
Instructions

The aim of this thesis is to design and implement an application to collect, aggregate, store and

visualise various metrics from a large number of web servers. More broadly, the target is to build a

distributed log/metrics pipeline helping with infrastructure performance validation, debugging and

health monitoring.

In the thesis apply standard SE methods and consider the following requirements.

Collected data should include at least:

- timestamp and client IP for identification

- HTTP and cache (if used) statuses

- response time and size

- TCP RTT

Minimum supported aggregations are:

- sum

- avg

- percentile

Pay special attention to the following caveats:

- distributed nature for easy scalability and seamless failover

- reasonable space requirements

- time complexities of required aggregation operations

- network partitions

Optionally, the solution should be generic enough to support DNS/VPN/ and other servers and should

allow for simple alerting capabilities.

Electronically approved by Ing. Michal Valenta, Ph.D. on 9 December 2020 in Prague.

Assignment of bachelor’s thesis

Title: Distributed monitoring of web server metrics

Student: Daniel Sedlák

Supervisor: Ing. Tomáš Kvasnička

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2021/2022

Bachelor’s thesis

Distributed monitoring of web server
metrics

Daniel Sedlák

Department of Software Engineering
Supervisor: Ing. Tomáš Kvasnička

May 3, 2021

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I further
declare that I have concluded an agreement with the Czech Technical Univer-
sity in Prague, on the basis of which the Czech Technical University in Prague
has waived its right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No. 111/1998 Coll.,
the Higher Education Act, as amended.

In Prague on May 3, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Daniel Sedlák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Sedlák, Daniel. Distributed monitoring of web server metrics. Bachelor’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

Tato práce si klade za ćıl navrhnout a implementovat aplikaci pro shromažd’ováńı,
agregaci, ukládáńı a vizualizaci r̊uzných metrik z velkého počtu webových ser-
ver̊u. Naše sada aplikaćı, které budeme vyv́ıjet, je nav́ıc dobře škálovatelná
horizontálně i vertikálně, stejně jako replikovaná a odolná v̊uči chybám.

Kĺıčová slova distribuovaný, webový server, škálovatelný, monitorováńı,
golang

Abstract

This thesis aims to design and implement an application to collect, aggregate,
store, and visualize various metrics from a large number of web servers. More-
over, our application stack that we will develop is well scalable horizontally
and vertically, as well as replicated and fault-tolerant.

Keywords distributed, web-server, scalable, monitoring, golang

v

Contents

Introduction 1

1 About this thesis 3
1.1 Expected results . 3
1.2 Thesis structure . 3

2 Research of monitoring 5
2.1 What can be monitored . 6
2.2 Caveats of monitoring . 9

3 Research of monitoring tools 13
3.1 Open source tools . 13
3.2 Stacks that global companies use 19

4 Pipeline implementation 21
4.1 Transfer metrics monitoring . 21
4.2 Error log monitoring . 31

5 Testing, improvements and debugging 35
5.1 What went wrong . 35
5.2 Possible upgrades . 39
5.3 Numbers in graph . 40

6 Outro 43
6.1 Plans for the near future . 43

Conclusion 45

Bibliography 47

A Acronyms 53

vii

B Contents of enclosed CD 55

viii

List of Figures

4.1 ClickHouse diagram . 26
4.2 RTT median example . 31
4.3 Kibana example . 33

5.1 ClickHouse traffic . 41
5.2 ClickHouse requests . 41

ix

List of Tables

2.1 Common HTTP status codes . 8
2.2 Common RTT values . 8

xi

List of Listings

4.1 Golang tail a file . 22
4.2 Golang listen on UNIX socket 24
4.3 Golang listen on UDP socket 25
4.4 ClickHouse config . 26
4.5 Sending data to the ClickHouse 27
4.6 ClickHouse DDL script . 28
4.7 ClickHouse DDL script for views 29
4.8 Grafana ClickHouse SQL . 30
4.9 Nginx configuration for Filebeat 34

xiii

Introduction

Firstly I would like to thank you for choosing my bachelor thesis as a source of
information. I will do my best to explain to you all the details about metrics
collecting and pipeline scalability.

This bachelor thesis aims to design and implement an application to col-
lect, aggregate, store, and visualize various metrics from a large number of
web servers. More broadly, the target is to build a distributed log or metrics
pipeline helping with infrastructure performance validation, debugging, and
health monitoring. I will guide you through all the steps of setting up dis-
tributed metrics monitoring. This thesis focuses only on web servers, but it
can be applied in many areas, including DNS, streaming, and others. I pay
special attention to scalability and distributed system properties.

We will start by explaining the basics of monitoring, metrics that can
be monitored, and continue with caveats and clustering. These basics are
prerequisites for later topics that we will discuss. They will be a building
block for subsequent topics where we will start developing our knowledge
about distributed monitoring of web-server metrics. Then we will go through
useful tools that you can use for monitoring. Also, we will discuss the pros
and cons of the tools. Then, we will talk a little bit about real-life stacks
used by familiar tech giants. In the second half of this thesis, I will show you
a practical implementation of the application stack that I have chosen, and
we will discuss the reasons behind my decisions. Moreover, we will look at
implementing the client in Golang, and we will send our data to the ClickHouse
cluster. Furthermore, we will discuss possible errors that I encountered during
implementation. Also, we will be monitoring the error log and processing it
in the ELK cluster.

We are happy to say that a specific company running a worldwide CDN
infrastructure adopted our solution. This provided us with real-life test sce-
narios as well as experience with production deployment and maintenance.

1

Chapter 1
About this thesis

In this chapter, we will discuss our goal during this thesis, and we will talk
about the structure of this thesis. Moreover, this chapter is an extension of
the introduction to ensure that we understand the situation and what will
happen in the following chapters.

1.1 Expected results

The big picture end of this thesis is represented by implementing a monitoring
pipeline that can be extended and scalable. This means that we are in the
first place interested in distributed, scalable, and fault-tolerant, and if this
research brings up something positive, we also want to try to dive deeper
into the practical side of things. This means that we want to gain as much
knowledge as we can about several topics like monitoring, distributed systems,
and scalability. At the end of the research, we will want to look at open-
source software tools that can be used for our purpose. These and many
others represent required knowledge to at least know where to start with our
analysis. After getting familiar with the necessary background, we want to
focus on the implementation part. We want to use the acquired knowledge to
implement a pipeline for our purpose.

1.2 Thesis structure

Here we will briefly describe the structure of this thesis. It will consist of
three main parts: research of monitoring, research of monitoring tools, and
implementation. Each one of these parts is dedicated to one entire chapter
with several subsections. Also, each of these parts could be covered in a
separate thesis; therefore, we sometimes reduce the provided information only
to the essentials.

3

Chapter 2
Research of monitoring

Understanding the state of your company’s infrastructure is essential for en-
suring the reliability and stability of your services. Information about your
web-server’s health and performance helps your team react to issues or po-
tential bottlenecks and gives them the soundness to make changes with con-
fidence. One of the best ways to gain this insight is with a robust monitoring
system that gathers metrics, visualizes data, and alerts administrators when
things appear to be broken or just partially working[1].

Monitoring is the process of collecting, aggregating, and analyzing values
gathered from the web-server to improve awareness of your component’s char-
acteristics and behavior. In the computer world, monitored subjects can be
a web server, DNS server, database, and many more. One can use monitored
data for infrastructure optimization, debugging particular errors within the
infrastructure, or just for marketing purposes to present some results.

Monitored data or just metrics represent the raw measurement of your web-
server that can be collected or observed. These values can be collected from the
operating systems or directly from logs of your web-server. At first glance, it is
not always straightforward what to monitor. You can watch the frequency of
the type of syscalls or observe the frequency of active connections. Metrics can
be divided into several categories like host-based metrics (CPU, memory, disk
space processes), application metrics (error and success rate, service failures
and restarts, performance and latency responses, resource usage), network
and connectivity metrics (connectivity, error rates and packet loss, latency,
bandwidth utilization)[1].

With every complex problem, various kinds of caveats occur. You need
to have a proper design and consider subjects like hardware resources (e.g.,
CPU utilization, disk space, network connectivity, and so on), maintenance,
and adequate software when thinking about data to process.

We will talk briefly about these problems in the following chapters.

5

2. Research of monitoring

2.1 What can be monitored

Monitoring is not as simple as it can be seen. There are several problems that
we will need to take a look at. The monitored metrics will probably change as
your infrastructure grows or evolves. Systems usually function hierarchically,
with more complex layers building on top of the more basic infrastructure.
Let’s work from the bottom up and describe metrics that we can collect.

Host-based metrics are at the bottom of the monitoring hierarchy. These
values are everything that is involved in evaluating the health or performance
of individual hardware. These metrics consist of CPU utilization, memory
utilization, disk space, monitoring active processes, syscall monitoring, etc.
These values can give you a basic sense of factors that can impact a server’s
ability to remain stable or reliable.

Application metrics are involved with units of processing or work that
depends on the host-level resources like software. In our web-server use-case,
we are talking about the error and success rate of HTTP requests, service
failures, and restarts, TCP performance, and latency responses, monitoring
error logs, etc.

Network and connections metrics are another types of metrics that are
worth exploring. It is mandatory to ensure a stable and reliable connection
between the web-server and clients. Like other metrics that we have discussed
so far, network monitoring is a must-have. We are specially talking about
monitoring connectivity, error rates, packet loss, latency, and bandwidth uti-
lization.

This thesis focuses only on collecting data from web servers so that we will
concentrate only on essential metrics collected from web-servers, aka applica-
tion metrics. In each metric type, we will discuss what it is about and why it
is crucial, as well as units of that particular metric.

2.1.1 Sent bytes and request count

Sent bytes and request count is one of the most straightforward metrics to
be monitored. Both are often used for not only performance analysis and
debugging but can be used for billing your customers. If you want to charge
your customers for transferred bytes, this is the first metric that you need
to keep an eye on. Or your billing can be based on a number of requests.
Counting requests can be useful, for example, for judging when to split the
traffic between multiple machines, aka load balancing.

In-depth sent bytes states for the total amount of bytes that were trans-
ferred from the server to the client. Most web-servers do not count service
data in sent bytes. Service data are, for example, TLS handshake, TCP hand-
shaking, and so on, but it always depends on a web-server you use. On the
other hand, a request just represents a single request for the given resource.
The resource is a path after the domain, e.g. /api/status.

6

/api/status

2.1. What can be monitored

Request count is most frequently measured in requests per second. On the
other hand, bytes can be in two; I would say formats, decimal, which is a part
of SI, or binary, which is a part of IEC. The decimal format is based in the
decimal base and binary in the binary base. Most people do not distinguish
between these bases, and often all of these values are written in decimal base.
For example, the RAM or even the SSD should be in binary bases, but sellers
often write everything in decimal base[2].

2.1.2 HTTP status code

A server issues a status code in response to a client’s request made to the
server. There are five main categories for status code. The most interesting
ones to monitor are the ones that are in format 4xx or 5xx. Firstly those
which start with four means client error. On the other hand, those starting
with five means server error. As of request count, the status codes are often
monitored in status code per second. The meaning of the most frequent ones
describes in the following table 2.1.

Keep in mind that this table does not cover all of the possibilities, but
only the most frequent ones that you can encounter during your everyday web
browsing. For example, it is a huge probability that you have experienced the
404 error. You, as a website owner, are interested in what your clients do on
your website. Moreover, you are interested in how your clients browse your
website. If your clients see the 404 message, they will probably be sad. So it is
a good move to have been monitoring which URL resources return unwanted
status codes since it can reflect user experience.

2.1.3 Round trip time

Roud trip time, aka RTT, is the amount of time it takes for a signal to be
sent plus the amount of time it takes for an acknowledgment of that signal
to be received. This time delay includes the propagation times for the paths
between the two communication endpoints[4].

This metric is crucial for monitoring network performance. When the
RTT is high, it means that clients are connecting to your server from a more
considerable distance or connection quality is low. Moreover, this value tells
you that you need to have a closer POP for your clients to achieve lower RTT.

It is better for those kinds of values that monitor some sort of a time
to watch their percentile. Monitor percentile instead of average is better in
many aspects. For example, the percentile is not that distorted as average,
and average can give you wildly inaccurate results. Averages are ineffective
because they are too simplistic and one-dimensional. Percentiles are a really
great and easy way of understanding the real performance characteristics of
your application. They also provide a great basis for automatic baselining,
behavioral learning and optimizing your application with a proper focus[5].

7

2. Research of monitoring

Code Description Purpose
200 OK Successful HTTP request.
206 Partial Content The server is delivering only part of the

resource due to a range header sent by
the client.

301 Moved Permanently This and all feature requests should be
redirected.

302 Found Tells the browser to look at another
URL.

304 Not Modified This tells the client, that a resource has
not been modified so client does not
have to download it again.

400 Bad Request Server cannot process the request.
403 Forbidden Server was able to process the request,

but the server refuses to do it.
404 Not Found Requested resource was not found.
410 Gone The resource is no longer available.
500 Internal Server Error Unexpected condition has happened on

the server.
502 Bad Gateway The server has received invalid re-

sponse from the upstream.
504 Gateway Timeout The server has not received a response

from upstream.

Table 2.1: Common HTTP status codes

[3]

Type Time
Local network 20ms
Data center 200ms
Continent 300ms

Transatlantic 800ms

Table 2.2: Common RTT values

To sum up, the best choice is to monitor RTT as percentile per second.
Correct percentile values to calculate and monitor really depend on your use
case. But often, you need to watch more than one percentile for RTT value.
The best choice would be to monitor 50, 90, 95, 99 of RTT percentile[6]. Those
four values can give you a broad insight into what is going on when you need
them. Let’s points out examples of RTT and its values.

8

2.2. Caveats of monitoring

2.1.4 Request time

Request time is a metric that tells us how long it took to process the request
inside the web-server. Request time can be crucial, for example, when you are
the developer of this particular web-server. Because when some requests take
a significant amount of time to process, it is not suitable not only for your
clients who will be unhappy but also for your infrastructure. Furthermore,
request time depends on request size; when the request is large, it can affect
your performance. It is useful for performance analysis.

The best measure unit is a percentile[5], as we described in the RTT. The
same applies here because, in request time, we monitor some kind of time as
well as in the RTT.

2.2 Caveats of monitoring

There are many possible caveats of monitoring that can occur. There are so
many things that can go wrong, for example, hardware failure, network issues,
software issues, data manipulation issues, etc. I will describe the problem of
raw data, centralization or decentralization, distribution, and scalability.

2.2.1 Raw data

Raw data are data that we collected from the monitored subject. Moreover,
there has not been any processing done on this data. There is a problem with
these raw data since there has not been any processing on them, which means
that we will have to store many pieces of information. This is a problem
because these data can overgrow.

There are multiple options for how this problem can be solved. For ex-
ample, you can drop old records after some time, or you can aggregate your
data. Let’s focus on data aggregation because it is a more complex and used
solution in the wild. Data aggregation is the compiling of information from
databases with the intent to prepare combined datasets for data processing.
Aggregate data is high-level data that is acquired by combining individual-
level data[7]. Let’s bring an example for clarity because aggregating is the
most critical aspect of monitoring.

In the previous chapter, we talked about sent bytes. Imagine that you
have a client who is performing about 40000 HTTP requests per second to
your web-server. And each request is 1 KB in size. Because you are doing
billing at the end of each month, you would need to sum ALL transferred
bytes for this client. That would be really time-consuming to sum this up
from raw data because that is plenty of requests, and it would take plenty
of time to iterate over each row in the DB. To optimize this, let’s sum all
transferred bytes for each minute and then insert it into the DB; this means
that we would need some logic before inserting it into the DB that would

9

2. Research of monitoring

aggregate raw data. That saves up exactly 39999 inserts to the DB for each
second. So now, when we perform select to sum all transferred bytes, it will
be much faster because our data is already preprocessed.

2.2.2 Centralization vs. decentralization

Centralization and decentralization can be found in multiple fields, not only
in computer science. But we will solely focus on centralization vs. decentral-
ization in the monitoring domain area.

When you are building your monitoring data stack, you need to decide
where to aggregate your data. You have two options; let’s talk about it for a
little bit.

The first option is to aggregate your data directly on your machine where
you host your web-server. Moreover, each device that acts like a web server
needs to have the spare computing power to aggregate and collect metrics.
This method is decentralized because one machine can not affect another
machine. This method of aggregating has its cons and pros. But it always
depends on your situation. It does not have to be straightforward from the
beginning whenever this method is the chosen one.

The second option is to aggregate your data on a dedicated machine whose
only purpose is to aggregate and collect data. This method is purely central-
ized, and as the first one, it has its advantages and disadvantages. This
method, for example, is inclined to higher sent bytes. Because you need to
send raw data from your devices directly to your aggregating cluster, on the
other hand, its most significant advantage is better control of your data. But
centralizing data aggregation is not bad because the machine that aggregates
data does not have to be a single machine but can be a cluster of machines.

The difference between centralization and decentralization is one of the
hot topics these days. Some people think that centralization is better, while
others are in favor of decentralization. In ancient times, people used to run
their organizations in a centralized manner. The scenario has been changed
entirely due to the rise in the competition where quick decision-making is
required. Therefore many organizations opted for decentralization[8].

2.2.3 Distributed

The distributed system is a distributed collection of computing units that can
make decisions locally[9]. Moreover, each node has its own goal to accomplish,
and together all nodes crowdfund toward the final goal. These goals do or do
not have to be the same.

In the monitoring, it can have multiple meanings. When collecting data
from web servers, it means that if some web-server crashes or somewhat goes
down, then it does not affect other web servers in the infrastructure. Further-
more, the traffic from the fallen web-server splits across healthy nodes.

10

2.2. Caveats of monitoring

Distribution is mandatory because your availability can be fatal to your
pipeline when you have a single machine for handling aggregation. When
your single instance goes down, you lost your data, or worse, you overload
your entire infrastructure because traffic from the fallen node splits to other
nodes, and it overloads them, and they fall as well. So often, there is a demand
to have multiple machines in your cluster so one or more devices can go down
without data loss.

2.2.4 Scalability

Scalability is the attribute of some kind of system to handle a growing amount
of data to process by adding resources to the system. In the software aspect,
this means that that you are not software nor hardware limited to some com-
putation. Moreover, you are able to distribute the computation to more com-
putation units. This can mean that there are multiple instances of running
software on the same machine, or the instances are on separated hardware.
An example is a database that should support an increasing number of con-
nections. This property goes in hand with distribution.

11

Chapter 3
Research of monitoring tools

There are a lot of tools that can help us during monitoring. Most of them
are open source and widely used by global companies like Cloudflare, Akamai,
Google, Amazon, etc. In this chapter, we will take a look at some of the most
commonly used tools for monitoring web servers. We can split the applications
into several categories like collecting, processing, alerting, and visualizing.

The collecting category is responsible for getting data from the applica-
tion. It can be simply from reading a log file, reading a socket, requesting
API, requesting a DB, or some other interaction with the application. Then
often transfer these collected data into applications that are responsible for
the processing[6]. The processing category takes care of manipulating data.
It transforms data into a better suitable format sot it can aggregate more
easily, manipulate data, calculate better, etc. These data are then stored in
a suitable database. Applications in the alerting class watch our converted or
shaped data from the database and alert us when it sees unwanted anomalies.
Applications in visualizing category are graphical tools that represent or plot
our transformed data; visualizing category can handle alerting as well.

It is essential to stress out that these applications form a chain together.
The chain is as strong as the weakest part in them. It means that you have
to have a good design of your pipeline. When your collecting applications do
not collect the essential data, your fancy graphing software would be useless.

There are many tools, so I will point out these that I found most widely
deployed during my research.

3.1 Open source tools

Open source is source code that is made freely available for possible modifi-
cation and redistribution. Open-source code is mostly managed by the com-
munity or company that uses that particular software. It is hard to believe
that companies make public their code base for the community, but there can

13

3. Research of monitoring tools

be huge benefits from that move. For example, the community of people who
like the software can help with maintaining it[10].

3.1.1 Grafana

Grafana is a multi-platform open source analytics and interactive visualiza-
tion web application. It provides charts, graphs, and alerts for the web when
connected to supported data sources[11]. Grafana is commonly shipped and
recommended to be used with InfluxDB[12]. Grafana uses one of the available
data source adapters for visualizing your data. Keep in mind that Grafana is
just a web app that you need to have to host, so it is an on-premise solution,
so it requires dedicated hardware to be run on[13]. But there are compa-
nies[14][15][16] that will host it for you in a cloud or dedicated hardware.

Grafana offers time-series graphs, gauge, bar gauge, table, pie chart, and
many more by default. And as a data source, it provides, for example, adapters
for Prometheus, Graphite, Loki, Elasticsearch, Jaeger, MySQL, PostgreSQL,
MongoDB, DataDog, and many more[11]. Grafana is easily extendable. You
can write your own graph types and data source connectors, but the commu-
nity already has developed almost everything, so it is unnecessary to reinvent
the wheel since you can use something that is already coded. On the other
hand, Grafana has its caveats. Let’s point out the pros and cons[17].

You have a significant portfolio of available graphs for visualization. You
have many publicly available data source connectors, so it should be easy to
connect any widely accepted database as an input for your Grafana. On the
other hand, I found out that Grafana lacks of input methods. This means
it is useful for static graphs, where you do not have any select bar, where to
specify some particular conditions. But when you want to have some custom
input where you can select particular conditions for graphing, then it is not
that good since it is not that straightforward. We will talk about this problem
in subsection 4.1.3. Grafana is also resource-consuming for your web browser;
when you have many items for graphing, it consumes a lot of RAM a CPU
power, and it takes a lot of time simply to graph.

3.1.2 Prometheus

Prometheus is an open-source system monitoring and alerting toolkit origi-
nally built at SoundCloud. Since its inception in 2012, many companies and
organizations have adopted Prometheus, and the project has a very active
developer and user community. It is now a standalone open source project
and maintained independently of any company. To emphasize this and clar-
ify the project’s governance structure, Prometheus joined the Cloud Native
Computing Foundation in 2016 as the second hosted project, after Kuber-
netes. Prometheus scrapes metrics from instrumented jobs, either directly or
via an intermediary push gateway for short-lived jobs. It stores all scraped

14

3.1. Open source tools

samples locally and runs rules over this data to either aggregate and record
new time series from existing data or generate alerts. Grafana or other API
consumers can be used to visualize the collected data. Google’s monitoring
system, Borgmon, served as inspiration for Prometheus[18].

Prometheus is primarily based on the pull model. This means that Prometheus
node periodically scrapes the given API of each monitored subject at a spe-
cific polling frequency. Prometheus data from the API in a specific pre-defined
format. Prometheus data is stored in the form of metrics, each metric has a
name used for referencing and querying it. Prometheus stores data locally on
disk, which helps for fast data storage and fast querying and store metrics in
remote storage. Each Prometheus server is standalone, not depending on net-
work storage or other remote services. This means that Prometheus is hard to
scale since there are not any databases that could be used for atomic or trans-
action data access[19]. Prometheus is not designed to be scaled horizontally.
Once you hit the limit of vertical scaling, you’re done[20].

Prometheus provides its own query language, PromQL, that lets users se-
lect and aggregate data. PromQL is specifically adjusted to work in convention
with a time-series DB and therefore provides time-related query functionali-
ties[19].

3.1.3 ZooKeeper

ZooKeeper is a service for distributed synchronization, as well as providing
group services. All of these kinds of services are used in some form or an-
other by distributed applications. Because of the difficulty of implementing
these kinds of services, applications initially sacrifice on them, making them
fragile in the presence of change and challenging to manage. Even when done
correctly, different implementations of these services lead to management com-
plexity when the applications are deployed[21]. More briefly, ZooKeeper acts
like a distributed key-value store that supports transactions. It is used in
many applications like ClickHouse and Kafka for its synchronization.

3.1.4 ClickHouse

ClickHouse is a fast open source OLAP database management system. It is
column-oriented and allows to generate analytical reports using SQL queries
in real-time. ClickHouse processes typical analytical queries two to three
orders of magnitude faster than traditional row-oriented systems with the
same available IO throughput and CPU capacity. Columnar storage format
allows fitting more hot data in RAM, which leads to shorter typical response
times. ClickHouse scales well both vertically and horizontally. ClickHouse can
smoothly perform either on a cluster with hundreds or thousands of nodes or
on a single server, or even on a tiny virtual machine. ClickHouse has concepts
of shards and replicas. In a shard, you can have multiple replicas. Shards can

15

3. Research of monitoring tools

be geographically distributed to achieve better availability[22]. Furthermore,
ClickHouse has a concept of engines. Your database or your table needs
to have a specified engine while creating tables or databases. These tables
or database engines define its behavior. Databases engines provide default
behavior for tables created in that DB; they are set to Atomic[23] by default.
On the other hand, table engines are more fascinating because you can tweak
table behavior, and they have several categories[24]. Moreover, ClickHouse
design is to be eventually consistent since it is defined by its shard policy[25].
We will talk about ClickHouse features more briefly since it was chosen for
the practical part.

MergeTree family engines are the first and most used and universal and
functional table engines for high-load tasks. The property shared by these
engines is quick data insertion with subsequent background data process-
ing. This subsequent background data processing is essential. That is why
these engines are the most widely adopted. MergeTree family engines sup-
port data replication (engines with prefix Replicated), partitioning, secondary
data-skipping indexes, and other features not supported in non-MergeTree
engines like specified TTL. TTL is useful because it allows you to specify con-
ditions for data deletion. Moreover, specify the duration for how long to keep
data on the disk. Or you can use TTL to specify the conditions for moving
data. Furthermore, when data becomes cold, you can move them from an
SSD to HDD[24]. Keep in mind that MergeTree does not like frequent inserts.
When you want to insert a lot of data into your table, you need to batch
them. Furthermore, the batches should not be too large. It would be best if
you kept a proper balance between large inserts and the frequency of inserts.
Otherwise, the performance of your node will decrease significantly. There is
an engine named Buffer that will help us to batch these values. We will talk
about Buffer and MergeTree engine later in 4.1.2.

Next, there are Log family engines. They are Lightweight engines with
minimum functionality. They are the most effective when you need to quickly
write many small tables (up to approximately 1 million rows) and read them
later as a whole. But sadly, they do not allow you to specify TTL[24].

The last family is integration engines. This family is somewhat experi-
mental, and there are many bugs [26],[27],[28] and counting. It allows you
to integrate your ClickHouse with the existing DB. For example, you can use
your ClickHouse to access your data stored in MySQL or Kafka cluster[24].

There are more engines that do not belong to any family, but they have
relatively a single purpose. I am explicitly aiming towards engines like Buffer,
Distributed, MaterilizedView. These three engines I found the most crucial
in my practical part of this thesis. MaterializedView is the glue that connects
your raw data and your aggregated data. Materialized views in ClickHouse
are implemented more like insert triggers. If there is some aggregation in the
view query, it is applied only to the freshly inserted data batch. Any changes
to the source table like an update, delete, drop a partition, etc., do not change

16

3.1. Open source tools

the materialized view. Furthermore, MaterializedView can be used to move
data between solid tables or be used with AggregatingMergeTree to perform
aggregations. We will talk about aggregations in 4.1.2. The distributed engine
is more like a helper engine, helping you split queries across your cluster.
Distributed engines do not store any data on their own but allow distributed
query processing on multiple servers. Reading is automatically parallelized.
During a read, the table indexes on remote servers are used, if there are any.
Writing to the distributed table will distribute the inserted data across the
servers themselves[29]. Lastly, let’s focus on the buffer table. It buffers the
data to write in RAM, periodically flushing it to another table. During the
read operation, data is read from the buffer and the other table, which is being
buffered simultaneously. Buffer table has rules when to insert the buffer data
based on time, rows, and size. When you create the table with a buffer engine,
you need to specify all of these three values, and they have to be balanced;
otherwise, you may encounter some errors like inserting too much data[30].

Let’s sum up the pros and cons of using ClickHouse. The ClickHouse is
definitely suitable for scaling horizontally and vertically[22]. It is also very fast
with its MergeTree engines, which are very popular in the ClickHouse com-
munity for their performance and distributed setup. ClickHouse is suitable
for a high load of data and aggregating them. The most significant disadvan-
tage is documentation with examples. There are not many resources to get
knowledge about setting up ClickHouse. There are only a few of them, and
they are mostly fundamental and not production-ready, as well as they do not
mention many caveats that can occur. These pros and cons are based on my
own personal experience with ClickHouse during this thesis.

3.1.5 MongoDB

MongoDB is a document database designed for ease of development and scal-
ing. A record in MongoDB is a document, a data structure composed of field
and value pairs. MongoDB documents are similar to JSON objects. The val-
ues of fields may include other documents, arrays, and arrays of documents.
Using documents has many advantages, like dynamic schema support, em-
bedded documents, and arrays to reduce the need for expensive joins, objects
correspond to native data types in many programming languages. Further-
more, MongoDB proves high-performance data persistence. Since MongoDB
is a NoSQL database, it means that it has its own query language, which looks
more like JavaScript[31].

One of the most attractive features of MongoDB is its reliable scalability.
It is precisely the opposite of traditional SQL databases, which scale more
vertically than horizontally. MongoDB has concepts of shards for horizontal
scale. As mentioned earlier, MongoDB is a very dynamic database, which
means that document structure can be specified on the fly. MongoDB is also

17

3. Research of monitoring tools

swift because it stores most of the data in RAM, and query performance in
MongoDB is much quicker[32].

On the other hand, MongoDB has poor data manipulation since it does
not support transactions very well. The support for transactions looks ex-
perimental at the time of writing this thesis. This means that there can
be data corruption when multiple resources want to modify the same docu-
ment. Furthermore, MongoDB has not easy to use joins, so joining multiple
collections is a resource-heavy task[33],[34],[35]. Furthermore, MongoDB is
eventually consistent. It does not support ACID transactions or distributed
transactions[36].

3.1.6 ELK

ELK or Elastic stack is the acronym for three open source projects: Elastic-
search, Logstash, and Kibana. Elasticsearch is a search and analytics engine.
Logstash is a server-side data processing pipeline that ingests data from mul-
tiple sources simultaneously, transforms it, and then sends it to Elasticsearch.
Kibana lets users visualize data with charts and graphs in Elasticsearch.

Elasticsearch is a search engine based on the Lucene library. It provides
a distributed, multitenant-capable full-text search engine with an HTTP web
interface and schema-free JSON documents. According to the DB-Engines
ranking, Elasticsearch is the most popular enterprise search engine, followed
by Apache Solr, also based on Lucene. Elastic search, due to its reverse
indexes, is high-speed. It also supports parallel processing, which can speed
it up by a lot, but it depends on many factors. Elastic search is also well
scalable horizontally as well as vertically[37],[38].

Logstash is a lightweight, open-source, server-side data processing pipeline
that allows you to collect data from various sources, transform it on the fly, and
send it to your desired destination. It is most often used as a data pipeline for
Elasticsearch, an open-source analytics and search engine. Because of its tight
integration with Elasticsearch, powerful log processing capabilities, and over
200 pre-built open-source plugins that can help you easily index your data,
Logstash is a popular choice for loading data into Elasticsearch[39]. Hoewer
Logstash is also very slow and resource heavy[40],[41].

Kibana is an open-source data visualization and exploration tool used for
log and time-series analytics, application monitoring, and operational intelli-
gence use cases. It offers powerful and easy-to-use features such as histograms,
line graphs, pie charts, heat maps, and built-in geospatial support. Also, it
provides tight integration with Elasticsearch, a popular analytics and search
engine, which makes Kibana the default choice for visualizing data stored in
Elasticsearch[42].

Overall, the ELK stack became very popular. Most companies use it for
their log pipeline because it is an open-source solution, so it is free. On the
other hand, you need to have beefy machines where you can run your ELK

18

3.2. Stacks that global companies use

stack. Since it is recommended to use fast CPUs and at least SSDs, Logstash
consumes many resources and Elasticsearch for fast storing data[43].

3.1.7 Kafka

Apache Kafka is an open-source distributed event streaming platform used by
thousands of companies for high-performance data pipelines, streaming ana-
lytics, data integration, and mission-critical applications. Kafka has a high
throughput and delivers messages at network limited throughput using a clus-
ter of machines with low latencies. Kafka also scales well. Furthermore, Kafka
stretches clusters efficiently over availability zones or connect separate clus-
ters across geographic regions and store streams of data safely in a distributed,
durable, fault-tolerant cluster[44]. Kafka is primarily used to build real-time
streaming data pipelines and applications that adapt to the data streams.
It combines messaging, storage, and stream processing to allow storage and
analysis of historical and real-time data[45].

When writing messages into Kafka, we write them into a topic. Topics
are divided into several partitions. Partitions serve as our unit of ordering,
replication, and parallelism. Topics are configured with a replication-factor,
which determines the number of copies of each partition we have. All replicas
of a partition exist on separate brokers (the nodes of the Kafka cluster). This
means that we cannot have more replicas of a partition than we have nodes
in the cluster. A replica is either the leader of its partition or a follower of the
leader. A follower can either be synced with the leader or unsynced[46].

3.2 Stacks that global companies use

Many big companies have their blog, where they share their knowledge dur-
ing working on exciting projects. These blogs were my starting point at the
beginning of this thesis. Furthermore, these blogs were an inspiration for me,
and I used them for resources and examples. These companies have a lot
of useful knowledge that I used during my research, and their pipelines are
already tested in production.

3.2.1 Cloudflare

Cloudflare is one of the biggest networks operating on the Internet. People use
Cloudflare services for the purposes of increasing the security and performance
of their websites and services[47]. More briefly, Cloudflare provides content
delivery network services, DDoS mitigation, Internet security, and distributed
domain name server services[48].

Cloudflare regularly publishes their knowledge on its blog. You can find
security tips, achieved goals, language contributions, library contributions,
interesting research, etc.

19

3. Research of monitoring tools

In Cloudflare, they use Clickhouse and Kafka in their log processing pipeline.
They use it for aggregation statistics from the nginx, and they are processing
six million requests per second which is a significant amount of requests to be
processed[49].

3.2.2 Altinity

Altinity software and services help you deploy and operate innovative Click-
House analytic applications for any use case in environments spanning the
cloud to on-prem. Deploy and operate ClickHouse, a lightning-fast, an open-
source SQL data warehouse for real-time analytics, time series, and log anal-
ysis[50].

Many developers from Altinity take care of ClickHouse, and they write a
handy blog that is primarily focused on ClickHouse. In their blog posts, you
can find good recommendations about how to set up your cluster features.

20

Chapter 4
Pipeline implementation

In this chapter, we will focus on practical implementation. We will more
broadly discuss the implementation that I found the most interesting to re-
search and most generic to use. We will use the theoretical background de-
scribed in the previous chapters. The following methods are tested and devel-
oped only for the Linux environment.

As a web-server, we chose Nginx because it is rapidly growing in popularity
and is often used in large infastructures[51]. Nginx is an HTTP and reverse
proxy server, a mail proxy server, and a generic TCP/UDP proxy server[52].
Nginx is well configurable and can expose many valuable options with its
access log and error log. We will set up our Nginx as a reverse proxy.

In particular, we will discuss two implementation pipelines for the mon-
itoring. The first pipeline will take care of monitoring data from the access
log. And the second pipeline will take care of monitoring errors from the er-
ror log which Nginx exposes. We will discuss these topics more briefly in the
individual chapters.

4.1 Transfer metrics monitoring

This monitoring pipeline will take care of getting data from the Nginx and
then store it in a database. Moreover, the database will aggregate these data,
and we will visualize them with graphs. Furthermore, in each individual sub-
chapter, we will solve each isolated part of the monitoring pipeline. In the
first subchapter, we will focus on getting data out of the Nginx web-server. In
the second chapter, we will focus on data aggregation, and lastly, we will take
a look at data visualization.Let’s describe the overall architecture and then
well will dig deeper into each individual subchapter.

We will write a simple application in Golang, which will collect data from
the Nginx, and this application will send data to the ClickHouse in larger
batches. Batching will prevent overloading our ClickHouse cluster because
ClickHouse does work well with small inserts[30]. Our application will be

21

4. Pipeline implementation

based on a push model. This means that our Clickhouse cluster will not pull
metrics from each Nginx web-server. Instead, we will insert data from our
application written in Golang. I chose Golang because it has an extensive
standard library, libraries for ClickHouse, community support, well supported
on various operating systems, well readable. I took this push model approach
because it is more scalable, in my opinion, since the aggregating endpoint does
not need to know anything about the web-servers.

4.1.1 Data collecting

Let’s start with the task of getting data out of the Nginx. Nginx has config-
uration directive access_log[53]. In this directive, you can specify multiple
options; for now, the most useful options are format and path. Nginx will
print a line to the access log for each new HTTP access, which ends with a
new line character.

For the demonstrative purpose, we will collect only transferred bytes,
RTT, and total request count. In our example, the format will look like
log_format '$bytes_sent $tcpinfo_rtt'[53].

Then we need to discuss where to log our access log since Nginx supports
multiple output options. Each of them has its pros and cons.

4.1.1.1 Logging to file

We can log our data into the file. This is very straightforward since most of
the applications use this approach. This mechanism is to pool the log file.
We are interested only in newly added records of the log file. So we need to
implement something like Linux’s tail -f[54]. This can be easily done in
Golang in 4.1 since there is a library exactly for this purpose called simply a
tail[55].

t, err := tail.TailFile("/var/log/nginx.log",
tail.Config{Follow: true})

for line := range t.Lines {
fmt.Println(line.Text)

}

Listing 4.1: Golang tail a file

We can specify the following option, which will handle logrotating cases,
but it will not handle reading duplicates when restarting the Golang tool. This
library has even more options on how to detect logrotating. It can simply just
pool for a new file with the same name. Or it can use Linux’s event messaging
for changes.

• The pooling technique periodically checks if a new file was made. When
we open a file in a Linux environment, we get a number of file descriptor.

22

4.1. Transfer metrics monitoring

It does not have a concept of a name. If the file that we have opened is
renamed by logrotate, we do not have a way how to check it unless we
periodically compare inodes of the opened file and possibly a new file.
If inodes do not match, then the file was logrotated.

• The inotify API provides a mechanism for monitoring filesystem events.
Inotify can be used to monitor individual files or to monitor directories.
When a directory is monitored, inotify will return events for the directory
itself and files inside the directory[56].

There are other cons that go hand in hand together, and some of them are
even language-specific or platform-specific.

Nginx does not support logrotating by default. This means that our access
log will grow infinitely. This is not good since it can consume all disk space
in a long-running web-server, leading to undefined behavior later. Many tools
support logrotating, namely logrotate[57], which is widely adopted. When
our file was logrotated, we need to finish reading our current file and open a
newly created file and start processing it again. But both approaches do not
scale well with growing requests. Inotify API gains a lot of resource overhead
and stops working correctly, approximately around 20000 requests per second.
The pooling technique starts to act undefine at approximately 50000 requests
per second on the Nginx server. So let’s drop this approach and try another
one available.

4.1.1.2 Logging to UNIX socket

Since we are developing our tool for the Linux environment, we can take ad-
vantage of logging into the UNIX socket. A Unix domain socket or IPC socket
is a data communications endpoint for exchanging data between processes ex-
ecuting on the same host operating system[58],[59]. Logging to UNIX socket
handles all caveats which occur during logging to file. But it still is not a
silver bullet. This approach has the following caveats.

• UNIX socket has a hardcoded limit of the inner buffer. This can be
changed, but we would need to recompile the whole kernel a that is
something that you do not want to do since it is really time-consuming
and inefficient. In Linux kernel 4.x it is hardcoded to 212992 bytes[60].

• Since our UNIX socket is not endless, we need to have some mechanism
to slow down logging to the UNIX socket within Nginx. Because Nginx
can quickly overwhelm this socket with data. Nginx has a feature that
can buffer data in RAM before sending it to the UNIX socket. But this
adds overhead since each Nginx worker needs to allocate its space in
RAM. This mechanism helps us with full UNIX sockets, but it will only
delay our problem. It keeps its data in userspace, and when the UNIX

23

4. Pipeline implementation

buffer becomes free, it inserts data into it. This mechanism will work
only as long as we have free space in userspace.

We can create the UNIX socket with the Golang code in 4.2.

// Remove and iniate a socket
sp := "/var/log/nginx/access.sock"
os.Remove(sp)
addr, _ := net.ResolveUnixAddr("unix", sp)
conn, err := net.ListenUnixgram("unixgram", addr)
if err != nil {

log.Fatalf("Fatal error creating socket %s\n", err)
}
os.Chmod(config.SocketPath, 0777)

// Read data infinitely
for {

// maximum line length should be around 2 KiB, but
// sockets have some overhead
buf := make([]byte, 4096)
for {

// this is blocking operation
dn, _, _ := conn.ReadFromUnix(buf[:])
println(dn)

}
}

Listing 4.2: Golang listen on UNIX socket

I tested this approach on a machine with 48 CPU cores and 256 GiB of
RAM. Nginx was configured to use 48 workers, and I was able to get up to
60000 requests per second, then Nginx started to throw out requests due to
buffer limits and started logging to the error log that it could not write to
the socket. It was unable to write to the socket because the socket was full.
The application could not read the data faster because it was read from one
thread, but Nginx was writing to the socket from all workers. We could try to
read from more threads, but it would not do much better because the socket’s
max size is not enough.

4.1.1.3 Logging to UDP

The last option is to use UDP. So our Golang tool will acts as a UDP server
and Nginx as a client. This mechanism handles all cavers that occurred dur-
ing the previously described method. In UDP, its buffer limit can be specified
on the fly without recompiling the whole kernel. Furthermore, we can take

24

4.1. Transfer metrics monitoring

advantage of socket options and distribute incoming datagrams between mul-
tiple sockets[61], in particular we are talking about SO_REUSEPORT, it can be
demonstrated in 4.3. On the other hand, UDP adds some overhead because
UDP datagrams have some headers that we do not use, but it is not significant
because we can increase the buffer limit.

Overall this method performed exceptionally in the production. We were
able to increase the buffer size to the maximum, so we did not need buffering
techniques that Nginx implements. Moreover, we were able to write all logs
to the sockets as they appeared. Furthermore, the Golang application could
spawn more read threads because we took advantage of using socket options.

conn, err := ls.conf.ListenPacket(context.TODO(),
"udp4",
"127.0.0.1:8888")

if err != nil {
log.Printf(err)
return

}

buf := make([]byte, 4096) // maximum line length should be
// 2 KiB, but sockets have some overhead

for {
conn.SetReadDeadline(time.Now().Add(5 * time.Second))
// this is blocking operation
n, addr, err := conn.ReadFrom(buf[:])
if err != nil && !err.(*net.OpError).Timeout() {

log.Printf("Error: Reading packet from %s: %s\n",
addr,
err,
)

}
if n > 0 {

println(string(buf[0:n]))
}
if ctx.Err() != nil {

err = conn.Close()
if err != nil {

log.Println(err)
}
return

}
}

Listing 4.3: Golang listen on UDP socket

25

4. Pipeline implementation

I tested this approach on a machine with 48 CPU cores and 256 GiB of
RAM. Nginx was configured to use 48 workers, and it could handle at least
100000 requests per second. I was unable to generate more requests because
of a hardware limitation. Moreover, this technique performed exceptionally,
and there were no errors during testing.

4.1.2 Data aggregating

For data aggregation, we will use ClickHouse. It is easy to set up and use
software with sufficient documentation. Furthermore, we will use it for calcu-
lating percentile and sum. We will demonstrate our example on a single node
cluster, but the same applies to a cluster with more machines than one. The
following approach will work with ClickHouse version 20.3.x. ClickHouse
needs to have a ZooKeeper running somewhere. It is recommended to have
it on different hardware than ClickHouse. Furthermore, the ClickHouse clus-
ter needs to be defined in its configuration file. We can find that in their
documentation[29].

Figure 4.1: ClickHouse diagram

Our cluster will look like 4.4. If we would like to have more shard or
replicas, we would need to specify it in its config on each machine.

<remote_servers>
<logs>

<shard>
<replica>

<priority>1</priority>
<host>localhost</host>
<port>9000</port>

</replica>
</shard>

</logs>
</remote_servers>

Listing 4.4: ClickHouse config

We will get our data for aggregation from the Golang application. We
will use the official Golang library[62] that is developed by the ClickHouse

26

4.1. Transfer metrics monitoring

team. This library implements all necessary features like reconnecting, load-
balancing between multiple shards, etc. We will use the following code 4.5.

connect, err := sql.Open("clickhouse", "tcp://127.0.0.1:9000")
if err != nil {

log.Fatal(err)
}
if err := connect.Ping(); err != nil {

if exception, ok := err.(*clickhouse.Exception); ok {
fmt.Printf("[%d] %s \n%s\n", exception.Code,

exception.Message,
exception.StackTrace)

} else {
fmt.Println(err)

}
return

}
var (

tx, _ = connect.Begin()
stmt, _ = tx.Prepare(`INSERT INTO example (metric_date,

rtt,
bytes_sent)
VALUES (?, ?, ?)`)

)
defer stmt.Close()
for _, item := parsed_data_from_socket{

if _, err := stmt.Exec(
time.Now(),
item.RTT,
item.BytesSent,

); err != nil {
log.Fatal(err)

}
}
if err := tx.Commit(); err != nil {

log.Fatal(err)
}

Listing 4.5: Sending data to the ClickHouse

Now we need to set up our ClickHouse, so it can aggregate data. Our
goal is to use AggregatingMergeTree, as discussed earlier, this engine acts as
a trigger, so we need to store our inserted data into some temporary table. We
will attach these triggers to this temporary table, and we will be able to create

27

4. Pipeline implementation

aggregated data when we insert new data into the temporary table. For this
temporary table, we will use a table with the MergeTree engine. But this is a
problem. We cannot insert data fastly into tables with the MergeTree engine.
If we do, then ClickHouse will reject our inserts. We need to know how to
buffer data before inserting it into the temporary table with the MergeTree
engine. We can use the Buffer engine, which is precisely for this purpose.
We will use the Buffer table to batch our data from the Golang tool before
inserting it into the actual table. Buffer table stores its data within RAM.

But Buffer table is still not a silver bullet. It has some flaws. If our
machine goes down, we need to keep in mind that these data are lost since
they are stored only in RAM, which does not survive reboot. We need to
set rules for inserting data from the Buffer table into the MergeTree table.
ClickHouse does not allow us to attach our aggregating views above tables
stored in RAM, so that is the main reason we use this temp table. Data are
stored on the disk only after we perform the insert into the MergeTree family
engines.

After we insert data into the temporary table with the MergeTree engine,
we can instantly drop them. Furthermore, we can set a TTL on that particular
table. Since we need only to aggregate data, then after inserting, we do not
need them. Our temp table will like like in 4.6, and then we can create the
Buffer table like in 4.6.

-- buffer table
CREATE TABLE metrics_buffer AS metrics ENGINE = Buffer(
default,
metrics,
16,
3,
6,
500000,
1000000,
100000000,
1000000000);

-- temp table
CREATE TABLE metrics (

metric_date DateTime,
bytes_sent UInt64,
RTT UInt32)

ENGINE = MergeTree()
order by (toStartOfFiveMinute(metric_time))
TTL metric_time + INTERVAL 10 SECOND;

Listing 4.6: ClickHouse DDL script

28

4.1. Transfer metrics monitoring

Now we can focus on creating views that will aggregate our records. Click-
House has its AggregatingMergeTree for this purpose, as we have discussed
earlier. We will use the following SQL 4.7 that will create request counting for
each hour, calculating median and summing transferred bytes for each hour.
This example can be easily expanded to calculate more time variants, e.g.,
second, minute day, and more types of percentile.

CREATE MATERIALIZED VIEW traffic
ENGINE = ReplicatedAggregatingMergeTree
('/clickhouse/tables/1/traffic', '1')
PARTITION BY metric_date ORDER BY (metric_date, metric_time)
TTL metric_time + INTERVAL 1 HOUR
AS select

metric_date,
toStartOfInterval(metric_time, INTERVAL 1 HOUR) metric_time,
sumState(bytes_sent) traffic

FROM metrics
GROUP BY metric_date, metric_time;

CREATE MATERIALIZED VIEW rtt_50p
ENGINE = ReplicatedAggregatingMergeTree
('/clickhouse/tables/1/rtt_50p', '1')
PARTITION BY metric_date ORDER BY (metric_date, metric_time)
TTL metric_time + INTERVAL 3 DAY
AS SELECT

metric_date,
toStartOfInterval(metric_time, INTERVAL 1 HOUR) metric_time,
quantileTDigestMergeState(0.5)(rtt) percentile

FROM metrics
GROUP BY metric_date, metric_time;

CREATE MATERIALIZED VIEW request_count
ENGINE = ReplicatedAggregatingMergeTree
('/clickhouse/tables/1/request_count', '1')
PARTITION BY metric_date ORDER BY (metric_date, metric_time)
TTL metric_time + INTERVAL 90 DAY
AS SELECT

metric_date,
toStartOfInterval(metric_time, INTERVAL 1 HOUR) metric_time,
countState() request_count

FROM metrics
GROUP BY metric_date, metric_time;

Listing 4.7: ClickHouse DDL script for views

29

4. Pipeline implementation

Overall our table architecture can be visualized in the following diagram 4.1.
We insert data into the Buffer table. Then ClickHouse will insert these buffer
data into the temporary table with the MergeTree engine based on our rules.
Then after ClickHouse transfers these data from the buffer table into the
temporary table, ClickHouse will execute triggers that we attached to the
temporary tables. These triggers will aggregate our data, and they will be
stored in that trigger. We can select our data from this trigger with SQL.

4.1.3 Data visualization

Then we will use Grafana for data visualization since it is straightforward to
set up and there is a freely available ClickHouse source adapter[63]. We can
easily query our triggers for data.

For example, our case with RTT can be displayed with the following query.
The same applies for the rest of our data but only with different merging com-
binators, here we use quantileTDigestMerge, a complete list can be found
in the documentation[64]

SELECT
t,
groupArray((machine_name, c))

FROM
(

SELECT
$timeSeries as t,
quantileTDigestMerge(0.5)(percentile) as c,
'localhost' as machine_name

FROM rtt_50p
WHERE

$timeFilter -- Grafana specific demand
GROUP BY

metric_date,
metric_time,
machine_name,
t

)
GROUP BY t
ORDER BY t asc

Listing 4.8: Grafana ClickHouse SQL

30

4.2. Error log monitoring

Figure 4.2: RTT median example

4.2 Error log monitoring

Error monitoring is crucial since you can spot unwanted behavior as well as
weird behavior. We will use the ELK stack for this purpose, discussed in the
previous chapter. ELK is a great tool for this purpose because it is widely
adopted, and it scales well. Moreover, it has great documentation.

Nginx normally logs errors to error log via error_log directive. This di-
rective has many options, but we will stick to the defaults. This approach
will work for every Nginx, which has a version above 1.0.0+. We will use a
straightforward Nginx configuration, which will have two server directives and
a few other optional params and error_log configured. Nginx will report un-
usual activity to the error log based on its verbosity level to the file, located on
path /var/log/nginx/error.log. We can see example configuration in 4.9.

4.2.1 Filebeat

We need something that will read our error log file or files. This tool needs to
care for many caveats like.

• It needs to reopen the file when Logrotate comes in place.

• It needs to batch data to prevent flooding a network with frequent re-
quests.

• It needs to buffer data when a network is down or when the destination
server is down.

31

4. Pipeline implementation

Filebeat is a part of the Elastic stack. Filebeat can be easily installed
from the Filebeat website. It has packages available for Debian, RPM, MacOS,
Brew, Generic Linux, Windows. The following approach was tested for version
7.1.0.

We need to provide a configuration file for the Filebeat. We will send
our logs to Logstash because Filebeat has good support for sending data to
Logstash. The configuration file is in YAML format. Filebeat will address the
above caveats.

Filebeat has many available options, but we will talk only about these that
we are using.

• We need to provide a path to the Filebeat. Filebeat will be listening on
this path for any updated files. We can specify a whole directory with
multiple files or a single file.

• We should enable the crawler in the configuration.

• We need to specify the output as the Logstash. We need to provide
hostnames or IP addresses to our Logstash nodes.

So now Filebeat with this configuration will observe our error log located
on path /var/log/nginx/error.log. Furthermore, it will send our data to
the Logstash, where we will manipulate data next. When something goes
wrong, it will handle all caveats, including buffering when the network is
down, logrotating file, batching logs.

4.2.2 Logstash

Logstash will serve as middleware for preprocessing data before we send it to
Elasticsearch. It can aggregate logs and events from various sources. It can
be defined as collecting and processing data from these sources and sending
them to other systems for storage and analysis. We will use the input as
beats. Logstash supports several filter plugins that enable you to handle
events. Furthermore, we can transform our data into another format suited
for Elasticsearch.

Logstash is often run on the same server as Elasticsearch since it can
reduce delay while inserting data. Logstash will automatically create indexes
for Elasticsearch, so we do not care about creating indexes and their properties
ourselves.

For configuration, we only need to define input as beats. Beats has a pro-
tocol of its own. We can send it cyphered, but we will send it plain without
encrypting for the sake of simplicity. Then we can define the filter section,
which parses lines of logs into some intermediate format, which then is trans-
lated into Elastic search data types. We need to define a regexp that will

32

4.2. Error log monitoring

handle all possible logline cases; otherwise, our logline will be flagged as un-
parsable. Our error logline has a straightforward format. In the end, we need
to define our output which is Elasticsearch.

4.2.3 Kibana and Elasticsearch

Kibana is a frontend UI for Elasticsearch. By default, Elasticsearch exposes
only REST API without UI. Kibana is a web interface for Elastic search with
the ability to create plots and graphs. Logstash did all the heavy lifting for us
and is filling Elasticsearch with data. Now we can, with drag and drop func-
tionality, create multiple diagrams based on our requirements. Furthermore,
Kibana allows us to change the properties of indexes created by Logstash.
It is recommended to change lifecycle policies that will handle deleting old
records for us. Since reverse indexes created by Elasticsearch can consume a
lot of disk space, it is recommended to delete old data which are not needed
anymore. An example of data visulization can be found in 4.3.

Figure 4.3: Kibana example

33

4. Pipeline implementation

worker_processes auto; # use all cores
error_log /var/log/nginx/error.log;

events {
}

http {
include conf/mime.types;

default_type application/octet-stream;
log_format main

'$remote_addr - $remote_user [$time_local] $status '
'"$request" $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';

access_log logs/access.log main;

reverse-proxy
server {

listen 80;
server_name domain2.com www.domain2.com;

location / {
proxy_pass http://127.0.0.1:8080;

}
}

static content
server {

listen 80;
server_name domain.com www.domain.com;

location / {
return 200 "hello";

}
}

}

Listing 4.9: Nginx configuration for Filebeat

34

Chapter 5
Testing, improvements and

debugging

In this chapter, we will talk about problems that occurred and the results that
I have collected. I was able to test the results of this thesis in the produc-
tion environment where a lot of traffic can be collected in a real production
environment. The company where I tested this supplied me with the neces-
sary hardware and technical help. I was able to stress test this setup in an
environment where the edge servers handle up to 12 TiB of traffic. Overall I
tested this on a ClickHouse cluster which consisted of 5 nodes, and the logging
application was deployed on over 1000 web servers.

In the first part, we will focus on specific problems. In the second part, we
will discuss possible improvements that can make this pipeline more robust,
scalable, stable, and reliable. Lastly, we will take a look at the graphs that I
have collected during my production stress test of this application.

5.1 What went wrong

During my implementation phase, so many things went wrong. In this chap-
ter, we will talk about the most exciting errors that had occurred. We will
talk about what made these errors as well as how to solve them correctly.
Most of these errors appear only in the production, where it is under real life
conditions.

5.1.1 Buffer tables

ClickHouse needs to insert data in batches, but these batches need to hold
their tempo, as we have talked about earlier in 3.1.4. This is one of the
problems that we can encounter during production since you do not often do
stress tests in development, but you test it on a small portion of inserts. We
can solve this issue with many approaches, but none of them is perfect.

35

5. Testing, improvements and debugging

5.1.1.1 Explained more briefly

Each of our servers performs inserts to the ClickHouse independently. We are
using the MergeTree family engine for the temporary table. Furthermore, this
MergeTree family engine does not support frequent inserts nor small batches.
If we violate one of these rules, the ClickHouse can reject our insert, or the
merging operations within the ClickHouse becomes inefficient.

When we tested our setup in the production where we were inserting di-
rectly to the temporary table, it became unstable. Sometimes it threw in-
serting errors, and sometimes it did not. I contacted the ClickHouse team
about this issue, and they recommended us to use the Buffer table. So our
solution was to use the Buffer engine table. We used it and encountered other
problems.

• Data that are being buffered are not persistent unless our batch is in-
serted. This is a significant flaw since we can lose data due to machine
upgrade or application segfault. Even when we restart the ClickHouse,
we lost data.

• We need to specify buffering policy, which consists of max/min time in-
terval, max/min size of the batch, max/min rows in the batch. Lost data
are based on our buffering policy, but it can be many thousands of lost
records. These policies cannot be configured dynamically. Furthermore,
there are not any rules on how to configure these policies correctly. You
need to try them out and test for each specific use case.

Another approach would be to use Kafka in front of ClickHouse. We will
talk about this use case in possible upgrades.

5.1.1.2 Solution

We took this Buffer approach in the implementation part because it is the
most straightforward and less experimental or heuristic than the others. Buffer
table solves this issue, and it is performing well. The only disadvantage is that
when you restart the ClickHouse, then you lose data. These lost data are not
significant, and it is often less than 0.001Kafka would solve this losing data
problem because it is designed as a log storage pipeline. We will talk more
about how Kafka could be used in possible upgrades.

5.1.2 Corrupted Zookeeper

During upgrading ClickHouse, we had a problem where ClickHouse got cor-
rupted. We accidentally upgraded one node in the cluster. By default, if
you upgrade one node in a cluster, ClickHouse updates all nodes to keep
consistent communication between nodes because the next version can have

36

5.1. What went wrong

different communication practices. But accidentally, by upgrading one, the
whole cluster got corrupted.

5.1.2.1 Explained more briefly

In the production environment where I have tested my setup, we had deployed
the ClickHouse cluster on five machines in total, and we had five Zookeeper
nodes on another five machines. We were not using the LTS version recom-
mended by the ClickHouse team, but we were using the last stable release. The
problem was raised when we upgraded a single ClickHouse node to the latest
version. It looked like that ClickHouse had changed the internal representa-
tion of data, and other ClickHouse nodes which were using older data format
were confused, and data integrity collapsed. The newly upgraded ClickHouse
node changed everything in the Zookeeper, and old nodes were confused and
quickly began to spam error log with an unknown format and possible data
corruption. Since ClickHouses talk to each other via Zookeeper, so cluster got
unhealthy.

5.1.2.2 Solution

The only solution was only to upgrade the rest of the nodes to the same
version. After this problem, we discussed this problem with the ClickHouse
team and were told to jump only for LTS version of the ClickHouse. This issue
can be prevented by keeping package manager up to date. The ClickHouse
was deployed on Debian on our cause. Furthermore, not all of these packages
managers were up to date, so ClickHoue could not download the new version
of ClickHouse to the rest of the nodes.

5.1.3 MergeTree errors

We encountered a problem where ClickHouse was not able to merge parts
quicker. This means that there were more inserts than merges. This is un-
wanted behavior because when you reach a specific limit in the configuration,
ClickHouse starts to reject new inserts. The overall architecture of how Click-
House’s MergeeTree engine work we have discussed earlier in 3.1.4.

5.1.3.1 Explained more briefly

So let’s dig deeper into the MergeTree engine. In ClickHouse terminology, they
use the word tempo. Tempo needs to kept when inserting into the MergeTree
table engine. This tempo consists of frequent (but not too frequent) inserts
and inserting data in large batches (but not too large batches). If we keep
this tempo then ClickHouse will be happy. Otherwise, it will complain that
it is not able to merge fast enough. This tempo configuration depends on
hardware and traffic. It often occurs when you do not insert anything at all

37

5. Testing, improvements and debugging

to the ClickHouse, and suddenly if you push everything you have, when you
do this, you break the tempo.

When you insert data into ClickHouse, a temporary file is created. This
temporary file is later then merged in a large portion of data with other tem-
porary files. This merging is not deterministic. It is only based on ClickHouse
specific rules. The consequence of inserting too many small batches is that
more of these temporary files are created that are scheduled later for merging.
But if you schedule too many of these parts into merging, then the merging
part becomes very inefficient, and ClickHouse begins to slow down. If we in-
sert huge batches, it becomes inefficient because ClickHouse spends most of
its computing time merging this specific temporary file.

5.1.3.2 Solution

The only way to adjust this is via config file with directive parts_to_delay_insert
and parts_to_throw_insert. These values are otherwise hardcoded. How-
ever, these settings depend on your hardware. If we have beefy hardware that
we can multiple default values six times and more.

5.1.4 Quantile T-digest error

Calculate percentiles is somewhat a difficult task when we have millions of
records. When we used a standard linear calculation where we remember all
values, and all of them are sorted, the only bottleneck is hardware resources.
When we use this standard calculation for quantile and issue a SQL where
we, for example, query for median for 2 hours, then the ClickHouse tries
to load all values into RAM. Since we have millions of records, loading this
whole segment of data into RAM leads to an application crash. Fortunately,
ClickHouse allows us to use T-digest data structure for calculating quantiles
for a vast amount of data.

5.1.4.1 Explained more briefly

The T-digest is a probabilistic data structure for estimating the median from
either distributed data or streaming data. Internally, the data structure is
a sparse representation of the cumulative distribution function. ClickHouse
team poorly implemented this data structure in ClickHouse, and it had a prob-
lem of uncontrolled growth. For some input data, the internal state of the data
structure grew significantly. We reported this issue, and it was fixed in merge
request #16680[65]. Furthermore, this issue only showed up on materialized
views aggregating a longer time, like a day or more.

38

5.2. Possible upgrades

5.1.4.2 Solution

We reported this issue to the ClickHouse team, so the only solution was to
upgrade to the latest ClickHouse that consisted of this patch.

5.1.5 Metrics backfilling

Our ClickHouse client that sends data into the ClickHouse has a significant
flaw. When our ClickHouse is out of reach or when the ClickHouse cluster is
down, our ClickHouse client cannot successfully insert data and drops them.
This is a problem since the data we are collecting from the web server are
snowballing. So we need to implement some intelligent mechanism of discard-
ing old data when an insert is unsuccessful.

5.1.5.1 Explained more briefly

The connection between a client application and the ClickHouse cluster can be
unstable or can go down; thus, we need to implement buffering technique while
the connection can not be established. If we would not implement buffering
technique, this means that we can lose data. Or when ClickHouse rejects our
insert we would lose data too.

5.1.5.2 Solution

In production, we have implemented a simple ring buffer that is being filled
when ClickHouse is unreachable. When the ClickHouse is unreachable for a
more extended period, old data is overwritten with fresh data because of the
ring buffer mechanism.

5.2 Possible upgrades

It is not harmful to take inspiration from other companies. In one of the
previous chapters, we have mentioned the Cloudflare blog[49]. In this blog,
they talked about their pipeline using ClickHose. They put a Kafka cluster in
front of ClickHouse. This means that their edge servers do not directly push
data into ClickHouse, but they first insert it into Kafka. And they have clients
that transfer data between Kafka and ClickHouse. This can solve problems
like buffer table problem and backfilling problem. Furthermore, this can help
us to use these collected data in more places because of Kafka. It can be more
generic and reusable. Moreover, we can use this Kafka pipeline for our ELK
pipeline. With this step, we could aggregate errors in ClickHouse, and we
would have the advantage of frequent errors.

Next, since we developed our application for Linux and we are using sock-
ets, we can tweak our sockets’ settings. Now all workers send their data into a
single socket. With correct settings for sockets, we can spawn multiple sockets

39

5. Testing, improvements and debugging

and distribute the load. This can be helpful because we can take advantage of
multiple cores and read data from multiple threads. Nginx supports sending
data to multiple sockets.

We could tweak our settings in ClickHouse a little bit more and offload old
data to HDD from SSD. ClickHouse has its TTL, as we talked about earlier.
This TTL mechanism allows us to move data when data becomes cold. It can
help us to save money on disks. Since cold data are rarely accessed, they do
not have to be on fast disks like SSD or NVME.

We could even set up monitoring of ClickHouse itself. ClickHouse has its
system tables where it inserts statistics. We can aggregate these statistics to
have a better overview of what is going on. Furthermore, with this monitoring,
we can monitor ClickHouse resources. With these pieces of information, we
can know when to upgrade ClickHouse machines or when to expand the disk
space.

5.3 Numbers in graph

This web-server monitoring stack with some improvements was tested in pro-
duction in one of the top five CDN. Our Golang utility was deployed to all
servers for collecting data, which are aggregated in ClickHouse.

This architecture can scale well as well as it is distributed. In the pro-
duction, the Golang utility was deployed to at least 1000 servers, and we had
a ClickHouse cluster of 5 nodes. Moreover, ClickHouse node servers were
equipped with 40 cores CPU, 128 GiB RAM, and 12 TB SSD.

These nodes were able to aggregate over 3.5 million requests per second
and traffic, up to 13 TiB/s. This traffic is collected from the Nginx server
across all regions. Most of the aggregated traffic is from Europe. We can see
these results in 5.1 and in 5.2. These graphs are an output of Grafana.

Overall while testing in production, there was not any major issue, and
everything mainly went flawlessly. Still, some things can be better, as we
talked about in the previous chapter.

40

5.3. Numbers in graph

Figure 5.1: ClickHouse traffic

Figure 5.2: ClickHouse requests

41

Chapter 6
Outro

We have implemented a fully extensible, distributed, and scalable pipeline de-
sign. We have deployed this solution in the production environment consisting
of thousands of web servers worldwide powering the network of one content
caching network provider. At the time of writing this thesis, their servers
handle more than 12 terabits of traffic per second, all of this processed using
our monitoring pipeline. We have not encountered a single problem that we
could not solve during the design and development of the pipeline.

6.1 Plans for the near future

Currently, we are developing a more stable pipeline that consists of Kafka in
front of the ClickHouse. This feature adds stability to our solution. Further-
more, more applications can read raw logs as long as they can read data from
Kafka. The idea behind this patch is inspired by Cloudflare blogs which we
were describing earlier. We are now in the testing and debugging phase. As
of today, Kafka is performing well and adds stability to our pipeline. We plan
to increase stability and availability, and we are optimizing. Also, we plan to
add better monitoring for ClickHouse itself and the Kafka and ZooKeeper.

43

Conclusion

This thesis had several objectives. The first was to introduce metrics logging
and distributed systems. Then we gained knowledge of open-source tools that
we can use. We finalized it by implementing a fully operational logging pipeline
to help us with infrastructure performance, debugging, and health monitoring.
Moreover, we used open-source tools, which we researched. Furthermore, we
programmed a scalable Golang utility that collects data from the Nginx web-
server, and it sends data into the ClickHouse.

In the first chapter, we explained some basics about monitoring. We dug
deeper into what can be monitored and some introduction into basic metrics
that can be monitored. We continued with some theories and caveats that go
hand in hand with distributed setup.

In the second chapter, we talked about tools for monitoring.
The third chapter was dedicated to implementation, where we set up a pri-

mary monitoring pipeline that can be easily extended. We showed how to send
data from Nginx into ClickHouse and continued with setting up ClickHouse.
Then we talked about how to get visualized data in Grafana.

In the fourth and final chapter, we talked about caveats that occurred
to me while testing in production as well, as we looked at results that were
collected during testing in production.

We gained significant knowledge during the creation of this thesis. We
improved our monitoring skills and built a fully functional logging pipeline.
We discussed how our pipeline can be improved and how to fix common errors.

45

Bibliography

1. ELLINGWOOD, Justin. An Introduction to Metrics, Monitoring, and
Alerting [online]. DigitalOcean, 2017 [visited on 2021]. Available from:
https://www.digitalocean.com/community/tutorials/an-introduction-
to-metrics-monitoring-and-alerting.

2. Disk space [online]. [N.d.] [visited on 2021]. Available from: https://
www.seagate.com/support/kb/why-does-my-hard-drive-report-
less-capacity-than-indicated-on-the-drives-label-172191en/.

3. Hypertext Transfer Protocol – HTTP/1.1 [Internet Requests for Com-
ments]. RFC Editor, 1999-06. RFC, 2616. RFC Editor. Available also
from: https://www.rfc-editor.org/rfc/rfc2616.txt.

4. round-trip delay time [online]. 1996 [visited on 2021]. Available from:
https://www.its.bldrdoc.gov/fs-1037/dir-031/_4641.htm.

5. KOPP, Michael. Why Averages Suck and Percentiles are Great [online].
2012. Available also from: https://www.dynatrace.com/news/blog/
why-averages-suck-and-percentiles-are-great/.

6. BEYER, Betsy. The site reliability workbook: practical ways to implement
SRE. O’Reilly, 2018.

7. RAJAGOPALAN, Ramesh; VARSHNEY, Pramod K. Data aggregation
techniques in sensor networks: A survey. 2006.

8. S, Surbhi. Difference Between Centralization and Decentralization (with
Comparison Chart) [online]. 2017 [visited on 2021]. Available from: https:
//keydifferences.com/difference-between-centralization-and-
decentralization.html.

9. GU, Zhaoquan; WANG, Yuexuan; HUA, Qiang-Sheng; LAU, Francis
C. M. Rendezvous in distributed systems: theory, algorithms and appli-
cations. Springer, 2017.

10. PERENS, Bruce et al. The open source definition. Open sources: voices
from the open source revolution. 1999, vol. 1, pp. 171–188.

47

https://www.digitalocean.com/community/tutorials/an-introduction-to-metrics-monitoring-and-alerting
https://www.digitalocean.com/community/tutorials/an-introduction-to-metrics-monitoring-and-alerting
https://www.seagate.com/support/kb/why-does-my-hard-drive-report-less-capacity-than-indicated-on-the-drives-label-172191en/
https://www.seagate.com/support/kb/why-does-my-hard-drive-report-less-capacity-than-indicated-on-the-drives-label-172191en/
https://www.seagate.com/support/kb/why-does-my-hard-drive-report-less-capacity-than-indicated-on-the-drives-label-172191en/
https://www.rfc-editor.org/rfc/rfc2616.txt
https://www.its.bldrdoc.gov/fs-1037/dir-031/_4641.htm
https://www.dynatrace.com/news/blog/why-averages-suck-and-percentiles-are-great/
https://www.dynatrace.com/news/blog/why-averages-suck-and-percentiles-are-great/
https://keydifferences.com/difference-between-centralization-and-decentralization.html
https://keydifferences.com/difference-between-centralization-and-decentralization.html
https://keydifferences.com/difference-between-centralization-and-decentralization.html

Bibliography

11. Grafana enterprise stack [online]. [N.d.] [visited on 2021]. Available from:
https://grafana.com/products/enterprise/.

12. InfluxDB [online]. [N.d.] [visited on 2021]. Available from: https : / /
grafana.com/docs/grafana/latest/datasources/influxdb/.

13. Grafana requirements [online]. [N.d.] [visited on 2021]. Available from:
https://grafana.com/docs/grafana/latest/installation/requirements/.

14. Grafana Cloud VPS Hosting: SkySilk Cloud [online]. 2021 [visited on
2021]. Available from: https : / / www . skysilk . com / grafana - vps -
hosting/.

15. Grafana hosting, Metrics and analytics dashboards as a Service (SaaS)
[online]. [N.d.] [visited on 2021]. Available from: https://www.stellarhosted.
com/grafana/.

16. Grafana Cloud [online]. [N.d.] [visited on 2021]. Available from: https:
//grafana.com/products/cloud/.

17. Why developers like Grafana [online]. [N.d.] [visited on 2021]. Available
from: https://stackshare.io/grafana.

18. RYCKBOSCH, Frederick. Prometheus monitoring: Pros and cons [on-
line]. 2017 [visited on 2021]. Available from: https://jaxenter.com/
prometheus-monitoring-pros-cons-136019.html.

19. KUMAR, Rajesh. What is Prometheus and How it works? [Online]. 2021
[visited on 2021]. Available from: http : / / www . devopsschool . com /
blog/what-is-prometheus-and-how-it-works/.

20. ARILLA, Carlos. Challenges using Prometheus at scale [online]. 2020
[visited on 2021]. Available from: https://sysdig.com/blog/challenges-
scale-prometheus/.

21. THE APACHE SOFTWARE FOUNDATION. ZooKeeper [online]. 2021
[visited on 2021]. Available from: https://zookeeper.apache.org/.

22. ClickHouse DBMS [online]. [N.d.] [visited on 2021]. Available from: https:
//clickhouse.tech/.

23. CLICKHOUSE TEAM. Database engines [online]. Yandex LLC, [n.d.]
[visited on 2021]. Available from: https://clickhouse.tech/docs/en/
engines/database-engines/.

24. CLICKHOUSE TEAM. Table engines [online]. Yandex LLC, [n.d.] [vis-
ited on 2021]. Available from: https://clickhouse.tech/docs/en/
engines/table-engines/.

25. BLINKOV, Ivan. ClickHouse consistency [online]. 2019 [visited on 2021].
Available from: https://stackoverflow.com/questions/57312862/
how-to-know-when-data-has-been-inserted-in-clickhouse.

48

https://grafana.com/products/enterprise/
https://grafana.com/docs/grafana/latest/datasources/influxdb/
https://grafana.com/docs/grafana/latest/datasources/influxdb/
https://grafana.com/docs/grafana/latest/installation/requirements/
https://www.skysilk.com/grafana-vps-hosting/
https://www.skysilk.com/grafana-vps-hosting/
https://www.stellarhosted.com/grafana/
https://www.stellarhosted.com/grafana/
https://grafana.com/products/cloud/
https://grafana.com/products/cloud/
https://stackshare.io/grafana
https://jaxenter.com/prometheus-monitoring-pros-cons-136019.html
https://jaxenter.com/prometheus-monitoring-pros-cons-136019.html
http://www.devopsschool.com/blog/what-is-prometheus-and-how-it-works/
http://www.devopsschool.com/blog/what-is-prometheus-and-how-it-works/
https://sysdig.com/blog/challenges-scale-prometheus/
https://sysdig.com/blog/challenges-scale-prometheus/
https://zookeeper.apache.org/
https://clickhouse.tech/
https://clickhouse.tech/
https://clickhouse.tech/docs/en/engines/database-engines/
https://clickhouse.tech/docs/en/engines/database-engines/
https://clickhouse.tech/docs/en/engines/table-engines/
https://clickhouse.tech/docs/en/engines/table-engines/
https://stackoverflow.com/questions/57312862/how-to-know-when-data-has-been-inserted-in-clickhouse
https://stackoverflow.com/questions/57312862/how-to-know-when-data-has-been-inserted-in-clickhouse

Bibliography

26. NGSIOLEI. Having consumer group member failover problem in Click-
House Kafka engine [online]. [N.d.] [visited on 2021]. Available from:
https://github.com/ClickHouse/ClickHouse/issues/21118.

27. FILIMONOV. Kafka: Exception during commit attempt: Local: No offset
stored [online]. [N.d.] [visited on 2021]. Available from: https://github.
com/ClickHouse/ClickHouse/issues/18719.

28. YUUCH. MaterializeMySQL do not drop rows, when I drop partition
in MySQL [online]. [N.d.] [visited on 2021]. Available from: https://
github.com/ClickHouse/ClickHouse/issues/19707.

29. CLICKHOUSE TEAM. Distributed [online]. Yandex LLC, [n.d.] [vis-
ited on 2021]. Available from: https://clickhouse.tech/docs/en/
engines/table-engines/special/distributed/.

30. CLICKHOUSE TEAM. Buffer [online]. Yandex LLC, [n.d.] [visited on
2021]. Available from: https://clickhouse.tech/docs/en/engines/
table-engines/special/buffer/.

31. Introduction to MongoDB [online]. [N.d.] [visited on 2021]. Available
from: https://docs.mongodb.com/manual/introduction/.

32. MongoDB: A Scalable Database with Powerful Performance [online]. [N.d.]
[visited on 2021]. Available from: https://codecondo.com/mongodb-a-
scalable-database-with-powerful-performance/.

33. ARJARAPU, Shyam. Mastering MongoDB - Introducing multi-document
transactions in v4.0 [online]. HackerNoon.com, 2019 [visited on 2021].
Available from: https://medium.com/hackernoon/mongodb-transactions-
5654cdb8fd24.

34. Limitations in MongoDB Transactions [online]. 2018 [visited on 2021].
Available from: https://www.dbta.com/Columns/MongoDB-Matters/
Limitations-in-MongoDB-Transactions-127057.aspx.

35. MONGODB TEAM. MongoDB lookup [online]. [N.d.] [visited on 2021].
Available from: https : / / docs . mongodb . com / manual / reference /
operator/aggregation/lookup/.

36. MongoDB Consistency Features [online]. 2015 [visited on 2021]. Avail-
able from: https://quabase.sei.cmu.edu/mediawiki/index.php/
MongoDB_Consistency_Features.

37. Elasticsearch: The Official Distributed Search and Analytics Engine [on-
line]. [N.d.] [visited on 2021]. Available from: https://www.elastic.
co/elasticsearch/.

38. Block Volume Elastic Search [online]. [N.d.] [visited on 2021]. Available
from: https : / / docs . oracle . com / en - us / iaas / Content / Block /
Concepts/blockvolumeelasticperformance.htm.

49

https://github.com/ClickHouse/ClickHouse/issues/21118
https://github.com/ClickHouse/ClickHouse/issues/18719
https://github.com/ClickHouse/ClickHouse/issues/18719
https://github.com/ClickHouse/ClickHouse/issues/19707
https://github.com/ClickHouse/ClickHouse/issues/19707
https://clickhouse.tech/docs/en/engines/table-engines/special/distributed/
https://clickhouse.tech/docs/en/engines/table-engines/special/distributed/
https://clickhouse.tech/docs/en/engines/table-engines/special/buffer/
https://clickhouse.tech/docs/en/engines/table-engines/special/buffer/
https://docs.mongodb.com/manual/introduction/
https://codecondo.com/mongodb-a-scalable-database-with-powerful-performance/
https://codecondo.com/mongodb-a-scalable-database-with-powerful-performance/
https://medium.com/hackernoon/mongodb-transactions-5654cdb8fd24
https://medium.com/hackernoon/mongodb-transactions-5654cdb8fd24
https://www.dbta.com/Columns/MongoDB-Matters/Limitations-in-MongoDB-Transactions-127057.aspx
https://www.dbta.com/Columns/MongoDB-Matters/Limitations-in-MongoDB-Transactions-127057.aspx
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/
https://quabase.sei.cmu.edu/mediawiki/index.php/MongoDB_Consistency_Features
https://quabase.sei.cmu.edu/mediawiki/index.php/MongoDB_Consistency_Features
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://docs.oracle.com/en-us/iaas/Content/Block/Concepts/blockvolumeelasticperformance.htm
https://docs.oracle.com/en-us/iaas/Content/Block/Concepts/blockvolumeelasticperformance.htm

Bibliography

39. Elasticsearch [online]. 2013 [visited on 2021]. Available from: https :
/ / aws . amazon . com / elasticsearch - service / the - elk - stack /
logstash/.

40. MARQUARDT, Alexander [online]. 2019 [visited on 2021]. Available
from: https://alexmarquardt.com/2019/06/15/improving- the-
performance-of-logstash-persistent-queues/.

41. ELASTIC TEAM. Logstash performance [online]. [N.d.] [visited on 2021].
Available from: https : / / github . com / elastic / logstash / blob /
master/docs/static/performance-checklist.asciidoc.

42. Kibana [online]. 2013 [visited on 2021]. Available from: https://aws.
amazon.com/elasticsearch-service/the-elk-stack/kibana/.

43. SCOTT, Samuel. These 15 Tech Companies Chose the ELK Stack Over
Proprietary Logging Software [online]. 2016 [visited on 2021]. Available
from: https : / / logz . io / blog / 15 - tech - companies - chose - elk -
stack/.

44. Kafka [online]. [N.d.] [visited on 2021]. Available from: https://kafka.
apache.org/.

45. What is Apache Kafka [online]. [N.d.] [visited on 2021]. Available from:
https://aws.amazon.com/msk/what-is-kafka/.

46. UTLEY, Jake. Hiya’s best practices around Kafka consistency and avail-
ability [online]. 2019 [visited on 2021]. Available from: https://blog.
hiya.com/hiyas-best-practices-around-kafka-consistency-and-
availability/.

47. Cloudflare [online]. [N.d.] [visited on 2021]. Available from: https://
www.cloudflare.com/learning/what-is-cloudflare/.

48. CLIFFORD, Tyler. Cloudflare CEO: Dozens of U.S. states are using
Athenian Project for election security [online]. CNBC, 2020 [visited on
2021]. Available from: https://www.cnbc.com/2020/10/06/cloudflares-
election- security- services- used- by- most- states- ceo- says.
html.

49. BOCHAROV, Alex. HTTP Analytics for 6M requests per second using
ClickHouse [online]. The Cloudflare Blog, 2018 [visited on 2021]. Avail-
able from: https://blog.cloudflare.com/http-analytics-for-6m-
requests-per-second-using-clickhouse/.

50. ClickHouse Software And Services [online]. 2021. Available also from:
https://altinity.com/.

51. Usage statistics of nginx [online]. [N.d.] [visited on 2021]. Available from:
https://w3techs.com/technologies/details/ws-nginx.

52. nginx [online]. [N.d.] [visited on 2021]. Available from: https://nginx.
org/en/.

50

https://aws.amazon.com/elasticsearch-service/the-elk-stack/logstash/
https://aws.amazon.com/elasticsearch-service/the-elk-stack/logstash/
https://aws.amazon.com/elasticsearch-service/the-elk-stack/logstash/
https://alexmarquardt.com/2019/06/15/improving-the-performance-of-logstash-persistent-queues/
https://alexmarquardt.com/2019/06/15/improving-the-performance-of-logstash-persistent-queues/
https://github.com/elastic/logstash/blob/master/docs/static/performance-checklist.asciidoc
https://github.com/elastic/logstash/blob/master/docs/static/performance-checklist.asciidoc
https://aws.amazon.com/elasticsearch-service/the-elk-stack/kibana/
https://aws.amazon.com/elasticsearch-service/the-elk-stack/kibana/
https://logz.io/blog/15-tech-companies-chose-elk-stack/
https://logz.io/blog/15-tech-companies-chose-elk-stack/
https://kafka.apache.org/
https://kafka.apache.org/
https://aws.amazon.com/msk/what-is-kafka/
https://blog.hiya.com/hiyas-best-practices-around-kafka-consistency-and-availability/
https://blog.hiya.com/hiyas-best-practices-around-kafka-consistency-and-availability/
https://blog.hiya.com/hiyas-best-practices-around-kafka-consistency-and-availability/
https://www.cloudflare.com/learning/what-is-cloudflare/
https://www.cloudflare.com/learning/what-is-cloudflare/
https://www.cnbc.com/2020/10/06/cloudflares-election-security-services-used-by-most-states-ceo-says.html
https://www.cnbc.com/2020/10/06/cloudflares-election-security-services-used-by-most-states-ceo-says.html
https://www.cnbc.com/2020/10/06/cloudflares-election-security-services-used-by-most-states-ceo-says.html
https://blog.cloudflare.com/http-analytics-for-6m-requests-per-second-using-clickhouse/
https://blog.cloudflare.com/http-analytics-for-6m-requests-per-second-using-clickhouse/
https://altinity.com/
https://w3techs.com/technologies/details/ws-nginx
https://nginx.org/en/
https://nginx.org/en/

Bibliography

53. Module ngxhttplogmodule [online]. [N.d.] [visited on 2021]. Available from:
https://nginx.org/en/docs/http/ngx_http_log_module.html.

54. GNU COREUTILS CONTRIBUTORS. tail [online]. 2021 [visited on
2021]. Available from: https://www.man7.org/linux/man- pages/
man1/tail.1.html.

55. HPCLOUD. hpcloud/tail [online]. [N.d.] [visited on 2021]. Available from:
https://github.com/hpcloud/tail.

56. inotify [online]. [N.d.] [visited on 2021]. Available from: https://www.
man7.org/linux/man-pages/man7/inotify.7.html.

57. LOGROTATE CONTRIBUTORS. Logrotate [online]. 2021 [visited on
2021]. Available from: https://github.com/logrotate/logrotate.

58. unix [online]. [N.d.] [visited on 2021]. Available from: https://man7.
org/linux/man-pages/man7/unix.7.html.

59. STEVENS, W. Richard. UNIX network programming. Prentice Hall PTR,
1999.

60. TORVALDS, Linus. sock.c - net/core/sock.c - Linux source code (v4.5)
[online]. [N.d.] [visited on 2021]. Available from: https : / / elixir .
bootlin.com/linux/v4.5/source/net/core/sock.c.

61. STEVENS, W. Richard; FENNER, Bill; RUDOFF, Andrew M. UNIX
network programming [online]. Addison-Wesley, 2008 [visited on 2021].

62. CLICKHOUSE TEAM. ClickHouse/clickhouse-go [online]. [N.d.] [vis-
ited on 2021]. Available from: https : / / github . com / ClickHouse /
clickhouse-go.

63. VERTAMEDIA. ClickHouse [online]. [N.d.] [visited on 2021]. Available
from: https://grafana.com/grafana/plugins/vertamedia-clickhouse-
datasource/.

64. CLICKHOUSE TEAM. Combinators [online]. Yandex LLC, [n.d.] [vis-
ited on 2021]. Available from: https://clickhouse.tech/docs/en/
sql- reference/aggregate- functions/combinators/#aggregate_
functions_combinators-mergestate.

65. HRISSAN. prevent tdigest uncontrolled growth [online]. 2020 [visited on
2021]. Available from: https://github.com/ClickHouse/ClickHouse/
pull/16680.

51

https://nginx.org/en/docs/http/ngx_http_log_module.html
https://www.man7.org/linux/man-pages/man1/tail.1.html
https://www.man7.org/linux/man-pages/man1/tail.1.html
https://github.com/hpcloud/tail
https://www.man7.org/linux/man-pages/man7/inotify.7.html
https://www.man7.org/linux/man-pages/man7/inotify.7.html
https://github.com/logrotate/logrotate
https://man7.org/linux/man-pages/man7/unix.7.html
https://man7.org/linux/man-pages/man7/unix.7.html
https://elixir.bootlin.com/linux/v4.5/source/net/core/sock.c
https://elixir.bootlin.com/linux/v4.5/source/net/core/sock.c
https://github.com/ClickHouse/clickhouse-go
https://github.com/ClickHouse/clickhouse-go
https://grafana.com/grafana/plugins/vertamedia-clickhouse-datasource/
https://grafana.com/grafana/plugins/vertamedia-clickhouse-datasource/
https://clickhouse.tech/docs/en/sql-reference/aggregate-functions/combinators/#aggregate_functions_combinators-mergestate
https://clickhouse.tech/docs/en/sql-reference/aggregate-functions/combinators/#aggregate_functions_combinators-mergestate
https://clickhouse.tech/docs/en/sql-reference/aggregate-functions/combinators/#aggregate_functions_combinators-mergestate
https://github.com/ClickHouse/ClickHouse/pull/16680
https://github.com/ClickHouse/ClickHouse/pull/16680

Appendix A
Acronyms

CDN Content Delivery Network

DNS Domain Name Service

HTTP Hyper Text Transfer Protocol

POP Point of presence

TLS Transport Layer Security

IEC International Electrotechnical Commission

SSD Solid State Drive

LTS Long Time Support

53

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
images..............................the screenshots of collected results
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis...the thesis sources

55

	Introduction
	About this thesis
	Expected results
	Thesis structure

	Research of monitoring
	What can be monitored
	Caveats of monitoring

	Research of monitoring tools
	Open source tools
	Stacks that global companies use

	Pipeline implementation
	Transfer metrics monitoring
	Error log monitoring

	Testing, improvements and debugging
	What went wrong
	Possible upgrades
	Numbers in graph

	Outro
	Plans for the near future

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

