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Abstract

The efficiency of epipolar geometry estimation byRANSAC

is improved by exploiting the oriented epipolar constraint.
Performance evaluation shows that the enhancement brings
up to a two-fold speed-up. The orientation test is simple
to implement, is universally applicable and takes negligible
fraction of time compared with epipolar geometry compu-
tation.

1. Introduction
Establishing1 correspondences in two views of a rigid scene
is a critical part of a number of computer vision problems. It
is generally accepted that local matching cannot avoid pro-
ducing incorrect correspondences (outliers) and these have
to be pruned out by imposing the epipolar constraint. Due to
the presence of outliers, epipolar geometry estimators must
be robust. The Random Sample Consensus –RANSAC [2]
and related robust hypothesize-and-verify methods [15, 1]
have become the methods of choice for outlier removal in
epipolar geometry estimation [4] regardless of the features
matched [12, 16, 13, 9, 7, 11].

For “real” cameras (physical devices), only points in
front of the camera are visible. This is modeled in the
framework of the oriented projective geometry [14], where
cameras form images by projecting alonghalf-lines ema-
nating from a projection center. Points in two views taken
by a camera satisfy, besides the epipolar constraint, some
additional constraints [5, 17]. The constraints have been
used before for outlier removal after the epipolar geometry
was recovered [5], but not directly in the process of epipolar
geometry estimation.

In this paper we show that the use of oriented constraints
within RANSAC brings significant computational savings.
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The approach has no negative side-effects, such as lim-
ited applicability or poor worst-case performance, and thus
should become a part of any state-of-the-artRANSAC im-
plementation of epipolar geometry estimation.

In RANSAC, epipolar geometry is obtained by repeating
a hypothesise-and-verify loop. If the hypothesised epipolar
geometry violates the oriented constraint, the verification
step does not have to be carried out. Since the orientation
test takes negligible time compared to both the epipolar ge-
ometry computation and the verification, a speed-up may be
achieved virtually for free. The overall impact of the orien-
tation constraint onRANSAC depends on the fraction of hy-
pothesised models that can be rejected, without verification,
solely on the basis of failing the orientation constraint test.
We empirically measure this fraction in a number of real
scenes, both in a wide-baseline and narrow-baseline stereo
settings. The performance evaluation carried out shows that
the the impact of exploiting the orientation constraint on
RANSAC running time is in many circumstances significant.

The rest of the paper is structured as follows. First, the
derivation of the oriented epipolar constraint is reviewed in
Section 2.RANSAC with the orientation constraint is intro-
duced in Section 3. Next, in Section 4, performance of the
improvedRANSAC constraint is evaluated. Two quantities
are measured: the fraction of hypothesis that fail the orien-
tation test and the time saved as a consequence of inserting
the orientation test into theRANSAC loop. Section 5 con-
cludes the paper.

2 Oriented Epipolar Constraint

Let2 a camera with3 × 4 projection matrixP observe a
rigid scene. An image point represented by a homogeneous
3-vectorx is a projection of a scene point represented by a
homogeneous 4-vectorX if and only if x ∼ PX [4].

2In this section,a ∼ b denotes equality of two vectors up to a non-zero
scale anda +∼ b equality up to a positive scale. Vector product of two 3-
vectors isa×b. Symbol[a]× denotes the matrix such that[a]×b = a×b.
Matrix pseudoinverse is denotedP+ and vector norm‖a‖.
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Following the classical (i.e. unoriented) projective ge-
ometry, the homogeneous quantitiesx, X, and P repre-
sent the same geometric objects if multiplied by a non-zero
scale. E.g., the homogeneous vectorsx = (x, y, 1)> and
−x = (−x,−y,−1)> represent the same image point with
affine coordinates(x, y)>.

It has been noticed that theoriented projective geome-
try [14, 6] is a more appropriate model for multiple view
geometry as it can represent ray orientations. In oriented
geometry, vectorsx and−x represent two different image
points, differing by whether the corresponding scene point
lies in front of or behind the camera. The (oriented) rela-
tion between scene pointX and its imagex is x +∼ PX, as
opposed to unoriented relationx ∼ PX.

The orientation of image points is known from the fact
that all visible points lie in front of the camera [6]. For-
mally, image points lie on the positive side of the image
line at infinity l∞. For the usual choicel∞ = (0, 0, 1)>,
the correctly oriented homogeneous vector representing an
image point with affine coordinates(x, y)> is (x, y, 1)> or
its positive multiple.

Let two cameras with projection matricesP andP′ ob-
serve a rigid scene. It is well-known [4] that there exists
a 3 × 3 fundamental matrixF of rank 2 such that any pair
x ↔ x′ of corresponding image points satisfies theepipolar
constraint

x′>Fx = 0. (1)

The oriented version of the epipolar constraint is [17]

e′ × x′ +∼ Fx. (2)

It is implied by the following lemma (we omit the proof).

Lemma 1 Any3 × 4 full-rank matricesP andP′ and a 4-
vectorX satisfy

e′ × (P′X) = F(PX), (3)

whereF = [e′]×P′P+, e′ = P′C, andC is uniquely deter-
mined by equationsPC = 0 anddet(P> |C) = ‖C‖2.

Note that (1) is invariant to the change of signs ofx,x′

andF whereas (2) is not. Therefore (2) implies (1) (multi-
ply (2) by x′> from the left), but notvice versa. Thus, the
oriented epipolar constraint is stronger than the unoriented
one.

3. RANSAC with Oriented Constraint
The standard seven-point algorithm [4] is used to hypothe-
size the fundamental matrix. The two-dimensional space of
3 × 3 matrices satisfying (1) for the seven sampled corre-
spondences is found by QR factorization rather than SVD,
as suggested in [10]. Each fundamental matrix is then tested
whether it satisfies the oriented constraint (2). This is the

corrs inliers ε [%]
Juice 447 274 61.30
Shelf 126 43 34.13
Valbonne 216 42 19.44
Great Wall 318 68 21.38
Leuven 793 379 47.79
Corridor 607 394 64.91

Table 1: The number of correspondences (‘corrs’), inliers
(‘inliers’) and the fraction of inliers (‘ε’) in the experiments.

only step in which the new algorithm differs form the stan-
dard one. The test can be performed very efficiently, requir-
ing only 27 – 81 floating point operations (i.e. multiplica-
tions and additions). If the orientation test is passed, the
support of the fundamental matrix is computed as the num-
ber of correspondences with Sampson’s distance [4] below
threshold.

4. Experiments
The RANSAC algorithm with the oriented constraints was
tested on six standard image pairs, including wide-baseline
stereo (experiments Juice, Shelf, Valbonne and the Great
Wall) and narrow-baseline stereo (Leuven and Corridor).
Obtaining tentative correspondences.By a tentative cor-
respondence we mean a pair of pointsx ↔ x′, wherex is
from the first image andx′ is from second image. The set of
tentative correspondences contains both inliers and outliers.

The tentative correspondences for the wide-baseline ex-
periments were obtained automatically by matching nor-
malized local affine frames [8]. Only mutually best can-
didates were selected as tentative correspondences.

In the narrow-baseline experiments, the Harris opera-
tor [3] was used to detect interest points. Point pairs with
mutually maximal normalised cross-correlation of rectan-
gular windows around interest points were kept as tentative
correspondences. The size of the used windows were 15 and
7 pixels for Leuven and Corridor, respectively. The proxim-
ity constraint, ensuring that the coordinates of correspond-
ing points would not differ by more than 100 and 30 pixels
respectively, was also used. The numbers of tentative corre-
spondences and the numbers of inliers for each experiment
are summarized in Table 1. The image pairs, with inliers
and outliers superimposed, are depicted in Figure 1.
The fraction of rejected models.The number of hypothe-
ses that can be rejected on the basis of the orientation con-
straint was measured. The results of the experiment are
summarized in Table 2. A sample of seven correspondences
was selected at random 500,000 times. The seven-point al-
gorithm produces 1 to 3 fundamental matrices satisfying the
unoriented epipolar constraint (1). The total number of the
models is given in the ‘models’ column of Table 2. The
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models rejected passed [%] %
Juice 1,221,932 760,354 37.77
Shelf 1,233,770 1,094,533 11.29
Valbonne 1,256,648 1,176,042 6.41
Great Wall 1,274,018 1,181,084 7.29
Leuven 1,194,238 336,515 71.82
Corridor 1,187,380 120,916 89.82

Table 2: The number of fundamental matrices generated
by RANSAC (‘models’) over 500,000 samples, the number
of models rejected by the orientation constraint (‘rejected’)
and the percentage of models that passed the test (‘passed’).
Note that regardless of the setting, there is always approxi-
mately 2.4 fundamental matrices per sample on average.

standard oriented speed-up [%]
Juice 1.4 0.9 35.08
Shelf 53.6 45.1 15.82
Valbonne 930.8 584.8 37.17
Great Wall 1109.0 599.3 45.96
Leuven 18.5 15.1 18.52
Corridor 1.2 1.2 5.77

Table 3: Time (in ms) spent in standard and oriented ver-
sions ofRANSAC and the relative speed-up (right column).

number of models that are rejected by the orientation con-
straint (2) is shown in the ‘rejected’ column.

The fraction of rejected models varies widely. What af-
fects the fraction of hypothesis that can be rejected solely
based on the orientation constraint? This question goes far
beyond the scope of this paper. From the results of the ex-
periments we observed that more models were rejected in
the wide-baseline setting than in the narrow-baseline one.
We believe this is due to different distribution of outliers
which is caused by limited correspondence search window
in the narrow-baseline case. The fraction of rejected models
is proportional to the fraction of outliers among the tentative
correspondences.
Running time. The time saved by using the oriented epipo-
lar constraint was measured. The standard and oriented
versions ofRANSAC were executed 500 times and their
running-time was recorded (on a PC with K7 2200+ proces-
sor). To ensure that both methods draw the same samples,
the generator of pseudo-random numbers was initialized by
the same seed.

5. Conclusions
In this paper,RANSAC enhanced by the oriented epipo-
lar constraint was experimentally evaluated. The applica-
tion of the oriented constraint reduced the running time by
5% to 46%, compared with standardRANSAC. The effi-

ciency increase ofRANSAC with the orientation constraint is
achieved by reducing the number of verification steps. As a
consequence, the more time-consuming the verification step
is the higher relative speed-up is achieved. This applies not
only to situations with large number of correspondences,
but also toRANSAC-type algorithms that perform expensive
verification procedures. An example of such an algorithm
is MLESAC [15] which estimates the parameters of a mix-
ture of inlier and outlier distributions. Since the evaluation
of the orientation test takes virtually no time compared to
the epipolar geometry computation, the epipolar geometry
estimation viaRANSAC should exploit the oriented epipolar
constraint.
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Juice Shelf Valbonne

Great Wall Leuven Corridor

Figure 1: The experimental settings. Inliers and outliers are superimposed over the first and second images respectively.
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