

Bachelor’s thesis

Improving LearnShell backend for exams
and assignments

Ondřej Cihlář

Software Engineering
Supervisor: Ing. Jakub Žitný

May 13, 2021

Acknowledgements

I want to thank my tutor, Ing. Jakub Žitný for guiding my work and his
advice. I also want to thank Bc. Karel J́ılek for his help with finding the
correct solution and Vojtěch Skoumal, DiS, for his constant support during
tough times of my study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Ondřej Cihlář. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Cihlář, Ondřej. Improving LearnShell backend for exams and assignments.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2021.

Abstrakt

Tato práce se zabývá analýzou backendu systému LearnShell, návrhem vy-
lepšeńı a jejich následnou implementaćı. Hlavńı navržené vylepšeńı je systém
bodových bonus̊u a penalizaćı, který byl implementován formou doménově
specifického jazyka. Logiku udělováńı bodových bonus̊u a penalizaćı lze napro-
gramovat pomoćı tohoto jazyka. V této práci také analyzuji ceny vybraných
poskytovatel̊u cloudových služeb, kam bude LearnShell v budoucnu migrovat.

Kĺıčová slova doménově specifické jazyky, gramatika, lexikálńı analýza,
syntaktická analýza, interpreter, optimalizace, ceny poskytovatel̊u cloudových
služeb

Abstract

This work deals with analysis of backend of LearnShell system, proposal of
improvements and their implementation. The main proposed improvement is
a score bonuses and penalties system, which was developed by implementation
of a domain-specific language. The logic of applying of bonuses and penalties
can be programmed for by using this language. In this work, I also analyse
pricing of some major cloud providers, where the LearnShell will migrate in
the future.

vii

Keywords domain specific language, grammar, lexical analysis, syntactic
analysis, interpreter, optimization, cloud providers pricing

viii

Contents

Introduction 1

1 Current architecture analysis 3
1.1 Technologies . 3

1.1.1 Django framework . 3
1.1.2 GraphQL . 4
1.1.3 PostgreSQL . 4
1.1.4 Celery and Redis . 4

1.2 Architecture . 5
1.2.1 Business processes . 5
1.2.2 Modules . 6
1.2.3 Generator and evaluator services 6
1.2.4 Database model . 7
1.2.5 API . 15

2 Improvements proposal 21
2.1 Functional requirements . 21
2.2 Providing of hints . 22
2.3 Bonus and penalty system – database solution 24

2.3.1 Pros and cons . 25
2.4 Bonus and penalty system – DSL solution 25

2.4.1 Domain-specific language 25
2.4.2 Scoring DSL . 26
2.4.3 Pros and cons . 27

3 Basics of formal grammars theory 29
3.1 Formal grammar . 29
3.2 Syntax tree . 30
3.3 Lexical analyzer . 32
3.4 Syntactic analyzer . 33

ix

3.5 Recursive descent parsing algorithm 33
3.6 Symbol table . 33

4 Implementation 35
4.1 Time complexity analysis . 35
4.2 Implementation of the scoring DSL 36

4.2.1 Grammar . 36
4.2.2 Lexer . 38
4.2.3 Parser . 40
4.2.4 Interpreter . 42
4.2.5 Integration into LearnShell 42

4.3 Providing of hints implementation 43
4.4 Endpoints optimization . 44
4.5 Final report . 46

5 Cloud services providers comparison 47
5.1 IBM Cloud Kubernetes Service 47

5.1.1 Cheap variant . 47
5.1.2 Expensive variant . 48

5.2 Google Kubernetes Engine . 48
5.2.1 Cheap variant . 48
5.2.2 Expensive variant . 48

5.3 Microsoft Azure Kubernetes Service 48
5.3.1 Cheap variant . 48
5.3.2 Expensive variant . 48

5.4 Summary . 49

Conclusion 51

Bibliography 53

A LearnShell git repository 57

B Acronyms 59

C Contents of enclosed CD 61

x

List of Figures

1.1 Process of creating and writing exam 5
1.2 Package diagram of LearnShell’s apps 7
1.3 Database model . 8

2.1 Use case and requirements diagram 22
2.2 Hint table in database . 23
2.3 EvaluationTemplate table in database 24
2.4 EvaluationTemplate table with DSL script 27

3.1 Syntax tree . 31
3.2 Abstract syntax tree . 32

xi

List of Tables

1.1 User database table . 9
1.2 Job database table . 9
1.3 Course database table . 10
1.4 Parallel database table . 10
1.5 ParallelMembership database table 11
1.6 Service database table . 11
1.7 AssignmentTemplate database table 12
1.8 Assignment database table . 12
1.9 Generated assignment database table 13
1.10 Submission database table . 13
1.11 Correction database table . 13
1.12 ExamTemplate database table . 14
1.13 AssignmentExamTemplate database table 14
1.14 Exam database table . 14
1.15 StudentWritesExam database table 15

5.1 Cloud pricing comparison summary 50

xiii

Introduction

LearnShell is a system, which is used at the Faculty of Information Technology,
Czech Technical University in Prague. It’s a modular system, currently used
in the Programming in shell course, for managing and performing exams with
programming assignments.

In the past, students of Programming in shell course were tested only
on paper. It was not quite a suitable way of testing, since it’s a test of
student’s programming skills, nor was it comfortable for teachers to evaluate.
Evaluation of a programming assignment can be complicated. Every computer
program usually takes input values, and transforms them into output. In case
of some more complex assignment, there can be hundreds of different input
values and there are usually many possible ways of implementation. If a
teacher wants to evaluate a solution of such assignment properly, it can be
impossible without some form of automatic evaluation.

For this reason, the LearnShell was developed, a system which provides
fully automatic generation of assignments and its evaluation. Current version
provides basic functionality of assignment and exam creation and is still under
development.

The aim of this work is to propose improvements of LearnShell’s assign-
ment and exam modules, implement it, and optimize all endpoints of this
module. The future idea is to migrate the system’s modules to a cloud ser-
vice, so I will also analyze services of major cloud providers, where LearnShell
could migrate in the future.

This work is divided into five chapters. In the first chapter, I analyze
the current architecture of the LearnShell backend. I write about technologies
and frameworks used in current implementation, databases, business processes
and system’s API. In the second chapter I propose possible improvements of
assignment and exam modules, I also analyze time complexity of this task.
The third chapter states the theory that is needed for the implementation.
Implementation is described in the fourth chapter together with endpoint
optimization of the assignment and exam modules. The final chapter deals

1

Introduction

with comparison of cloud providers for future migration, where I state pricing
analysis of some major providers.

2

Chapter 1
Current architecture analysis

In this chapter I will analyse the current architecture of the LearnShell back-
end. Before I start with the detailed analysis, I will briefly describe you basic
usage of the system.

LearnShell is a web application, which provides the creation and evalua-
tion of programming assignments and exams. It also keeps the evidence of stu-
dents, teachers, courses and parallels. Teachers are able to create exams with
specific assignments. Once the exam is created, the teacher assigns students
within his parallel and starts the exam, which means that the assignments are
generated for each student. Thereafter students create their solution and sub-
mit it. LearnShell evaluates it and creates a correction, where all evaluation
information is stored and students can display it.

1.1 Technologies

1.1.1 Django framework

LearnShell is written in the Django framework. It is a framework for building
web applications in Python programming language [1].

Applications written in this framework fulfill the model-view-controller
(MVC) architecture. MVC is one of the architectural design patterns – appli-
cation is divided into three components: model, view and controller. Model
manages the data of the application. Controller processes the user input and
interacts with data model objects, it is usually responsible for the main appli-
cation logic. View is responsible for presenting data to the user. [2]

This framework also provides its own object-relational mapper and API
for database access. [3]

Each project written in Django consists of apps, which is a submodule of
the project. An app does not have to be connected to other apps and can
basically work as a standalone Python module. Each app usually focuses on
one logical piece of the project. [4]

3

1. Current architecture analysis

1.1.2 GraphQL

System uses GraphQL language for the communication between server and
client, which is an interesting alternative to widely used REST, originally de-
veloped by Facebook. “GraphQL is a query language for APIs and a runtime
for fulfilling those queries with existing data. GraphQL provides a complete
description of the data in the API.” [5]

In contrast to REST services, where a client sends requests to endpoints,
which return fixed data structure, in GraphQL, a client is able to describe
what data exactly needs. It is a big advantage, since the fixed data structure
returned by REST service may contain a lot of useless data, or conversely, the
data may not be enough. [6]

GraphQL provides two basic types of operations – query and mutation.
Query is an operation, which does not have any impact on the server-side
data. It is usually used for data fetching – read operations. Mutation is an
operation usually used for data modifying – create, update, delete and other
actions. [7]

1.1.3 PostgreSQL

LearnShell uses PostgreSQL database for data storage. It is an open source
object-relational database [8]. PostgreSQL tries to conform with the SQL
standard and has a good reputation for its performance, reliability, security
and extensibility [9].

1.1.4 Celery and Redis

There are tasks in the LearnShell that are done asynchronously. It means
that the task runs in the background, so the server can continue doing some
other work. Such tasks are handled by the Celery – distributed task queue.
“Task queues are used as a mechanism to distribute work across threads or
machines. A task queue’s input is a unit of work called a task. Dedicated
worker processes constantly monitor task queues for new work to perform.
Celery communicates via messages, usually using a broker to mediate between
clients and workers. To initiate a task the client adds a message to the queue,
the broker then delivers that message to a worker.” [10]

As a message broker, LearnShell uses the Redis database. Redis is a key-
value data structure store, which can be used as a database, cache and message
broker. [11]

4

1.2. Architecture

1.2 Architecture

1.2.1 Business processes

The main business process the LearnShell currently implements is a process
of creating and writing an exam. First, a teacher creates all assignments that
are supposed to be a part of the exam. All assignments must be tested before
they are assigned to an exam. Thereafter the teacher creates the exam, adds
created assignments into it and enrolls students. Once the teacher completes
the enrollment, the system prepares and generates assignments for all enrolled
students. Then the teacher starts the exam and the system makes assignments
available to students. Once the exam is started, the system starts to count-
down the time limit and students are able to create and submit a solution. If
a student submits a solution, the system evaluates it and displays results. If
the solution is not correct, the student can recreate it and submit it again.
The process ends when the countdown reaches the time limit and the system
ends the exam. The following UML activity diagram describes the process of
creating and writing exam:

Figure 1.1: Process of creating and writing exam

5

1. Current architecture analysis

1.2.2 Modules

Although the Django framework can be used for development of complete web
applications, LearnShell uses it for managing the data and for business logic,
thus according to the MVC architecture, it uses only the model and controller
components. Presentation layer is completely separated from Django – Learn-
Shell has its own frontend, which uses different technologies and programming
languages, but this work does not focus on it.

LearnShell consists of the followin Django apps:

• Assignment

• Core

• Course

• Exam

• Generated assignment

• Service

• Submission

• User

Each app has its own data model and business logic. These apps are
connected to each other and together they form the whole system.

1.2.3 Generator and evaluator services

For generating and evaluating assignments, LearnShell uses external services
– Generator and Evaluator.

Generator is used for customizing an assignment for a particular student.
During creation of an assignment, the teacher inputs data for the generator
service. Thereafter the generator returns variables that can be used in the
assignment.

Evaluator is used for evaluation of a student’s submission. During the
creation of an assignment, the teacher inputs data for the evaluator service,
based on which the evaluation is performed. Once a student creates a submis-
sion, LearnShell sends the submission data into the evaluator service, which
returns a correction.

External services communicate via an HTTP protocol. Each service must
implement the following interface:

• GET {url}/ping – returns 200 or 204 code, indicates whether the
service is running and can be used

6

1.2. Architecture

• GET {url}/schema – returns a schema of data that the service expects
on the input

• POST {url} – accepts data fulfilling the schema in JSON format, re-
turns data in JSON format (generated data or correction)

1.2.4 Database model

In this section I am describing LearnShell’s database model – all the entities,
tables and their fields. The following pictures show a diagram of Learnshell’s
apps with entities they are composed of and a diagram of the database model:

Figure 1.2: Package diagram of LearnShell’s apps

7

1. Current architecture analysis

Figure 1.3: Database model

8

1.2. Architecture

User
Table representing a user. Users are divided into regular users, administrators
and superusers.

Table 1.1: User database table
Field Datatype Description
id integer primary key
username varchar username
password varchar password
email varchar user’s email address
first name varchar user’s first name
last name varchar user’s last name
is staff boolean true if the user is an administrator
is superuser boolean true if the user is a superuser
is active boolean true if the user is active
date joined date date the user joined into system
ip address inet user’s ip address
last login timestamp user’s last login timestamp

Job
This table represents an asynchronous task, it stores its data and metadata.

Table 1.2: Job database table
Field Datatype Description
id integer primary key
user integer foreign key of user, who started the task
createTime timestamp when the task was created
startTime timestamp when the task was started
endTime timestamp when the task ended
error text error output of the task
description text textual description of the task
result JSON output of the task

9

1. Current architecture analysis

Course
Table representing a course. Some fields correspond to course data stored in
KOS (a study information system at Czech Technical University in Prague).

Table 1.3: Course database table
Field Datatype Description
id integer primary key
name varchar name of the course
kos tag varchar tag from KOS
kos semester varchar semester from KOS

Parallel
Table representing a parallel. Courses are attended by students and these
students are divided into smaller groups – parallels. Parallels are taught sep-
arately at a particular time in the assigned room.

Table 1.4: Parallel database table
Field Datatype Description
id integer primary key
course foreign key course the parallel belongs to
name varchar name of the course
kos id varchar id of the parallel in KOS
parity varchar even or odd week
room varchar room the parallel takes place
day integer week day the parallel takes place
start time integer hour the parallel starts

10

1.2. Architecture

ParallelMembership
Table representing a parallel membership. Member of a parallel can be either
student – the field level is equal to 1, or teacher – level is equal to 2.

Table 1.5: ParallelMembership database table

Field Datatype Description
id integer primary key
user foreign key user
parallel foreign key parallel
level integer level of user’s membership

Service
Table representing an external service – generator or evaluator.

Table 1.6: Service database table
Field Datatype Description
id integer primary key
name varchar name of the service
url varchar url of the service
is generator boolean true if the service is a generator
correction schema JSON JSON schema of the data that are

passed to the evaluator by the teacher
generator schema JSON JSON schema of the data that are

passed to the generator by the teacher
submission schema JSON JSON schema of the data that are

passed to the evaluator by the student

11

1. Current architecture analysis

AssignmentTemplate
Table representing an assignment template. It defines what services will be
used for evaluation and assignment generation.

Table 1.7: AssignmentTemplate database table

Field Datatype Description
id integer primary key
name varchar name of the template
correction service foreign key service for correction
generator service foreign key service for assignment generation

Assignment
Table representing a specific assignment assigned by the teacher. Each assign-
ment has its owner, it is the only user that can modify it. Assignment can be
published for all students (for example as a homework) or it can be assigned
to an exam for a specific group of students (usually for one parallel).

Table 1.8: Assignment database table

Field Datatype Description
id integer primary key
course foreign key course the assignment belongs to
owner foreign key owner of the assignment
template foreign key template of the assignment
name varchar name of the assignment
description text description of the assignment
correction data JSON data for the correction service
generator data JSON data for the generator service
published boolean true if the assignment is published
for exam boolean true if the assignment is for exam

12

1.2. Architecture

GeneratedAssignment
Table representing an assignment generated for a specific student or for a
teacher to test it.

Table 1.9: Generated assignment database table

Field Datatype Description
id integer primary key
assignment foreign key the assignment it was generated from
student foreign key the student it was generated for
exam foreign key the exam it is part of
data JSON data from the assignment generator

Submission
Table representing a submission of the assignment. It stores data known before
correction.

Table 1.10: Submission database table
Field Datatype Description
id integer primary key
generated assignment foreign key generated assignment the submission

belong to
created at timestamp when the correction was created
submission data JSON data corresponding to the submission

schema

Correction
Table representing a correction. It belongs to one specific submission, so it is
related to the submission table by one to one relation.

Table 1.11: Correction database table
Field Datatype Description
id integer primary key
submission foreign key submission the correction belongs to
created at timestamp when the correction was created
data JSON data returned from the evaluator

13

1. Current architecture analysis

ExamTemplate
Table representing an exam template. It defines a course the exam belongs to
and time limit.

Table 1.12: ExamTemplate database table

Field Datatype Description
id integer primary key
course foreign key course the exam template belongs to
name varchar name of the template
time limit interval time limit

AssignmentExamTemplate
Table representing a relation between an assignment and an exam template.

Table 1.13: AssignmentExamTemplate database table

Field Datatype Description
id integer primary key
assignment foreign key assignment the template belongs to
exam template foreign key exam template the template belongs to

Exam
Table representing an exam. An exam can be related to multiple assignments,
it is written by a specific group of students who are added to the exam by a
teacher.

Table 1.14: Exam database table
Field Datatype Description
id integer primary key
teacher foreign key teacher who is in charge of the exam
template foreign key template the exam belongs to
start time timestamp when the exam started
enrollment completed boolean true if all students are enrolled to

the exam

14

1.2. Architecture

StudentWritesExam
Table representing a specific student writing a specific exam.

Table 1.15: StudentWritesExam database table
Field Datatype Description
id integer primary key
student foreign key the student writing the exam
exam foreign key the exam the student writes
time adjustment integer adjustment of the time limit

1.2.5 API

In this section I describe the LearnShell’s API. All actions of this API can be
called by the GraphQL. Actions are described for each entity of the LearnShell.
I will describe all entity’s retrieve fields, which are fields that are not stored
in the database table, but the system counts them internally, and all actions
that can be called on the entity.

Entities usually have some common actions: list action – lists all entities
according to the condition, detail action – returns details of one specific in-
stance of the entity, create action – creates a new instance, delete action –
deletes one specific instance, update action – updates one specific instance.

User:

• Retrieve fields:

– score – User’s total score
– courses – courses the user participates in
– parallels – parallels the user participates in
– coursesAsStudent – courses the user participates in as a student
– coursesAsTeacher – courses the user participates in as a teacher
– parallelsAsStudent – parallels the user participates in as a student
– parallelsAsTeacher – parallels the user participates in as a teacher

• Queries:

– List
– Detail
– Myself – returns own profile details

15

1. Current architecture analysis

• Mutations:

– Create
– Update
– SetPassword – sets or resets password

Job:

• Retrieve fields:

– running – is the job running
– finished – was the job finished
– duration – duration of running
– status – RUNNING/FAILED/PENDING/COMPLETED

• Queries:

– List
– Detail

Course:

• Retrieve fields:

– noPrallel – parallel for users without parallel
– teacher – teachers of the course
– students – students of the course
– members – members of the course

• Queries:

– List
– Detail

• Mutations:

– Create
– Update
– ImportFromKos – imports course from KOS

Parallel:

• Retrieve fields:

– teacher – teachers of the parallel

16

1.2. Architecture

– students – students of the parallel
– members – members of the parallel

• Queries:

– Detail

• Mutations:

– Create
– Update

ParallelMembership:

• Queries:

– List
– Detail

• Mutations:

– Create

Service:

• Retrieve fields:

– valid – is the service valid

• Queries:

– List
– Detail

• Mutations:

– Create

AssignmentTemplate:

• Queries:

– List
– Detail

• Mutations:

– Create

Assignment:

17

1. Current architecture analysis

• Retrieve fields:

– generatorSchema – generator data schema
– correctionSchema – evaluator data schema

• Queries:

– List
– Detail

• Mutations:

– Create
– Update
– Delete
– ChangeOwner – change owner of the assignment
– Publish – publishes the assignment
– Test – generates the assignment to the owner to test it

GeneratedAssignment:

• Retrieve fields:

– name – name of the generated assignment

• Queries:

– List
– Detail

Submission:

• Retrieve fields:

– submissionSchema – evaluator data schema

• Queries:

– List
– Detail

• Mutations:

– Create
– Delete

Correction:

18

1.2. Architecture

• Retrieve fields:

– score – achieved score
– generatedAssignment – assignment the correction belongs to

ExamTemplate:

• Retrieve fields:

– timelimit – time limit of the exam

• Queries:

– List
– Detail

• Mutations:

– Create
– Update
– Delete

AssignmentExamTemplate:

• Retrieve fields:

• Queries:

– List
– Detail

• Mutations:

– Create
– Update
– Delete

Exam:

• Retrieve fields:

– time limit – time limit of the exam
– has started – has the exam started

• Queries:

– List
– Detail

19

1. Current architecture analysis

• Mutations:

– Create
– Delete
– Start – starts the exam
– complete enrollment – prepares and generates assignments for stu-

dents

StudentWritesExam:

• Retrieve fields:

– timeadjustment – time adjustment
– time left – time left
– start time – start time
– end time – start time

• Queries:

– List
– Detail

• Mutations:

– Create
– Delete

20

Chapter 2
Improvements proposal

The main improvement I am going to implement is a score bonus/penalty
system and the logic of providing a hint – this is useful for usage of the score
bonus/penalty system.

2.1 Functional requirements

• Score bonuses and penalties

– Teachers are able to define score bonuses/penalties for the whole
course and use the UI of the LearnShell to input their parameters.
The final score of an assignment generated for a student is affected
according to those parameters. Penalties and bonuses are applied,
if a student meets the conditions of receiving them.

• Providing of hints

– Teachers are able to define hint types for the whole course. If a
student uploads a solution and the solution is not correct, Learn-
Shell creates and provides a simple hint. Student is able to display
it.

The following picture shows use case and requirements diagram of proposed
improvements:

21

2. Improvements proposal

Figure 2.1: Use case and requirements diagram

2.2 Providing of hints

First, I propose the logic of providing of hints, because the bonus/penalty
system depends on it and uses this functionality.

Every course has its own evaluator. In the current version of LearnShell,
providing of hints is managed only at the level of frontend – after clicking
the hint button, a student can see the hint returned by the evaluator. The
hint data from the output of the evaluator is not standardized, LearnShell
currently uses evaluator of the Programming in shell course, where hints are
created from error messages returned in correction.

It is better to manage it completely at the level of the backend in order
to track the information about displayed hints for student’s particular sub-
missions. All hints that can be displayed should be stored into the database,
thus every evaluator should return all hints in some standardized way, so the
backend can use them.

My solution to this problem is that the guarantor of every course defines
all hint types. When the evaluator returns a result, it also returns an attribute
Hints within the correction. In this attribute, all hints are available under their
names. There is a newly defined table in the database, table representing a
hint. This table contains the type of the hint, its text and a boolean value (true
or false) – an indicator, whether it was displayed. When a student submits a
solution that is not completely correct, the backend receives a correction with
available hints that are stored in the Hints attribute and creates a table in the
database for each of them. When a student sends a request for displaying a
specific hint, LearnShell provides it and sets the indicator of displaying in the

22

2.2. Providing of hints

corresponding database table to the value of true. Thanks to this solution, all
the information about displayed hints can be used by the score bonus/penalties
system.

Here is an example for better understanding: student submits a solution
and evaluator service finds out that it is not correct. Standard output and
return code of the student’s solution are different from standard output and
return code of reference solution. Evaluator returns a correction with hints.
The hint attribute can look something like this:

"Hints": {"stdout_mismatch": "Stdout hint text",
"retcode_mismatch": "Retcode hint text."}

The keys “stdout mismatch” and “retcode mismatch” are names of the
hints. These names can be anything, it is completely up to the course guaran-
tor. In this example, LearnShell creates two hint tables in the database. First
table contains “stdout mismatch” in the Type field and “Stdout hint text” in
the Text field. Second table contains “retcode mismatch” in the Type field and
“Retcode hint text” in the Text field. At this time, the indicators of displaying
are set to the value of false in both tables. Let’s say that the student wants to
display the stdout mismatch hint. Student sends a request, LearnShell finds
the corresponding Hint table, sets the indicator of displaying to the value of
true and returns the text.

Figure 2.2: Hint table in database

There is a part of the database model diagram in the picture above. This
picture shows how this solution looks in the database. The Hint table is
related to the Submission table by many to one relation, so there can be
multiple hints created for a submission. Hints are returned in the JSON field
data of the Correction table.

23

2. Improvements proposal

2.3 Bonus and penalty system – database solution

First, I describe some examples of bonuses and penalties, so you have a better
idea of how the bonus/penalty system should work. The bonus/penalty system
applies a score penalty for displaying a hint. Teacher inputs parameters such
as what hints can be displayed, how many hints can be displayed without
any penalty and what the score penalty will be for displaying a hint above
the limit. Each type of hint can have a different penalty. The number of
student’s submissions for an assignment is not limited in the current version
of LearnShell. This could be also penalised. The parameters of this kind of
penalty are the limit of how many submissions are not penalised and what
the penalty will be for each submission above the limit. A typical example
of a score bonus is an early submission bonus. It is a bonus for submitting a
correct solution under a specific deadline of the time limit of the exam. For
example, if the correct solution is submitted in the first half of the time limit,
the student receives a score bonus.

The parameters of all bonuses and penalties must be stored somewhere in
the database, so the system can use them – if a student meets the conditions of
some penalty or bonus, the system multiplies the score of his submission by the
parameter, which belongs to the particular bonus or penalty. Since all hint
types are defined for each evaluator, the parameters should also be defined
per evaluator. Possible solution is to add a new table into the database –
EvaluationTemplate table. There is a possibility that different evaluators can
use the same hints and bonus/penalty parameters, so this table is related to
the Service table by many to one relation. This table contains the maximum
numbers of penalised and free hints and also a JSON field “Schema”, which
stores all hint types and their penalty value. If a student displays a hint of a
specific type, the system looks for the type in this field. Then it can multiply
the score by the corresponding value.

Figure 2.3: EvaluationTemplate table in database

In the example below, the “Schema” field stores two hint types: “std-
out mismatch” and “retcode mismatch”. The student would receive a ten
percent penalty for displaying the “stdout mismatch” hint, because the score
would be multiplied by the value of 0.9. In case of displaying the “ret-

24

2.4. Bonus and penalty system – DSL solution

code mismatch” hint, the penalisation would be twenty percent.

{
"stdout_mismatch": 0.9,
"stderr_mismatch": 0.8
}

2.3.1 Pros and cons

Pros of this solution are that all the score bonuses, penalties and hints are
handled automatically. Teacher just inputs the parameters and attributes,
which are saved into the database and the whole logic of score counting is
already programmed in the LearnShell.

On the other hand, the main disadvantage is that this solution is not
completely generic. Every course must settle for this one way of counting
the score. Implementation of score bonuses and penalties must be hard-coded
within functions of the system’s business logic. But what if there are some
other kinds of penalties/bonuses? What if the values of bonuses and penalties
are not constant and depend on many other factors?

Main purpose of LearnShell is to be usable throughout other courses with
different kinds of assignments and generic evaluation settings. Although this
solution would work, it is not convenient, because the usability would be very
limited.

Although this solution appears to be the easiest way to implement the
bonus/penalty system, the maintenance of this solution would probably get
complicated. I decided to introduce this inconvenient solution in this work
because it gives me arguments to propose a much better solution.

2.4 Bonus and penalty system – DSL solution

Another solution of the bonus/penalty system is to implement a domain-
specific language (DSL). Before I start to discuss this solution, I will explain,
what exactly a domain-specific language is.

2.4.1 Domain-specific language

“Domain-specific language: a computer programming language of limited ex-
pressiveness focused on a particular domain.” Humans can use a DSL for
writing instructions that a computer understands in some way and executes
them. DSLs are usually easier to learn and to understand than general-purpose
programming languages. Unlike general-purpose programming languages that
are determined to solve complex problems and build whole systems, domain-
specific languages are usually focused on a small domain. DSLs are usually

25

2. Improvements proposal

integrated into software systems to solve particular problems it is designed
for. [12].

According to [12], domain-specific languages can be divided into three
main categories – external DSLs, internal DSLs and language workbenches.
An external DSL is completely separated from the language of its parent
system and has its own syntax. “A script in an external DSL will usually be
parsed by a code in the host application using text parsing techniques.” An
internal DSL is defined in the hosting general-purpose programming language
and uses it in a particular way. So a code in an internal DSL is a valid code
in its hosting language, “but only uses a subset of the language’s features in
a particular style to handle one small aspect of the overall system. The result
should have the feel of a custom language, rather than its host language.” A
language workbench is an IDE for designing DSLs. It usually provides tools
for designing structure of a DSL, building a DSL and an environment for
writing DSL scripts.

I will give a few examples of well known DSLs:

• SQL - a DSL for managing data in a relational database

• HTML - a DSL for building websites

• CSS - a DSL for styling websites

• LaTex - a DSL for writing formatted text documents

2.4.2 Scoring DSL

The main idea of this solution is that the final score of submissions is counted
by a DSL, which is tailored to the LearnShell. Teachers are able to program
the whole logic of bonuses and penalties from the LearnShell’s UI by using the
scoring DSL. The evaluation by the scoring DSL is also defined per evaluator –
the source code of the DSL is a part of the EvaluationTemplate table unlike the
previous solution where the table stored only the values of bonuses/penalties.

When a student submits a solution, the evaluator service returns a score
as a part of the correction. All the information about the submission, such
as student’s username, timestamp of submitting, hints already displayed, and
other relevant data together with the score, is collected into a data package
and sent into the scoring DSL. All the data is available in the scoring DSL
and can be used for the evaluation in the evaluation script. The scoring
DSL modifies the score returned in the correction according to the script and
returns a new score value.

The picture below shows how this solution looks in the database. The Eval-
uationTemplate table contains only the “id” field and the “evaluation code”
field. LearnShell contains a score counting function within the business logic.
Once this function is called, the system finds the script of the score DSL in

26

2.4. Bonus and penalty system – DSL solution

Figure 2.4: EvaluationTemplate table with DSL script

the EvaluationTemplate table, which belongs to the corresponding Service ta-
ble. Thereafter the system sends the script and the submission data to the
function, which executes the interpreter of the scoring DSL and returns the
final score.

2.4.3 Pros and cons

The main advantage of this solution is that the evaluation is completely
generic. Every course can have its own score calculation, programmed by
using the scoring DSL.

Disadvantage is that users have to learn this DSL to be able to use the
evaluation system properly. But it is a negligible problem since this solution
offers a completely generic design.

It turns out that this solution fits right for the LearnShell, thus I will
analyse it in detail and implement it.

27

Chapter 3
Basics of formal grammars

theory

In this chapter, I state the theory that is needed for implementation of the
scoring DSL.

3.1 Formal grammar

In order to describe the scoring DSL formally, I need to define a grammar.
Grammar is an important tool to define the syntax of a language. “A gram-
mar consists of a list of production rules, where each rule has a term and a
statement of how it gets broken down.” A rule can also mention some other
rules thus together they create the exact description of language’s syntax. The
source code of a language is a stream of text and grammar gives it an unam-
biguous syntax, but not a semantics, it does not tell us what the text means.
Consider the following example of a grammar rule: addition := number ’+’
number. If there is a part of the language’s source code in this form – for
example 1 + 1, the grammar recognizes it as the addition rule. The grammar
given in the example would also contain a “number” rule, which would break
down to the actual number. [13]

In this work, I only use a context-free grammar. Definition is the following
[14]: Context-free grammar is a quadruple:

G = (V, T, P, S)

• V is “a finite set of variables, also called sometimes nonterminals. Each
variable represents a language, i.e., a set of strings.”

• T is a “finite set of symbols that form the strings of the language being
defined. We call this alphabet the terminals, or terminal symbols.”

29

3. Basics of formal grammars theory

• P is a “finite set of productions or rules that represent the recursive
definition of a language.”

• S is a start symbol and “represents the language being defined. Other
variables represent auxiliary classes of strings that are used to help define
the language of the start symbol.”

Each production rule consists of “a variable that is being (partially) defined
by the production,” on its left side. “A string of zero or more terminals and
variables” on its right side, “this string, called the body of the production,
represents one way to form strings in the language of the variable of the head.
In so doing, we leave terminals unchanged and substitute for each variable of
the body any string that is known to be in language of that variable.” Both
sides are separated by the production symbol. [14]

The following example shows a grammar, which describes a language of
addition or deduction statement of two one-digit numbers:

G = (V, T, P, S)
V = {statement, addition, deduction, number}
T = {+, -, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
S = statement
P = {
statement := addition | deduction
addition := number ’+’ number
deduction := number ’-’ number
number := ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ |

’6’ | ’7’ | ’8’ | ’9’
}

The symbol of “:=” is a production symbol terminating the left and the
right side of production rules. The “|” symbol represents an alternative – for
example the statement rule can either break down to the addition nonterminal
or the deduction nonterminal. For a better clarity, the terminal symbols are
written with the apostrophes.

3.2 Syntax tree

A script of a language is represented by a stream of text. Another way to
represent a script is a hierarchy called a syntax tree. A grammar basically
defines how a script is transformed into a syntax tree. [13]

Every node of a syntax tree refers to its child nodes according to the rules
of the corresponding grammar. Consider a grammar with the following rules
(the symbol of two dots at the body of the number rule means an interval – a
number can be any from the interval of 0-9):

30

3.2. Syntax tree

function := name ’(’ argument ’)’
argument := number | addition
addition := number ’+’ number
name := ’sqrt’ | ’pow’
number := ’0’..’9’

Let’s also consider the following piece of script:

sqrt (6 + 3)

The syntax tree of this script looks like this:

Figure 3.1: Syntax tree

During the implementation I will not need to use the actual syntax tree.
Instead, I will use an abstract syntax tree (AST). “An abstract syntax tree is
a simplification of the syntax tree which provides better tree representation of
the input language.” Nodes of a syntax tree represent the exact input text.
An abstract syntax tree doesn’t necessarily have to represent the exact input,
it is reduced of unnecessary nodes that are not needed for further processing
of the tree. [15]

If we consider the previous example of a syntax tree, the nodes representing
parentheses and the symbol of plus are redundant. The picture below shows
an AST created from the previous syntax tree:

31

3. Basics of formal grammars theory

Figure 3.2: Abstract syntax tree

3.3 Lexical analyzer

A lexical analyzer, also called lexer or tokenizer “is the first stage in processing
the input text. The lexer splits the characters of the input into tokens, which
represent more reasonable chunks of the input.” Tokens are objects that con-
tain individual elements of the language which are located in the input text.
Each token is basically composed of two main attributes – token type and
value. Token types are usually for punctuation – keywords, operators, paren-
theses and separators, for domain text – identifiers, names, string literals,
number literals and for whitespaces – newlines, spaces, tabs. Whitespaces are
usually discarded, unless they are syntactically significant. A lexer has an
internally defined rule for each token type. During the processing of the input
text, the rules are applied in the order of precedence (for example a keyword
token type has usually higher precedence than an identifier token type). Once
the lexer finds the matching rule, it creates a token of the corresponding type.
The value of the token is usually the input text that was matched. Values
of punctuation token types are usually not important. Tokens don’t have to
be composed only of the type and the value, it can also contain some debug
information, such as the position in the input text. [16]

Let’s consider the example of grammar from the previous chapter and the
following input script:

sqrt(6 + 3)

32

3.4. Syntactic analyzer

The lexical analyzer would transform the input into the following tokens
(value is not defined where it is redundant):

[type: identifier, value: sqrt]
[type: left_parenthesis]
[type: number, value: 6]
[type: plus]
[type: number, value: 3]
[type: right_parenthesis]

3.4 Syntactic analyzer

A syntactic analyzer, also called a parser, performs the process of syntactic
analysis. “Syntactic analysis takes the stream of tokens and arranges them
into a parse tree” (syntax tree). The process of parsing ends successfully, if
the given input text matches the given grammar (parser recognizes the input),
if not, it ends with failure. [16]

Thereafter the syntax tree, which is built during the parsing process, can
be interpreted by a tree walking code, such code evaluates the branches of the
tree and produces the final output.

3.5 Recursive descent parsing algorithm

Recursive descent parsing algorithm is one of the simplest ways to implement
a parser. The idea is, that there is a procedure for each nonterminal symbol
of the grammar. The goal of each such procedure is to read a sequence of input
characters that can be generated by the corresponding non-terminal, and return
a pointer to the root of the parse tree for the non-terminal. The structure of the
procedure is dictated by the productions for the corresponding non-terminal.
The procedure processes the input and tries to match the right side of some
production. In case of a terminal symbol, the procedure compares the symbol
it is looking for to the input symbol, if they match, it simply moves to the next
symbol and indicates success. In case of a nonterminal symbol, the procedure
executes the procedure that is determined to handle that symbol, if the input
matches the right side of the production being handled, it returns success.
The procedures can call each other recursively. [17]

3.6 Symbol table

A symbol table is “a location to store all identifiable objects during a parse
to resolve references.” It maps the reference of stored object to its value, so
the values can be referenced in the script. A symbol table is usually a map

33

3. Basics of formal grammars theory

data structure, it means that it is composed of keys and values. A key is the
reference to the value, usually it is a string (but not necessary). [18]

For example, there is a name of a variable used in the script, the symbol
table stores it under the key equal to the name, thus the value of the variable
is available under the variable’s name.

34

Chapter 4
Implementation

The whole LearnShell project is a part of the enclosed CD. In the appendix,
I also enclosed a link for my branch of the LearnShell repository on GitHub.

4.1 Time complexity analysis

In this section, I am describing time complexity of implementation of proposed
improvements. During this analysis, I am following the method of decompo-
sition. It means that big problems are divided into smaller tasks of a specific
type and time complexity is estimated for each task. Thereafter the final time
complexity is counted as a sum of the complexity of each task.

Time complexity is typically measured in mandays (MD). Manday is a
unit which corresponds to one person’s working day. It is typically considered
as 8 hours. [19]

Implementation of the language consists of intro analysis, where I will
analyze the form of the language, what elements should be supported by the
language and write down some possible pieces of script. Then I will create the
grammar, according to which the lexical analyzer and the syntactic analyzer
will be implemented. The next stage of the language implementation is the
creation of an interpreter. The final stage is to integrate the language into
LearnShell, so the final score of a student will be counted according to the
script of the language.

The logic of providing of hints has a simpler implementation. It only
requires to create a new table in the database - the Hint table, and implemen-
tation of two functions – one that is responsible for creating all hints from the
output of the evaluator and one for providing a hint when a student sends a
request for displaying it.

35

4. Implementation

The estimate of time complexity is the following:

• Scoring DSL

– Intro analysis – 2 MD
– Grammar – 1 MD
– Lexical analyzer – 2 MD
– Syntactic analyzer – 4 MD
– Interpreter – 8 MD
– Reserve for bugs fixing – 2 MD
– Integration into the system – 0.5 MD

• Providing of hints

– Database table creation + implementation of the logic – 0.5 MD

• Total estimated – 20 MD

4.2 Implementation of the scoring DSL

There is a scoring dsl python package I created in the LearnShell project for
the implementation. Documentation is stored in the scoring dsl docs folder.
The scoring dsl package also contains the readme.md file, where the user man-
ual of the scoring DSL is described.

4.2.1 Grammar

Let’s discuss what the language should look like. The scoring DSL’s purpose
is to modify the score according to received bonuses and penalties. Simultane-
ously it should give users the ability to process a data package with information
about the submission and use it for calculation of the final score.

Score modification is applied if a student meets the conditions that are
defined for the specific bonus or penalty. It means that there is a set of con-
ditions defined for each bonus or penalty. Users should be able to describe
these conditions by the language, which uses received data to evaluate them.
In case of a fulfilled condition, the language executes defined actions – mostly
the score modification. Since the bonus/penalty system is always a set of con-
ditions, the cornerstone of the language should be if statement. If statement
allows a programmer to define a condition to the computer and commands it
should execute in case of a fulfilled condition.

It is also necessary to ensure the ability of processing data the scoring DSL
receives for evaluation. This can be done by provision of built-in functions and
variables. Variables are used for data accessing, functions are able to accept

36

4.2. Implementation of the scoring DSL

them as arguments, read them and eventually execute commands and return
results. In order to work with penalties, bonuses, values of variables and
results returned by functions, the language should also support the number
and the string data types.

According to this analysis, the grammar I proposed for the scoring DSL
looks the following way:

G = (V, T, P, S)
V = {
program, if_stmt, function, argument, identifier,
number, string

}
T = ASCII characters
S = program
P = {
program := (if_stmt)*

if_stmt := ’if’ function ’then’ function (’;’ function)* ’fi’

function := identifier ’(’ (argument (’,’ argument)*)? ’)’

argument := function | identifier | number | string

identifier := [’a’..’z’ ’A’..’Z’ ’_’]+

number := ’-’? [’0’..’9’]+ |
’-’? [’0’..’9’]+ ’.’ [’0’..’9’]+

string := ’"’ [ASCII character]* ’"’
}

First, I explain the notation used for the grammar rules. Symbols stored
in between parentheses form a subgroup. The symbol of “∗” indicates that the
previous symbol or subgroup can appear zero or more times. The symbol of
“+” indicates that the previous symbol or subgroup can appear one or more
times. Square brackets represent a list of symbols, the symbol at this place
can be any from the symbols stored in the list.

The language consists of zero or more if statements. I decided that the
language can be empty, in case there is a course that will not use it. If state-
ment is composed of two parts – condition and actions. Condition is stated
after the “if” keyword and is represented by a function. Actions are stated
after the “then” keyword. They are also represented by functions and there
can be one or more actions at each if statement. Action functions are sep-

37

4. Implementation

arated by semicolons. The whole if statement is ended by the “fi” keyword.
Function consists of an identifier, which represents the name of the function
and arguments. Arguments are stored in between parentheses, separated by
commas and there can be zero or more of them. An argument can be a func-
tion, identifier, number or string. In case of argument, an identifier represents
the name of a variable. Identifier is composed of one or more characters of
lower/upper alphabet and underscore. A number can be an integer or a float-
ing point number. String is composed of zero or more ASCII characters, which
are stored in between quotation marks.

4.2.2 Lexer

The implementation of the lexer is stored in the lexer.py module of the scor-
ing dsl package.

The first stage of implementing the lexer is the identification of all token
types, which create an output of the lexer. According to the grammar, I
identified the following token types:

• Keyword

• Identifier

• Number

• String

• Comma

• Semicolon

• Left parenthesis

• Right parenthesis

• EOF

There are the following keywords in the language – if, then and fi, so the
value of the keyword token must be from this list. Values of identifier, number
and string tokens correspond to the values stated in the grammar. Values of
other token types are not relevant. The EOF token is appended at the end of
the output stream of tokens, so the parser recognizes the end of the stream.

Token is represented by the Token class. This class stores a token type,
its value and provides methods for type and value matching.

The lexer is represented by the Lexer class. This class accepts a string of
the script of the scoring DSL in its constructor. The Lexer class also stores a
list of tokens, where the tokens are added during the lexical analysis, and the
information about the current position in the input text. The class provides
the run method which is responsible for the whole process of lexical analysis.
The logic of this method is expressed by the following pseudocode:

38

4.2. Implementation of the scoring DSL

tokens = []; position = 0;

while (position <= input length):
if (input[position] is whitespace):

increase position by one; continue;

if (keyword_found()):
append keyword to tokens; adjust position; continue;

else if (identifier_found()):
append identifier to tokens; adjust position; continue;

else if (number_found()):
append number to tokens; adjust position; continue;

else if (string_found()):
append string to tokens; adjust position; continue;

else if (comma_found()):
append comma to tokens; adjust position; continue;

else if (semicolon_found()):
append number to tokens; adjust position; continue;

else if (left_parenthesis_found()):
append parenthesis to tokens; adjust position; continue;

else if (right_parenthesis_found()):
append parenthesis to tokens; adjust position; continue;

else raise "Unrecognized symbol error";

As stated in the lexical analysis chapter, the rules of finding a token type in
the input text are applied in the order of the precedence. Each rule processes
the input text and if it finds an element it is responsible for, it ends with
success. In my case, the highest precedence has the rule for finding a keyword.
Next in order is the rule for finding an identifier. The order of other rules is
not important because the format of the found elements cannot be confused
with each other.

39

4. Implementation

4.2.3 Parser

The implementation of the parser is stored in the parser.py module. This
module contains the Parser class, the AST class, which is an interface repre-
senting an abstract syntax tree node, and the classes implementing the AST
interface. There is an AST node for each nonterminal symbol of the gram-
mar, except for the argument nonterminal. The argument rule is stated in the
grammar for better clarity, but the parser does not really implement it during
the process of syntactic analysis, the right side of the argument rule is directly
set in place of the argument nonterminal on the right side of the function rule.

The Parser class is responsible for syntactic analysis, it implements the
recursive descent parsing algorithm. This class accepts an array of tokens
created by the Lexer class and according to the recursive descent parsing
algorithm, it provides a method for each nonterminal symbol of the grammar.
Syntactic analysis is executed by running the program method, an output of
this method is a root node of the AST. The following pseudocode expresses
the logic of the Parser class methods:

program():
if_statements = [];

while (True):
if (next token is EOF): break;

append if_statement() to if_statements;

return ProgramNode(if_statements);

identifier():
if (next token is not ’identifier’): raise "Error";

return IdentifierNode(token value)

number():
if (next token is not ’number’): raise "Error";

return NumberNode(token value)

string():
if (next token is not ’string’): raise "Error";

return StringNode(token value)

40

4.2. Implementation of the scoring DSL

if_statement():
then_functions = [];

if (next token is not ’if’ keyword): raise "Error";

condition = function();

if (next token is not ’then’ keyword): raise "Error";

while (True):
append function() to then_functions;

if (next token is ’fi’ keyword): break;
else if (next token is not ’semicolon’): raise "Error";

return IfNode(condition, then_functions)

function():
argument_list = [];
if (next token is not ’identifier’): raise "Error";

name = token value;

if (next token is not ’left parenthesis’): raise "Error";

while (True):
try:

append function() to argument_list;
except:

try:
append identifier() to argument_list;

except:
try:

append number() to argument_list;
except:

try:
append string() to argument_list;

except:
pass;

if (next token is ’right parenthesis’): break;
else if (next token is not ’comma’): raise "Error";

return FunctionNode(name, argument_list)

41

4. Implementation

4.2.4 Interpreter

The interpreter is represented by the Interpreter class stored in the inter-
preter.py module. Its constructor accepts a string of the language’s script, an
array of hint types displayed by a student and a dictionary of built in variables
and their values. All the hint types and variables are stored into the symbol
table. The interpreter performs a tree-walking code, during which all actions
are executed and returns the final score. The AST class provides the evaluate
method, thus every class which represents an AST node implements it. This
method executes the evaluate method of all child nodes and returns an object
of DataType class. The DataType class is stored in the data types.py module.
It is an interface which provides the execute method. Each AST node class
has a corresponding Data type class, which implements the DataType interface
and stores data types of its child nodes.

The execute method performs the interpreting – it evaluates stored in-
stances, works with the symbol table and executes actions (evaluation of if
statements, functions, numbers and variables). Number and String is eval-
uated to the real Python data type (float and string). Identifier represents
the name of a built-in variable, so identifier is evaluated to the value of the
corresponding key in the symbol table. If statement evaluates the condition,
if it is evaluated to the value of true, the action functions are executed. Func-
tion evaluates its parameters to real values and executes its action. Actions
of built-in functions are handled by the FunctionHandler class stored in the
function handler.py module. This class provides the function method, which
accepts function’s name and arguments in parameters, and finds the corre-
sponding handler.

The Interpreter class provides the run method. This method executes
the lexical analysis, syntactic analysis, tree-walking code and returns the final
score. The symbol table is represented by the SymbolTable class.

There is also the ScoringDsl class in the scoring dsl.py module, this class
accepts data sent by the LearnShell in the constructor and runs the interpreter.

4.2.5 Integration into LearnShell

Score is recalculated for each submission of a student. I created the score
field in the submission table, where the score of the submission is stored. The
scoring DSL is applied in the submit worker function in the utils.py file of
the LearnShell’s submission app. This function sends the submission into the
evaluator service and thereafter saves received correction. The scoring DSL is
applied after receiving the correction, it sends the score of the correction into
the constructor of the ScoringDSL class, together with the student’s username
and displayed hints. In case the assignment is a part of an exam, the exam’s
time limit and duration of the submission are also sent into the scoring DSL,
otherwise these values are set to zero.

42

4.3. Providing of hints implementation

The following Python code shows part of the submit worker function,
where the scoring DSL is applied:

source code of the scoring DSL
code = submission.generated_assignment.assignment

.template.correction_service.evaluation_template

.scoring_dsl_src

total_time = 0.0
time_limit = 0.0

if submission.generated_assignment.is_exam_assignment:
start_time = submission.generated_assignment.exam.start_time
submission_time = submission.created_at
time_limit = submission.generated_assignment.exam.time_limit
total_time = (submission_time - start_time).total_seconds()

scoring_dsl = ScoringDsl(code, hints_displayed,
{"username": user.username, "score": c.score,
"total_time": total_time, "time_limit": time_limit})

res, err = scoring_dsl.run()
if err == "":

submission.score = res
submission.save()

else:
raise Exception("Error during score counting: " + err)

4.3 Providing of hints implementation

The implementation corresponds to the proposal stated in the improvements
proposal chapter. Each hint belongs to a submission, thus the Hint table
is implemented in the models.py file of the submission app. The following
Python code shows the implementation of the table:

class Hint(Model):
submission = ForeignKey(Submission, on_delete=CASCADE,

verbose_name=_("Hint of"), related_name="hints",
blank=True, null=True)

type = CharField(max_length=50, verbose_name=_("Hint type"))
text = TextField(verbose_name=_("Text"))
displayed = BooleanField(default=False,

verbose_name="Displayed?")

Service functions - make hints and display hint are implemented in the
utils.py file of the submission app. The make hints function is called in the

43

4. Implementation

submit worker function, right after receiving a Correction from the evaluator
service. It creates all Hint tables in the database according to the Hints at-
tribute stored in the Correction. The implementation is stated in the following
code:

def make_hints(correction, submission):
hints = correction.data["hints"]

for key, value in hints.items():
h = Hint(submission=submission, type=key, text=value)
h.save()

The display hint function can be called through the GraphQL API, it
makes particular hint data available – it sets the displayed field to the value
of true and returns a text of the hint. The implementation is stated in the
following code:

def display_hint(request, instance, data):
instance.displayed = True
instance.save()

event = EventsStat(user=request.user,
event_name="hint_display",
data={"type": instance.type,

"text": instance.text})
event.save()

return {"text": instance.text}

In order to track whether this new functionality is used by users, I created
a new database table – the EventsStat table. This table can be used to track
any possible functionality, not just an event of displaying a hint. It stores
a foreign key field of the user who called the function, name of the tracked
event, date and time of its creation and additional data about the event.

4.4 Endpoints optimization

The point of the optimization is to reduce a number of SQL queries executed
by the system to retrieve tables from the database. All listing actions of the
assignment/exam module were implemented in the following form:

Entity.objects.all()

44

4.4. Endpoints optimization

This code performs an SQL query to retrieve all Entities from the database.
The problem of this code is that in case of a request for some foreign key object
of the Entity, another query is executed to retrieve this object. I optimized all
listing operations in the assignment/exam module by using the select related
function. This function is provided by the Django framework, it accepts names
of foreign key fields in parameters. Thanks to this function, a foreign key
object is retrieved during the listing action, so Django does not execute another
SQL query in case of a request for that object. The form of optimized listing
actions I implemented is stated in the following code:

Entity.objects.select_related(’foreign_keys’).all()

The generated assignment class, which represents Generated assignment
object contains the score function. It counts the final score of all submis-
sions. This function was also ineffective, the following code shows the old
implementation:

def score(self):
scores = []
for submission in self.submissions.all():

try:
scores.append(submission.score)

except:
scores.append(0)

if len(scores) == 0:
return 0

return max(scores)

During the listing of submissions, executed by this code, Django executes
queries that retrieve all fields of the submission table. But in this case, only the
score field is needed, so I optimized the score function by using the values list
function. This function retrieves only the fields stated in its parameters. The
following code shows the optimized score function:

def score(self):
scores = self.submissions.values_list(’score’, flat=True)
if len(scores) == 0:

return 0
return max(scores)

45

4. Implementation

4.5 Final report

I implemented the logic of providing of hints. For each submission of a student,
all possible hints are saved into the database. If a student wants to display
a hint, he sends a request, the system indicates that the particular hint was
displayed and provides text of the hint.

The main part of the implementation was the scoring DSL . Teachers are
able to program the score bonus and penalty system for the courses on their
own. Personal data of students are sent into the scoring DSL, they can be
accessed through built-in variables and teachers are able to use them in the
scoring script. Currently, there are variables for username, score, total time
of the submission duration and time limit. This solution can be improved in
the future by sending more data about a student into the DSL, for example
all data of past submissions and corrections. This language was developed to
be easily extendable by adding new built-in functions and variables.

I also optimized listing actions of assignment and exam modules, and the
score counting of generated assignment.

In order to track whether students use the possibility of displaying a hint, I
implemented the function tracking. It can be also used for tracking the usage
of any other function in the system. This feature requires further processing
and analysis of tracked data.

For future re-evaluation, there is a commercial business analytic software
for measuring interaction of users with web applications. Such software usually
processes the data and provides tools to analyse them, this would help for
adding new features and improvements into the system. As examples of widely
used analytic software that can be used for LearnShell in the future, I state
the Mixpanel or Google Analytics – both can be used for tracking data about
users and their interactions with the system.

46

Chapter 5
Cloud services providers

comparison

LearnShell currently runs in docker containers on two servers. Future idea for
LearnShell is to migrate to a cloud service. This section compares the pricing
of major cloud providers, where LearnShell backend modules will migrate
in the future. My estimates take into consideration that the system should
handle approximately 500 users at one time. The LearnShell backend requires
high speed performance and fast response, in order to process submissions of
students fast. System runs 24 hours a day, 7 days a week.

I will compare the pricing of Google cloud, IBM cloud and Microsoft azure.
I will focus on a solution for containerized apps. As for managing and deploy-
ing containerized web application, each provider offers a Kubernetes service,
of which pricing I will analyze. For each provider, I will analyse two solutions
– cheaper and more expensive. Estimated costs don’t include tax.

5.1 IBM Cloud Kubernetes Service

Pricing estimates are created according to the IBM Cloud pricing calculator,
which is available at [20].

5.1.1 Cheap variant

As for the cheaper variant, I considered 3 Kubernetes worker nodes, 4 vCPUs,
32GB RAM, 25GB on primary SSD and 100GB on secondary SSD. Price
for such service is 1.01 USD per hour. Considering monthly pricing, total
estimated cost is 723.60 USD.

47

5. Cloud services providers comparison

5.1.2 Expensive variant

This variant provides higher performance by adding more vCPUs, it consists
of 3 Kubernetes worker nodes, 8 vCPUs, 32GB RAM, 25GB on primary SSD
and 100GB on secondary SSD. Price for such service is 1.57 USD per hour.
Considering monthly pricing, total estimated cost is 1127.52 USD.

5.2 Google Kubernetes Engine

Pricing estimates are created according to the Google Cloud pricing calculator,
which is available at [21]. Estimated costs don’t include tax.

5.2.1 Cheap variant

For the cheaper variant, I managed to compile the following solution: 3 Ku-
bernetes nodes, 4 vCPUs, 26GB RAM and 375 GB on local SSD. In case of
this configuration, Google provides a 30% sustained use discount. Hourly rate
is 0.789 US$. Considering monthly pricing, total estimated cost is 575.30
USD.

5.2.2 Expensive variant

This variant is composed of 3 Kubernetes nodes, 8 vCPUs, 52GB RAM and
2× 375GB on local SSDs. Google also provides a 30% sustained use discount
for this configuration. Hourly rate is 1.575 USD. Considering monthly pricing,
total estimated cost is 1150.61 USD.

5.3 Microsoft Azure Kubernetes Service

Pricing estimates are created according to the Microsoft Azure pricing calcu-
lator, which is available at [22].

5.3.1 Cheap variant

Cheaper variant, is composed 3 Kubernetes worker nodes, 4 vCPUs, 32GB
RAM, 40GB temporary storage and 256GB SSD. Price for such service is
0.78 USD per hour. Considering monthly pricing, total estimated cost is
588.60 USD.

5.3.2 Expensive variant

More expensicve variant is composed of, 3 Kubernetes worker nodes, 8 vCPUs,
64GB RAM, 80GB temporary storage and 2 × 256GB SSD. Price for such
service is 1.638 USD per hour. Considering monthly pricing, total estimated
cost is 1234.14 USD.

48

5.4. Summary

5.4 Summary

I compared the pricing of three cloud providers, where I focused on the Kuber-
netes solution these providers offer. The point of this analysis is to compare
what the cloud providers are able to offer at the similar price. In my opinion,
considering price performance ratio, the Google cloud came out the best, es-
pecially in case of the more expensive variant. But in case of the comparison
of Microsoft Azure and Google cloud, there are no big differences, the prices
are similar for similar configuration. Compared to that, the IBM cloud offers
less performance for higher prices.

49

5. Cloud services providers comparison

Table
5.1:

C
loud

pricing
com

parison
sum

m
ary

IB
M

C
loud

G
oogle

C
loud

M
icrosoft

A
zure

C
heap

3
nds,

4
vC

PU
s,

32G
B

R
A

M
,125G

B
SSD

3
nodes,

4
vC

PU
s,

26G
B

R
A

M
,

375
G

B
SSD

3
nodes,

4
vC

PU
s,

32G
B

R
A

M
,

256G
B

SSD
Price
U

SD
/m

onth
726.6

575.3
588.6

Expensive
3

nodes,
8

vC
PU

s,
32G

B
R

A
M

,
125G

B
SSD

3
nodes,

8
vC

PU
s,

52G
B

R
A

M
,

750G
B

SSD

3
nodes,

8
vC

PU
s,

64G
B

R
A

M
,

512G
B

SSD
Price
U

SD
/m

onth
1127.52

1150.61
1234.14

50

Conclusion

In this work, I analyzed the current architecture of LearnShell backend, API,
and proposed improvements of assignment and exam modules. Improvements
involved implementation of the score bonuses and penalties system, and the
system of providing of hints. Implementation part of my work also involved
optimization of endpoints of assignment and exam modules. The system of
bonuses and penalties was developed to be easily extended and adjusted. The
logic of bonuses and penalties can now be programmed for each course from the
user interface of LearnShell by using the newly implemented scoring language.
This language is able to load information about students and use it to affect
the final score.

I also analyzed pricing of IBM cloud, Google cloud and Microsoft Azure
where the LearnShell backend modules could migrate in the future.

During this work, I fulfilled all set goals and contributed to improve the
performance of the LearnShell and extend its usability.

51

Bibliography

[1] Django Software Foundation. Django [online]. Django, the web framework
for perfectionists with deadlines, 2021, [cit. 2021-04-16]. Available from:
https://www.djangoproject.com/

[2] Visual Paradigm. What is Model-View and Control? [on-
line]. Visual Paradigm, 2020, [cit. 2021-04-22]. Available from:
https://www.visual-paradigm.com/guide/uml-unified-modeling-
language/what-is-model-view-control-mvc/

[3] Django Software Foundation. Intro to django [online]. Django, the web
framework for perfectionists with deadlines, 2021, [cit. 2021-04-16]. Avail-
able from: https://www.djangoproject.com/start/

[4] Shireen, A. Project VS App in Django [online]. Atufa Shireen, 04 2020,
[cit. 2021-04-16]. Available from: https://atufashireen.medium.com/
project-vs-app-in-django-755cf2a82312

[5] The GraphQL Foundation. A query language for your API [online].
GraphQL, 2021, [cit. 2021-04-23]. Available from: https://graphql.org/

[6] Prisma. GraphQL is the better REST [online]. How to GraphQL,
2021, [cit. 2021-04-25]. Available from: https://www.howtographql.com/
basics/1-graphql-is-the-better-rest/

[7] The GraphQL Foundation. Queries and mutations [online]. GraphQL,
2021, [cit. 2021-05-10]. Available from: https://graphql.org/learn/
queries/

[8] The PostgreSQL Global Development Group. What is PostgreSQL?
[online]. PostgreSQL: The World’s Most Advanced Open Source Re-
lational Database, 2021, [cit. 2021-04-20]. Available from: https://
www.postgresql.org/about/

53

https://www.djangoproject.com/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-model-view-control-mvc/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-model-view-control-mvc/
https://www.djangoproject.com/start/
https://atufashireen.medium.com/project-vs-app-in-django-755cf2a82312
https://atufashireen.medium.com/project-vs-app-in-django-755cf2a82312
https://graphql.org/
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
https://graphql.org/learn/queries/
https://graphql.org/learn/queries/
https://www.postgresql.org/about/
https://www.postgresql.org/about/

Bibliography

[9] The PostgreSQL Global Development Group. Why use PostgreSQL?
[online]. PostgreSQL: The World’s Most Advanced Open Source Re-
lational Database, 2021, [cit. 2021-04-20]. Available from: https://
www.postgresql.org/about/

[10] Ask Solem. Introduction to Celery [online]. Celery - Dis-
tributed Task Queue, 2018, [cit. 2021-05-10]. Available from:
https://docs.celeryproject.org/en/stable/getting-started/
introduction.html

[11] Introduction to Redis [online]. Redis, [cit. 2021-05-10]. Available from:
https://redis.io/topics/introduction

[12] Fowler, M.; Parsons, R. Domain Specific Languages [online], chap-
ter Using Domain-Specific Languages. Addison-Wesley Professional,
2010, ISBN 9780132107549, [cit. 2021-04-29]. Available from:
https://learning.oreilly.com/library/view/domain-specific-
languages/9780132107549/

[13] Fowler, M.; Parsons, R. Domain Specific Languages [on-
line], chapter Implementing DSLs. Addison-Wesley Professional,
2010, ISBN 9780132107549, [cit. 2021-05-03]. Available from:
https://learning.oreilly.com/library/view/domain-specific-
languages/9780132107549/

[14] John E. Hopcroft, R. M.; Ullman, J. D. Introduction to Automata Theory,
Languages, and Computation, chapter Context-Free Grammars. Addison-
Wesley, second edition, 2001, ISBN 0201441241, [cit. 2021-05-03].

[15] Fowler, M.; Parsons, R. Domain Specific Languages [online], chapter Tree
construction. Addison-Wesley Professional, 2010, ISBN 9780132107549,
[cit. 2021-05-03]. Available from: https://learning.oreilly.com/
library/view/domain-specific-languages/9780132107549/

[16] Fowler, M.; Parsons, R. Domain Specific Languages [online],
chapter Syntax-directed translation. Addison-Wesley Professional,
2010, ISBN 9780132107549, [cit. 2021-05-04]. Available from:
https://learning.oreilly.com/library/view/domain-specific-
languages/9780132107549/

[17] Nelson, R. C. Parsing [online]. [cit. 2021-05-07]. Available from:
https://www.cs.rochester.edu/users/faculty/nelson/courses/
csc_173/grammars/parsing.html

[18] Fowler, M.; Parsons, R. Domain Specific Languages [online], chapter
Symbol Table. Addison-Wesley Professional, 2010, ISBN 9780132107549,
[cit. 2021-05-08]. Available from: https://learning.oreilly.com/
library/view/domain-specific-languages/9780132107549/

54

https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://docs.celeryproject.org/en/stable/getting-started/introduction.html
https://docs.celeryproject.org/en/stable/getting-started/introduction.html
https://redis.io/topics/introduction
https://learning.oreilly.com/library/view/domain-specific-languages/9780132107549/
https://learning.oreilly.com/library/view/domain-specific-languages/9780132107549/
https://learning.oreilly.com/library/view/domain-specific-languages/9780132107549/
https://learning.oreilly.com/library/view/domain-specific-languages/9780132107549/
https://learning.oreilly.com/library/view/domain-specific-languages/9780132107549/
https://learning.oreilly.com/library/view/domain-specific-languages/9780132107549/
https://learning.oreilly.com/library/view/domain-specific-languages/9780132107549/
https://learning.oreilly.com/library/view/domain-specific-languages/9780132107549/
https://www.cs.rochester.edu/users/faculty/nelson/courses/csc_173/grammars/parsing.html
https://www.cs.rochester.edu/users/faculty/nelson/courses/csc_173/grammars/parsing.html
https://learning.oreilly.com/library/view/domain-specific-languages/9780132107549/
https://learning.oreilly.com/library/view/domain-specific-languages/9780132107549/

Bibliography

[19] Managementmania.com. Man-day [online]. ManagementMania, 2016,
[cit. 2021-05-05]. Available from: https://managementmania.com/en/
man-day

[20] IBM corp. IBM Cloud Kubernetes Service pricing [online]. IBM cloud,
2021, [cit. 2021-05-11]. Available from: https://www.ibm.com/cloud/
kubernetes-service/pricing

[21] Google LLC. Google Kubernetes Engine pricing [online]. Google cloud,
2021, [cit. 2021-05-11]. Available from: https://cloud.google.com/
products/calculator?skip_cache=true

[22] Microsoft. Microsoft Azure Kubernetes Service pricing [online]. Mi-
crosoft Azure, 2021, [cit. 2021-05-11]. Available from: https://
azure.microsoft.com/en-gb/pricing/calculator/

55

https://managementmania.com/en/man-day
https://managementmania.com/en/man-day
https://www.ibm.com/cloud/kubernetes-service/pricing
https://www.ibm.com/cloud/kubernetes-service/pricing
https://cloud.google.com/products/calculator?skip_cache=true
https://cloud.google.com/products/calculator?skip_cache=true
https://azure.microsoft.com/en-gb/pricing/calculator/
https://azure.microsoft.com/en-gb/pricing/calculator/

Appendix A
LearnShell git repository

In this appendix, I state the link, which refers to my branch of the GitLab
repository of the LearnShell project:

• Link to the LearnShell repository: https://gitlab.fit.cvut.cz/learnshell-
2.0/ls/tree/bpr-cihlaond

57

https://gitlab.fit.cvut.cz/learnshell-2.0/ls/tree/bpr-cihlaond
https://gitlab.fit.cvut.cz/learnshell-2.0/ls/tree/bpr-cihlaond

Appendix B
Acronyms

API Application programming interface

SQL Structured query language

UML Unified modeling language

MVC Model-view-controller

REST Representational state transfer

HTTP Hypertext transfer protocol

UI User interface

DSL Domain specific language

IDE Integrated development environment

CSS Cascade style sheets

HTML Hypertext markup language

AST Abstract syntax tree

MD Manday

vCPU Virtual centralized processing unit

59

Appendix C
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

learnshell.................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

61

	Introduction
	Current architecture analysis
	Technologies
	Django framework
	GraphQL
	PostgreSQL
	Celery and Redis

	Architecture
	Business processes
	Modules
	Generator and evaluator services
	Database model
	API

	Improvements proposal
	Functional requirements
	Providing of hints
	Bonus and penalty system – database solution
	Pros and cons

	Bonus and penalty system – DSL solution
	Domain-specific language
	Scoring DSL
	Pros and cons

	Basics of formal grammars theory
	Formal grammar
	Syntax tree
	Lexical analyzer
	Syntactic analyzer
	Recursive descent parsing algorithm
	Symbol table

	Implementation
	Time complexity analysis
	Implementation of the scoring DSL
	Grammar
	Lexer
	Parser
	Interpreter
	Integration into LearnShell

	Providing of hints implementation
	Endpoints optimization
	Final report

	Cloud services providers comparison
	IBM Cloud Kubernetes Service
	Cheap variant
	Expensive variant

	Google Kubernetes Engine
	Cheap variant
	Expensive variant

	Microsoft Azure Kubernetes Service
	Cheap variant
	Expensive variant

	Summary

	Conclusion
	Bibliography
	LearnShell git repository
	Acronyms
	Contents of enclosed CD

