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Abstract

This bachelor thesis aims to implement software helping to deploy an anomaly detection model
into a Java program. Requirements of a customer that assigned this task were taken into account
when developing the software. Several model formats were researched for storing a completed
anomaly detection model. Also, relevant libraries for producing and consuming such models were
studied. The knowledge of model formats and a basic understanding of an anomaly detection
workflow was transformed into the resulting software written in Java that can be extended to
use new formats. It can be integrated into any project running on Java programming language.
Functionality is tested on data provided by the customer. The solution is intended to be filled in
a future with algorithms analyzing data from the customer’s scope of interest. The final software
is published under an open-source license.

Keywords Java, anomaly detection framework, anomaly detection, machine learning model
file formats, PMML, TensorFlow, ONNX, PFA

Abstrakt

Tato bakalářská práce si klade za ćıl implementovat software pomáhaj́ıćı nasadit model de-
tekce anomálíı do programu napsaného v jazyce Java. Při vývoji softwaru byly brány v úvahu
požadavky zákazńıka, který zadal tento úkol. Pro uložeńı hotového modelu detekce anomálíı
bylo prozkoumáno několik formát̊u, do kterých se model ukládá. Byly také studovány relevantńı
knihovny pro výrobu a spotřebu takových model̊u. Znalost formát̊u modelu a základńı znalost
pracovńıho postupu detekce anomálíı byla transformována do výsledného softwaru napsaného
v Javě, který lze rozš́ı̌rit tak, aby použ́ıval nové formáty. Může být integrován do jakéhokoli
projektu běž́ıćıho v programovaćım jazyce Java. Funkčnost je testována na datech poskyt-
nutých zákazńıkem. Řešeńı má být v budoucnu naplněno algoritmy analyzuj́ıćımi data z domény
zákazńıka. Konečný software je publikován pod licenćı open-source.
Kĺıčová slova Java, framework na detekci anomálíı, detekce anomálíı, formáty ma ukládáńı
model̊u strojového učeńı, PMML, TensorFlow, ONNX, PFA

x



Summary

Motivation

Nowadays, machine learning used for predic-
tions or anomaly detection goes rapidly forward.
Nothing is perfect, so it is priceless to get no-
tified about an undesired behaviour by artificial
intelligence.

The most popular for machine learning are
Python, R or C++ libraries. The machine learn-
ing model is saved into a file in some format.
Creating a model and processing the data needed
for training a model is more convenient and more
straightforward in these libraries. On the other
hand, several applications run on a different pro-
gramming language other than the three men-
tioned above. There is a need of separating the
model creation and model deployment.

Fortunately, there exist approaches to how to
use a prepared machine learning model in an ap-
plication. The first way is to provide the model
scoring as a service application scoring the model
in the language in which it was originally created.
The second is to transfer the model stored in a
file and evaluate the model right in the applica-
tion. The machine learning community has de-
veloped several formats in which a model can be
transferred. Each file structure of a transported
model has its pros and cons. A brand new format
for storing a model can come any day now.

Goal

The main goal is to implement an anomaly de-
tection framework, which will load anomaly de-
tection models stored in some file format and
use them on the incoming data in real-time. A
user will provide the models. The framework will
be written purely in the Java programming lan-
guage. The customer will be able to use the
resulting framework without further modifica-
tions inside the customer’s already existing Java
project.

The research part aims to get familiar with
frameworks with a similar focus and relevant
technologies, tools, and libraries. Namely, it is
important to research commonly used formats

for storing models, machine learning libraries for
the export/import of this model into/from the
corresponding file format. Last but not least,
this requires some basic knowledge of anomaly
detection algorithms.

The practical part aims to design the re-
sulting framework, implement the software using
Java programming language, and demonstrate
its functionality. The functionality will be tested
on the customer’s data. Finally, the whole solu-
tion will be documented.

Steps

Firstly it is essential to get familiar with the ba-
sics of machine learning. Then comes collecting
and analyzing customer requirements to clarify
details of what needs to be implemented.

The next step is to study frameworks and
projects with a similar focus to get inspired.

Afterwards, there is a need for the author of
this thesis to research relevant tools, technologies
and libraries. The most important bit is to focus
on options of evaluating models directly in Java
run-time.

Knowledge from previous stages is trans-
formed into the resulting framework covered with
a reasonable amount of unit tests. A user can ex-
tend the framework with new model formats.

The functionality of the framework is demon-
strated on examples, including examples with
data provided by a customer.

The very last stage consists of documentation
and description of the resulting software.

Results of the thesis

The main product of the thesis is the imple-
mented extensible framework with examples of
usage of a PMML and TensorFlow’s custom for-
mat. Also, there is relatively detailed research
about recently used formats for storing a model
and corresponding libraries for creating models
and running them in a Java run-time.

xi



xii Chapter 0. Summary

Conclusion

In some way, this thesis is a continuation of
Martina Fusková – Anomaly Detection for Stock
Market Trading Data and Aleksandr Karpenko
– Design of anomaly detection for stock mar-
ket trading, both researching and optimizing
anomaly detection algorithms suitable for de-
tecting outliers in the electronic trading domain.

The upcoming text is more about studying and
applying technology for deploying and operating
an anomaly detection model than searching for
the best machine learning algorithms and meth-
ods. There are some signs that the company, who
set the task of implementing such a framework,
will soon use the final framework. The project is
under an open-source license, so everybody can
go through it or extend it.
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Chapter 1

Theoretical background

This chapter will introduce the terminology and theoretical background needed for an under-
standing of the following document.

1.1 Introduction to anomaly detection
“Anomaly detection refers to the problem of finding patterns in data that do not conform to
expected behavior. These nonconforming patterns are often referred to as anomalies, outliers,
discordant observations, exceptions, aberrations, surprises, peculiarities, or contaminants in dif-
ferent application domains.” [1]

“Machine learning is an evolving branch of computational algorithms that are designed to
emulate human intelligence by learning from the surrounding environment.” [2]

In this thesis, we will focus on using machine learning algorithms for anomaly detection.
According to the survey [1], the input for the anomaly detection is a set of data instances – also
referred to as points, objects, vectors, observations, patterns, etc. Each data instance holds a
collection of attributes – also referred to as variable, characteristic, feature, field, or dimension.

When taking the input described above for outlier detection, there are three kinds of anoma-
lies [1]:

Point Anomalies – A single data instance is considered anomalous concerning the rest of the
data.

Contextual Anomalies – A single data instance is considered abnormal in some specific con-
text but not otherwise.

Collective Anomalies – A group of data instances is considered anomalous, considering the
whole data set.

As described in [3], there exist three methods of model learning:

Supervised – The training data set contains labelled data instances. For example, tagging
what is an outlier and what is not.

Semi-supervised – Only a part of the data is labelled.

Unsupervised – The data is unlabelled. This technique relies on the fact that the normal
instances make the majority of the data set.

1



2 Chapter 1. Theoretical background

1.1.1 General machine learning workflow
The article [4] confirms the general machine learning workflow has three stages:

1. Processing of the input data

2. Learning or training of the underlying model with training data

3. Scoring of the machine learning model to predict or make decisions on new data

1.1.2 Anomaly detection workflow
The workflow consists of three main parts of anomaly detection. The first one is data pre-
processing. It means, for example, selecting important features or scaling the data. The second
part is to apply some prediction or decision-making model to produce forecasts or decisions. The
output of the second step is then post-processed. Post-processing can mean filtering out the
product of a previous stage with some rules and then labelling a subset of the original input data
as anomalies.

1.2 Electronic trading
This section introduces the basics of electronic trading for a better understanding of the cus-
tomer’s business domain.

1.2.1 Instrument
“In the field of finance, an instrument is a tradable asset, or negotiable item, such as a security,
commodity, derivative, or index, or any item that underlies a derivative.” [5]

1.2.2 Investor/Client
An investor can be an individual or a firm.

1.2.3 Broker
“A broker is an individual or firm that acts as an intermediary between an investor and a se-
curities exchange.” [6] As further described on Investopedia [6], the purpose of a broker is to
make trading more convenient for an investor because everybody who wants to send orders to
an exchange needs to be its member. The membership requires some responsibilities from the
member’s side. A broker is a member of an exchange and provides access to it as a service to
the broker’s clients.

1.2.4 Stock Exchange
A stock exchange is a place where the actual trading of securities takes place.

1.2.5 Financial Information eXchange (FIX) Protocol
As stated on Investopedia [7], FIX became de-facto a standard of electronic trading communi-
cation. The protocol contains a specification for each message that can be sent. The most used
messages are:
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New Order Single – a message representing that client wants to buy/sell an instrument

Order Cancel Replace Request – a message modifying a sent order by a client

Order Cancel Request – a message cancelling a sent order by a client

Execution Report – a response to the client reporting a state of an order placed on an exchange

The complete documentation of the protocol can be found on the FIXimate page [8].





Chapter 2

Customer requirements

2.1 Customer domain
The customer’s scope of interest is electronic trading technology for financial markets. The
customer has been developing software for routing and monitoring FIX messages in between
brokers and exchanges.

2.1.1 Customer’s motivation
Data analytics and machine learning engineers are using several libraries for training a model.
Most of them are Python, R, C++, and Java libraries. The training can take much time, so the
trained model is stored into a file. The framework’s primary purpose is to separate the training
of the model from the actual deployment and usage of the model. The customer wants to use the
model purely in the Java code, but on the other hand, he does not want to make creators/trainers
of the model dependant only on the Java libraries. They are free to use any library they like, and
a user of the framework will provide the conversion from the file containing the trained model
into the Java code.

A user will provide a model in two ways, a model stored in a file in some format or implemented
directly in the Java programming language. For the first case, the user has to implement the
conversion from the file format into the framework’s representation of the anomaly detection
model. The conversion means to parse the data from the file and implement the model in the
Java programming language. In practice, it means to use some Java machine learning library or
make the full implementation of the algorithm from scratch.

2.1.2 Customer’s used technology
The Java backend platform handles the business logic of routing and monitoring the FIX mes-
sages. The customer calls the connection with a trading entity a session. Customer’s monitoring
service extracts and holds relevant features about the trading. The monitoring service is called
Summary View. There are kept many calculated features, for example:
Quantity Sell – sum of the quantity of sold stocks

Messages – amount of messages sent

Orders – amount of new order singles sent
The routing logic can be adjusted and viewed in the C# frontend, taking the data directly

from the backend.

5
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2.1.3 Planned usage
The framework’s intended usage is to add it as a module right into the backend system. The
anomaly detection model will then be integrated and used directly inside the system with the
framework’s help. There are several places where it makes sense to deploy the anomaly detection
model. Therefore the model has to be flexible. Examples for where some anomaly detection
model can be applied are:

Summary view – checking anomalies on the subset of features from the summary overview

Session’s latency – checking the time between sending a message and receiving a response to
the message.

Session’s throughput – checking a number of messages sent through the session per time
period.

Concrete scenarios should be discussed with an expert on trading.

2.1.4 Requirements
The concrete requirements are described in this section. Most of them can be inferred from the
previous text. After consultation with the customer, we have agreed on the following require-
ments.

2.1.4.1 Functional
Model loading – Implement the loading of a model from a file.

Model storing – Implement the storing of a model into a file.

Model feeding – Implement the real-time feeding of a model with data.

2.1.4.2 Nonfunctional
Extensibility – It has to be easy to extend the functionality of the framework.

Model formats – A user should be able to implement support for new model file formats.

Language – The framework has to be written purely in a Java programming language.

Integration – The customer has to be able to integrate the framework as a module into his
already existing Java project without further modification.

Time efficiency – The solution has to be time-efficient. Alternatively, easy to optimize.



Chapter 3

Projects with a similar focus

Frameworks and projects with a similar focus as my thesis has will be introduced in this chapter.
There are many public libraries for machine learning, but this section is not about these libraries.
The main focus will be on frameworks helping with an already-trained model into production.

There is a limited palette of supported model formats for each project mentioned below. They
usually choose a few supported formats and instead focus on another functionality. The thesis
framework is also unique because models will be used directly inside the Java project. The very
favoured solution is using a Client-Server architecture. The main pros of this architecture are
language independence and easier deployment for new models. There is no need to reimplement
an algorithm into the desired language.

On the other hand, the con is time efficiency. Direct implementation of the model inside
the Java project eliminates the delay caused by the Client-Server communication. There exist
libraries for parsing and evaluating the model from some formats directly in the Java run-time.
These libraries will be described in the next chapter.

3.1 EGADS

“EGADS (Extensible Generic Anomaly Detection System) is an open-source Java package to
automatically detect anomalies in large scale time-series data. EGADS is meant to be a library
that contains a number of anomaly detection techniques applicable to many use-cases in a single
package with the only dependency being Java.” [9]

The framework works only with time-series models. As mentioned in the presentation at-
tached to [9], the framework supports only unsupervisely trained algorithms. This framework
focuses mainly on advanced methods for recognizing several types of anomalies. The table 3.1 is
a list of time-series features that are calculated for identifying a specific kind of an outlier.

3.1.1 Model formats
The author of the EGADS framework does not describe the model’s storing and loading in much
detail. As apparent from the source code fragment 3.1, trained anomaly detection models are
saved using the JSON [10] format or serialized into a file. The model has to be trained using the
framework strictly. This training part makes the framework a bit clumsy to use.

7
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Table 3.1 Time-series features [9]

Time-series feature Description
Periodicity (frequency) Periodicity is very important for determining the

seasonality. Trend Exists if there is a long-term
change in the mean level

Seasonality Exists when a time series is influenced by sea-
sonal factors, such as month of the year or day
of the week

Auto-correlation Represents long-range dependence.
Non-linearity a non-linear time-series contains complex dy-

namics that are usually not represented by linear
models.

Skewness Measures symmetry, or more precisely, the lack
of symmetry.

Kurtosis Measures if the data are peaked or flat, relative
to a normal distribution.

Hurst a measure of long-term memory of time series.
Lyapunov Exponent a measure of the rate of divergence of nearby

trajectories.

Code snippet 3.1 EGADS Model Interface [9]

package com.yahoo.egads.data;

import java.io.Serializable;

public interface Model extends JsonAble , Serializable {
...
}
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Figure 3.1 EGADS-YMS architecture [9]

3.1.2 Workflow

Interesting is to look at the actual usage of the framework. “EGADS operates as a stand-alone
platform that can be used as a library in larger systems.” [9] The actual integration with the
Yahoo monitoring service (YMS) is viewed in the picture 3.1. The parts of the EGADS project
are purple-coloured. Here it is used as a library for processing batches of input data.

In the beginning, the time-series modelling module (TMM) predicts a value of the datapoint.
“Given a time-series X = {xt ∈ R : ∀t ≥ 0}, the TMM provides the predicted value of xt at time
t, denoted by ut.” [9] Then the anomaly detection module is used (ADM). “Given the predicted
value ut and the actual observed value xt, the ADM computes some notion of deviation which
we refer to as the deviation metric (DM).” [9] “These error metrics, together with other features,
such as the time series characteristics, are used in the alerting module (AM), described in Section
4, to learn consumer’s preferences and filter unimportant anomalies.” [9]
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3.1.3 Summary
The similarity of the EGADS and the thesis framework is that it is possible to implement and
add new anomaly detection models, and both projects can be used as a Java library. However,
the EGADS is more focused on advanced techniques of anomaly detection itself. It does not
support adding new model’s storing formats.

3.2 Oracle

Information about the architecture described in the section 3.2.1 was taken mainly from [11],
which is from the year 2016. The section 3.2.2 taking knowledge from [12] will represent a
different more up to date project from the year 2019.

3.2.1 Oracle streaming
Oracle has created a multi-functional, complex system for training a model on data from a
database, converting it into the PMML format, and using it for predictions on the real-time data
stream. Detailed information can be found in the presentation [11]. The complete architecture
is captured in picture number 3.2.

Figure 3.2 Oracle Streaming architecture

[11]

The Oracle R Enterprise (ORE) uses R language scripts to create a model from the database’s
data. ORE exports these models into the PMML format and passes them for consumption to
the Oracle Streaming Explorer (OSX). OSX takes the PMML file with a stored model. OSX
loads it with the JPMML library, evaluates the incoming data from a real-time stream using the
JPMML evaluator, and produces an output prediction stream.

3.2.2 Oracle machine learning
As apparent from a more recent paper [12], Oracle came up also with another approach. Oracle
started using commonly used python and R machine learning libraries wrapped into the Oracle
interface directly in a database and storing a result of an anomaly detection into a database.
The anomaly detection result is then read from the database by the application, which needs the
data with labelled anomalies.
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3.2.3 Summary
An interesting discussion would be why it was not sufficient for Oracle to use only the PMML
format to store models. As described in the next chapter, only some machine learning libraries
support saving a model into this format. The next bottle kneck is the JPMML library described
in the next chapter. It has a limited range of implemented anomaly detection algorithms. I
assume that Oracle has use-cases when the higher latency with writing into and reading from
a database does not matter. And for those use-cases, it is beneficial to dispose of a broader
machine learning libraries arsenal.

3.3 DEEPaaS
“DEEPaaS API is a Python package that provides a REST API (Fielding, 2000) that can be
used to easily expose the underlying model functionality over HTTP.” [13] As described in [14],
a user can access a python model (implemented with a library of the user’s choice) via a REST
API. This makes the deployment of the model into production much easier. A user can train or
make predictions just using the REST API.

3.3.1 Example
There is an example of usage explained in the article [14], where the Support Vector Machine
(SVM) algorithm from scikit-learn [15] library was used. The model was trained on the IRIS [16]
dataset. The IRIS dataset contains features measured on three types of Iris flower. The data
consists of four columns – the length and the width of the sepals and petals, in centimetres. It
is usually used for demonstrating purposes, where a machine learning model can predict a type
of Iris flower based on those four features.

The prediction query is showed in the code snippet 3.2 a user sends four values – data=5.1
& data=3.5 & data=1.4 & data=0.2" and gets a prediction – "labels": [ 0 ]. The 0 indi-
cates that the model predicts the flower to be of type 0.

Code snippet 3.2 Curl prediction query [14]

curl -s -X POST "http ://127.0.0.1:5000/ v2/models/iris -deepaas/
predict /?data =5.1& data =3.5& data =1.4& data =0.2" -H "accept:
application/json" | python -mjson.tool

{
"predictions ": {

"labels ": [
0

]
},
"status ": "OK"

}

3.3.2 Summary
The DEEPaaS illustrates how the deployment of a model can be simplified using the Client-
Server architecture. Any library from the python world can be used for the implementation of
a machine learning model here. An application written in any language can handle the model
using the REST API. The issue with model storing format is also solved here because almost
every machine learning library supports export and import into and from a file.
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3.4 Conclusion
This chapter showed how a flow of creation and deployment of an anomaly detection model goes
in frameworks with a similar focus.

From EGADS could be taken a lesson about how anomaly detection is applied on the time-
series data.

Another exciting part is in the Oracle solution, namely the PMML format for the model
transfer. The fact that Oracle has been using this format confirms that it can be used in
practice.

The last example of DEEPaas demonstrates how simpler it is to use a Client-Server architec-
ture for model deployment.



Chapter 4

Technologies

This chapter will introduce the most used formats for storing a machine learning model and
corresponding libraries for creating such a model, and libraries for scoring a model in Java run-
time.

4.1 Model formats
Training of a machine learning model can be very time consuming, so there is a need to persist
the result of training into a file. Each time someone wants to use a model, he only loads a model
into memory from the file.

The information needed to be stored can vary per algorithm. For some models, it is enough
to save coefficients calculated from during the training. But for some, it is needed to keep the
training data. For the second case, the file size can increase rapidly with the size of the training
dataset.

There are several formats in which we can store a model. Each format has its pros and
cons. The most important characteristics are the memory needed for storage and how many
tools support it. One of the not that important aspects is human readability, so you can quickly
check what the actual model looks like without parsing the file and loading it into memory. This
chapter will introduce the most commonly used formats.

4.1.1 Predictive Model Markup Language (PMML)
The PMML was introduced in 1999 by the National Center for Data Mining, the University of
Illinois at Chicago, in the article [17].

This format is used by several R, Python or C++ machine learning libraries.
An essential library for this thesis is the JPMML library. JPMML provides parsing and

evaluating of models stored in the PMML in Java programming language. More details about
the JPMML are in the section 4.2.1 later in this document.

As apparent from [18], the PMML is an XML-based [19] machine learning model interchange
format. More models can be saved into one PMML file and accessed by the name of the corre-
sponding data mining function.

This standard supports algorithms such as a k-nearest neighbour, naive Bayes, linear regres-
sion. . . The whole current range of supported algorithms can be found on the Data Mining Group
page (DMG) [18].

“Certain types of PMML models such as neural networks or logistic regression can be used for
different purposes. That is, some instances implement prediction of numeric values, while others

13
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Code snippet 4.1 PMML example – data fields [17]

<DataDictionary numberOfFields="6">
<DataField name="petal␣length" optype="continuous" dataType="double"

/>
<DataField name="petal␣width" optype="continuous" dataType="double"/

>
<DataField name="sepal␣length" optype="continuous" dataType="double"

/>
<DataField name="sepal␣width" optype="continuous" dataType="double"/

>
<DataField name="species" optype="continuous" dataType="double"/>
<DataField name="species_class" optype="categorical" dataType="

string"/>
</DataDictionary >

Code snippet 4.2 PMML example – model header [17]

<NearestNeighborModel modelName="KNN␣IrisGardens"
continuousScoringMethod="average" categoricalScoringMethod="
majorityVote" numberOfNeighbors="3" functionName="mixed">

can be used for classification. Therefore, PMML defines several different mining functions. Each
model has an attribute functionName which specifies the mining function.” [18]

4.1.1.1 Example
Here is an example of the k-nearest neighbour trained on the IRIS [16] dataset and stored in the
PMML format. The whole example with detailed description can be found on web site [20].

XML part number 4.1 specifies input and target fields with their data types. Here it is four
input fields and two target fields. One of the target fields is a categorical one meaning it predicts
a category. The second one is continuous, which means it predicts a numerical value.

Essential information for creating the model is set in the 4.2 XML part. The functionName
is ”mixed”, which means it produces categorical and predictive results at once.

Then a list of training instances follows 4.3. Instances are of the same shape as mentioned in
the data fields section 4.1.

As visible in the XML snippet 4.4, the Euclidean distance was used in this example.
The algorithm takes four values as input. Calculates distance to each data point from the

training instances and picks three nearest ones. The species field is then calculated as an
average of the species fields from these three data points. The categoricalScoringMethod is
”majorityVote”. Therefore the field species type will be the one which is the most occurrent
in these three neighbour samples.

4.1.1.2 Anomaly detection model
Version 4.4 contains an anomaly detection model type. As mentioned in [21], the PMML anomaly
detection model type can wrap a model of three kinds:

Isolation Forest

One Class support vector machine

Clustering mean distance based anomaly detection model
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Code snippet 4.3 PMML training instances [17]

<TrainingInstances recordCount="149" fieldCount="6" isTransformed="
false">

<!-- ... -->
<InlineTable >

<row>
<sepal_length >4.9</sepal_length >
<sepal_width >3.0</sepal_width >
<petal_length >1.4</petal_length >
<petal_width >0.2</petal_width >
<target_species >10</target_species >
<target_class >Iris -setosa </target_class >

</row>
<!-- ... -->
<row>

<sepal_length >6.3</sepal_length >
<sepal_width >3.3</sepal_width >
<petal_length >6.0</petal_length >
<petal_width >2.5</petal_width >
<target_species >30</target_species >
<target_class >Iris -virginica </target_class >

</row>
</InlineTable >

</TrainingInstances >

Code snippet 4.4 PMML example – distance calculation method [17]

<ComparisonMeasure kind="distance">
<squaredEuclidean/>

</ComparisonMeasure >
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It is not many, but it is important to notice that this is more of a helping construct. A user can
also handle anomaly detection with just a prediction mechanism saved in the PMML. A user can
implement the anomaly indication mechanism comparing observed and predicted data outside
of the PMML. Using the last approach extends the scope of usable algorithms for a user.

4.1.2 Portable Format for Analytics (PFA)
PFA, same as PMML, was developed by the Data Mining Group [22]. It is not massively
widespread, unlike the beaten path of the PMML. It is more or less a scripting language. The
language contains constructs such as local variables, user-defined functions (even lamdas), con-
ditionals and loops.

“A PFA document is a JSON document with additional constraints. The JSON content de-
scribes algorithms, data types, model parameters, and other aspects of the scoring engine. Some
structures have no effect on the scoring procedure and are only intended for archival purposes.
A PFA document is a JSON-based serialization of a scoring engine. A scoring engine is an exe-
cutable that has a well-defined input, a well-defined output, and performs a purely mathematical
task.” [23]

In some ways, PFA is a successor to the PMML format. In my opinion, as the area of
machine learning moves quickly forward, it is just a matter of till PFA replaces the PMML. The
motivation for developing the PFA is described in the [24] article by its creators. They wanted
to create an interchange format, which satisfies the following requirements:

It is extensible by a user for adding new model types and pre- and post- processing logic.

A user should be able to create a workflow by putting models into chains and hierarchy.

“The language should be easy to integrate into today’s distributed and event-based data pro-
cessing platforms, such as Hadoop [25], Spark and Storm[26].” [24]

It is safe to deploy – the deployed model does not have access to the IT operational environ-
ment resources or a network.

As further explained in the article [24], PMML lacks the first three requirements. When a
user needs more algorithms or functionality, he has to ask a PMML working group to extend the
standard by releasing a new version. In contrast, the PFA is a scripting language that gives a
user a lot of freedom when creating the machine learning model. In the PMML, it is possible to
store more models into one file, but a user still had to call just one evaluation function, which
means he had to chain or hierarchize models under his direction outside of the PMML document.

4.1.2.1 Example
The very trivial example is shown in the code snippet 4.5. PFA uses the prefix notation for storing
a calculation. The prefix notation means an operation symbol is before both operands in the
expression. Let the input be a real number x, then an output y is calculated as y = sin(x+1)∗2.
A more complex example with a description can be found here [24].

Code snippet 4.5 PFA simple example [24]

input: double
output: double
action:
- {m.round: {"*": [{m.sin:
{+: [input , 1]}}, 2]}}
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4.1.3 Open Neural Network Exchange (ONNX)
Microsoft announced ONNX in September 2017 [27]. Microsoft and Facebook developed it
together and published it as an open-source project. The name can be a bit misleading, as
it is possible to store also different machine learning models than just a neural network. As
mentioned on the ONNX website [28], this format represents a machine learning model as a
graph of computation nodes. Further details about the internal technical design can be found
on the GitHub page [29].

An ONNX machine learning model is saved as a serialized protocol buffer (protobuf) [29].
The advantage is that the serialization compresses the stored information. On the other hand, it
is not human-readable. Therefore, the calculation logic is hidden from a person until it is loaded
to a program run-time.

4.1.4 TensorFlow serialized protobuf
This custom format used by Tensorflow can store function written in TensorFlow. However,
more worth noticing is the possibility to save a Keras [30] neural network. As described in [31],
the algorithm is not stored in a simple document, but it is a whole directory with the following
structure:

variables.......................................a folder containing a training checkpoint
...

assets...............................a folder containing files used by a TensorFlow graph
...

saved model.pb..............file containing a model with defined signatures and functions

This format’s pros and cons are the same as by ONNX – not human-readable vs compressed
information. Another disadvantage is that the name of the function that a user wants to call is
hidden. It is serialized, so a user must define his function name when saving a model and keep it
somewhere. The second approach is when a user does not have access to the model creation and
gets a completed model, he needs to deserialize the model and then look up his desired function
in many functions.

4.2 Relevant libraries
Java is one of the most favourite programming languages nowadays. Many applications and
projects are running on Java. It implies an intention to implement a way of how a machine
learning model can be used directly in Java run-time. There already exists an implementation
of a scoring engine for all formats mentioned in the section 4.1. It is a promising sign for the
goal of the thesis because, there will not be a need to implement a scoring engine from scratch.

4.2.1 JPMML
Openscoring Ltd. company [32] with founder Villu Ruusmann created a whole set of libraries
producing and consuming PMML models. The project is regularly updated and developed to
provide more and more functionality to users.

4.2.1.1 Conversions to PMML
The creators of JPMML came up with two ways to implement the conversion into the PMML.
The first way is to implement a package for a language on which the machine learning library
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is running. The package can be embedded into the program and provides a saving of the model
into PMML. The second option is to take a stored model in some format and implement the
conversion in Java from the custom format into the PMML. On the overview below, there are
listed machine learning libraries with corresponding ways of how the model created by the library
can be exported into the PMML. The variety is comprehensive, and the list below does not
contain all of them. To see the full JPMML capability, go to the JPMML GitHub website [33].

R and Rattle:

JPMML-R library.
r2pmml package.
pmml and pmmlTransformations packages.

Python and Scikit-Learn:

JPMML-SkLearn library.
sklearn2pmml package.

Apache Spark:

JPMML-SparkML library.
pyspark2pmml and sparklyr2pmml packages.
mllib.pmml.PMMLExportable interface.

H2O.ai

JPMML-H2O library.

XGBoost:

JPMML-XGBoost library.

LightGBM:

JPMML-LightGBM library.

TensorFlow:

JPMML-TensorFlow library.

. . .

[34]

4.2.1.2 JPMML evaluator
JPMML evaluator is a scoring engine for evaluating PMML models in the Java run-time. Nowa-
days, it seems to be the most used library for evaluating PMML models in Java. JPMML
implemented most of the functionality specified by the Data Mining Group standard. However,
it is tough to keep up with the standard described on the Data Mining Group website, so it
is not an exact representation, and some algorithms can be missing in the JPMML evaluator.
Algorithms implemented in the JPMML evaluator are:

Association rules

Cluster model
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General regression

Naive Bayes

k-Nearest neighbors

Neural network

Regression

Rule set

Scorecard

Support Vector Machine

Tree model

Ensemble model

[34]

4.2.2 PFA Hadrian
Hadrian is a scoring engine for evaluating a PFA model. As described on the GitHub page,
Hadrian is intended to be utilized as a library embedded into the application running on the
Java Virtual Machine (JVM) or used as a scoring engine container.

The Hadrian repository also contains two other independent libraries – Titus and Aurelius.

4.2.2.1 Titus
Titus library is a complete implementation of the PFA for Python. It is more focused on devel-
oping the model rather than scoring it in Python. As mentioned on the Titus wiki page [35],
it can run only on Python versions between 2.6 and 3.0. An alternative to the Titus can be
the Titus2 [36], a fork of the original Hadrian repository. Titus2 declares to be compatible with
newer versions of Python.

Titus uses a PrettyPFA parser for easier creation of the PFA document. The PrettyPFA
parses a string containing the code written in the PrettyPFA custom scripting language and
converts it to the PFA format. When using the PrettyPFA, a user does not need to write
everything in a prefix notation, as previously mentioned in the PFA section 4.1.2.1. He can
formulate the code in a more programmer-friendly language. In the code snippet 4.6, it is shown
how the quadratic equation can be written in the PrettyPFA.

4.2.2.2 Aurelius
Aurelius is a subproject with a similar goal as Titus but in the R programming language field.

4.2.3 ONNX-runtime
ONNX-run-time is a scoring engine for ONNX models. It is available for Windows, Linux and
Mac. ONNX-runtime implemented the scoring machine for nearly all popular programming
languages. As introduced in the official Youtube video by Microsoft [37], worth noticing is that
it runs with CPU or GPU with an extensible architecture that can plug in additional hardware
that accelerates computations.

The most important fact for the thesis is that the ONNX-runtime supports the model eval-
uation in Java run-time. A lovely bonus is that the ONNX-runtime supports the computing
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Code snippet 4.6 PrettyPFA example [35]

>>> pfa = prettypfa.json(’’’
input: record (a: double , b: double , c: double )
output : union (null ,

record (Output ,
solution1 : double ,
solution2 : double ))

action :
var a = input.a, b = input.b, c = input.c;

var discriminant = b**2 - 4*a*c;
if ( discriminant >= 0.0) {

// if there are any real solutions , return them
var x1 = -b + m.sqrt( discriminant )/(2*a);
var x2 = -b - m.sqrt( discriminant )/(2*a);
new(Output , solution1 : x1 , solution2 : x2)

}
else

// otherwise , return null (N/A)
null

’’’)

power management in the environment where it is running. It can be configured to use CPU,
GPU or FPGA for executing calculations. In code snippet 4.7, the GPU was used for the model
evaluation.

Code snippet 4.7 ONNX GPU example [38]

int gpuDeviceId = 0; // the GPU device ID to execute on
var sessionOptions = new OrtSession.SessionOptions ();
sessionOptions.addCUDA(gpuDeviceId);
var session = environment.createSession("model.onnx", sessionOptions

);

4.2.4 TensorFlow
“TensorFlow Java can run on any JVM for building, training and deploying machine learning
models.” [39] The TensorFlow core runs on the C++ backend, but it supports several languages
other than only C++. Tensorflow is mainly known for its python package for training machine
learning models. However, TensorFlow decided to support also programming languages such as
Java, JavaScript, or Go. The TensorFlow Java library provides evaluation of a function stored
in the serialized protobuf. The most important information for the thesis is that it implements
parsing and evaluating Keras neural network models stored in the serialized protobuf file.

The ONNX and Tensorflow have some parts in common, namely saving the model into the
serialized protobuf format as a graph and supporting execution on GPU.
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Design

This chapter presents the proposed design of the anomaly detection framework. The planned
way of utilizing the framework is caught in the 5.1 section. The class diagram and discussion
about the solution can be found in the 5.2 section.

5.1 Activity diagram
This section describes the planned flow of an anomaly detection model’s usage. The flow is
showed in the activity diagram 5.1.

5.1.1 Loading
There are two options of how to provide a model into the framework. The first one is to implement
the model in the Java programming language. The second way is to provide a trained model
as a file. The model is parsed from the file and loaded into the Java run-time represented as
an instance of a class implementing the IAnomalyDetectionModel interface. The loaded model
then can be put into a collection that gathers models into one place. A user of the framework
decides whether he uses the loaded model directly or will, for example, firstly parse and load all
of the models, put them into the collection and then takes the models he needs.

5.1.2 Feeding
After a successful load, it comes to real-time feeding the model with data that the user wants to
analyze. The user analyzes a small batch of the data and sets a timeout for the calculation. The
batch is a collection of data points containing a vector of features. The fed model can update its
internal state based on the input. The update can mean retraining in real-time, but depending
on an algorithm used in the model, it might be time-costly or even impossible to retrain.

The importance of timeout is evident. The calculation time is not the same for every input,
and it can vary depending on the input’s size and shape. The user avoids the neverending
calculation by setting a timeout making the feeding more robust and fluent.

The output of each iteration is a set of detected anomalies. The implementation of the model
can hold some internal memory about the previous input. Therefore, returned outliers are not
necessarily pointing at a subset of the batch, but it can be any part of the data that had gone
through the model.

21
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5.1.3 Saving
As already mentioned, the model can keep and update its internal state. For this reason, it
makes sense to provide a possibility to save the model affected by the real-time flow. However,
in my opinion, it is just a side feature because, for most of the models, it will not be applicable.
The first argument is that it would be needed to implement the conversion into the file. Also,
the framework is not focused on training. Still, if some model suitable for storing occurs, the
possibility of implementing a saver is there.

5.2 Class diagram
This section introduces the concrete class representation of the implemented framework. The
diagram 5.2 contains necessary parts of the framework. Though the class diagram is not covering
all of the code written, it clarifies the main idea and introduces the most important classes. More
inside about the source code is introduced in the implementation section.

5.2.1 IModelParser
The IModelParser interface parses essential data from a file, string or stream and creates the
IAnomalyDetectionModel. It is needed to implement at least one of these methods to realize
the interface a sane way.

5.2.2 IModelSaver
The only IModelSaver’s responsibility is to save the model into a file. Even though the IMod-
elParser may implement the conversion from string and stream, the corresponding operation
by IModelSaver is, in my opinion, redundant as it would not be most probably used.

5.2.3 IModelConvertor
Both IModelSaver and IModelParser extend the IModelConvertor interface, requiring its de-
scendants to implement the methods returning the model’s format and name of the algorithm.
IModelConvertors then can be looked up using the combination of these two fields.

5.2.4 IAnomalyDetectionModel
The IAnomalyDetectionModel has a pretty simple interface. The model takes a list of data
points and returns a list of anomalies. For now, the outliers are just of the point type (not
contextual or collective). The framework can be extended in the future to distinguish between
the kinds of anomalies. Please see the chapter 1.1 for more inside about the model’s output.

5.2.5 IModelInputMetaData
The IAnomalyDetectionModel holds metadata about the shape of input, namely the range
specifying an allowed size of the input list and information about the types of each feature in
one data point. The primary purpose of keeping the metadata is for input validation.
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Figure 5.1 Model life cycle
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5.2.6 IIdentifiable
The IAnomalyDetectionModel extends the IIdentifiable interface to be searched for in some
collection by the key. An observant reader may ask why the model is not identified by format
and name as by IModelParser or IModelSaver. The reason is that a user may load a model
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from some format but then saves it in a different format than initially taken.

5.2.7 DataPoint
The DataPoint holds a set of features and id. Anomaly wraps a DataPoint and adds a report
such as the probability that the DataPoint is an outlier. Also, the DataPoint can be extended.
For example, when analyzing a time series, the crucial characteristic is the TimeStamp when the
data instance was observed. It makes sense to separate the TimeStamp as a separate field in the
TimeSeriesPoint class and use it as a unique identifier.

5.2.8 Feature
The feature is represented as a Feature class. The most important is to get the type and value
of the feature. The name helps a user to recognize the feature.

5.2.9 IFeedingSession
As outlined before, the feeding of the model needs to be handled. The interface responsible for it
is the IFeedingSession. IFeedingSession wraps the IAnomalyDetectionModel instance. The
main motivation is to apply the timeout to the calculation. The feeding method is overloaded
so that the task can run with or without the timeout.

5.2.10 FeedingResult
The product of a feeding process is the FeedingResult instance containing a list of anomalies
and additional info about the computation – computation time in nanoseconds and a flag about
reaching the specified timeout.

5.2.11 IAnomalyDetectionBox
The IAnomalyDetectionBox gathers together implemented IAnomalyDetectionModels, IMod-
elSavers and IModelParsers at one place. Models are looked up using the id, and parsers and
savers utilizing the combination of model format and algorithm name.



5.2. Class diagram 25

Figure 5.2 Class diagram
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Chapter 6

Realization

This chapter shows the implementation in more details. The skeleton from the design part has
been implemented. Besides, it has been enriched with supporting classes.

I have created an abstract class for most of the interfaces. A user of the framework can decide
whether the corresponding abstract class suits his needs or he wants to implement methods from
scratch.

Firstly the classes representing models and their hierarchy are described in the 6.1.2 section.
Then comes info about the classes representing data in the 6.1.3 section and handling the model’s
evaluation in the 6.1.4 section.

6.1 Implementation

6.1.1 IntelliJ UML diagram legend
Even though the diagram is quite intuitive, it makes sense to declare the legend for symbols
used in diagrams created in IntelliJ IDEA [40]. The whole legend can be found in the IntelliJ
documentation [41]. In the following list, there are clarified the most frequently used symbols in
an IntelliJ UML diagram:

(m) – method

(f) – field

(p) – property

(i) – interface

(c) – class

Unlocked padlock – public

Locked padlock – private

Key – protected

Otherwise, the IntelliJ IDEA follows the UML [42] conventions.
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6.1.2 Classes representing model
As stated in the theoretical section 1.1.2 about the anomaly detection workflow, the anomaly
detection model may consist of some predictive mechanism which’s output is then processed by
some logic comparing the predicted and observed data and labelling outliers based on the error.

For this reason, I have decided to create the IPredictiveModel interface – model, which will
produce a list of predictions rather than outliers itself. the IPredictiveModel could be then
used as a component of the IAnomalyDetectionModel. Both IPredictiveModel and IAnoma-
lyDetectionModel have something in common.

Both can be fed with a list of data points and returns a list holding Prediction – for the
prediction model – or Anomaly – for the anomaly detection model. This led to creating the
IModel<T> interface, where T is a generic parameter specifying the type of returned objects in
the list. It makes sense for each model to keep the metadata about the input shape. The abstract
implementation of the IModel<T> is AbstractModel<T>.

The AbstractModel<T> contains the feeding logic described in the figure 5.1. the whole pro-
cess is shown in the code snippet 6.1. Furthermore, it applies an IInputValidator onto the
incoming data. If the input is considered wrong, then the IInvalidInputHandler is called to
handle such a situation. The IInputValidator and IInvalidInputHandler instance is passed as
an argument in the constructor. The motivation is the following: a user can configure the inten-
sity of the handling of the incorrect input. After the input validation comes update of an internal
state and producing an output.The AbstractModel#updateInternalState(List<DataPoint>)
and AbstractModel#produceOutput(List<DataPoint>) methods are abstract.

Code snippet 6.1 AbstractModel#Feed method

public final List <T> feed(final List <DataPoint > dataPoints) {
try {

inputValidator.validate(dataPoints , inputMetadata);
} catch (final InvalidInputException e) {

invalidInputHandler.handle(e);
}
updateInternalState(dataPoints);
return produceOutput(dataPoints);

}

6.1.3 Classes representing data
The following text is describing the logic depicted in the 6.2 diagram.

The classes making the most significant part are Feature and DataPoint. DataPoint contains
a list of Features and an Id. For the TimeSeriesPoint, the LocalDateTime [43] represents the
unique identifier. For the plain DataPoint, the Id can be, for example, some index.

The Feature contains name, IFeatureType and some value.
The IFeatureType interface provides a name of the type and Set of possible Java classes

for the value. The first implementation of the IFeatureType is an enum providing all primitive
types. The second implementation is a simple class. If a user does not find the desired type in
the enum range, he can create his custom one using the FeatureType class.

For testing and demonstrating purposes, there have been implemented printers for Feature
and DataPoint classes. The visitor pattern is applied here to achieve the single responsibility
principle. Both printers are utilizing the Gson library [44] for converting objects into JSON
format.

Anomaly class wraps a DataPoint instance and adds additional info such as the probability
that the point is an outlier.
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Figure 6.1 Model hierarchy
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Figure 6.2 Classes representing data
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6.1.4 Classes handling an evaluation of a model
The following text is describing the logic depicted in the 6.3 diagram.

The abstract implementation of the IFeedingSession – AbstractFeedingSession consists
of the wrapped IModel and TimeoutService instance managing the task’s run with a timeout.
The TimeoutService takes a Callable [45] and runs it with a timeout. There was created an
implementation for the TimeoutService. The implementation – FutureTimeOutService class
– utilizes the Future [46]. The product from running a task in TimeoutService is an instance
of the TimeoutResult – inner class of the interface – containing the output of the calculation,
time spent on the calculation and a flag about reaching the timeout.

The final outcome of the session’s feeding is FeedingResult class containing a list of objects
of type T, where T is the type of objects produced by the IModel instance and again info about
the calculation time a flag about reaching the timeout.

6.2 Testing
The code is richly covered with unit tests, ensuring all classes are working as they should.
Junit [47] framework was used for writing unit tests.

Another tested area is that loaded models return the same output as the model running in
the environment where it was created initially. It is again in the form of Junit tests, but now it is
testing the whole flow – from loading the model, feeding the model and comparing the returned
results. The testing of examples of models is delineated in the chapter with examples of usage.

6.3 Documentation
The thesis document itself contains a description of implementation and design, giving main
ideas and concepts to a reader. Worth documenting is the source code itself and a tutorial of
how a user can embed the framework into the existing Java project.

As the resulting software does not have any graphical user interface, there is no need to create
an end-user manual.

The source code is filled with Javadoc [48] comments from which has been generated the
Javadoc documentation explaining the code in every detail.

6.3.1 Embedding of the framework
The framework is intended to be used as a package or a module in an existing Java project. This
section demonstrates the integrating of the framework.

6.3.1.1 IntelliJ IDEA – import as a module
This section will show how you can import the project into a project in IntelliJ v. Community
addition 2020.2. The simplest way is to clone the repository and import a module into your
existing Java project.

1. Clone the repository to your local machine.

2. Open the project you want to import into.

3. Go File –> Project Structure –> Modules.

4. Click on the add button.

5. Select import module.
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Figure 6.3 Feeding session hierarchy
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6. Select the whole cloned repository with the Anomaly Detection Framework and press ok.

7. After the last step, you can add a dependency to the module you want to use classes from
the framework.

6.3.1.2 Copy&paste as a package
If the first option does not work for you, you can do it a bit more dummy, but still working way.
Again clone the repository to your local machine and copy&paste the code to your project. You
will need to resolve library dependencies and other stuff.





Chapter 7

Examples

7.1 Used theory

7.1.1 K-Nearest neighbour algorithm (KNN)
This subsection sources from the presentation [49]. The problem can be imagined as estimating
a value of y ∈ R for a given x ∈ Rp, where training data is X ∈ RN,p and known dependent
variables Y ∈ RN . The main idea of the algorithm is to find k nearest points using some distance
metric. The distance metric can vary, the most used and most intuitive one is the Euclidian
distance. After finding the neighbours there are two ways of predictions – classification and
regression. The classification predicts y ∈ Y as the most frequently occurred y value of its
neighbours. The regression predicts y as an average of y values of its neighbours.

7.1.2 Recurrent neural network (RNN)
This subsection sources from [50]. The RNN is a special type of artificial neural network pro-
cessing sequential or time-series data. The difference to the feed-forward neural network, which
considers inputs and outputs independent, is that RNN takes into account the output of the
previous calculation and current input. The flow is depicted in the diagram 7.1. Assuming Xt

is input and Yt is output in time t, the network can be unrolled and presented as shown on the
right part of the diagram 7.1.

The input and output side is not always one to one. It is possible to, as shown in the
diagram 7.2, provide many inputs and taking just one output.

7.1.2.1 Long short-term memory (LSTM)
LSTM is one of the RNN architecture. The details about the LSTM are not necessary to
comprehend. The main point is that the neural network adjusts the prediction based on the
memory about the previous input.

7.1.3 Autoencoder architecture
This subsection sources from [51]. The autoencoder architecture consists of two processes –
encoding and decoding. The input vector x ∈ RN is encoded to the vector y ∈ RM where
M < N . From input were extracted the most important characteristics. Then comes the
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Figure 7.1 RNN rolled [50]
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decoding of the vector y to vector z ∈ RN . This technique is commonly used for removing noise
from data or making predictions.

7.2 PMML
This example is using the model stored in the PMML format. This whole section sources from the
Python notebook published on the Kaggle website [52]. The python notebook in the attachment
contains many algorithms used on the same dataset. I chose the KNN algorithm predictive model
because it is one of the models supported to convert into PMML using sklearn2pmml library and
parsed using JPMML library.

The model predicts a future average price of one piece of avocado using the KNN. A data
point is an anomaly once the actual price differs too much from the predicted one. I used here a
simple threshold to identify outliers. When the error between the real and the forecasted value
is above the threshold, it is an anomaly.

The training data set contains weekly retail scan data coming directly from retailers’ cash
registers between 2015 and 2018.

The model needs the features mentioned below to be able to predict the average price.

Type – conventional or organic way of growing

Region – the city or region of the observation

Total Volume – total number of avocados sold

Small Hass – total number of avocados with PLU 4046 sold as one piece

Large Hass – total number of avocados with PLU 4225 sold as one piece

XLarge Hass – total number of avocados with PLU 4770 sold as one piece

Bag with Small Hass – total number of avocados with PLU 4046 sold as four pieces in a bag

Bag with Large Hass – total number of avocados with PLU 4225 sold as four pieces in a bag

Bag with XLarge Hass – total number of avocados with PLU 4770 sold as four pieces in a
bag

Hass is a type of avocado. By mentioning Hass, it is meant one piece of the fruit. In a bag,
there are four pieces

The dataset needed preprocessing before training the model with it. The type and region are
slightly different from other columns because they had been stored as strings, not as a number
value. The author of the python notebook created a new column for each value from type and
region columns. Value 1 indicates the presence of the region or a type used for this data record.

The the simple fction depicted in the code snippet 7.1 does the transformation mentioned
above.

Code snippet 7.1 Saving KNN model using sklearn2pmml [52]

pd.get_dummies(X[["type","region"]], drop_first = True)

The original dataset contains a lot of records. The author of the python notebook split the
dataset into the training and testing part with 10,172 samples for training and the rest starting
from 10,172 for testing. I took a different ratio because the trained model consumes circa (number
of the columns) * (number of rows) lines in the file, which means that the model with 50 features
and 10,172 records is stored into a PMML file with more than 500,000 lines. The parsing of such
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a model takes unnecessarily a lot of time. For testing purposes, it is acceptable to have a smaller
training dataset with pros, that the actual load of the model is significantly faster. I took 1,000
samples for the training part, making the resulting PMML file have 50,000 lines.

I saved the model using the sklearn2pmml library similar way it demonstrated in the tuto-
rial [53] of sklearn2pmml.

Code snippet 7.2 Saving KNN model using sklearn2pmml

from sklearn2pmml.pipeline import PMMLPipeline

pipeline = PMMLPipeline ([
("regressor", Knn)
])
pipeline.fit(X_train , y_train)

from sklearn2pmml import sklearn2pmml

sklearn2pmml(pipeline , "KnnAvocadoReg.pmml", with_repr = True)

Then I parsed the stored model using the JPMML library to use the model in the Java code.
I created a unit tests checking first 50 predictions are the same as when running the model in
the python notebook.

7.3 TensorFlow
The TensorFlow library supports creating a Keras [30] neural network and storing it into a file. In
both examples below, an RNN with LSTM and autoencoder architecture is used. As mentioned
in the theory section 7.1.2, the outstanding characteristic of such a model is that it considers the
previous input when predicting, making predictions more accurate.

7.3.1 S&P 500 index
This example was taken from the website [54] and corresponding YouTube tutorial [55]. In this
example, the author of the model tried to detect anomalies on the time series dataset with only
one feature – S&P 500 index from 1986 to 2018. “The S&P 500 Index, or the Standard & Poor’s
500 Index, is a market-capitalization-weighted index of the 500 largest publicly-traded companies
in the U.S.” [56]

The dataset contains 7,752 rows with just two columns – date and closing price for the day. I
took the same split for training data as the author of the tutorial, 95 % for the model’s training,
and the rest 5 % for testing. The dataset is ordered by date. The finalised model accepts 30
data points as an input and predicts the same count of data points as output. Then the mean
absolute error is calculated between the input and output batch. The input batch is considered
abnormal if the mean absolute error is above the specified threshold. For simplicity, only one
data point is marked as an outlier – the point representing the first following day after the input
batch’s last day. For example, when 31st January is tagged as an anomaly, then the epoch from
1st January to 30th January is abnormal.

I saved the model using the Tensorflow API for the Python language. Then I took the folder
with the saved model, loaded it using the Tensorflow API for the Java language. I fed the model
with the testing data and compared Java results to the one from the python notebook (.ipynb).
I created a unit test checking that the same data points were marked as an anomaly.
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7.3.2 Message rates
The example, taken from Martina Fuskova’s thesis [57], is about detecting anomalies in the
electronic trading data, namely in the message rate data set. The anomaly detector, implemented
by Martina, was used for getting generating the preprocessed data. Also, the model trained on
the data was stored into a file and taken.

There is a number of messages sent per time window specified for each message type. The
rates are store in the db as shown in the snippet 7.3.

Code snippet 7.3 Extracted message rates [57]

...

begin ,end ,RejectsAll , .., MessageRateNewOrderSingle , ...
20180202 -07:40:00.000 ,20180202 -07:44:59.999 ,0 , ...,0, ...
20180202 -07:45:00.000 ,20180202 -07:49:59.999 ,0 , ...,32, ...
20180202 -07:50:00.000 ,20180202 -07:54:59.999 ,0 , ...,8, ...
20180202 -07:55:00.000 ,20180202 -07:59:59.999 ,0 , ...,16, ...
20180202 -08:00:00.000 ,20180202 -08:04:59.999 ,0 , ...,544, ...
20180202 -08:05:00.000 ,20180202 -08:09:59.999 ,0 , ...,368, ...

...

Those rates were extracted from FIX logs showed in the code snippet 7.4. I chose the
NewOrderSingle message rate for anomaly detection. The anomaly detector user can specify
the column for anomaly detection inside the config file. The time window is five minutes long.
Values are scaled in the range 0 to 1.

Code snippet 7.4 FIX log [57]

20180529 -09:31:33.145 : 8=FIX .4.2|9=266|35=D|49=00000702|...
20180529 -09:31:34.163 : 8=FIX .4.2|9=355|35=8|34=21010|...
20180529 -09:31:36.163 : 8=FIX .4.2|9=393|35=8|34=21011|...

...

The used model is of the same type (LSTM autoencoder) as in the first example. The model
accepts just one data point and predicts one back. There is only one feature in the data point –
scaled message rate (in range 0 to 1) in a five-minute time window.

Martina used more complex mathematical methods for detecting anomalies utilizing the
knowledge of the whole actual and predicted time series. For the sake of simplicity, I used a
simple threshold for identifying outliers, the same way as in previous examples. This approach’s
advantage is that it is possible to determine that a particular data point is an anomaly using
just this data point (not a lengthier part of the time series).

Here are my results using the simple threshold shown in the graph 7.3. The result when using
more advanced methods than just a simple threshold is represented in the graph 7.4. Anomalous
points are manifested as a red circle. The predicted scaled value is calculated to represent the
message count as follows: y = x ∗max, where x is a predicted scaled value, max is a maximal
message count from the whole series and y is the resulting predicted message count.

I created a unit test checking that the predictive model returns precisely the same scaled
results as the one from the Martina’s anomaly detector written in Python.
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Figure 7.3 Anomalies detected using the simple threshold
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Figure 7.4 Anomalies detected using Martina Fuskova’s comparison





Chapter 8

Conclusion

The main goal was to implement an anomaly detection framework, which will load anomaly
detection models stored in a file in some format and use them in Java run-time on the incoming
data in real-time. The goal has been fulfilled.

The main product of the thesis is the implemented extensible framework scoring the model in
Java run-time in real-time. The framework is designed to add new formats and algorithms easily.
It has been written purely in the Java programming language. The functionality is demonstrated
on examples of usage of a PMML and TensorFlow’s custom format. The source code is covered
with unit tests and documented in Javadoc, describing each class in detail and UML diagrams,
explaining the main idea of each critical part of the framework. The way the framework is
intended to be used is also explained.

The essential step to successfully create the desired functionality was to get familiar with the
machine learning world. That means to research frameworks with a similar focus and commonly
used formats for storing models, machine learning libraries for the export/import of this model
into/from the corresponding file format.

Also, there has been done relatively detailed research about nowadays used formats for storing
a model and corresponding libraries for creating models and running them in a Java run-time.
The very positive finding is that there already exist ways of loading and evaluating machine
learning models in Java run-time.

8.1 Future work

The upcoming action is to embed the framework into the customer’s existing software. Moreover,
there are several ways worth working on in the future. Ideas and suggestions are presented in
this section.

8.1.1 Extend a supported range of formats and algorithms
The most evident one is implementing support for chosen formats and algorithms. The step
preceding the implementation could be research about benchmarking the time performance of
each format technology solution and selecting the most effective ones. The research about suitable
algorithms for the customer’s domain is probably unnecessary as it has already been made in
Martina Fuskova’s thesis.

43
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8.1.2 Add support for complex types of anomalies
Also, the room for the code extension is the logic recognizing more sophisticated types of anoma-
lies, not just the point anomalies.

This amendment would not require much effort, as the fact that there exist several types of
anomalies – not just point anomalies – was taken into account when designing the framework.

However, the valid question is whether this innovation is worth implementing because some
more complex types of anomalies can be inferred from point anomalies. It would be necessary to
research algorithms dedicated to detecting such type of aberrations and decide what would be
the best solution.

8.1.3 Add support for pre- and post-processing of data
Finally, the very exciting might be to analyze possibilities of pre- and post-processing of data.
Again, the best solution would be to have all logic stored in a file and then just load it and execute
it in a Java run-time. From this point of view, the most auspicious is the PFA technology. A
solution could be to chain the PFA script with some anomaly detection model.
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