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Abstract

In this thesis we introduce the reader to
the basic concepts in quantum computa-
tion from the mathematical perspective.
We lay down the foundations of group the-
ory and we define the hidden subgroup
problem. The knowledge is then applied
to Deutsch’s algorithm and Shor’s algo-
rithm. This thesis is intended for graduate
or undergraduate students with interest in
mathematics but with no prior experience
with quantum computation.
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Abstrakt

V této práci je čtenář uveden do zá-
kladní problematiky kvantových výpočtů
z pohledu matematiky. Jsou zde polo-
ženy základy teorie grup a je zde formu-
lován problém skryté podgrupy. Tyto po-
znatky jsou pak aplikovány v Deutschově
algoritmu a v Shorově algoritmu. Tato
práce je určena pro studenty magister-
ských nebo bakalářských oborů, kteří mají
zájem o matematiku, avšak nemají žád-
nou předchozí zkušenost s kvantovými vý-
počty.

Klíčová slova: kvantový algoritmus,
skrytá podgrupa, Deutschův algoritmus,
kvantový počítač

Překlad názvu: Skryté podgrupy a
kvantové algoritmy
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Introduction

This thesis begins with two lovers Alice and her paramour Bob who are
sending their love letters to each other. As in all stories there is the third
vertex of the love triangle, the eavesdropper, Bob’s spurn lover Eve. Eve is
jealous and desperate to read Bob’s and Alice’s letters. Unfortunately for her,
Alice and Bob encrypt their messages with sophisticated algorithms such as
RSA where it is crucial to guess a decomposition of a number into two prime
numbers. 1 Eve has no chance to break this code with standard computers
efficiently, so she learns quantum physics and theory of quantum computation
to construct a quantum computer, a delicate machine which will help her to
read the two lovers’ secrets in polynomial time.
In this text we will present the mathematical foundation for quantum compu-
tation. Nothing what follows is new, we only give overview of known facts.
For more details, we refer the reader to the following publications. If you want
to know more about quantum computation we recommend [18]. You can read
about mathematics (especially linear algebra) behind quantum computation
here [21]. If you are interested in quantum physics and you have no prior
experience then the books [16], [5] and [19] should be helpful.

Motivation

To introduce you to the topic of quantum computation we will begin with an
example where quantum computers outperform ordinary computers. Let us
have a set with two elements A and B inside. We can think of four different

1You can read more about RSA in the books [20] or [15].
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Introduction ......................................
functions on the set namely “the do nothing” function, “the swap” function
and two “merge” functions. We will name them properly in few lines. Firstly
we notice difference between the functions. The first two give different outputs
for different inputs while the merging functions do not. We will call these
functions identity, swap and the rest two are constant functions. You can see
them in the following picture.

A

B

A

B

a)
A

B

A

B

c)

A

B

A

B

b)
A

B

A

B

d)

Now an adversary gives us an unknown function from {A,B} to {A,B}, let
us call it f , and our job is to determine whether it is a constant function or not.
Ordinarily, we just try both inputs A and B and see the results. Standard
computation of the problem could be interpreted as answering questions:
“What is the result for input A? -It is B. -What is the result for input B?
-It is B.” It is often said, that quantum computers somehow miraculously
can ask all queries at once, something like “What is the result of all inputs?”.
This simplification is misleading and does not give us any intuition. A better
metaphor is posing a carefully chosen question on a fundamental property of
the function, so the process looks like: “-How do the outputs of the function
look like? -They are all constant.” This attitude helps us to get the results
faster than with the traditional approach as we can see in this example where
we are able to determine what kind of function f is on a single inquiry. How
do we ask such a question? Let us see!

Very informally quantum computation is an application of linear algebra
with a slightly changed notation. Due to the reasons of physics, all operations
on quantum computers are represented by unitary matrices and the result
is then “measured”. We will represent the inputs A and B by vectors of the
canonical basis and just denote them in a somewhat silly form as |0〉 and |1〉.

We would love to know how the function f works for all combinations
of inputs and still do only one computation. Since we are in the realm of
linear algebra we will try to use a linear combination of inputs. For this, we

2



....................................... Introduction

will need a unitary matrix, for now let us call it H (the Hadamard gate),
which takes vector |0〉 and returns a linear combination of basis vectors and
it should also be able to take vector |1〉 and return a linear combination of
|0〉 and |1〉. There are plenty of matrices to choose from, but we would like to
have a matrix which is its inverse. It may seem we are going to miraculously
ask for both inputs after all, but here comes the carefully posed question.
We will construct a special gate myU. We can imagine it takes two inputs
xin and yin where xin = H|0〉, yin = H|1〉. At this point, we should draw a
picture of what is happening.

|0〉

|1〉

H

H

H |ψ〉

|ϕ〉
myU
xin

yin

xout

yout

Very informally, the myU gate applies f on x and then performs some still
unknown process and returns two outputs. These outputs are expected to be
also some combination of |0〉 and |1〉, but when Hadamard gate is applied
to one of these a miracle happens and we can see |0〉 if the function f is
constant and |1〉 if the function is not constant. And there we have it, the
Deutsch’s algorithm (see the original paper [11] or the books [18] [22]), the
first quantum computer algorithm which outperforms standard computers.
Of course I am just waving my hands in the air and I am sure none of my
arguments have persuaded the reader of the correctness of this algorithm.
For that we have to lay down the mathematical foundations first and after
that, we will revisit this example in Chapter 2 and Chapter 4.

Synopsis

As the motivational example tries to show, quantum computers can resolve
some problems much quicker compared to the ordinary computer with binary
operations only. The theory for quantum computers is much richer and
unfortunately for the reader it is more complicated. In this thesis we lay down
the foundations for quantum computation. There are no new information
presented in this thesis. There are plenty of almost perfect sources and great
books to read. However, if the reader is a newcomer and does not have any
previous experience with quantum computation, the common publications
may be overwhelming. This thesis covers the essentials to understand quantum
computers from the mathematical perspective and presents and rearranges
the know-how in a compact way...1. Firstly in Chapter 1 we will remind ourselves about linear algebra in

3



Introduction ......................................
complex spaces, we will postulate rules for quantum computation and
we will introduce the gate notation...2. Secondly in Chapter 2 we present the Deutsch’s algorithm and we apply
knowledge from the previous chapter...3. Then in Chapter 3 we will focus on group theory, the Fourier transform
on Abelian groups and the hidden subgroup problem...4. Next in Chapter 4 we will show path for quantum computers for a
general hidden subgroup problem. The Shor’s algorithm will be also
presented in this chapter. Finally we will formulate the hidden subgroup
problem for Deutsch’s problem.

4



Chapter 1

Foundation of quantum computing

One of my teachers once said: “Quantum computation is like linear algebra
but with strange notation.” On the first sight the notation may feel over-
complicated and uncomfortable to use but it will simplify our job and make
equations more intuitive and readable. After all, the strange notation is the
good notation. It is also necessary to introduce new notation for some other
basic concepts so that it is coherent throughout the following chapters.

Disclaimer. We will assume that quantum computers will be finite in size
and we will be able to run only finite codes, therefore we can simplify our
mathematical apparatus and we will work with vectors in Cn and linear
forms on Cn. The side benefit is that the mathematics behind will be more
reachable for the readers and the proofs will not drown into technicalities.
We will sadly not deal with quantum mechanics and we will just borrow the
name quantum state as a synonym for a vector (of unit length). You can
read more about quantum physics in the book [16] or [5].

1.1 Basic definitions

We assume the reader has basic knowledge of linear algebra. Before we start
with quantum computation we, however, need to unify the notation that we
will use later on.

1.1.1 Notation (Complex conjugate) Suppose z ∈ C, where z = a+ bi

5



1. Foundation of quantum computing ...........................
and a, b ∈ R; i =

√
−1. We define z∗ = a− bi as the complex conjugate to z.

1.1.2 Definition (Inner product) Suppose L is a linear space (over C).
A function L×L→ C denoted by 〈−|−〉 is called inner product, if it satisfies:

〈x|y〉 = 〈y|x〉∗ (1.1)
〈x|αy + βz〉 = α〈x|y〉+ β〈x|z〉 (1.2)
〈x|x〉 ≥ 0 and 〈x|x〉 = 0 if and only if x = ~0 (1.3)

for all x, y, z ∈ L and α, β ∈ C. Note that the linearity is in the second
argument.

1.1.3 Example (Standard inner product in Cn) Let us have a function
Cn × Cn → C defined by putting:

〈x|y〉 = 〈


x1
x2
.
.
xn

 |

y1
y2
.
.
yn

〉 =
n∑
i=1

xi
∗yi (1.4)

Without any effort we can show that this function is an inner product, which
we will use in next chapters if not specified otherwise.

1.1.4 Remark Some linear spaces with inner product are Hilbert spaces.
We will not deal with infinite dimensional spaces in this text and all we need
is only that all finite dimensional spaces over C are Hilbert spaces, see [21].

1.1.5 Definition (Hermitean conjugate matrix) Consider vector spaces
Cs equipped with inner product 〈−|−〉s and Cr with inner product 〈−|−〉r.
Having a linear mapping τ : Cs → Cr represented by matrix T, we say that
T† is Hermitean conjugate matrix to T when the following:

〈T†x|y〉s = 〈x|Ty〉r (1.5)

is satisfied for all x ∈ Cr and all y ∈ Cs.

1.1.6 Lemma (Elements of conjugate matrix) Suppose τ : Cs → Cr is
given by matrix T with elements (tij) then matrix T† has elements (t∗ji).

Proof. The equation (1.5) holds for any x ∈ Cr and y ∈ Cs, in particular
for basis vectors en ∈ Cr and fm ∈ Cs the equation

〈T†en|fm〉s = 〈en|Tfm〉r (1.6)

holds as well. By definition of the inner product (1.1) we can rewrite (1.6) as

〈T†en|fm〉s = 〈fm|T†en〉∗s, (1.7)

6



................................... 1.1. Basic definitions

which says how elements (θnm) of T† look like. The above allows us to write
all expressions in the following equation:

(θ∗nm) = 〈fm|T†en〉∗s (1.8)
= 〈T†en|fm〉s (1.9)
= 〈en|Tfm〉r (1.10)
= (tmn). (1.11)

Therefore for any matrix T† Hermitean conjugate to a matrix T the equation

(θnm) = (t∗mn) (1.12)
holds.

�

1.1.7 Lemma (Rules for conjugate matrices) For any complex matri-
ces T, S and α ∈ C the equations

(T + S)† = T† + S† (1.13)
(αT)† = α∗T† (1.14)
(TS)† = S†T† (1.15)
(T†)† = T (1.16)

hold.

Proof. The proof is a simple consequence of Lemma 1.1.6 and definition of
Hermitean conjugate matrix 1.1.5 and it is left as an exercise. �

Among Hermitean conjugate matrices there are some with special properties
that deserve their own name.

1.1.8 Definition (Self-adjoint matrix) We call a matrix T self-adjoint if

T† = T. (1.17)

holds.

1.1.9 Definition (Positive matrix) Having a Hermitean adjoint matrix
T we say it is positive, if the equation

〈Tx|x〉 ≥ 0 (1.18)

holds for all x ∈ Cn.

7



1. Foundation of quantum computing ...........................
1.1.10 Definition (Unitary matrix) We call a Hermitean adjoint matrix
T unitary if the equation

T†T = TT† = E (1.19)

holds, where the matrix E is the identity matrix.

There is more to read about adjoint matrices in [2].

We have dealt mainly with the foundations of linear algebra for quantum
computation, but the world is more complicated. When we firstly saw the
inner product during lectures of linear algebra, those were times when we
worked in the spaces of Rn, we could say that it was linear in both arguments.
The postulate (1.2) gives linearity in the second argument and thanks to
the field of reals the postulate (1.1) ensures linearity in the first argument.
We can easily prove that the inner product is not linear, meanwhile we can
wrongly say that it is somehow “twice-linear”. That is a shame because we
do not know how to easily join two nonlinear functions and especially with
multiple arguments which it is exactly what we need in computation. Maybe
there is a way how to correct these nonlinear mappings to linear functions
as we will see in this section. Firstly we just define the special “twice-linear”
mapping and then we will continue with the definition of tensor product.

1.1.11 Definition (Multilinear mapping) Let us have linear spaces L1,
L2, . . . Ln, where n ∈ N and a linear space V all over the same field F. We
call a function

f : L1 × L2 × · · · × Ln → V

(l1, l2, . . . ln) 7→ f(l1, l2, . . . ln)

multilinear if the following condition holds. If we choose any li = αx + y
where i = 1, 2, ...n and we fix all lj , where j 6= i it holds that

f(l1, l2, . . . li, . . . ln) = f(l1, l2, . . . αx+ y, . . . ln)
= αf(l1, l2, . . . , x, . . . ln) + f(l1, l2, . . . y, . . . ln) (1.20)

In particular if the number of input arguments is n we will call the mapping
n-linear. Special cases are 1-linear mapping called just linear and 2-linear
mapping called bilinear.

The slogan is “A multilinear mapping is linear in every argument separately”.
Now, when we defined bilinear mappings properly we can focus on the tensor
product. We shall begin with motivational picture:

8



................................... 1.1. Basic definitions

L1 × L2 × · · · × Ln T

V

τ

f
f#

In the picture f denotes a multilinear function. The letter τ represents a
multilinear mapping which we do not know yet. The letter T denotes an
unknown linear space and f# is a linear function such that f#τ = f . It
would be lovely to have such a mapping τ and space T and even lovelier if
the function f# was unique. If it was so, we could “pretend” that multilinear
function “behave” like linear functions. That is exactly the way how we will
define the tensor product.

1.1.12 Definition (Tensor product) Let us have linear spaces L1, L2, . . .
Ln (where n ∈ N) over the same field F. We say that a linear space T together
with multilinear mapping

τ : L1 × L2 × · · · × Ln → T (1.21)

form a tensor product of spaces L1, L2, . . .Ln if they have the following
property: For all linear spaces V and any multilinear mapping

f : L1 × L2 × · · · × Ln → V (1.22)

there exists exactly one linear mapping

f# : T → V (1.23)

such that
f# · τ = f. (1.24)

We will write L1 ⊗ L2 ⊗ · · · ⊗ Ln instead of T . In some publications the
function τ is represented by symbol ⊗ used in the infix notation to mimic
the symbol for multiplication. See e.g., [12] or [21] (with different notation).

The above definition defines a tensor product but it is not clear that a
tensor product of two (or more) linear spaces actually exists. We show in
the following example that it is indeed the case for spaces that interest us.
Moreover, the tensor product has quite an easy description.

9



1. Foundation of quantum computing ...........................
1.1.13 Example In quantum computation we work in finite spaces over
complex numbers hence we can use some simplifications. This example is
inspired by Kronecker’s product [17] which is in some cases interchangeable
for the tensor product as defined for example in [16].
Let us have a basis (x1, x2, . . . , xn) of space Cn and let (y1, y2, . . . , ym) be a
basis of space Cm. The only possible functions in quantum computation are
of a kind

f : Cn × Cm → Ck, where k ∈ N. (1.25)

We define the space T as linear space of matrices of with n rows and m
columns and the function τ as following:

τ(xi, yj) = xi · yTj where i = 1, 2, ..n and j = 1, 2, . . .m. (1.26)

For every vector v =
∑n
i αixi and w =

∑m
j βjyj we define

τ(v, w) =
n∑
i

m∑
j

αiβjxiy
T
j . (1.27)

It can be easily proven that τ is indeed a multilinear mapping and also that
the space T is a linear space. It remains to be shown that there exists only
one f# for every function f . To do so, we will use coordinate system of the
space T . Let us draw a picture to clarify what we aim to do.

Cn × Cm T

Ck

Cn·m
τ

f f#

f̃

coord

The coordinate system of the space T is Cn·m, because the matrices have
n ·m independent parameters. A given function f tells us its value on the
basis vectors. It is then simple to decide what the function

f̃ : Cn·m → Ck (1.28)

looks like. We define it in such a way that, if we apply f̃ to a vector
ei,j = coord(τ(xi, yj)) of the canonical basis, the result f̃(ej) is the same as
f(xi, yj). There is just one definition of the function f̃ , which is linear and
finding coordinates with respect to chosen basis is also linear and unique,
therefore when these mappings are composed, the result is also unique and
linear. The result is nothing more than our function f#.
When we use tensor product in quantum computation, we can imagine that

10



........................... 1.2. Notation for quantum computation

this process happens in the background. This example also shows us that
the matrices we use to describe quantum computation can have too many
parameters and it is not sound to write them down. We will improve our
notation in 1.4.

1.2 Notation for quantum computation

1.2.1 Notation (Ket) A vector x ∈ Cn will be denoted by |x〉 (pronounced:
ket x). We will identify |x〉 also with a linear map C → Cn which maps
1 7→ |x〉. If ||x|| = 1 will call x a quantum state. We will often use Greek
letters ψ or ϕ to denote qubits. 1

1.2.2 Notation (Bra) The covector corresponding to the vector y ∈ Cn
will be denoted by 〈y| (pronounced: bra y). For example 〈y| is vector y which
is transposed and all elements are complex conjugated. We also note that 〈y|
corresponds to linear map Cn → C sending |ei〉 to 〈y|ei〉.

1.2.3 Notation (Braket) Whenever vectors |y〉 and |x〉 are from the same
space we simplify 〈y| |x〉 to 〈y|x〉 (pronounced: braket y x). We can see that
〈y| evaluated at |x〉 yields the standard inner product 〈y|x〉 on Cn. 2

1.2.4 Notation (Computational basis and qubits) The canonical ba-
sis of C2 will be denoted by:(

1
0

)
= |0〉

(
0
1

)
= |1〉 (1.29)

We will call any quantum state of C2 quantum bit or qubit.

The canonical basis for C4 will be denoted by:
1
0
0
0

 = |00〉


0
1
0
0

 = |01〉


0
0
1
0

 = |10〉


0
0
0
1

 = |11〉 (1.30)

The notation for canonical basis of spaces of the form C2n is defined inductively.
These basis will be called computational basis. This representation should
feel similar to binary representation of numbers and it is so on purpose.

1More about qubits in 1.2.4.
2See Example 1.5.2.
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1. Foundation of quantum computing ...........................
1.2.5 Example (Two useful matrices) Unitary operators are crucial in
quantum computing so we shall see some of them before we dive deeper. The
following matrix X is often called “not” in quantum computation. The values
of X at |0〉 and |1〉 are X|0〉 = |1〉 and X|1〉 = |0〉. This is similar with how
not operation works in standard computing.

X =
(

0 1
1 0

)
(1.31)

The following matrix H is called Hadamard matrix.

H = 1√
2

(
1 1
1 −1

)
(1.32)

The matrix H is rather important; more about it later, see e.g. 1.4.2 below.

1.3 Postulates of quantum computing

The quantum computation can be viewed from the perspective of a physicist
and could be based on observations of the micro-world and careful mea-
surements. We leave the dirty job to physicists and we will play a purely
intellectual game in what follows. Thus, we only postulate the rules of
quantum computation, see e.g., in [13], [19] and [18].

1.3.1 Postulate (The space and the state) The quantum computation
is performed in a finitely-dimensional Hilbert space over C (in physics it
could be interpreted as an isolated system). Any state of computation is
represented by quantum state |ψ〉 and it is true that 〈ψ|ψ〉 = 1.

1.3.2 Postulate (Joining of spaces) Joining two systems is represented
by a tensor product 1.1.12 of the corresponding Hilbert spaces.

1.3.3 Postulate (Change of states) Any change of quantum state, where
|ψ1〉 7→ |ψ2〉, can be performed by unitary matrix U so that U|ψ1〉 = |ψ2〉.
The matrix U will be called a quantum gate.

1.3.4 Postulate (The measurement) A measurement is a system Mm,
where M is a linear function and m is result we get (so called measurement
outcome). The following condition (called completeness)∑

m

M†
mMm = E (1.33)

must hold, where the summation is performed over all possible outcomes and
the matrix E is identity matrix. The probability that we get m when we
apply Mm on state |ψ〉 is given by:

p(m) = 〈ψ|M†
mMm|ψ〉 = 〈Mmψ|Mmψ〉 (1.34)

12



................................... 1.4. Quantum gates

1.3.5 Remark We can see that p(m) ≥ 0 but we have to show that the
sum of probabilities for all possible measurements is equal to one. With one
hundred percent certainty we have to measure at least something.∑

m

〈ψ|M†
mMm|ψ〉 = 〈ψ|

∑
m

M†
mMm|ψ〉 = 〈ψ|E|ψ〉 = 〈ψ|ψ〉 = 1 (1.35)

where the last equality holds since |ψ〉 is a unit vector.

1.3.6 Remark The new state |ψ′〉, which we obtain after measurement, is
given by the following equation.

|ψ′〉 = 1√
p(m)

Mm|ψ〉 (1.36)

The fraction is just a normalization factor because |ψ′〉 must be also a unit
vector.

1.3.7 Remark Now we will focus on special measurement called projective
measurement. Let M ∈ Cn×n be self-adjoint matrix (it is sometimes called an
observable matrix) and |ϕ1〉, |ϕ2〉, . . . |ϕn〉 normalized eigenvectors of M with
corresponding eigenvalues m1,m2, . . .mn then we can rewrite M as follows

M =
n∑
i=1

mi|ϕi〉〈ϕi| (1.37)

That should not surprise us because |ϕi〉〈ϕi| is in fact the projection3 on the
span of the eigenvector |ϕi〉. We should also add that |ϕi〉〈ϕi| = Mmi and
that the following two equations

M†
mi

= Mmi (1.38)
n∑
i=1

M†
mi

Mmi = E (1.39)

hold.

1.4 Quantum gates

We use unitary matrices to manipulate the states, but we realize that when
we want to describe higher-dimensional problems the matrices grow in size
exponentially and they do clutter several pages. That would be at least
cumbersome to read and difficult to work with. We will take inspiration from
ordinary computers where instead of long formulas in Boolean algebra we

3See Example 1.5.2.
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1. Foundation of quantum computing ...........................
use logical gates which are much more readable. We will represent unitary
matrices with quantum gates. The quantum gates are explained in greater
detail in [4] or [22], where the gates are also shown with their corresponding
matrices.

1.4.1 Notation (Generic quantum gate) In the picture below there is
shown what a quantum gate looks like for a generic unitary matrix U. The
wires on the left-hand side are the input wires, where it takes (in this case
two) input vectors. On the right-hand side there are the output wires. Since
U is a unitary matrix, the number of output wires must be the same us the
number of input wires.

|ϕin〉

|ψin〉

|ϕout〉

|ψout〉
U

Now you may be posing a question to yourself: how can a matrix, a linear
function, have two or more inputs? To explain this peculiarity we should
remind ourselves of the second postulate of quantum computing 1.3.2. Let
us name the input vectors |ψin〉, |ϕin〉 ∈ Cn. Firstly we will form the tensor
product

|ψin〉 ⊗ |ϕin〉 = |ρ〉 (1.40)

which is isomorphic to |ρ′〉 in Cn2 . Finally we apply the unitary matrix U
hidden in the gate to the vector |ρ′〉.

1.4.2 Notation (Not gate and Hadamard gate) Let us remind ourselves
of the “not” matrix and the Hadamard matrix from example 1.2.5 before the
corresponding gates will be presented.

X =
(

0 1
1 0

)
H = 1√

2

(
1 1
1 −1

)
(1.41)

We have spoken about the “not” matrix and how it behaves in example 1.2.5.
Hadamard matrix is still unknown to us and we only know that it will be
important. If we want to get information about a linear function we should
try to apply it on the basis vectors. So let us have the computational basis
(|0〉, |1〉) and apply the matrix H.

H|0〉 = 1√
2

(
1 1
1 −1

)
|0〉 = 1√

2
|0〉+ 1√

2
|1〉 (1.42)

H|1〉 = 1√
2

(
1 1
1 −1

)
|1〉 = 1√

2
|0〉 − 1√

2
|1〉 (1.43)
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................................... 1.4. Quantum gates

If we cannot imagine how the gate behaves we can look at the picture below.

|1〉

|0〉

|0〉+|1〉√
(2)

|0〉−|1〉√
(2)

0

When applied on the computational basis, the result is a superposition of
both states. That is something unheard of in classical computers and one
cannot find a classic gate for such a operation. But there is more to the H
gate and it has some specific properties. Notice that H†H = E = HH† and
also that H = H† therefore H−1 = H.

If we look back on the picture we can also see that if measure the result of
H|0〉 we will measure state |0〉 with fifty percent probability and we could
measure state |1〉 with the same probability. Here are the gates for "Not" and
Hadamard matrix.

|ϕin〉 |ϕout〉X |ϕin〉 |ϕout〉H

Another approach to write the gates is to use Einstein’s summation convention.
This convention is used often in physics but we will stick with our gate
representation.

1.4.3 Notation (Controlled not gate) The last gate I want to introduce
is called controlled not gate which has an abbreviation “C-not”. As the name
suggests the action on the qubit on the second wire is determined by the
qubit on the first wire. Because this kind of behavior is special we will leave
the black box gate notation and denote it with its own symbol which you can
see on the picture below.

|ϕin〉

|ψin〉

|ϕout〉

|ψout〉X

15



1. Foundation of quantum computing ...........................
In this case the best way to understand the gate is by using something like

a truth table for the input basis vectors. Let us name the inputs |ϕ〉 and |ψ〉.
The output is given by the table:

input output
|ϕin〉 |ψin〉 |ϕout〉 |ψout〉
|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

From the truth table we can see another important fact: The C-not gate
behaves like “xor” on the second output, i. e. |ψout〉 = |ϕin〉 ⊕ |ψin〉.

1.4.4 Notation (Parallel gates) If we want to apply a one wire gate

U

on n different wires, we denote it by

U⊗n

The exponent reminds us of the postulate of joining spaces 1.3.2 we apply
here. We will distinguish by colour the wires representing spaces with different
dimension.

1.4.5 Notation (The measurement gate) We also have to update our
notation for the measurement. In some sources we can see a gate with a clock
face on it but we will denote the measurement gate with an eye on the gate.
The gate takes an input on the left and gives the result on the right.

|ϕin〉 |ϕout〉H

Now we have prepared all necessary tools for quantum computation and
we are ready to see the Deutsch’s algorithm from introduction again.

Before we do it in Chapter 2 below, we conclude with some worked out
examples.
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...................................... 1.5. Examples

1.5 Examples

1.5.1 Example (How to work with a vector) Let us consider a state
ψ ∈ C4 and linear transformations given by matrices A ∈ C4×4, B ∈ C4×2.
Firstly we can see that it is possible to “smuggle” the matrix A into ket

Aψ = A|ψ〉 = |Aψ〉 (1.44)

which seems obvious. The word “smuggle” is used intentionally because
we can use this principle to store matrices and move them throughout the
computation and release them if necessary. We should be always careful
about the dimensionality of the ket. If we do the same with matrix B and
denote the dimensionality of the ket by subscript we get

Bψ = B|ψ〉4 = |Bψ〉2 (1.45)

We are able to put matrices into bras as well but with a tiny change:

〈ψ|A =
〈
A†ψ

∣∣∣ (1.46)

1.5.2 Example (Beauty of bra-kets) Enjoying our notation we shall write
a silly thing and see what it means, if it means anything at all.

|0〉〈0| =
(

1
0

)(
1
0

)T
=
(

1
0

)(
1 0

)
=
(

1 0
0 0

)
(1.47)

It is a projection matrix. Let us see how it works with a vector ψ ∈ C2

ψ = |ψ〉 = α|0〉+ β|1〉 (1.48)
|0〉〈0|ψ〉 = α|0〉 〈0|0〉︸ ︷︷ ︸

=1

+β|0〉 〈0|1〉︸ ︷︷ ︸
=0

= α|0〉 (1.49)

|1〉〈1|ψ〉 = α|0〉 〈1|1〉︸ ︷︷ ︸
=0

+β|1〉 〈1|0〉︸ ︷︷ ︸
=1

= β|1〉 (1.50)

ψ = (|0〉〈0|+ |1〉〈1|)ψ = Eψ (1.51)

We have just seen something unexpected yet quite ordinary at the same time.
In the expression |0〉〈0|ψ〉 we evaluated |0〉〈0| first and applied it on the |ψ〉.
How about writing bra-ket together and evaluating it first?

〈0||0〉 = 〈0|0〉 =
(

1
0

)T (
1
0

)
=
(
1 0

)(1
0

)
=
(
1
)

(1.52)

It gives us the value of the inner product, i. e., a scalar.
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1. Foundation of quantum computing ...........................
1.5.3 Example (Rotation and reflection) Although these are simple ex-
amples, I wanted to show them because they are core of all other unitary
matrices. Every time when you are presented an unitary operator you can
imagine it as some kind of a rotation combined with reflecting around some
chosen axis. These are also the simplest unitary matrices we can think of.

Rα =
(

cos(α) − sin(α)
sin(α) cos(α)

)
Mx =

(
−1 0
0 1

)
(1.53)

1.5.4 Example (Measurement) Imagine we have a a vector space C2 with
computational basis {|0〉, |1〉} and a vector |ψ〉 = α|0〉 + β|1〉. Just for the
sake of simplicity let us set α =

√
3

2 and β = 1
2 . One can easily check that |ψ〉

is a unitary vector. It is in a superposition of two states of computational
basis so let us see what happens if we measure this vector in the basis. Firstly
let us write the projection matrices and than apply them to the vector |ψ〉.

M|0〉 = |0〉〈0| M|1〉 = |1〉〈1| (1.54)

M|0〉|ψ〉 = |0〉〈0|ψ〉 = |0〉〈0| (α|0〉+ β|1〉) = α|0〉 (1.55)
M|1〉|ψ〉 = |1〉〈1|ψ〉 = |1〉〈1| (α|0〉+ β|1〉) = β|1〉 (1.56)

Now, when we know how the vector |ψ〉 behaves when the projection matrices
are applied we can calculate the probability of measuring |0〉 or |1〉.

p(|0〉) = 〈ψ|M†
|0〉M|0〉|ψ〉 = 〈ψ|M|0〉M|0〉|ψ〉 =

〈ψ|M|0〉|ψ〉 = α〈ψ|0〉 = αα∗〈0|0〉 = αα∗ (1.57)

p(|1〉) = 〈ψ|M†
|1〉M|1〉|ψ〉 = 〈ψ|M|1〉M|1〉|ψ〉 =

〈ψ|M|1〉|ψ〉 = β〈ψ|1〉 = ββ∗〈1|1〉 = ββ∗ (1.58)

Let us substitute for α and β so

p(|0〉) = αα∗ =
√

3
2

√
3

2 = 3
4 (1.59)

p(|1〉) = ββ∗ = 1
2

1
2 = 1

4 (1.60)

It is also worth to note that 3
4 + 1

4 = 1 so everything ended up as we expected.
You may already see how the vector |ψ′1〉 or |ψ′2〉 will look like but we should
do it properly.

|ψ′1〉 = 1√
p(|0〉)

M|0〉|ψ〉 = 1√
3
4

√
3

2 |0〉 = |0〉 (1.61)

|ψ′2〉 = 1√
p(|1〉)

M|1〉|ψ〉 = 1√
1
4

1
2 |1〉 = |1〉 (1.62)
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The conclusion is that when we measure vector |ψ〉 with probability 3
4 we

will measure |0〉 and with probability 1
4 we will measure vector |1〉. It was

obvious how it had to end up but it was fun, wasn’t it?

1.5.5 Example (Quantum program) We know the fundamental blocks,
the quantum gates including the measurement gate. Any quantum program
will be constructed as a combination of these. Let us present our first quantum
program:

|ϕin〉 |ϕout〉X H H

We can obviously rewrite it back to the matrices, but the beauty is we do
not have to. Let us say the input is |1〉 the “data flow” is as follows:..1. Firstly, |1〉 is changed to |0〉 by X gate...2. Then |0〉 is transformed to a superposition a 1√

2 |0〉+ 1√
2 |1〉 by H gate...3. Lastly after measurement we obtain state |0〉 with probability 1

2 or state
|1〉 with probability 1

2 .

1.5.6 Remark (Detective story) In the previous example 1.5.5 we saw
the superposition of states |0〉 and |1〉 which will be typical for quantum
algorithms. This phenomenon seems quite unique to quantum world. However,
as this remark shows, we can easily explain what it means to be “somewhere
between |0〉 and |1〉”.
Once it was given me as an advice to explain things so my grandmother
could understand them. Of course it was a hyperbole but now I take it quite
literally and I will rewrite the above example. My grandmother likes detective
stories and she has read tons of them and there is no series on TV where she
does not know the murderer just from the first scene of the film. That is not
impressive when we watch the detective Columbo movies but watching the
Hercule Poirot series, it still amazes me. In one of the movies I saw several
years ago there was a typical locked-room theme with an ingenious resolution.
I will not tell you in what film this scene happened not only because I saw
it years ago and I was not able to find it but also because I do not want to
spoil the movie to you.
There was a house or mansion where a murder took place. The corpse was
found lying on the floor in a puddle of blood. All windows of the room were
closed and the door was locked from the inside. It was clear the victim did
not commit suicide. How did the murderer escape the room? Let us call
the murderer Eve. After she killed her victim she opened the door. Then
Eve delicately turned the key in the keyhole so that the spring inside the
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1. Foundation of quantum computing ...........................
key mechanism did not push nor pull the latch and therefore the lock was
neither locked nor unlocked. When Eve left the room she smashed the door
forcefully. The hit was so strong it caused the mechanism of the lock move a
bit and the latch was released. The door remained locked.
If we say that locked door is state |1〉 and |0〉 means the door is unlocked
the whole story is the last part of the program from above. Eve applied the
Hadamard gate on the key and put it in superposition of two the states locked
and closed. When she smacked the door, she just measured the state which
collapsed to the position locked.
There is a lesson to be learned from this example. On a standard computer
Eve could not escape the room and left the door locked from inside because
standard computers have only bits “on” and “off”. In our case standard door
locks can be locked or unlocked and nothing else. That is why the murder
seems to be an impossible crime: we just do not expect locks to be locked
and unlocked at the same time. Moreover the so called "collapse of the state"
seem to be something unearthly and incomprehensible. This behavior of
quantum computers should not startle us in the following chapters and when
something will look like a miracle it is as miraculous as turning a key into
the middle position and smashing the door. We should just remind ourselves
that quantum computers are simply not like ordinary computers.
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Chapter 2

The Deutsch’s algorithm revisited

Let us exercise our freshly acquired knowledge from the last chapter. We
will use quantum gates to work out a real meaningful example. From the
introduction we already intuitively know how the Deutsch’s algorithm works.
But until now we lacked the tools to explain it properly. Our exposition of
the algorithm is basically that of [18].

2.1 The Deutsch’s algorithm

Let us recollect that a constant function f has the same Think sovalue f(x)
for all inputs x.

2.1.1 Theorem (The decision of a constant function) Suppose B is a
computational basis of C2. Let f : B → B be any function. 1 A quantum
computer can decide whether the function f is constant or not by a single
inquiry.

Proof. We will prove this theorem by creating a correct algorithm which
will solve the task by one inquiry. We create an algorithm according to the
picture below

1Let us stress that f is not linear.
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2. The Deutsch’s algorithm revisited............................

|0〉

|1〉
(1) (2) (3) (4)

H

H

H |ψ〉

|ϕ〉
U

xin

yin

xout

yout

where H is Hadamard gate and U is a linear mapping C2 ⊗ C2 → C2 ⊗ C2

with input (xin ⊗ yin) and output (xout ⊗ yout).The matrix U is unitary and
we can describe how it behaves on the basis.

xout = xin (2.1)
yout = f(xin)⊕ yin (2.2)

Note that this is only how the matrix U looks like for the basis vectors, it
would not make any sense if xout = xin for all inputs.

There are four possible options how function f can look like, namely

a) f1(x) = x (2.3)
b) f2(x) = 1− x (2.4)
c) f3(x) = 0 (2.5)
d) f4(x) = 1 (2.6)

and so there are four different U gates. We have written down all possible
binary inputs and outputs of the U gate in the following table.

f1(x) = x f2(x) = 1− x f3(x) = 0 f4(x) = 1
input output1 output2 output3 output4

xin yin xout yout xout yout xout yout xout yout
|0〉 |0〉 |0〉 |0〉 |0〉 |1〉 |0〉 |0〉 |0〉 |1〉
|0〉 |1〉 |0〉 |1〉 |0〉 |0〉 |0〉 |1〉 |0〉 |0〉
|1〉 |0〉 |1〉 |1〉 |1〉 |0〉 |1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉 |1〉 |1〉 |1〉 |1〉 |1〉 |0〉

This is a convenient way how to represent the matrix U because it takes
up less space but still it contains all the necessary information. For a model
example we will use a matrix for f1(x) = x which is

U1 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.7)

Now let us see how the program works in greater detail...1. In step (1) we have |0〉 ⊗ |1〉 on the input. We apply the Hadamard gate
on both wires to get a linear combination of the computational basis.
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|0〉+ |1〉√
2
⊗ |0〉 − |1〉√

2
(2.8)

We do not have to count with the square roots in the denominator,
because the U gate is a linear function and we can put it directly on the
output. Before we apply the matrix U we have to do tensor product on
the input sates. The result can be represented by a vector |µ〉 ∈ C2⊗C2.

|µ〉 = (|0〉+ |1〉)⊗ (|0〉 − |1〉) (2.9)

Then we apply the matrix U. Because this problem is relatively small,
we will show everything on our model example with matrix U1 to
demonstrate how it works with standard matrix notation.

U |µ〉 = U1


1
−1
1
−1

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
−1
1
−1

 =


1
−1
−1
1


= (|0〉 − |1〉)⊗ (|0〉 − |1〉)..3. When we look at step (3) there are four possible results depending on

the function f . All possible options are written down in the normalized
form as follows:

±|0〉+ |1〉√
2
⊗ |0〉 − |1〉√

2
, if f(0) = f(1)

±|0〉 − |1〉√
2
⊗ |0〉 − |1〉√

2
, if f(0) 6= f(1)..4. When we apply the Hadamard gate on the output xout we finally get

the following results in state (4):
±|0〉 ⊗ |0〉 − |1〉√

2
, if f(0) = f(1)

±|1〉 ⊗ |0〉 − |1〉√
2

, if f(0) 6= f(1)

We are at the end of the proof. The first state |ψ〉 indicates whether
function f is constant or not and we need only single query. �
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Chapter 3

Hidden subgroup problem

It seems hard to be satisfied with the form of Deutsch’s algorithm. Why
should we pick the Hadamard gate? It works, but why? There must be
something hidden underneath. We promise to the reader that they will find
out what is hidden here, but we have to begin slowly from the foundations.
Firstly we will have to say what are groups, cosets and subgroups. We will
have to speak about characters of groups and the Fourier transform. Finally
we explain what a Hidden Subgroup Problem (aka HSP) is. We show in
Chapter 4 that HSP is a common core of a class of quantum algorithms. For
more about group theory, see, e. g. [1].

3.1 Groups

Firstly for the newcomers we define what groups are and we write down the
basic rules for groups. We will begin slowly because groups are not covered
in some classes and we do not want to get lost when the nice part has not
begun yet.

3.1.1 Definition (Group) We call a set G with a binary operation ∗ a
group if

(x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ G, (3.1)

there exist e ∈ G, such that

e ∗ x = x ∗ e = x for all x ∈ G (3.2)
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3. Hidden subgroup problem ...............................
and for every x ∈ G there exist x−1 ∈ G such that

x−1 ∗ x = x ∗ x−1 = e. (3.3)

An alternative definition is that of a group is a set equipped with a binary
operation ∗, unary operation (−)−1 and a constant e. We will denote a group
by (G, ∗, (−)−1, e). Because it can be easily shown that both definitions are
equivalent, we will switch between them depending on the circumstances. We
will abuse the notation and denote a group by its carrier set.

3.1.2 Notation Having a group (G, ∗, (−)−1, e) and any element x ∈ G we
denote

the neutral element e as x0

an element x ∗ x as x2

an element x ∗ x ∗ x as x3

an element x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

as xn.

We extend the notation for expression

x−n = (xn)−1 (3.4)

which allows us to write expression as for example x27 ∗ x−31 = x−4.

3.1.3 Definition (Order of element) An order of element x ∈ G is the
smallest positive natural number r such that xr = e. If xr = e does not hold
for any positive r we say that the order is infinity.

There are some special groups that behaves “nicely”. These deserve their
own name.

3.1.4 Definition (Commutative group) A group G is called Commuta-
tive if

(x ∗ y) = (y ∗ x) for all x, y ∈ G (3.5)

holds. These groups are frequently called Abelian groups.

3.1.5 Definition (Cyclic group) We call a finite group G cyclic if there
exist g ∈ G such that any x ∈ G can be written as gn some natural number
n.

3.1.6 Notation (Equivalence classes modulo n) We say that numbers
a, b ∈ Z are congruent modulo n (where n ∈ N is greater than zero) if

a = b+ k · n for some k ∈ Z (3.6)
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holds. We denote this relation by symbol “ n≡”. Relation “ n≡” is indeed an
equivalence therefore we have equivalence classes. The relation is also a
congruence with respect to addition “+” and multiplication “·”. We will abuse
our notation and we will write a+ b = c instead of clumsy [a]n

≡
+ [b]n

≡
= [c]n

≡
.

Set of these equivalence classes will be denoted by Zn.

3.1.7 Example (Real numbers) We already know some groups and they
are not something mysterious...1. Let us have a set of real numbers R, we can create a group (R,+,−, 0)

with addition as the binary operation and 0 as the neutral element. We
can check that all three equations (3.1), (3.2) and (3.3) hold indeed...2. If we try to create a group (R, ·, (−)−1, 1) where the operation is multi-
plication and the neutral element is 1, we fail. The equation (3.2) does
not hold for number 0. That inspires us to set R× = R \ {0} which is the
set of all invertible real numbers. It is easy to prove that (R×, ·, (−)−1, 1)
is actually a group.

3.1.8 Example (Numbers of Zn) The following examples of groups are
essential for Abelian groups because in some sense any Abelian group “behaves”
like Zn...1. Consider the group G = (Zn,+,−, 0). We can easily show that equations

(3.1), (3.2) and (3.3) hold. Moreover the equation (3.5) holds as well.
That means G is a commutative group. It does not surprise us that
any x ∈ G can be rewritten as

x = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
x times

.

The group G is therefore a cyclic group...2. In a similar fashion as in example 3.1.7 we can also construct the group
G = (Z×n , ·, (−)−1, 1), where Z×n is set of all invertible elements. One
would ask how many elements Z×n has. It can be shown that Z×n has
n− 1 elements if n is prime. For non-prime n the answer is not so simple.
With that in mind we define the Euler’s function.

3.1.9 Definition (Euler’s totient function) If we are given a group, let
us denote it G = (Z×n , ·, (−)−1, 1), where Z×n is set of invertible elements with
respect to multiplication “·” for some n ∈ N greater than 0. We define the
function by putting

ϕ(n) = card(Z×n ) (3.7)
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We call the function ϕ Euler’s totient function. (The function card returns
the cardinality of a given finite set. Sometimes for typographic reasons it can
be denoted by symbol “|-|”.)

Now when we have familiarized ourselves with groups we are going to
introduce subgroups and we will proceed to the hidden subgroup problem.

3.1.10 Definition (Subgroup) We say H is a subgroup of (G, ∗, (−)−1, e)
if the conditions

e ∈ H, (3.8)
if x, y ∈ H then also x ∗ y ∈ H, (3.9)
and for every x ∈ H, there exist x−1 ∈ H. (3.10)

hold.

The slogan is “A subgroup of a group is analogous to a subspace of a linear
space”.

It is just a slogan, yet there is some truth to it. Examples 3.1.7 and 3.1.8
already shown that at least some linear spaces could be understood as groups
with some more properties. That is indeed true for all linear spaces. A
question comes to our mind, if a subgroup is a generalization of a subspace
one could ask is there something as an “affine space” of a group? That is a
good question and the answer is positive.

3.1.11 Notation (Smallest subgroup) Having a group with carrier G
and subset X of G we denote by SgG(X) the smallest group which contains
all elements from X. It means

SgG(X) =
⋂
i∈I
{H | H, where H is subgroup of G and X ⊆ H} (3.11)

Disclaimer. From now on we will continue only with Abelian groups to
make our lives easier.

3.1.12 Lemma Let G be an Abelian group and let H be a subgroup of G.
We define relation R(−,−) on G by putting

R(x, y) if and only if (x ∗ y−1) ∈ H (3.12)

for any x, y ∈ G. The relation R(−,−) is an equivalence relation and the
equivalence classes have the form [x]R = {y ∈ G|y = x ∗ h for some h ∈ H}.
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Proof. The proof is quite simple so it is left as an exercise. �

3.1.13 Definition (Coset) For every x ∈ G the equivalence classes [x]R =
x ∗H of Lemma 3.1.12 will be called coset w.r.t. H.

3.1.14 Lemma (Cardinality of cosets) Given a group G and a subgroup
H, all cosets in G with respect to H have the same cardinality.

Proof. We will denote a coset by x∗H. We need to show there is a bijection
between H and x ∗H. We define a function

f : H → x ∗H
h 7→ x ∗ h

The function f is surjective, because for any k ∈ x ∗H we can find h ∈ H
such that f(h) = k. The element k can be rewritten as k = x ∗ h2 where
h2 ∈ H. We can then choose h = h2. The function f injective because for
two distinct h1, h2 ∈ H we have results f(h1) 6= f(h2). We will show this by
a contradiction. Assume then h1 6= h2 but f(h1) = f(h2). by simplifying the
equality

f(h1) = f(h2)
x ∗ h1 = x ∗ h2

h1 = h2

we obtain a contradiction with our assumption. Therefore f(h1) 6= f(h2) and
the function f must be injective. �

3.1.15 Lemma (Cosets form a partition) All cosets in a group G de-
fined by relation (3.12) form a partition of the group G.

Proof. It is evident any element x ∈ G is at least in the coset x ∗H. It
remains to be shown that if K,L are cosets such that K ∩L 6= ∅, then K = L.
To that end, choose x ∈ K ∩ L. According to Lemma 3.1.12 is x equivalent
to all elements of L and also to all elements od K and therefore L and K are
the same equivalence class (coset). �

3.1.16 Example (A clock face) Let us have a group G = (Z12,+,−, 0)
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which we will represent by a clock face in the picture below.
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All possible subgroups of G are depicted in the picture. The subgroup H1 =
{0} is depicted in yellow. The subgroup H2 = {0, 6} is depicted in orange.
The subgroup H3 = {0, 4, 8} is in green. The subgroup H4 = {0, 3, 6, 9} is
depicted in red. The subgroup H5 = {0, 2, 4, 6, 8, 10} is depicted in blue.

Let us focus only on the subgroup H4. We can see there are three cosets
of H4 which are depicted in the picture below.
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The first coset 0 + H4 is depicted by the filled line which is in fact the
subgroup itself. The second coset 1 +H4 is depicted by the dotted line and
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the last coset 2 + H4 is depicted by dashed line. There are in total three
cosets with respect to four-element subgroup in Z12. If we look more carefully
we can see that a rule emerges. The number of cosets with respect to any
subgroup H is card(G)

card(H) .

3.1.17 Theorem (Lagrange’s theorem [7], [1]) For any finite commu-
tative group G and H subgroup of G

card(G) = card(H) ·# of cosets of H (3.13)

holds.

Proof. By Lemma 3.1.15 cosets form a partition of group G. Since G is
finite, so the partition {C1, . . . , Cn} into cosets. It follows that

card(G) =
n∑
i=1

card(Ci) (3.14)

=
n∑
i=1

card(C1) by Lemma 3.1.14 (3.15)

= n · card(C1), (3.16)

where n is number of cosets. �

3.1.18 Theorem (Fundamental theorem of Abelian groups [1]) Every
finite Abelian group G is isomorphic to

∏k
i=1 Zni for some k and n1, n2 . . . nk.

3.1.19 Theorem (Euler’s theorem) Let G be a finite Abelian group and
n is number of its elements. For every x ∈ G the equation 1

xn = e (3.17)

holds.

Proof. We can inspire ourselves by the proof of the Fermat’s little theorem
[15]. We denote elements of G by x1, x2, . . . , xn. For every a ∈ G the function

f : x 7→ x ∗ a (3.18)
is a bijection,we have shown that in lemma 3.1.14. Thus

x1 ∗ x2 ∗ · · · ∗ xn = f(x1) ∗ f(x2) ∗ · · · ∗ f(xn)
= x1 ∗ a ∗ x2 ∗ a ∗ · · · ∗ xn ∗ a group G is commutative
= a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸

n times
∗x1 ∗ x2 ∗ · · · ∗ xn (3.19)

= an ∗ x1 ∗ x2 ∗ · · · ∗ xn (3.20)
1According to notation 3.1.2 where we said that xn = x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸

n times

.
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Since

x1 ∗ x2 · · · ∗ xn = an ∗ x1 ∗ x2 · · · ∗ xn
holds, then also the equation

e = an (3.21)
holds. �

3.1.20 Example (Almost Fermat’s little theorem) The proof of 3.1.19
is so nice it is tempting to apply it in the following example...1. Let G = (Z6,+,−, 0) then a6 = 0 should hold for all a ∈ Z6. Remember

that we denote a+ a+ · · ·+ a︸ ︷︷ ︸
n times

= an. We will rewrite the proof and so

we get
5∑

x=0
x =

5∑
x=0

(x+ a) (3.22)

= a+ a+ · · ·+ a︸ ︷︷ ︸
6 times

+
5∑

x=0
xi

= a6 +
5∑

x=0
x. (3.23)

and therefore
a6 = 0 in Z6. (3.24)..2. Now we will show a familiar problem and which makes perfect sense. For

the group G = (Z×n , ·, (−)−1, 1) (see Example 3.1.8) we get

aϕ(n) = 1. (3.25)

The proof is the same as above. This expression is known to us from the
lessons of discrete mathematics where we call it Euler’s theorem. When
the number n is prime, we call the theorem Fermat’s little theorem, since
ϕ(n) = n− 1 holds. You can find the theorem in the book [20].

3.2 Characters of groups

It is tempting to start with the hidden subgroup problem but we are not
prepared yet. We will firstly need tools to solve the problem before we will
meet it face to face. We will touch characters of groups very slightly. The
presented theory is based on [8].
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3.2.1 Definition (Group homomorphism) Suppose (A, ∗, (−)−1, eA) and
(B, ∗, (−)−1, eB) are groups and let h : A → B be a function. We call the
function h a group homomorphism if for all x, y ∈ A the equations

h(eA) = eB (3.26)
h(x ∗ y) = h(x) ∗ h(y) (3.27)
h(x−1) = (h(x))−1 (3.28)

hold.

3.2.2 Definition (Character) Suppose (G, ∗, (−)−1, e) is a finite Abelian
(commutative) group. We call any group homomorphism

χ : G→ C×. (3.29)

a character (of group G). 2

3.2.3 Lemma (Group of characters) Characters of any commutative group
G form a group Ĝ by defining for

χ1 : G→ C× χ2 : G→ C×

x 7→ χ1(x) x 7→ χ2(x)

the operation “*” as

χ1 ∗ χ2 = χ1(x) · χ2(x). (3.30)

We define the inverse to χ1 as

χ−1(x) = (χ(x))−1. (3.31)

The neutral element is such a character χ that

χ(x) = 1 (3.32)

holds for all x ∈ G.

Proof. It is trivial to show that the axioms for group from definition 3.1.1
do hold. �

If we want to know about characters, we can ask what the results of the
mappings χi are or how many of these characters there are.

2Recall from Exercise 3.1.7 the notation for all invertible elements. Analogously C× =
(C\{0}, ·, (−)−1, 1) is a multiplicative group of all invertible complex numbers. It is obvious
that C× is commutative.
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3.2.4 Lemma (Values of characters are roots of unity) Let us have a
finite Abelian group (G, ∗, (−)−1, e) and let n denote the number of elements
of G. Then any character

χ : G→ C× (3.33)
g 7→ χ(g) (3.34)

the equality

χ(g)n = 1 (3.35)

holds for any g ∈ G.

Proof. Given a finite Abelian group G = (G, ∗, (−)−1, e), by Euler’s theorem
3.1.19 we can write

gn = e (3.36)

for any g ∈ G. A character χ is a group homomorphism therefore we can
continue by

χ(g)n = χ(gn)
= χ(e)
= 1

(3.37)

�

The lemma 3.2.4 says that values of characters are in fact roots of unity.

3.2.5 Lemma (Number of characters of a cyclic group) There are n
distinct characters for any cyclic commutative group G = (G, ∗, (−)−1, e),
where n is number of its elements.

Proof. Let g be the generator of the group (G, ∗, (−)−1, e). Every a ∈ G
can be written according to definition 3.1.5 as

a = g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
m times

for some m. (3.38)

For an arbitrary character

χ : G→ C× (3.39)
g 7→ χ(g) (3.40)
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we know as a result of lemma 3.2.4 that the value χ(g) is nth root of unity.
We can choose one of the possible n values of χ(g) and it determines the
value of χ(a) because

χ(a) = χ(g ∗ g ∗ . . . ∗ g︸ ︷︷ ︸
m times

)

= χ(g) · χ(g) · . . . · χ(g)︸ ︷︷ ︸
m times

) (3.41)

must hold. The characters are distinct since they differ by their value at g. �

Unfortunately for us not all Abelian groups are cyclic. We have to prove
something much stronger and we have to play better cards from our sleeves.
Namely, we have to show how to extend characters from a subgroup to a
group.

3.2.6 Example To demonstrate the problem we will use our well-known
clock face example 3.1.16. We could be given, let us say, the number 2 and
the subgroup H3 = {0, 3, 6, 9} with its character χ. This is the image we
drew.
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The task is to find a character χ̃ such that it behaves like χ for all elements
of the subgroup H3 and is reasonably defined at number 2. If the value of
χ(6) was let us say χ(6) = −1 we would like to have

−1 = χ(6)
= χ̃(2 + 2 + 2)
= χ̃(2) · χ̃(2) · χ̃(2)
= χ̃(2)3.
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In our case we need to hope that

0 = χ(0)
= χ̃(2 + 2 + 2 + 2 + 2 + 2)
= χ̃(2)6

does hold as well.

This simple idea will inspire us how to act in the more general case which
is developed in [8].

3.2.7 Lemma (Extension of characters) Consider commutative group
(G, ∗, (−)−1, e). Let H be a subgroup of G and c ∈ G. For any character χ
there exists a character χ̃ such that the diagram:

H Sg(H ∪ {x})

C×

Extension

χ χ̃

commutes.

Proof. Thanks to Euler’s theorem 3.1.19 there exists a smallest k ∈ N
greater than 0 such that xk = h ∈ H (k can be at worst the number of
elements in G). For a given character

χ : H → C×

h 7→ χ(h) (3.42)

we define χ̃(x) as a chosen solution of the equation

χ̃(x)k = χ(h). (3.43)

For any element g ∈ H and i ∈ N we define

χ̃(g ∗ xi) = χ(g) · χ̃(x)i. (3.44)

We should check whether our definition is correct and whether the mapping
χ̃ is consistent because there could be an element in h ∈ H which could be
written for some (distinct) g1, g2 ∈ H as

h = g1 ∗ xi = g2 ∗ xj , (3.45)
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yet χ̃(g1 ∗ xi) must be equal to χ̃(g2 ∗ xj). We can write

g−1
2 ∗ g1 = xj ∗ (xi)−1 that is also element of H.

We get xj = xi ∗ g−1
2 ∗ g1. We show that the following equation holds.

χ(g2) · χ̃(x)j = χ(g2) · χ̃(xj)
= χ(g2) · χ̃(xi ∗ g−1

2 ∗ g1)
= (χ̃(g2))−1︸ ︷︷ ︸

=(χ(g2))−1

· χ̃(g1)︸ ︷︷ ︸
=χ(g1)

= χ(g1) · χ̃(xi) (3.46)

�

3.2.8 Remark Equation (3.43) gives k different extensions, one extension
per one choice of the kth root of 1.

3.2.9 Remark For a finite group G with generators {x1, x2, . . . xn} we can
create extensions of any character of its subgroup by repeating the process
given by the extension lemma 3.2.7.

3.2.10 Theorem (Number of characters of an Abelian group [8])
For any finite Abelian group G there are card(G) distinct characters.

Proof. We will denote by Hj
i a subgroup of

∏m
i=1 Zni which has all possible

non-zero elements at positions i to j and zeros everywhere else. The funda-
mental theorem 3.1.18 allows us to rewrite the group G as

∏m
i=1 Zni for some

m and n1, n2, . . . , nm. It is clear that the subgroups H i
i for different i all

overlap trivially at element e = (0, 0, . . . , 0) and they all have one generator gi
which has 1 at position i and 0 everywhere else. These subgroups are cyclic.
We define

χ0(e) 7→ 1 (3.47)
and inductively all characters χi+1 of the group Gi+1 = H i+1

1 from the
Gi = H i

1 by Lemma 3.2.7. Remark 3.2.8 by equation (3.43) says that the
number of extensions from characters of group Gi to a group Gi+1 equals
to the lowest power p of generator gi+1 ∈ H i+1

i+1 such that gpi+1 ∈ Gk. Since
these groups overlap only at the neutral element e we get gni

i = e by Euler’s
theorem 3.1.19. From that follows there are ni extensions of characters from
Gi to Gi+1. The number ni is equal to cardinality of the group H i+1

i+1 . With
every kth inductive step the number of characters grows by nk. We conclude
that the group

∏m
i=1 Zni has

m∑
1
ni =

m∑
1

card(Zni) = card(
m∏
i=1

Zni) = card(G) (3.48)
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distinct characters. �

3.2.11 Lemma Given a character χ, the inverse character χ−1 has complex
conjugate values to χ.

Proof. The proof is simple, for any a ∈ C the equation

a · a∗ = |a|2 (3.49)

holds. We simply substitute a = χ(x) for arbitrary x and we get

χ(x) · χ(x)∗ = |χ(x)|2

= 1 by Lemma 3.2.4. (3.50)

We get χ(x)−1 = χ(x)∗. �

It may seem silly at first but there is a good reason to perceive characters
as vectors.

3.2.12 Remark A character χ of a group with carrier G = {x1, x2, . . . xn}
can be represented by its values which we can write in a column vector

χ =


χ(x1)
χ(x2)
. . .

χ(xn)

 .

We can now use tools of linear algebra in further exploration of the topic.

3.2.13 Theorem (Characters form an orthogonal set) Let G be a fi-
nite Abelian group with elements {x1, x2, . . . , xn} and let χ1, . . . , χn be char-
acters on G. The characters form an orthogonal set in the sense that

〈χi|χj〉 = 〈


χi(x1)
χi(x2)
. . .

χi(xn)

 |

χj(x1)
χj(x2)
. . .

χj(xn)

〉 =


0, if i 6= j

n, if i = j

(3.51)

holds.
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Proof. The proof is essentially presented in [9]. We will rewrite the 〈χi|χj〉
as in the equation (1.4) and we get

〈χi|χj〉 =
n∑
k=1

χi(xk)∗χj(xk)

=
n∑
k=1

χi(xk)−1χj(xk) by Lemma 3.2.11

=
n∑
k=1

(χ−1
i χj)(xk) (3.52)

If i = j we get

(χ−1
i χj)(x) = (χ−1

i χi)(x) = 1 (3.53)

therefore
n∑
k=1

(χ−1
i χj)(xk) =

n∑
k=1

1 = n. (3.54)

For i 6= j we will use a trick that the function f : f(x) = x + g for a fixed
g ∈ G is a permutation. We will choose g such that χ(g) 6= 1. We just simplify
the term (χ−1

i χj)(xk) as χ(xk) and we can continue where we stopped.
n∑
k=1

χ(xk) =
n∑
k=1

χ(f(xk))

=
n∑
k=1

χ(xk + g)

=
n∑
k=1

χ(xk) · χ(g)

= χ(g) ·
n∑
k=1

χ(xk) (3.55)

The expression χ(g) 6= 1 and therefore 〈χi|χj〉 =
∑n
k=1 χ(xk) = 0. [9] �

3.3 Fourier transform on finite Abelian groups

The Fourier transform may seem complicated for beginners, but actually we
all perform the Fourier transform everyday. It is simply finding of coordinates
for a nice basis. Although the naming is new, we are about to explore an
already known part of linear algebra. You can study this topic in greater
detail in the book [3].
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3.3.1 Example (It is elementary . . . ) With disdain some people look
down at mathematics saying “You only need simple arithmetics.” Undeniably
they are right, everything we learned at elementary school is all we need. We
just change the names and denote things differently. Imagine we want to buy
a new laptop and we are comparing the displays. One of them has 1280× 800
pixels, where 1280 pixels are in horizontal way and 800 in vertical way. We
just give a special name to counting pixels in perpendicular directions. We
will call it the Fourier transform. Nobody thinks about how challenging
this Fourier transform was nor how troublesome is to write Fourier series
(1280, 800). That is all, we know everything since we were six years old. Be
brave!

3.3.2 Theorem (Fourier’s theorem) Having a linear space L with or-
thonormal basis B = (b1, b2, . . . bn), every v ∈ L can be rewritten as

v =
n∑
i=1
〈bi|v〉bi. (3.56)

The scalars 〈bi|v〉 are called Fourier’s coefficients.

Proof. Let us put w =
∑n
i=1〈bi|v〉bi. We show then w = v. For any bk we

can write

〈bk|w − v〉 = 〈bk|
n∑
i=1
〈bi|v〉bi − v〉

= 〈bk|
n∑
i=1
〈bi|v〉bi〉 − 〈bk|v〉

=
n∑
i=1
〈bk|〈bi|v〉bi〉 − 〈bk|v〉.

If bi 6= bk then 〈bk|〈bi|v〉bi〉 = 0. We can simplify the expression above and
continue with

〈bk|〈bk|v〉bk〉 − 〈bk|v〉 = 〈bk|v〉 − 〈bk|v〉 = 0. (3.57)

To satisfy 〈bk|w − v〉 = 0 for any bk the equation w − v = 0 must hold. That
means

v = w =
n∑
i=1
〈bi|v〉bi. (3.58)

�

Finding coordinates is nothing new. There is a special application when
the basis is orthonormal which deserves its own notation.
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3.3.3 Notation (General Fourier transform) If B is orthonormal basis,
we call the function coordB the general Fourier transform.

3.3.4 Notation (Inverse Fourier transform) The function coord−1
B is

called the inverse Fourier transform, if B is an orthonormal basis.

3.3.5 Remark For space Cn with an orthogonal basis B = (b1, b2, . . . bn),
the Fourier transform can be written as a matrix multiplication by matrix
X† = (b1, b2, . . . bn)† and the inverse Fourier transform is represented by
matrix X. This observation follows straightforwardly from equation (3.56).
It follows that the Fourier transform must be unitary.

3.3.6 Notation (Fourier image) Given a function g : G→ Cn, where G
is a group, we define

FB : g 7→ fBg. (3.59)

The function fBg is denoted by ĝ and called the Fourier image of function g.
In a similar fashion we define

F−1
B : g 7→ f−1

B g. (3.60)

We will call f−1
B g the inverse Fourier image of function g and denote it by ǧ.

It is worth to remark that ̂̌g = g = ˇ̂g.

The Fourier transform is the most powerful tool we have seen yet. The
despicable hero of our story Eve (the eavesdropper) is close to using this mighty
tool in the quantum problems. If only characters formed an orthonormal
basis.

3.3.7 Lemma (Characters form orthogonal basis) The characters of a
finite commutative group G with n elements form a basis of Cn. We can
normalize the basis by dividing all characters by constant

√
n.

Proof. We know from Theorem 3.2.13 that characters of a finite commutative
group G form an orthogonal set. Theorem 3.2.10 says there are n distinct
characters. The only problem could be if there was a character χ such that
χ(x) = 0 for all x ∈ G which Lemma 3.2.4 prohibits and also tells us |χ(x)| = 1
for all x ∈ G. By Theorem 3.2.13 〈χ|χ〉 = ||χ||2 = n for every χ.Therefore
every χ can be normalised when divided by

√
n. �

3.3.8 Example (Fourier transform with characters I) Suppose we have
a commutative group G with elements {x1, x2, . . . , xn}. There are n char-
acters of this group, namely X = {χ1, χ2, . . . , χn} which we can write as
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columns of a matrix called X. For a function g : G→ C the question is: how
does the Fourier image of g look like? The set X is orthogonal and we can
normalize it by multiplying every character by factor 1√

n
. The Fourier image

is then

ĝ = 1√
n


χ1(x1) χ2(x1) . . . χn(x1)
χ1(x2) χn(x2)
. . . . . .

χ1(xn) χ2(xn) . . . χn(xn)


†

·


g(x1)
g(x2)
. . .
g(xn)

 (3.61)

We have just rewritten the definition of the Fourier transform into matrix
notation.

3.3.9 Example (Fourier transform with characters II) Some people
prefer examples with numbers. We will continue with the previous example
3.3.8. Let G have only two elements. The Fourier transform looks like as
follows:

ĝ = 1√
n

(
χ1(x1) χ2(x1)
χ1(x2) χ2(x2)

)†
·
(
g(x1)
g(x2)

)
(3.62)

We have seen it before, have we not? Let us give some hints. The characters
are

χ1 =
(
χ1(x1)
χ1(x2)

)
=
(

1
1

)
(3.63)

χ2 =
(
χ2(x1)
χ2(x2)

)
=
(

1
−1

)
(3.64)

and the number of characters n is 2.

ĝ = 1√
2

(
1 1
1 −1

)†
·
(
g(x1)
g(x2)

)
(3.65)

We have seen this in Notation 1.4.2 and called it the Hadamard gate.

3.3.10 Notation (Quantum Fourier transform) Examples 3.3.8 and in
particular 3.3.9 are pushing us to a special use of the Fourier transform in
quantum circuits. The computational basis from definition 1.2.4 pushes us
to use only spaces of dimension 2n for some n ∈ N. We will call the Fourier
transform quantum, if it finds coordinates with respect to the basis consisting
of 2n characters.

3.4 Hidden subgroup problem

We already know how powerful a tool the Fourier transform is. We have met
characters and we know what a subgroup is. But what is a hidden subgroup
and what is the problem anyway?
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............................... 3.4. Hidden subgroup problem

3.4.1 (Simon’s promise [10]) Let there be a group (G, ∗, (−)−1, e) and
set C which we will call colours.

A function ρ : G → C is said to fulfill Simon’s promise, if the following
condition holds:
Simon’s promise: “There exist a subgroup H of G such that ρ is constant
on every coset with respect to H and distinct on every distinct coset.” We say
that ρ hides subgroup H. The Hidden Subgroup Problem (HSP, for short) is
to find the hidden subgroup for a function fulfilling Simon’s promise.

3.4.2 Example (Example in R2) In the space R2 we are given a function

ρ : x 7→
(
3 −1

)
x. (3.66)

The set of colours is in this case the set of real numbers R, but for better
imagination we will represent the cosets with actual colours. The kernel of ρ
is the hidden subgroup because ρ(x) = constant for all affine spaces collinear
with kernel of ρ and for distinct cosets we get distinct values.

y

x

0

3.4.3 Example (Thirteen months in a year) It would be a shame not
to use our favourite example for groups . . . the clock face from Example 3.1.16.
We can, for example, define a function ρ such that for x the output would be
the remainder of x after division by 3. It is easy to show that the Simon’s
promise holds for such a function ρ, especially if we draw an illustrative image
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3. Hidden subgroup problem ...............................
of the cosets.

0
1

2

3

4

5
6

7

8

9

10

11

Now we will apply this example on a more concrete example. Imagine that a
year has only 364 days and they are represented by the group Z364. The set
of colours is the set of all possible and impossible Moon phases.

{ , , , , . . .}
An oracle, which knows that one Moon cycle is 28 days long tells us that a

function ρ which assigns the Moon phase to a day meets Simon’s promise. We
can now solve how long a month is and we will be amazed there are 13 months
in one year. We can use the same example in different applications and find
periodicity of many things which happen over a repeating time interval if the
Simon’s promise is fulfilled.

The next example will be more practical

3.4.4 Example (Order of an element in Z×n ) Let n be a natural number
greater than 1 (in real cases this number would be large) and an invertible
number a ∈ Z×n (i.e., such that gcd(a, n) = 1). The question is, what is the
order of a? In this example we will show how to reformulate this task as the
hidden subgroup problem. We denote the order of a by symbol r. Our group
will be G = (Z, ·, (−)−1, 1), the set of colours will be C = (Z×n , ·, (−)−1, 1).
We define our function as follows.

ρ : Z→ Z×n
x 7→ ax
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............................... 3.4. Hidden subgroup problem

Unsurprisingly the hidden subgroup H has the underlying set

H = {g ∈ G | x is divisible by r}.

We should check whether Simon’s promise holds. We choose elements x, y of
G. Just for clarification we can rewrite the values of function ρ as follows.

ρ(x) = ax = a · a · · · a︸ ︷︷ ︸
x times

n≡ R1 (3.67)

ρ(y) = ay = a · a · · · a︸ ︷︷ ︸
y times

n≡ R2, (3.68)

where R1, R2 are the remainders after division by n. The values ρ(x), ρ(y)
are equal if R1 = R2. It can only be the case if

ax
n≡ ay (3.69)

ax−y
n≡ 0 (3.70)

It is trivial to show the expression x− y is multiple of r.

x− y = (K1 +K2) · r for some K1,K2 ∈ Z. (3.71)
x−K1 · r = y +K2 · r
x+K ′1 · r = y +K2 · r (3.72)

We get exactly the cosets we predicted. The cosets (x+K ′1 · r), (y +K2 · r)
are the same if and only if the equality ρ(x) = ρ(y) holds.

3.4.5 Example (Order of an element in Zn) We will show a variation
of the previous example which we get almost for free. Suppose number n is
again a natural number greater than 1 and suppose a ∈ Zn. The question
is as in the previous example: what is the order r of a? Our group will be
G = (Z,+,−, 0), the set of colours will be C = (Zn,+,−, 0). We define our
function as follows.

ρ : Z→ Zn
x 7→ ax

We have elements x, y of G. We simply rewrite the values of ρ

ρ(x) = ax = a+ a+ · · ·+ a︸ ︷︷ ︸
x times

n≡ R1 (3.73)

ρ(y) = ay = a+ a+ · · ·+ a︸ ︷︷ ︸
y times

n≡ R2, (3.74)

where R1, R2 are remainders after division by n. The values ρ(x), ρ(y) are
equal if and only if R1 = R2. It follows

ax
n≡ ay (3.75)

ax−y
n≡ 0 (3.76)
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3. Hidden subgroup problem ...............................
Again it is easy to show that x− y is multiple of r. The rest is what we have
already seen.

x− y = (K1 +K2) · r for some K1,K2 ∈ Z. (3.77)
x−K1 · r = y +K2 · r
x+K ′1 · r = y +K2 · r (3.78)

The values ρ(x) = ρ(y) are the same if and only if the cosets (x + K ′1 · r),
(y +K2 · r) are the same.

3.4.6 Example (Discrete logarithm problem [10]) The set C of colours
we will use in this example is the group (Z×n , ·, (−)−1, 1). We will need another
constraint that the group is cyclic. Therefore by Definition 3.1.5 every element
a ∈ Z×n can be rewritten as gk for a generator g some k. The value k is called
discrete logarithm of a. The problem is to find the value of k for given a.3
Our group G in this problem will be group Zϕ(n)×Zϕ(n) where the we define
operation “+” pointwise. 4 It remains to define the function ρ by putting

ρ : Zϕ(n) × Zϕ(n) → Z×n
(x, y) 7→ gx · a−y.

We shall check whether the Simon’s promise is satisfied and even more
importantly we show how the hidden subgroup looks like. We will take some
inspiration from the previous example. The results of function ρ for inputs
(x1, y1) and (x2, y2) are the same, if and only if

gx1 · a−y1 n≡ gx2 · a−y2 . (3.79)

Now we use the fact that a = gk

gx1 · g−yk
1
n≡ gx2 · g−yk

2 (3.80)

gx1−yk
1
n≡ gx2−yk

2 . (3.81)

The exponents on both sides could be the same or dare we say some "period"
away. It can be captured by equations

x1 − yk1
ϕ(n)
≡ x2 − yk2

x1 − x2
ϕ(n)
≡ yk1 − yk2

x1 − x2
ϕ(n)
≡ (y1 − y2)k. (3.82)

The equation (3.82) could be intuitively written as x1 − x2
ϕ(n)
≡ k · (y1 − y2),

unfortunately this is not allowed by our notation. These equations above
hold only if (xi, yi) are from a subgroup with carrier set

H = {(x, y) ∈ Zϕ(n) × Zϕ(n) | x = yk}. (3.83)
3The discrete logarithm problem can be applied in cryptography. The book [15] describes

the discrete logarithm problem in grater detail.
4Remember notation 3.1.2. In this example the group operation “*” is “+” and so

ak = a + a + · · ·+ a︸ ︷︷ ︸
k times

which could be understood as k · a.
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Chapter 4

Towards more complex problems

Eve is about to discover the algorithm to read Alice’s and Bob’s messages.
The path through groups, quantum gates, the Fourier transforms is about to
end, finally. In this chapter we will show how to solve the hidden subgroup
problems in general. We will see how to solve the factorization problem and
we will finish with Shor’s algorithm.

4.1 Solving hidden subgroup problem

In this section we will show how to create quantum algorithm for general
hidden subgroup problem on finite Abelian groups.

We will begin slowly by denoting groups and sets we will use. After that
the interesting part will come. There is a group G and we have a set of colours
C. The function ρ hides the subgroup H. At this point we will change our
notation and we will use |S| instead of card(S) for a set S. We denote by Ĝ
the group of all characters from G to C×. We define H⊥ as

H⊥ = {χ ∈ Ĝ | χ(h) = 1 for all h ∈ H}. (4.1)

We can check that H⊥ is a subgroup of Ĝ. It may seem unreasonable to
define H⊥ in this way and even worse to use the letter “H” since it is not
a subgroup of G. After some observation we realize it is in fact something
like an orthogonal complement on groups. Firstly the number 1 is in fact the
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4. Towards more complex problems ............................
neutral element in C×. The element h is something like a ket and χ ∈ H⊥ is
something like a bra. If you are still uncomfortable there is an isomorphism
between H⊥ and some subgroup of G. The last thing we will need for now is
a handy way how to denote all the cosets with respect to H.

4.1.1 Definition (Transversal) We define T to be a set containing pre-
cisely one element from each coset, therefore an element ti ∈ T represents
the ith coset. It is clear that the equation

|T | = |G|
|H|

(4.2)

holds. The set T is called transversal.

Disclaimer. At this moment we will assume the group G is (Z2)n for some
n which will simplify our computations because the computational basis 1.2.4
we use has binary states. The algorithm for different groups is similar. It will
also help us with the notation. Any element g ∈ G could be understood as a
binary number.

The algorithm for solving the problem works according to the following
picture.

| 00 . . . 0︸ ︷︷ ︸
|G| times

〉

| 00 . . . 0︸ ︷︷ ︸
|C| times

〉

(1) (2) (3) (4)

|ψ〉

|ϕ〉

H⊗|G| QFT

Uρ

xin

yin

xout

yout

The gate Uρ is defined on the basis in a similar way to the equations
(2.1),(2.2) we have seen in the proof for Deutsch’s algorithm. We define Uρ

by equations

xout = xin (4.3)
yout = ρ(xin)⊕ yin. (4.4)

Let us see what happens when the program is executed.
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............................4.1. Solving hidden subgroup problem..1. In step (1) we prepare the input in the state | 00 . . . 0︸ ︷︷ ︸
|G| times

〉 ⊗ | 00 . . . 0︸ ︷︷ ︸
|C| times

〉...2. We apply Hadamard gates on the first wire according to notation of
parallel gates 1.4.4 and we get to the step (2). It can be easily shown
that the result in state (2) is

1√
|G|

∑
g∈G
|g〉 ⊗ |00 . . . 0〉. (4.5)

The states |g〉 are corresponding to value of g (for example, |0010〉
corresponds to the element (0, 0, 1, 0))...3. The third step seems intimidating at first, but because on the second
wire there are only zeros, the xor is trivial. We get the state:

1√
|G|

∑
g∈G
|g〉 ⊗ |ρ(g)〉. (4.6)

We can rewrite the equation thanks to our definition of set T in Definition
4.1.1 and so we get

1√
|G|

∑
t∈T

∑
h∈H
|t+ h〉 ⊗ |ρ(t+ h)〉 = 1√

|G|
∑
t∈T

∑
h∈H
|t+ h〉 ⊗ |ρ(t)〉,

(4.7)

because the function ρ is constant on every coset...4. In contrast to the previous step, applying the quantum Fourier transform
seems trouble-free, but here the magic happens. Remember Example
3.3.9 which shows in equation (3.61) how the matrix of the Fourier
transform works. We will just rewrite it so we are sure what is going on.

4.1.2 Remark The characters of group Z2 have only values 1 and -
1. In combination with the definition of extension of characters 3.2.7,
in particular the equation (3.44), the matrix of the quantum Fourier
transform has only real entries 1 and -1.

The matrix for our Fourier transform is

F = 1√
n


χ1(x1) χ1(x2) . . . χ1(xn)
χ2(x1) χ2(xn)
. . . . . .

χn(x1) χn(x2) . . . χn(xn)

 . (4.8)

We will just change the notation for entries of the matrix. By xi we
mean a particular g ∈ G and we will not continue to number χ by an
index i but we will use index t+ h corresponding to particular element
of the group G. We should slow down a bit for a moment and think
about how the Fourier transform work.
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4. Towards more complex problems ............................
For a chosen |ϕ〉 the Fourier transform puts

|ϕ〉 F7→ 1√
|G|

∑
g∈G

χϕ(g)|g〉. (4.9)

Now we can safely apply the Fourier transform on the first wire of
expression (4.7) and we get

1√
|G|

∑
t∈T

∑
h∈H

1√
|G|

∑
g∈G

χt+h(g)|g〉 ⊗ |ρ(t)〉 (4.10)

We apply a trick that χa(b) = χb(a) and we get
1√
|G|

1√
|G|

∑
t∈T

∑
g∈G

χt(g)
∑
h∈H

χh(g)|g〉 ⊗ |ρ(t)〉. (4.11)

We will continue after a break because we need the following lemma.

4.1.3 Lemma Suppose we are given a character χg on a group G with
subgroup H. Then either the first case or the second does hold.

∑
h∈H

χg(h) =


|H|, if χg ∈ H⊥

0 else.

Proof. The first half is a simple consequence of our definition of H⊥ in
(4.1). The second half is a bit more complicated, but not so much. If
χg /∈ H⊥ then there must be h′ ∈ H such that χg(h′) 6= 1. Therefore we
can rewrite

∑
h∈H by simply permuting elements as∑

h∈H
χg(h) =

∑
h∈H

χg(h+ h′)

=
∑
h∈H

(χg(h) · χg(h′))

= χg(h′) ·
∑
h∈H

χg(h).

We can rearrange both sides and we get∑
h∈H

χg(h)− χg(h′) ·
∑
h∈H

χg(h) = 0

(1− χg(h′)) ·
∑
h∈H

χg(h) = 0

We know (1− χg(h′)) 6= 0 and therefore
∑
h∈H χg(h) = 0. �

The lemma was refreshing but the Shor’s algorithm is waiting for us. We
continue with rewriting expression (4.11) using 4.1.3 as

|H|
|G|

∑
t∈T

∑
{g|χg∈H⊥}

χt(g)|g〉 ⊗ |ρ(t)〉. (4.12)
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......................... 4.2. Factorization and the Shor’s algorithm

4.1.4 Remark Unsurprisingly we can say that values of χt(g) are |χt(g)| =
|eiα| for some alpha. This will help when we proceed with the measurement
because |eiα| = 1 and it will not affect the measurement at all.

When we apply the measurement, we get g such that χg ∈ H⊥ with
probability |H|

2

|G|2 |χt(g)|
2 = |H|2

|G|2 . It can be shown that |H| · |H⊥| = |G|. We
can rewrite the probability as 1

|H⊥|2 . It remains to find the g′ ∈ H which
would be one of the generators. We can find χg ∈ H⊥ easily and with tools
from linear algebra we can find a g′ “perpendicular” to χg as the group (Z2)n
is a linear space.

4.2 Factorization and the Shor’s algorithm

In cryptography, the safety of the public key methods (RSA and the like)
depends on our ability to factorize a non-prime number into product of primes
p and q. [20] [15]. If only we were able to find the decomposition of the
number n, the encryption is broken and Eve can read all Bob’s and Alice’s
messages. There are ways how to breach the encryption physically [6], but we
will focus on the mathematical way. Even with the advanced techniques the
factorization problem is believed to be unsolvable on a standard computer in
reasonable time, especially when prime numbers p and q are chosen carefully
and very large.

Encryption and factorization

Disclaimer. We will not develop the theory of cryptography and we will
stick to the basics. If you are interested in the topic, the book [20] explains
cryptography in greater detail. Although we will just scratch the surface we
will try not to omit the necessities.

Very briefly we will present the RSA algorithm. The RSA algorithm is
an asymmetric algorithm which means it uses a public encryption key and
private decryption key. When Alice wants to create her public and private
keys, she proceeds according to the following algorithm...1. Choose two distinct prime numbers p and q.
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4. Towards more complex problems ..............................2. Compute n = p · q. It can be proven that ϕ(n) = (p− 1) · (q − 1)...3. Choose an element e ∈ Z×ϕ(n)...4. Compute using extended Euclid’s algorithm d = e−1 where d ∈ Z×ϕ(n).
Knowing e it is difficult to find d, provided you do not know ϕ(n).

The public key is (N, e) and the private key is (N, d). The encryption of a
message m ∈ Zn is done by the Alice’s public key by putting

c = me ∈ Zn

where c is called a cypher-text. The decryption is done by Alice’s private key
as

cd = md·e n≡ m.

We will not prove this statement, but you can find the proof in [20].

The security of messages is in jeopardy if someone finds the value of ϕ(n)
and could recreate Alice’s private key. It is easy to find the value of ϕ(n) if
we know the prime factorization of number n.

Shor’s algorithm

Firstly we will introduce the algorithm without any comments so that the
steps are clear and the reader is not distracted. Then we will explain how
and why the algorithm works and we will give comments step by step.

There is a given n = p · q where p and q are different prime numbers...1. Randomly choose a > 1, where a ∈ Zn. Denote d = gcd(a, n)...2. If d > 1 then a is factor of n and therefore the algorithm ends...3. If d = 1 then find the order of a in Z×n and denote it by r...4. If r is odd, go back to step 1...5. If the equation ar/2 + 1 n≡ 0 does not hold the expression gcd(ar/2 + 1, n)
or gcd(ar/2 − 1, n) is a nontrivial factor of n and the algorithm ends.
Otherwise go to step 1.
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......................... 4.2. Factorization and the Shor’s algorithm

Explanation

The algorithm shown above deserves an explanation of why all the steps make
sense...1. We choose an element a ∈ Zn at random with uniform distribution. If

we are in the first step more than once, we will exclude already chosen
number. As the number n is finite this procedure ensures that the
algorithm ends. For next steps we will need the greater common divisor
of n and a and we will denote it d. Greatest common divisor could be
found by Euclid’s algorithm which has a polynomial complexity...2. We could be extremely lucky when we chose the element a and it could
be one of the divisors we were looking for. That happens exactly when
the divisor d is greater than one. Unfortunately for us this does not
happen very often...3. We will try to find the order of a in the group Z×n . We have shown in
Example 3.4.5 that this problem can be formulated as a hidden subgroup
problem and we can solve it by quantum computers efficiently. This is
exactly the part where quantum computers beat the ordinary computers.
We denote the order by letter r...4. We have successfully found the order r, that means

ar
n≡ 1

If the order r is even we can rewrite the equation to a familiar form
where factorization looks much simpler.

ar − 1 n≡ 0

(ar/2 − 1)(ar/2 + 1) n≡ 0
(ar/2 − 1)(ar/2 + 1) = k · n..5. We have figured out the number n divides (ar/2 − 1)(ar/2 + 1) which

should be elating. If n divides neither (ar/2− 1) nor (ar/2 + 1) we almost
have the factorization. Firstly n cannot divide (ar/2 − 1) because that
would mean ar/2 n≡ 1, which is in contradiction with the definition of
order. Sadly n can divide (ar/2 + 1) in some cases. Fortunately enough
according to [18] and [14] we choose a fitting a with the probability
greater than 1/2. Finally we know that (ar/2 + 1) or (ar/2 − 1) must
share a factor with the number n. We just have to find their greatest
common divisor.
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4. Towards more complex problems ............................
And here we have it, Shor’s algorithm, the mighty tool Eve can use to

break into Alice’s and Bob’s messages. We undertook a beautiful journey
with Eve, we studied linear algebra in complex spaces, we learned postulates
of quantum computation, we were introduced to groups, we discovered hidden
subgroups and we admired the power of quantum computation. Is it not a
shame to waste our fresh knowledge just on reading someone’s love letters?
We grew up and we can finally can have some fun on our own.

4.3 Formulation of the Deutsch’s problem

We have to keep an old promise we gave to the reader at the beginning
of Chapter 3. There we pledged that we would say what is hidden in the
Deutsch’s algorithm. After all we have seen that it seems reasonable to
presume there is also a hidden subgroup in the Deutsch’s problem. There
indeed is one and we will discover it in this section. Finally we will answer
why the Deutsch’s algorithm works.

There are four possible functions f1, f2, f3 and f4 on two element set {0, 1},
namely

1) f1(x) = x 3) f3(x) = 0
2) f2(x) = 1− x 4) f4(x) = 1.

We will just remind ourselves how these functions look like.

0

1

0

1
1)

0

1

0

1
3)

0

1

0

1
2)

0

1

0

1
4)

We are given one of the functions above and the task is to decide whether
the function is constant or not. We already know how the decision process
looks like from Chapter 2, this time we ask ourselves how we can interpret
this problem as a hidden subgroup problem.

We observe that the set {0, 1} can be interpreted as the group Z2. The
group Z2 has two different subgroups.
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..........................4.3. Formulation of the Deutsch’s problem..1. The first subgroup is trivial, the group H1 = ({0},+,−, 0). There are
two cosets with respect to the subgroup H1 which are {0} and {1}...2. The second subgroup is the whole Z2, which we will denote by H2. The
subgroup H2 has only one coset which is the subgroup H2.

The set of colours is in this case also the set {0, 1}. The function

fi : Z2 → Z2, where i ∈ {1, 2, 3, 4} (4.13)

fulfills the Simon’s promise described in 3.4.1 and we should show that...1. Choosing functions f1 and f2, which are not constant, they have different
values for input 0 and for input 1. The hidden subgroup in this case is
the subgroup H1 and the cosets are {0} and {1}. Indeed the Simon’s
promise is fulfilled...2. The functions f3 and f4 hide the subgroup H2 which is its only coset. It
is almost trivial to say the functions satisfy the Simon’s promise because
they are constant (on the only coset).

If we are able to find the hidden subgroup, we also determine whether the
function is constant or not. We can see the subgroup problem is in fact very
easy, because the subgroups are the two simplest possible (the trivial group
and the whole group). We can extend this example to a more challenging one
and the Deutsch’s algorithm can be extended to so-called Deutsch-Jozsa’s
algorithm [11], [18]. The Deutsch-Jozsa problem is: We have a function ρ and
we can choose as an input any number between 0 and 2n − 1. The function
ρ can be of two kinds. It can be constant or balanced (that means it gives
0 for one half of inputs and 1 for the second half of inputs). The goal is to
determine whether the function ρ is constant or balanced. The Deutsch’s
problem is case of Deutsch-Jozsa’s problem for n = 1. The solution to this
problem is unsurprisingly almost the same we have seen in the Chapter 2
with just a multidimensional twist.
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Summary

The story we began just few pages ago is at the end. Eve knows not only how
to break RSA encryption but she knows much more now. The exploration of
quantum computers opens doors to more previously unthinkable applications
which may or may not be in cryptography.

In Chapter 1 we explored mathematics of a simple quantum system, most
importantly we defined unitary matrices and tensor product. We enriched
the knowledge in Chapter 3 where we were introduced to groups and sub-
groups. We touched the topic of characters of groups, which was necessary for
development of the Fourier transform. We have written down postulates for
quantum computation in Chapter 1, where one of them is the measurement
postulate.

We also covered conventions for quantum computers in Chapter 1. We
introduced the bra-ket notation and the computational basis. We simplified
the notation of unitary matrices using quantum gates. We have demonstrated
how to work with quantum gates in Deutsch’s algorithm in Chapter 2. We
formulated the Deutsch’s problem as hidden subgroup problem by ourselves
in Chapter 4 using the knowledge acquired from previous chapters.

The quantum Fourier transform from Chapter 3 is used in a general
algorithm for solving hidden subgroup problem in Chapter 4. In the same
chapter the reader can find Shor’s algorithm for number factorization as a
teaser of the application of quantum computers in more complex and less
theoretical problems.
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Summary........................................
Despite the fact this thesis did not bring any new information I hope there

is some place for it and it can be used for example as an introductory text for
newcomers overwhelmed by quanta of much superior materials. I hope I was
able to pass some the knowledge I acquired on this journey to the readers
and maybe stimulate their curiosity in the topic of subgroups and quantum
algorithms.
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