92, USA: Association
for Computational Linguistics, 1992, ISBN 1558602739, p. 22–29, doi:
10.3115/1072064.1072067. Available from: https://doi.org/10.3115/
1072064.1072067

[62] Nadeau, D.; Sekine, S. A Survey of Named Entity Recognition and
Classification. Lingvisticae Investigationes, volume 30, 08 2007, doi:
10.1075/li.30.1.03nad.

52

http://dx.doi.org/10.1103/PhysRevLett.119.141802
http://dx.doi.org/10.1103/PhysRevLett.119.141802
https://restful-api-design.readthedocs.io/en/latest/resources.html
https://restful-api-design.readthedocs.io/en/latest/resources.html
https://flask.palletsprojects.com/en/1.1.x/blueprints/
https://flask.palletsprojects.com/en/1.1.x/blueprints/
https://rfc-editor.org/rfc/rfc7519.txt
https://rfc-editor.org/rfc/rfc7519.txt
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.3115/1072064.1072067

Appendix A
Acronyms

API Application Programming Interface

ATLAS A Toroidal LHC Apparatus

CERN Conseil Européen pour la Recherche

CMS Compact Muon Solenoid

CSRF Cross-site Resource Forgery

HBP Higgs Boson Portal

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IoC Inversion of Control

JSON Javascript Object Notation

LEP Large Electron Positron Collider

LHC Large Hadron Collider Nucléaire (European Council for Nuclear Re-
search)

NER Named Entity Recognition

NLP Natural Language Processing

NoSQL Not Only SQL

REST Representational State Transfer

SoC Separation of Concerns

SQL Structured Query Language

53

A. Acronyms

UI User Interface

URL Universal Resource Locator

WSGI Web Server Gateway Interface

XML Extensible Markup Language

54

Appendix B
Contents of enclosed media

readme.txt intructions on how to run the application locally
hbp-server....................................the HBP server sources
hbp-client the HBP client sources
thesis.................the directory of LATEX source codes of the thesis

thesis.tex the thesis source
thesis.pdf..............................the thesis text in PDF format

55

	Introduction
	Goal
	The Higgs Boson
	The Standard Model
	Beyond the Standard Model
	History of Searches
	Current Research
	Production Modes
	Decay Modes

	State-of-the-art
	Scientific Resources
	Journals and Preprints
	ATLAS and CMS
	ALEPH, DELPHI, L3, OPAL
	CDF and DØ
	Development of Measurements

	Outreach to the Public

	Design, Tools and Architecture
	Requirements
	Functional requirements
	Non-functional requirements

	Methodology
	Web Scraping
	Natural Language Processing
	Text Classification
	Named Entity Recognition

	Web Services and the Cloud

	Architecture
	Database
	Client-server architecture
	HTTP and REST

	Tools
	Git
	Python
	MongoDB
	Scrapy
	NLTK, Scikit-learn and spaCy
	Flask
	React

	Services
	MongoDB Atlas
	CERN Web Services and OpenShift

	Implementation
	Environment
	Flask Server
	CLI Commands
	Filling/Updating the Database
	Getting Articles via the CDS API
	Scraping CDF and DØ articles
	Updating the database

	Categorisation
	Text Classification
	Training Data
	Training the Model

	Named Entity Recognition
	Training Data
	Training the Model

	Web API
	Resources
	Authentication and Authorisation

	Web Client
	Environment
	Design
	Administration

	Deployment
	Production Environment
	Continuous Delivery

	Testing
	Automated Tests
	Statistical Analysis
	Text Classification
	Named Entity Recognition

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed media

