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Abstrakt / Abstract

Proces výběru vhodných nástrojů pro
architekturu našeho IT systému je stále
obtížnější. V moderních technologických
trendech, jako je strojové učení a velká
data, je snadné ztratit se v bezpočtu
nástrojů použitených k našim účelům.
Tato práce je příkladem toho, jak dlouhá
může být analýza návrhu relativně jed-
noduchého, ale zároveň zatěžujících pří-
padů užití.

Naším hlavním cílem je seznámit čte-
náře s technologiemi běžně používanými
pro budování špičkových systémů zpra-
cování proudů dat. Tato práce vysvět-
luje obecné pojmy a trendy návrhu ta-
kové architektury a dále se specializuje
na případy užití v reálném světě. Tyto
případy užití zahrnují sběr, zpracování,
ukládání a analýzu údajů ze senzorů.

Po návrhu potenciální architektury
a výběru vhodných nástrojů teoreticky
vyhodnotíme a vybereme vhodné ná-
stroje pro naše účely. Tyto nástroje
jsou poté využity v návrzích různých
konfiguracích systému. Z těchto mož-
ných konfigurací je jedna vybrána a
dále vyhodnocena na reálných datech a
scénáři.

Klíčová slova: bakalářská práce; stro-
jové učení; zpracování proudových dat;
distribuce dat; časosběrné data; IT ar-
chitektura; zpracování senzorových dat;

Překlad titulu: Architektura systému
zpracování senzorických proudových dat
s využitím strojového učení

The process of selecting proper tools
for our IT system architecture becomes
increasingly difficult. With modern
technology trends, such as Machine
Learning and Big Data, it is easy to
get lost in the myriad of tools capable
of serving our purposes. This the-
sis exemplifies how thorough analysis
for designing a relatively simple yet
demanding use case can be.

Our main goal is to familiarise the
reader with technologies commonly
used for building cutting-edge stream
processing system. This thesis ex-
plains general concepts and trends
of designing such architecture and is
further specialised for real-world use
cases. These use cases involve sensor
data collection, processing, storage and
analysis.

After drafting potential architecture
and selecting appropriate tools, we the-
oretically evaluate and select well-suited
tools for our purposes. These tools are
then suggested for use in various sys-
tem configurations. Out of these pos-
sible configurations, one is selected and
evaluated further on real-life data and
scenario.

Keywords: bachelor thesis; machine
learning; stream processing; data dis-
tribution; time-series data; IT architec-
ture; sensor data processing;
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Chapter 1
Introduction

1.1 The Abstracted Problem Statement
In the physical world, we can build a “building” for various purposes. The building can
become a house, a factory, an office, a hospital, etc. Different requirements dictate the
optimisation of the external and internal layout of a building. These optimisations also
influence the equipment inside of such a building. A similar story also emerges in the
field of information system design. As we do not build houses as one large multi-purpose
room, likewise we do not design information systems unsuitable for our intentions and
purposes.

This analogy might seem a bit silly it might be though helpful for people unfamiliar
with topics discussed within this thesis. To a degree, we can compare building a house
with designing an information system. Imagine that the bricks used to build a house
are invisible, but you can perform various measurements on them. Upon these mea-
surements, you can make an informed decision and select the most suitable types of
bricks for your house. It is though time-consuming to measure each type of brick. Our
thesis aims to gather these measurements and compile them in an insightful manner.
Eventually, we would like to perform a few key measurements on our own to confirm our
theoretical analysis. Even down the line, having an additional room for an upcoming
child, having a garage for potential car purchase might be a worthwhile investment for
the future. Since we also do not have unlimited time to study every type of brick, we
apply strict pre-analysis to select the most suitable types for further analysis.

We sincerely hope this brick & building abstraction helps the reader to understand
the potential hurdles of designing an information system suitable for our use cases.

1.2 The General Problem Statement
Most technology progressive companies are implementing or considering to implement
machine learning (ML) capabilities [1] [2]. Mainly with intent to further enhance their
operation. Existing ML tool-kits have a great reputation for building complex predic-
tion systems quickly. However, at the same time, there are many hurdles in order to
integrate machine learning into large-scale production systems [3] [4]. The underlying
system architecture design is not oftentimes ready for ML-specific issues. According
to Venturebeat [5], 87% of ML projects fail. This extremely high failure rate can be
attributed to overlooking the crucial differences between AI/ML and conventional soft-
ware development. Sure, it is possible to train and test ML model in just minutes these
days. But eventually, without proper platform providing continuous maintenance for
ML models, the cost of maintenance will be much higher than anticipated. There needs
to be extensive coordination between various teams and roles from data scientists to
DevOps. Responsibilities and ownership of models must be clear to prevent low quality
algorithms remain in production. The more dynamic the real-world use-case is, the
more important is clear stable ML model development and maintenance workflow.

1
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A technical debt is a phenomena quite fitting for ML issues description. Technopedia

[6] defines it as: “Technical debt is a concept in programming that reflects the extra
development work that arises when code that is easy to implement in the short run
is used instead of applying the best overall solution” But why is machine learning so
difficult to maintain though? According to [7], on top of the typical code maintenance
cost there are also ML-specific issues. Those issues stem from the fact that with ML,
the data influences the system behaviour. That is the reason why common methods
of technical debt mitigation fail. It is preferable to validate our systems readiness for
ML workflows before we start pushing ML models into production. If the validation
uncovers some either common anti-patterns used (glue code, code smells, pipeline jungle
etc.) or ML-specific anti-patterns (as specified in [7]), you should view it as a warning
sign. Do not blame just the developers though. Your systems might not be ready for
ML. One can build a ’house’ without proper tools, but it will take much more time,
and in the long run, the costs will stack. This aspect is the main focus of this thesis,
to build a proper set of tools before we start building ’houses’.

Our general approach is not unique, and many case studies are adopting similar
thought processes and patterns, as can be seen throughout this thesis. Some of the
examples include: [8], [9], [10], [11].

1.3 The Scope of This Thesis
As in the case of many companies implementing ML systems, a company called Safibra
also experiments with these technologies. Cooperation with this company allows us
to specify our goal further and introduce real-world examples. This specification is
also important because general studies and analyses are readily available but do not
provide significant beneficial insights into our particular goals. System architect would
be still required to assess the situation, compile insightful information and perform
custom measurements. Our focused assessment allows companies and individuals in
similar fields of interest to apply our analysis without much additional research into
production directly.

Safibra specialises in optical sensor development and would like to use machine learn-
ing capabilities for sensor data evaluation. Recently there have been attempts at de-
ploying ML on top of their existing systems. These attempts were developed using a
top-down approach, i.e. data science first. Much valuable work has been done, and it
provides reference points to this thesis. But unfortunately, those results were difficult
to use in the production environment. This might be considered a real example of why
the bottom-up approach with ML is more suitable than a top-down approach.

1.4 Outline of This Thesis
Characteristics, as defined in the assignment, are subject for further explanation in the
chapter 2.1. Upon these characteristics we define specific constraints called require-
ments, bounding our goals within Safibra use case environment. With the bottom-up
approach, in chapter 2.3, we evaluate the current state of the system architecture of
Safibra, and in chapter 2.4, we also discuss a resulting prospective architecture design.
Then in chapter 2.5, we take a look at which tools are available for our purposes and
approaches we may implement within our resulting design.

In chapter 3.1 we further define evaluation methodology of tools discussed within
chapter 2.5. This methodology is heavily reliant upon requirements defined in chapter

2
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2.2. Preference is then determined upon general evaluation best-practices from various
trusted sources. Upon evaluation in chapter 3.2, in chapter 3.3 we define multiple
approaches upon which we select and configure tools within the resulting architecture
variants. In chapter 4 one of the prospective variants is then selected and further
evaluated on real-world examples.

3



Chapter 2
Analysis

Based on the thesis assignment, we would like first to explain the idea behind designing
a system according to the defined characteristics and requirements. Second, the current
state of the system brings our attention to a few key areas of interest. Upon these areas,
we elaborate on how to implement them. The implementation comprises of correct tool
selection and connecting them according to architecture we devise.

2.1 System Characteristics of Interest
Initially, to further develop characteristics defined within our assignment, we would like
to offer supporting explanations. Upon these characteristics, we define requirements in
a standardised manner. Metrics upon which we evaluate selected tools are defined in
chapter 3.

2.1.1 Scalability
This article [12] offers an elegant guide to how the scalability of cloud systems can be
defined and measured. In short, it is the ability to ”sustain increasing workloads by
making use of additional resources”. They identified two distinct approaches on how to
view scalability.. ”Resource Demand Metric” looks at how much resources are required for a particular

workload size. An exponential curve would mean that with the increasing workload,
we would need exponentially more resources.. ”Load Capacity Metric” looks at how our processing capacity evolves with additional
resources. Here a logarithmic curve would be analogous to the exponential curve
of demand metric. That is, how our processing capacity changes (increases) with
additional resources. Indeed, a linear curve would be ideal scalability, but it is
impossible to achieve in the real world.

Figure 2.1. Load capacity metric of different scalability scenarios. (Source: [13])

According to [13] universal scalability law can be represented as:

4
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Where X(N) is a throughput at a given load N , and C(N) = X(N)/X(1) is nor-
malised throughput.

There are also different methods of scaling up our operation. As discussed in article
[14]. Vertical scalability corresponds to expanding our singular instance to handle
larger workloads. In contrast, horizontal scalability utilises more instances to handle
larger workloads. While vertical scalability is usually more efficient, it has obvious
technological limits. That way for large scale operations, we are usually forced to work
with horizontal scalability. The limitation of vertical scalability is also one of the reasons
why cloud technology development accelerated during the last decade. As workloads
increased, companies needed easy and affordable solutions.

2.1.2 E�cient Use of Resources

We internally define the efficient use of resources as utilising on-premises infrastructure
as close to 100% as viable. The details differ from operation to operation. For our use
cases, efficiency would be at near-optimal levels if we deployed tools allowing for:

. Machine-learning model training automation. A high degree of pipeline automation ( model validation, continuous training and
tuning, serving ). Automatic data cleanup

Our general goal is to lower the idle time of our infrastructure as low as possible.
Of course, this does not mean utilising the infrastructure with bogus tasks, but it is
better to run even low importance tasks rather than letting the infrastructure idle. This
paradigm also applies to human resources. If we have hired a data scientist to work on
machine learning models, we would like to set up our system so he won’t be spending
much time on overhead tasks. But the situation changes if we would like to deploy
our application onto public cloud service. The goal becomes the opposite. We want to
utilise the infrastructure as little as possible but still provide fully for our use cases.

Figure 2.2. An example of inefficient resource use with static VM1 resource allocation.
(Source: [15])

2.1.3 The Simplicity of Development and Deployment

Suppose a company uses a system for which there are not many people who know how
to operate it. The company may fall into the trap of unavailability of additional human
resources to operate the system. Or the required qualification would cost much time and
many resources. This situation can cause devastating problems for smaller companies.
Easy migration support between programming languages or system modules can be

5
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considered crucial for smaller companies utilising advanced technologies. This way,
the technical debt could be ameliorated by the ability to phase out deprecated code
gradually

The interfacing capabilities between programming languages are becoming increas-
ingly important as the software industry gradually shifts from monolithic to modular
approaches. An article [16] illustrates the importance of cross-language interoperability
in modern IT systems development.

2.1.4 Performance
Internally we define performance as a metric of how much can you get from a system
that costs a certain amount of money and labour. This metric is especially useful if
your finances are constricted, and you can’t afford to experiment with such technologies
wildly. Together with scalability metrics, you can calculate unit costs of your desired
workload. This knowledge can be advantageous to planning (business plan, project
plan, research plan). Some of the metrics relevant for this thesis are:

. Stream processing capability ( count of streams ). Data I/O ( Database throughput, data distribution throughput, network bandwidth,
Technology limits ). Latency (offload latency-sensitive workloads to L1)

As performance metrics are generally difficult to grasp and require purpose-build
definition for each type of tool, we define these metrics further in chapter 3.

2.1.5 Cloud Deployment
For small vendors the flexibility is crucial. Sometimes it is desirable to test new tech-
nology on leased infrastructure first. That is why we would want to keep an eye open
on easy deployability on public cloud services of our selected tools. As we are consid-
ering cloud, cluster-based architecture, there shouldn’t be a problem to achieve this
characteristic. One of the criteria for selecting the right tools for our architecture is
their popularity and user base size. Popular tools are usually natively supported by
large cloud service providers.

2.1.6 Openness
One way to save the cost of technology is to use open-source community-developed
software. This paradigm shouldn’t be pursuit at all cost. Sometimes it restricts us from
pursuing more reliable or faster software alternatives. Usually, proprietary software
comes with perks such as extended support from vendors or higher platform stability.
The detriment usually comes at the cost of fees and usually an inability to customise the
software. Open-source software, on the contrary, is preferred for experimental usage.
Lately, even big players such as Google, Microsoft or Amazon are supporting open-
source projects and sometimes replacing their proprietary software with them. The
popularity of for example Linux and Apache software is only expected to grow in the
future. Usually, this phenomenon does not compromise big software companies because
there is increasingly more money providing support for these products or customised
versions of those products than in retail sales.

2.1.7 Cost
We can identify two types of costs: one time costs and recurring costs. In the realm of
our project, let’s focus on our infrastructure and software tools. With infrastructure,

6
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the difference boils down to whether or not we want to pay an upfront cost and own the
infrastructure or we would like to deploy our solution onto public cloud service. Within
this context, we would like to allow for both. Open source tools are usually available
for free upfront, but the costs stack up with more difficult maintainability. We want to
consider the advantages and disadvantages of each approach within this thesis.

2.2 Requirements
Requirements are usually categorised into two groups. Functional requirements are
definitions of what the system should do. In contrast, non-functional requirements
define how the system will perform defined functions. Based on the characteristics
explained above, we can identify these requirements.

2.2.1 Functional Requirements (FR)
The system must:

1) Allow for the processing of streaming data.
2) Be compatible with AS-IS custom data sources (read/write abilities).
3) Support various machine learning libraries, including TensorFlow.
4) Be primarily developed in Python.
5) Offer programming language flexibility.
6) Be highly scalable through using, for example, parallel cluster computation and data

lake technologies.
7) Have work planning and scheduling.
8) Allow for machine learning model development automation for more efficient infras-

tructure usage.
9) Support in-memory data processing to allow for accelerating data-intensive scenarios.

10) Support resiliency to be used, at least when needed.
11) Not lose data, at least when needed.
12) Be able to visualise data.

2.2.2 Non-Functional Requirements (NFR)

1) Commercial usage of the system must not require special licensing.
2) The cost of running the system must be approved by the client.
3) The system architecture must be built with cloud deployment in mind to either public

or private cloud infrastructure.
4) The system should be built upon open and widely available tools.
5) Tight integration of existing proprietary software should be possible.

2.2.3 Architectural Requirements
The two most popular approaches to designing a big data analytics system architecture
are Lambda and Kappa architectures [17] [18]. Lambda architecture is older and has
been developed with legacy batch processing in mind. In addition to batch processing,
there is also a modern stream processing layer. The newer streaming approach is usually
used for workloads that require fast responses to events.

The idea behind Kappa architecture is that you can utilise the stream processing layer
also for batch processing. Furthermore, the ability to apply the same algorithms and
approaches used for stream data also on batch data significantly simplifies the code

7
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Figure 2.3. Overview of Lambda and Kappa architectures. (Source: [19])

maintainability. With Lambda architecture, the batch and stream code-bases would
be usually separated as our use cases are usually focused on processing stream data.
As batch and streaming data ought to be using the same channels, there are usually
concerns about the data distribution layer becoming the bottleneck of our system. But
as in the article at Uber Engineering [20], this deficiency can be resolved by utilising
native database connectors, separate from common channels.

Figure 2.4. Timeline of various stream processing tools and indication of the ideology shift.
(Source: [21])

Although the preference of Kappa architecture throughout this thesis is based on the
intended usage of the system, each approach is valid. Our preference is aligned with
the historical shift of trends in data processing approach [21]. Primary data units are
streams of sensor data and events. Batch data could still be processed as a particular

8
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type of bounded stream. This approach allows us to further focus on stream processing
optimisation, as we experiment with various configurations.

2.3 Current System Architecture
Let us begin with an overview of the current system architecture.

The current architecture comprises of two processing components (levels) serving
different roles. This role separation is crucial to the cost-efficiency and stability of the
platform. Each level is independent of one another. The communication is based on a
traditional TCP/IP network with VPN1 tunnelling.

Figure 2.5. High-level view of the current system architecture. (Source: own data)

The ”Level1 box” is responsible for the direct collection of data from sensors and
sending them out for further processing. This component is low performance, I/O
focused platform running a distribution of Linux-based OS. It can be configured and
monitored via a local web-based app, QT interface or SSH. The idea behind this box
is to have a lightweight mobile data collection point that doesn’t require additional
equipment to operate. But for advanced capabilities, a network connection is required.

The ”Level2 box” is responsible for data processing, storing and evaluation. This
component accepts and aggregates data from ”Level1 boxes”. The hardware is much
more powerful than ”Level1 box”, but the component is still severely limited by how
much data it can process at a time. Services running on this level are database server,
web control and elastic search. The ML does not have proper integration, and there
are no automated pipelines available. Users need to manually select and prepare data,
train and validate models and deploy them.

The communication between levels is usually performed via the internet. That is
why there is a need for a secure connection. Usually, and in this case, VPN provides
end-to-end encryption of data travelling across unsecured networks. This way, the
communication cannot be wiretapped somewhere between our networks. The security
of the data transfer may be crucial if different sensor technologies such as cameras are
1 Virtual Private Network
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used. With cameras, there would be high privacy concern also with how and where the
camera feed is stored. VPN also allows for the convenience of virtually being directly
connected into our internal network, allowing for better and easier device management.

Overall this architecture has many bottlenecks barring us from scaling it up mean-
ingfully. It is certainly not ready for optimal machine learning deployment and devel-
opment pipelines. But the architecture is quite simple and doesn’t require specialised
knowledge to operate it.

2.4 Prospective Architecture Proposal
We would like to begin with an exploration of how it is possible to improve the AS-IS
state. The design below can be considered as a general overview of areas of interest.
With a strict following of requirements defined above, we can identify 5 different areas
to enhance this operation further. In this proposal, we incorporate ”Level2 boxes” into
either private or public cloud infrastructure. This way, we don’t need to consider them
as an independent entities, but as mere resource (infrastructure) providers.

Figure 2.6. High-level view of kappa-inspired system architecture. (Source: own data)

2.4.1 L1
With regards to aforementioned requirements, we can now consider L1 boxes connected
to SigProc1 software as generalised data sources that can provide readings of various
types of sensors. SigProc, together with L1, is responsible for initial data preparation,
or raw data can be forwarded directly from L1. However, the raw data streaming possi-
bility is not a viable option for universal usage due to the high throughput requirement
for each data stream. Our goal is to test this option, but it is not a requirement. Op-
tionally L1 can be equipped with an ML accelerator used for low-latency offline data
evaluation/classification with ML models provided by higher layers. This would greatly
expand the possibilities of L1 data preprocessing. Microsoft, for example, is quite active
in the field of so-called Edge Machine Learning [22].
1 Signal Processor

10
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Figure 2.7. Simple comparison of the Edge and Cloud computing. (Source: [23])

2.4.2 Data Distribution

Depending on our requirements, we may use two distinct approaches for the concept of
data distribution [24]. First, there are P2P1 utilities capable of high throughput and
low latency but are more challenging to set up and are prone to errors. If either side
of the delivery process is disrupted, the whole pipeline might fail, and data might be
lost. Second, broker-based data distribution systems are rising in popularity, mainly
due to their reliability. Although we can see substantial performance degradation,
the ability to configure our data paths to a much larger extent is often welcome. Also,
usually brokered systems come with the ability of data retention in the case of operation
disruptions. These systems can also have the ability to be hosted across multiple servers
or clouds to provide high resiliency from service disruptions.

Figure 2.8. Simple comparison of the Broker-based and P2P communication. (Source:
[25])

To allow for better scalability and stability, we would prefer to unify the data dis-
tribution layer under brokered solution. Together with the Adapter module, it creates
universal data hub for even proprietary software and communication protocols. This
allows for the connection of legacy L1 + SigProc systems to modern brokered data
distribution environments (such as: Kafka, Flume, Kinesis, MQTT, etc.). The primary
function of this layer is to distribute and route data where needed. The presence of a
QoS2 equivalent is welcome. This would allow for flagging and executing selected jobs
as high-priority. The platform needs to be highly universal, so we would be able to

1 Point-to-Point
2 Quality of Service
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swap connected tools easily when required. This is the reason why we focus primarily
on industry-standard tools.

Even though these systems are usually quite well optimised, there are still concerns
about whether brokered solutions are usable for high throughput scenarios. The histor-
ical batch data processing use cases sometimes require GB or even TB of data loaded.
Brokered tools applicable for our data distribution requirements, such as Apache Kafka,
may have problems with sudden loads like these. This incentivizes the use of hybrid
solutions.

To prevent congestion, on the path DB→Processing, native database connectors are
preferable. Uber Engineering tested this approach and showcased remarkable perfor-
mance improvement within their experiment [20]. But the compute layer must support
this approach. If not, then for compatibility reasons, we also depicted the less preferable
variant in Fig 2.3.

Figure 2.9. Potential congestion point. (Source: own data)

On the path of L1→Processing, the expected data throughput required for streaming
raw data is in the neighbourhood of 1.8MB/s per stream. This may also be quite trou-
blesome for brokered systems. Offloading to P2P connections might provide attractive
solution to such workloads. This could be realised by the adapter instead of streaming
the data into brokered system, streaming the data directly to processing layer. This ap-
proach could be more difficult to set up, but can significantly improve the performance
for high throughput scenarios.

In the future, after validation of this approach in production, it is desirable to move
data sources closer to the data distribution layer. This can be achieved by integration
of Adapter into SigProc software and maybe integrating SigProc functions directly into
L1 devices. This way the data would have shorter path to processing layer.

2.4.3 Data Processing
As Lambda-type architectures utilise separate batch and stream processing layer, with
Kappa architecture we can emulate batch processing within stream processing. Batch
processing usually loads data in large chunks and performs desired operations all at
once. This approach leads to usually highly accurate results. With modern tools we
can be emulate batch processing as bounded data stream processing in larger chunks,
which will lead to similar or even identical results. Its behaviour also becomes more pre-
dictable. On the contrary, stream processing does not have definite result and produces
results gradually. The accuracy is traded for speed upon which we arrive to results.
The usual usage is in conjunction with real-time analytics or, for example, continuous
machine learning. The data flows in small chunks and can be considered unbounded
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(does not have defined end). Support for this approach is essential for the use-cases of
signal processing. These layers also should be optimised for high parallelisation. The
division of Kappa stream processing layer into two distinct approaches is defined in [17]
as ”Accuracy: Only when required.” approach.

The compute resources are structured into clusters, upon which workload can be
efficiently distributed. This approach is in accordance to flexible cloud infrastructure.
The ability to allocate resources as needed is crucial for maintaining the ”efficient use
of resources”. Batch jobs generally require larger allocations of resources over short
period of time and stream jobs smaller allocations for longer periods. Each job is
defined usually as Python script defining where to get data and what to do with it.

2.4.4 Database
Raw data, results, models need to be stored and handled somewhere. This is the job
for data layer. As the data layer is usually the bottleneck in big data processing archi-
tectures, we would like to diversify. The idea is to utilise various database technologies,
each for its optimised purpose. Let’s say for raw sensor data storage our requirements
for database are quite different than storing large chunks of static data. For exam-
ple, for our data collection purposes we would like to use NoSQL columnar time-series
databases, optimised even for larger quantities of timestamped streaming data. But
let us say, for big data storage, we would like to use disk-optimised clustered database
solution.

Figure 2.10. Comparison between row-based relational databases (such as PostgreSQL),
and column-based databases (such as Cassandra). (Source: [26])

The general trend [27] is to gradually phase out do-it-all databases if we can be certain
of our use cases . Within this thesis we would like to mainly focus on the specialised
streaming data destination databases. General purpose databases are well documented
and we feel that the knowledge about time-series specialised databases would be more
beneficial.

2.4.5 Analytics
Last distinct layer is Analytics layer. This is the place, where data scientists spend
most of their time. Data visualisation is important part of any data-centric operation.
It is especially crucial, when you need to showcase your results to investors or potential
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clients. From available data, you should be able to improve your machine learning
models, reaction responses, or find new use cases for your technologies. In this case
we would like to include also feedback connection to lower level devices, so we can for
example sound alarms or provide on-site real-time advanced analytics. As these alarm
and feedback applications are in this case quite custom-made, our goal is to prepare
suitable environment allowing for straightforward development.

2.5 Tool Selection
For the purposes of concrete approach definition and tool selection we would like to
narrow down the areas to focus on. These areas correspond with layers as in the
general to-be architecture proposal.

. Data distribution. Processing engine. Database

On top of the main tool selection, we can extend the architecture’s functionality
even further using additional tools. Additions are supposed to be swapped easily, as
requirements may change. These tools can be utilised for various purposes, such as:
. Process automation
. Visualisation
. Additional Databases

Deployment environment solves the problem of where to run our code and in which
way the hardware resources would be accessible for our system. As we are exploring
both possibilities of deployment on private and public cloud, we need to account for the
differences of such approaches. For better portability, we can consider also packaging
our application into containers with a platform such as Kubernetes.

2.5.1 Data Distribution

2.5.1.1 P2P Solutions

gRPC
The gRPC is a modern RPC1 tool with bi-directional streaming support. gRPC is

also an open-source platform backed by Google and is rapidly gaining popularity in the
industry. It is optimised to offer high performance and low latency transport. Using
HTTP/2 and Protocol buffers serialiser makes it much faster and efficient than JSON or
XML based RPCs. Though the benefits come at decreased compatibility, which would
not be a problem for our purposes.

Solution based on gRPC would be among the fastest, but it would come at a cost
of point-to-point only connections. The reason is that gRPC does not use middleware
to broker messages. Only two nodes can communicate with each other in a traditional
client-server set-up. By using HTTP/2 gRPC is not restricted to request-response
synchronous communication, but can offer continuous asynchronous communication
(streaming). Eventually it would require a little bit more work to set-up than other
tools, but the additional performance may be worth it. Especially considering high
throughput required for raw sensor data ingestion. gRPC uses Protocol buffers for data
1 Remote Procedure Call
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Figure 2.11. Overview of gRPC stack. (Source: [28])

serialisation, which is proven [29] to be more efficient with respect to data throughput
and lower resource usage in contrast to JSON [30]. The main downside is fixed schema,
which needs to be maintained and synchronised across applications. The more difficult
maintainability should not be a problem for our purposes of sensor data ingestion.

ZeroMQ
Another great pick for data distribution might be ZeroMQ library, an open-source

message queue API. The name represents message queue (MQ) and brokerless design
(Zero). This means it can be described as a RPC enhanced with MQ capabilities. It
also offers wide variety of message schemas and transport capabilities. This is possible
mainly because of its low-level nature. The ZeroMQ is schema agnostic, it accepts
any binary data. The serialisation must be handled independently and on top of that
you need to partition the message according to maximum ZeroMQ message size. Al-
ternatively, you can send multipart1 messages, but the total size must fit into system
memory, otherwise you need to split it into chunks.

Figure 2.12. Typical usage of ZeroMQ library. (Source: [31])

ZeroMQ offers high-performance, low-latency communication with MQ capabilities,
but with high implementation cost. The high implementation cost can be explained, for
1 Multiple messages sent as a single group.
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example, by our need for streaming support. ZeroMQ does not implicitly define it, so
all the data partitioning and preparing would be in our hands. This may be actually an
advantage for some specific projects, but for us it is probably just a hassle. The lack of
any guarantee of message delivery should not be that much of a trouble for our purposes,
but it may be nice-to-have. The redeeming property of ZeroMQ is its customisability,
it would add much work on our side, but it could be crafted exactly according to our
needs. ZeroMQ also offers flexibility of using it in broker mode, although it is not simple
to setup as in Apache Kafka.

Strengths of its brokerless mode against broker-based RabbitMQ are detailed in [32].

2.5.1.2 Brokered Solutions

Figure 2.13. Comparison of popular message queuing tools. (Source: [33])

There are many compelling brokered data distribution tools, but selecting few worthy
candidates is a daunting task. Thankfully a detailed article [33] comparing popular
message queuing tools provides an invaluable insights into inner workings and traits of
each tested tool.
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Apache Kafka
Kafka is a very popular message broker/stream processing platform. It is open-

source and widely adopted for similar use-cases as ours. The seamless compatibility
not only with other Apache tools makes it a good choice for most architectural designs.
It is proven to be one of the fastest message broker tools [34]. Its wide usage also in
the context of machine learning applications is indicative of the advantages it has in
contrast to other message brokers. It works rather differently from RPC-based tools.
The client-server roles are replaced by publisher-subscriber ones. Publishers send data,
subscribers filter and receive data. Kafka requires middleware (hence the broker) to
accomplish its goal. This approach allows it to manage data in a reliable way and
run separately of other applications. But the downside is added latency and also higher
overall complexity of our system. Kafka can use different message schema such as JSON,
Protocol buffers, Avro. This enables us to choose the best schema for our purposes,
whereas with gRPC we are restricted to Protocol buffers.

Apache Kafka may not be the most modern tool for this job, but it has a large com-
munity supporting it and a few performance enhancements, beneficial for our purposes.
To explain these benefits we need to first define two fundamental approaches of message
handling as defined in [35].

. Shared message queue. Publish-subscribe model

The main advantage of a shared message queue is its easy scalability. The idea is
that one producer delivers through the message queue a message to one consumer,
which redistributes it further. The message is deleted right after consuming it from the
message queue. Thus if we would like to multicast or broadcast our message streams,
we would need to use multiple instances of this type of queue. The scalability is not
affected, however. This approach is better suited for sending commands to consumers
as we can address each consumer individually.

Figure 2.14. Comparison of shared MQ / Publish-Subscribe. (Source: [35])

The publish-subscribe model allows multiple consumers to consume messages. Topics
are created as needed, each providing a ”channel”, where you are able to subscribe or
publish updates. Scalability is limited, mainly because each subscriber needs to sub-
scribe to each instance of the topic (so called partitions). Within small scale operation,
this would not be a big problem. But as we also focus on the system’s scalability, we
cannot overlook the possibility of medium-large scale deployment.

In their pure form, these approaches are not usually implemented in real-world.
Apache Kafka offers a solution to these deficiencies of a publish-subscribe model by cre-
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ating ”consumer groups” and utilising message retention by brokers. When consumers
join a group and subscribe to a topic, only one consumer within group consumes the
message from the broker. Then the message gets distributed within the group. This
approach lowers the count of subscriptions to topics by consumers dramatically. Fur-
thermore, Kafka prefers fair distribution of subscription by consumers within a group.
Each consumer should have the same amount of different topic subscriptions if possible.
Flexible data distribution without a significant performance penalty is then possible.
Indeed, it requires more configuration but the advantages outweigh the disadvantages.
These definitions and claims are supported by [35]. For our purposes, benefits of con-
sumer groups would be well utilised. If we would like to run multiple compute pipelines
on the same stream of data, our data distribution performance would not suffer much,
if we bond these pipelines within consumer groups.

Figure 2.15. Diagram of Apache Kafka architecture and consumer grouping. (Source: [33])

Furthermore, Kafka outperforms most broker message queue systems in pure
throughput metrics [36]. This fact indicates its usability also for potential raw data
distribution. Its deficiencies are visible in the latency metrics, which may hamper our
ability to provide low latency responses. For these kinds of purposes, different methods
of data distribution may be preferable. Faster alternative to Kafka would be for
example broker-less message queue ZeroMQ. It could also be used in conjunction with
Kafka. As there might be throughput intensive workload, which would unnecessarily
strain Kafka broker. Workloads like these could be offloaded to a faster alternative,
even at the cost of more difficult manageability and loss of broker advantages.

Amazon Kinesis
With AWS1 suite Amazon offers its own proprietary data ingestion service with

native support for streaming and real-time data analysis. The proprietary Amazon-
maintained nature of it offers high-stability, easy set-up and high-performance platform.
The downside is that you must use AWS for entirety of your operation. You are therefore
locked in a one vendor ecosystem which has its own advantages and disadvantages. The
upside is that you would not need to troubleshoot the system on your own and you
1 Amazon Web Services
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would pay just for the services you use (amount of data transferred). Choice of this
tool would largely depend on the willingness to use AWS in (almost) full stack of your
operation.

Figure 2.16. Overview of data ingestion and processing with Amazon Kinesis pipeline.
(Source: [37])

Apache Pulsar
Apache Pulsar, relatively fresh addition to the Apache ecosystem, aims to create a

highly scalable message queue system. Although architecturally different from Apache
Kafka, it offers similar capabilities. The main difference from Apache Kafka is that
data distribution and data storage layers are separated. The data distribution is still
handled by so-called broker, but the data storage is delegated to so-called bookkeeper.

Figure 2.17. Diagram of Apache Pulsar architecture. In contrast to Kafka, the messages
are pushed to consumers. (Source: [33])

This approach, although introduces more complexity, Is much more robust in terms of
scalability, efficiency and performance. The creation of topics and message distribution
is not dependent on data storage within topics. This approach allows us to scale up
the topic count independently on the storage subsystem and vice-versa. Pulsar also
supports multiple QoS guarantees, similar to Kafka but offering extended support for
delayed queuing and priority queuing. Even though it is a relatively young platform, it
has gained significant popularity among open source community.

Even through the numerous advantages of this architectural approach are significant,
there are also some drawbacks. First, the separation of data distribution and data
storage introduces additional latency and network traffic while reading or writing data
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into the data storage system. Due to this limitation it might not be wise to use this
approach for every use case. Second we might run into some compatibility problems
due to the immaturity of this system, Kafka has much larger industry support. Third,
the increased complexity of this approach objectively complicates deployment of such
system.

Arguments and claims concerning Apache Pulsar are supported by [33].

2.5.2 Processing Engine

As we already researched multiple data distribution methods, now we need to think
about how the data will be processed. With requirements for high scalability, our
compute platform also needs to be robust and scalable. As we discussed in the scalability
definition above, we cannot only rely purely on vertical scaling. Then, with horizontal
scalability, there are a few obstacles we need to address. The first is how well will we be
able to parallelise our workload. Second, with parallelisation comes higher programming
difficulty. Thus, the pipeline and job creation tools should be reasonably well abstracted
from low-level operations. A significant benefit would also be easy interoperability and
compatibility with tools we select. As the computer engine connects to data distribution
and serving layers, it is crucial to look out for any possible bottlenecks within the
compute engine.

Figure 2.18. Simple comparison of Native/Microbatch stream processing. (Source: [38])

Historically stream processing started as an extension to DBMS1 systems as an ex-
ecution environment for standard database operations (joins, aggregations, filtering,
grouping). Later, with increasing data volume, these tools secluded and evolved ca-
pabilities for parallel processing. Usually these tools adopted unified single-pass data
processing. Within this thesis we call this approach ”Native Stream Processing”. The
other, different processing model, which evolved alongside Native Stream Processing is
Micro-Batch Processing. As we would like look and compare these tools objectively, we
selected few relevant and processing tools for further inspection.

2.5.2.1 Native Stream Processing

The tools within this group share common processing model, but their inner working
may differ significantly. The processing is generally designed as data-flow graph with
nodes serving as transforming operations or general processing elements. This meant
1 DataBase Management System
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that input stream is forwarded to processing nodes, which perform various operations
on the data stream, leading to either transforming elements within the stream or cre-
ating a new stream. The scalability might be limited, because these continuous stream
operations might not scale well on multiple threads (or across cluster). But this ap-
proach allows better predictability of delays, which may occur during processing (also
latency).

Apache Storm / Twitter Heron
Apache Storm and Twitter Heron ( incubating Apache ) are popular stream pro-

cessing tools based on almost equivalent approach. Apache Storm was introduced in
2011 and later was acquired by Twitter, upon which it was open-sourced and licensed
under Apache license. As Twitter grew, the requirements for faster stream processing
did as well. In 2015 they introduced Heron. With the experience from the Storm, they
strived to improve upon the time proven stream processing tool. Heron improves on
many deficiencies of Apache Storm architecture. It should be faster, better scalable and
more efficient overall. Twitter detailed the deficiencies of Storm architecture and de-
scribed improvements made in the Heron architecture within this paper [39]. The API
remained compatible with Apache storm applications, thus it might be an attractive
replacement for Storm-based systems.

Figure 2.19. Diagram of Apache Heron/Storm acyclic graph structure of Spouts and Bolts.
(Source: [40])

Recently there have been some voices, advising to not jump the ship to Twitter Heron
just yet [41]. On top of that, the popularity and usage of Heron compared to Storm is
not great.

Storm contains two types of elements which are connected in uni-directional graph.
Data sources are called Spouts and data manipulators are called Bolts. Data is pro-
cessed by Tuples, as soon as they arrive on Spouts. This approach is preserved in Heron.
The dataflow can be optimised by configuration for either latency or throughput. There
is also wide support for API languages ( Java, Python, C++, Scala ) and numerous
data sink connectors.

Apache Flink
Apache Flink has many similarities to Apache Storm. Within both, Flink and Storm,

the dataflow is represented as directed graph. Each vertex is intended for data manip-
ulation and each edge represents a flow of data. As Flink is based on Java, instead
of using Spouts and Bolts ( custom functions ), its functions and data structures are
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Figure 2.20. Diagram of Apache Flink acyclic graph structure. (Source: [42])

defined natively within Java ( map, flatMap, filter, project, reduce ). This approach
does not restrict us to only embedded functions, but it also allows us to write custom
operations in a standardised manner.

The Flink architecture is divided into 2 modules in a master-slave relationship. The
master module is called Job Manager, which controls jobs, task scheduling and coordi-
nation with slave nodes. The slave module is called Task Manager, these modules have
configurable number of task slots to allow for defined maximum number of running
tasks on each node. Flink also features wide connection capabilities either with data
sources and sink connectors ( Kafka, Cassandra, Elasticsearch, HBase, Hive, Kinesis,
etc. ).

2.5.2.2 Micro-Batch Execution

Even as there is a quite simple possibility of emulating streaming processing capabilities
on top of batch processing framework, there are not many success stories among tools
utilising this principle. Utilising so-called micro-batching at core of stream processing
emulation means that stream of data is packaged into chunks of data, which are then
distributed among workers and processed similarly as a large batch of data. This
approach still allows for virtually all stream processing use cases, but the latency and
unpredictability in delays may pose a problem. The Micro-Batch execution usually
scales better, as data can be distributed across multiple workers easily. Batch processing
tools also pre-date stream processing and historically were much more popular due
to their relative simplicity. As different processing approaches evolved, we could see
the rise of machine learning and operational analytics in big data systems. Stream
processing became highly desired model [21]. One distinct tool made its name among
users by providing flexible distributed batch data processing environment and built its
streaming framework on top of it: Apache Spark.

Apache Spark
Apache Spark is an open-source tool with a large community supporting it. First

released in 2014, it has undergone significant changes since then. As one of the first
big data analytics frameworks, it is known as one of the best traditional batch data
processing tool. Deficiencies in streaming performance lead to an emergence of multiple
diverging platforms, even within the Apache ecosystem, such as Apache Flink or Apache
Storm. But relatively recent updates reworked the streaming system, optimising it for
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low latency processing. This way, Apache Spark became relevant also in the streaming
processing area. With the updates, Spark became the go-to multipurpose analytical-
compute framework.

Figure 2.21. Typical usage and positioning of Apache Spark within architecture. (Source:
[43])

Spark is written in Scala and is available together with multi-language APIs ( Java,
Scala, R, Python, SQL, C#, F# ). The well supported Python API is also quite ben-
eficial for our requirements. Our goal to utilise machine learning is also well supported
within Apache Spark. The performance shouldn’t also be a problem due to Apache
Sparks in-memory processing capabilities and a large scale of configuration options.
These information are readily available in Spark documentation [44] and in a wide
variety of different real-world and scientific use cases.

Figure 2.22. High-level view of Apache Spark components and capabilities. (Source: [45])

Apache spark is perfectly capable of running in the cloud, and many public cloud
providers also offer it as a default compute platform ( e.g. Cloudera [46] ). For cluster
resource management, we can utilise YARN or Apache Mesos. These resources (CPU
cores, memory, storage space ) are assigned as needed to each compute job. The tasks
defined inside a job are usually run in parallel, spanning multiple threads. There are
also three different ways, how to organise resource allocation with Spark. [47]
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. Default: The job is executed on all of the resources. That means the whole cluster

can only execute one job at a time.. Static: The user needs to allocate the resources for each job manually. This way, it
is possible to run multiple jobs on a single cluster.. Dynamic: Instead of allocating a fixed amount of resources to each job, we can
define the expected amount of resources the job would take. If any of these resources
( CPU cores, chunk of memory ) are not utilised by the job, they can be released
and allocated to a different application. These resources can also be claimed back as
needed.

Overall, Spark is a well-rounded compute engine and shouldn’t be overlooked by
anyone whose use cases are similar.

2.5.2.3 Amazon EMR

Public cloud platforms gained much popularity over recent years. Amazon as one of the
leading public cloud infrastructure providers also offers the space and processing power
for tools we mentioned above. Using Amazon EMR [48] service companies are able to
run petabyte scale analytics without the need to own such large infrastructure. These
services are billed on per second And are ideal for testing purposes or for non-repeating
jobs. Amazon EMR is just an example of service, which variants can be found among
multiple [49] [46] cloud service providers.

2.5.3 Data Storage

Per our use cases, our system needs to be able to handle large amounts of stream-
ing timestamped data. Due to specific nature of such data-flow, there has been a
push for specialised data stores suitable for such use cases. The requirement to al-
low fast decision-making based on a real-time data is something traditional relational
transaction-based data stores struggle with. These claims are supported by [50]. Simi-
larly we can not overlook the query performance optimisations of using columnar stores
as depicted in Figure 2.10.

Apache Druid
Working with large event data sets or high throughput event streams puts significant

strain on our data storage subsystem. This strain is the reason why we should prefer
specialised data stores, optimal for our purposes. One of these tools is Apache Druid,
an open-source, column-based, distributed data store based on Java. But why Druid is
not called a ‘database’? Although it can store data persistently, its primary use cases
require mainly fast query operations over timestamped data. The temporal configura-
tion capabilities are the centre-point of this tool, as you can, for example, set up Druid
to release data after a particular time, either into permanent storage or dump. For
our purposes, temporal query capabilities and quick data manipulation are the primary
reasons we pre-selected this tool.

Other key-value stores such as Cassandra or HBase are not quite optimised for simi-
lar larger-scale operations. They usually need to load relevant data into separate space
before starting any query operations on the data itself. This approach may introduce
severe bottlenecks. Similarly, SQL-on-Hadoop systems, although highly flexible, com-
promise performance for flexibility. Druid was created to solve these inefficiencies of
run-in big data storage systems.

Druid offers unique tiering functionality among data store tools we discuss within this
analysis. This means, ’colder’, older, less-used data could be automatically offloaded
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Figure 2.23. Overview of separate Apache Druid components and its architecture. (Source:
[51])

to slower type of storage. This may preserve high-performance storage space (memory,
NVMe) for ’hot’ data. [52]

This video [53] perfectly summarises and compares Druid and other alternatives.
And these case studies [54] [55] provides further insights into why and when should we
choose Druid.

ClickHouse
ClickHouse is a relative newcomer into the field of OLAP1. Its development originates

from Russian company Yandex. The main advantage of using ClickHouse instead of
the tools explained above is its generally faster engine built on C++ instead of Java.
But as explained in this comparison [52], ClickHouse might not be the best tool for our
purposes. This concern stems from the way of how it scales.

It might be superior tool for smaller-scale deployments, due to its efficiency, but for
large-scale deployments companies should prefer alternatives from Apache. There is a
possibility though, if your company might have skilled C++ developers, but not much
Java developers, you should be able to customise ClickHouse for your purposes. As
Yandex also further customises ClickHouse’s architecture, it could be sub-segmented
into isolated groups and this way perform similarly or even faster than Java-based
Apache tools.

2.5.4 Process Automation

Apache Airflow
As industrial revolution linked better production efficiency to higher production pro-

cess automation, similar story can be seen in the IT industry. As computer technology
evolved, the tools became increasingly complicated and difficult to regularly interact
with. No company wanted to hire workers to just operate the information systems, as
1 OnLine Analytical Processing
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Figure 2.24. Different ways of handling scalability. (Source: [52])

knowledgeable employees are expensive. This pushed for development of multitude of
automation systems and frameworks. Initially these tasks were handled on operating
system level, such as ’cron jobs’. These days these functions are usually separated from
the operating system, due to better maintainability, compatibility and resiliency.

Apache Airflow, an open-source automation framework offers extended automation
functionality based on graph schemas. It offers user-friendly interface and plethora of
integrations with various tools and systems. The automation jobs are organised as
DAG1.

Figure 2.25. Airflow service as DAG. (Source: [56])

2.6 Analysis Conclusion
As we can see, there is a wide variety of tools available, and the open-source community
is growing at an unprecedented rate. This allows us to choose and eventually even
customise the tools according to our exact requirements.

We hope this analysis provided you with valuable insight of what we would like to
achieve within this thesis. Next, we further analyse the quality of each selected tools
on purpose-built measurement system and scale.

1 Directed Acyclic Graph
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Chapter 3
Theoretical Evaluation of Selected Tools

Within this chapter we focus on developing and compiling benchmarking methods to
objectively evaluate suitability of selected tools from chapter 2. Then, we comment,
evaluate and rank each tool according to established metrics. At last, we select the
tools based on our evaluation and design three possible configurations applicable for
our purposes. From these three configurations we will then select one for further testing
and evaluation in next chapter.

3.1 Metrics and Methodology
As our goal is primarily to find out which tool can better suit our purposes, we decided
to split the overall evaluation factors into two groups.

Weight Evaluation group
3/4 Rate of Requirement Compliance
1/4 Preferential Ranking

Table 3.1. Composite evaluation factors with weights assigned.

. Rate of Requirement Compliance, as the name suggests, is dependent exclusively on
the compliance with relevant requirements specified in chapter 2.. Preferential Ranking, on the other hand, represents various factors not explicitly
specified as requirements, but nonetheless may be important in final ranking. These
factors might include nice-to-have features, detailed performance comparisons, pop-
ularity rankings or compatibility ratings.
Evaluation of each of these factors is done on the interval [0, 1]. But there are two

distinct groups of factors, which we need to evaluate differently. Similar rating system
is proposed in [57].. Feature support factors

. 1 = Complete feature support, or with minor restrictions

. 0, 5 = The cost of feature implementation is high, or some significant restrictions
are present

. 0 = The feature is unsupported. Performance/popularity metrics

. 1 = Best

. 0, 5 = Slight disadvantage

. 0 = Worst

The weight system always equals to sum of 1. At this section 3.2, evaluation overview
is provided and each tool has its final result represented with % points. Detailed
overview of the evaluation process is located in attachment section.
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3. Theoretical Evaluation of Selected Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
As each category of tools requires different approach to its evaluation, the evaluation

metrics can be divided into respective categories as in chapter 2.

3.2 Tool Evaluation
Our knowledge from the analysis chapter of this thesis enables us to make an informed
evaluation of each tool discussed. To prevent confusion, we enumerated the references
to sources we used for evaluation.

. Data Distribution
. [57] [34] [36]

. Data Processing
. [58] [59] [60]

. Data Storage
. [52]

3.2.1 Results
Complete detailed rating categories and results can be found within Appendix A.

Tool Requirement rating Preferential rating Total

gRPC 87,50% 80,00% 85,63%
ZeroMQ 75,00% 66,67% 72,92%
Kafka 93,75% 81,58% 90,71%
Pulsar 93,75% 57,89% 84,79%
Storm 95,00% 52,63% 84,41%
Flink 100,00% 92,11% 98,03%
Spark 100,00% 71,05% 92,76%
Druid 100,00% 82,14% 95,54%
ClickHouse 81,25% 46,43% 72,55%

Table 3.2. Complete evaluation results.

3.3 System Configurations

3.3.1 First Approach
Within this approach we would like to explore custom solution based on Apache ecosys-
tem. Apache tools are generally open-source and can be used in commercial applications
without licensing fees. Many of these tools are utilised by big players in the market, so
they usually have large contributor base and tightly follow industry trends.

The main goal is to focus on the post popular and well performing tools.

Category Selected tool
Data Distribution Apache Kafka
Data Processing Apache Spark
Data Storage Apache Druid
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3.3.2 Second Approach
As our requirements can enter easily into the big data territory, focusing on the best
scalability and performance might be a valid tactic. We can expect even less popular
tools to evolve over time and become as well community-supported as their mature
counterparts.

Category Selected tool
Data Distribution gRPC
Data Processing Apache Flink
Data Storage Apache Druid

3.3.3 Third Approach
Sometimes companies are reluctant to adopt progressive technologies, their preference
might be to develop small-scale operation first and if successful, then even rework their
infrastructure to accommodate more scalable system. Within this approach our main
goal is to consider effectiveness of smaller scale deployment.

Category Selected tool
Data Distribution gRPC
Data Processing Apache Flink
Data Storage ClickHouse

3.4 Evaluation Conclusion
As we can see, it is not always straightforward to select the right tools for the job. Even
we were quite surprised of the plethora of approaches we can consider.

There is also a lesson within this evaluation. We believed, Apache Storm/Heron
would get much better rating. Eventually Apache Flink, similarly built tool, surpassed
it in every metric. Initially we did not even considered the Flink being a worthy
competitor, but our opinions significantly shifted during researching this thesis. It is
easy to judge something at first sight, it is difficult to objectively evaluate.

For our purposes we would like to select the first approach, because these most pop-
ular tools seemingly provide a middle ground between performance of second approach
and simplicity of third.
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Chapter 4
Testing

For our purposes we utilise rack-mounted server with following hardware specifications:

Specification Value
Model HPE ProLiant DL20 Gen10
System Memory 16GiB ECC
CPU Intel(R) Pentium(R) Gold G5420
Storage 1TiB HDD ST1000DM010

Due to the difficulty of extending communication protocol capabilities suitable for
our purposes, we needed to develop an Adapter program. This Adapter program listens
to a port into which the proprietary software SigProc can send streaming data. The
Adapter interprets the data and packages it into efficient binary schema. This schema
is based on Protocol Buffers (protobuf) which is an open-source schema developed and
maintained by Google. It is also the primary encoding schema of gRPC. And is widely
supported in the IT industry. These messages are then serialised and forwarded into
designated Kafka topic.

Figure 4.1. Adapter high-level design.

We have available data with various sound anomalies and we would like to utilise
machine learning, namely anomaly detection.

This data flows through Kafka into defined Spark Job where micro-batch sampling
is taking place and the batches are then fed into machine learning algorithm. This
process is called model training. After we determine, either by condition or manually,
that we would like the model to stop learning, we can then start evaluating the incoming
data. As we are working with rows of data, we add a evaluation variable column, where
the model will save its decision. As we work with anomaly detection, the result is
binary, anomaly or not. Then the resulting data is streamed back into Kafka, although
into different topic. This topic is consumed by Druid data store. Within Druid we
may execute queries over incoming data, or we can connect visualisation engine such
as Grafana. Grafana would then make queries on our behalf and may for example
highlight anomalous readings. But we are free to design our own analytical tools and
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Figure 4.2. Graph of provided data.

for example produce alarms based on the classification results. These alarms would be
sent to either SigProc or L1 device, to produce a desired action.

In the future, the models can be serialised and distributed to relevant L1 devices
supporting Edge machine learning classification [22].
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Chapter 5
Conclusion

We believe our thesis will serve primarily as a guide for building modern stream-oriented
systems. Our goal was to gather information about tools suitable for our model use
cases. Upon which we may build our system scalable, easier to work with and potentially
future-proof.

We defined our goals and key points to focus on in the introduction. Then we elab-
orated upon the characteristics of the system we tried to build. Then formally defined
requirements which we significantly accentuated in the evaluation chapter. We fol-
lowed the requirement definition with architectural requirements and various standard
approaches we deliberated upon. Continuing by introducing the reader to the current
state of the model environment, we tried to ameliorate. Upon this state, we proposed
an architectural design for consideration. We thoroughly explained each proposed com-
ponent and their connections. Upon which, we followed with selecting and further
analysing prospective tools selected for further evaluation.

We seemingly succeeded at our goal to gather the information and evaluate suitable
tools. Upon these evaluations and the analysis, we created more specific model scenarios
upon which we selected the most suitable and tested it on a real-world use case.

This topic is vast, and we may try to fully understand it for years before we might
be able to say: “We are proficient.” That is why we might not be able to develop a fully
informed opinion about these systems, because in It world, the development of new
technologies moves forward rapidly. If it takes years to develop complete understanding,
this knowledge may become obsolete quickly. We hope this thesis shows a way forward
and may represent a starting point for everyone seeking to process streaming data.
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Appendix A
Detailed Evaluation

A.1 Data Distribution

Requirement Weight gRPC ZeroMQ Kafka Pulsar
FR1 - Streaming support 1/8 1 0 1 1
FR4 - Python support 1/8 1 1 1 1
FR5 - Additional prog. language support 1/8 1 1 1 1
FR6 - Reasonable scalability 1/8 1 1 0,5 1
FR10 - Configurable resiliency 1/8 0,5 0,5 1 1
FR11 - On-demand delivery guarantee 1/8 0,5 0,5 1 1
NFR1 - No special licensing 1/8 1 1 1 1
NFR3 - Cloud deployability 1/8 1 1 1 0,5

Table A.1. Data distribution requirement evaluation.

Characteristic Eval. Method Weight Kafka Pulsar
Scalability Scaling efficiency 2/19 0,5 1
Efficient res. use Idempotent messaging 1/19 1 0
Simplicity of Dev. Ordering guarantee 1/19 0,5 1

Transactions 1/19 1 0
Popularity 1/19 1 0
Delivery guarantee 1/19 1 1

Performance Throughput 2/19 1 0
Latency 2/19 1 0
Persistence 1/19 1 1
Priority queuing 2/19 0 1

Cloud deployment Compatibility 2/19 1 0,5
Openness Open-Source 1/19 1 1
Cost Free to use 2/19 1 1

Table A.2. Data distribution tools with broker, preferential evaluation.
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Characteristic Eval. Method Weight gRPC ZeroMQ

Efficient res. use Binary schema support 2/15 1 1
Simplicity of Dev. Ordering guarantee 1/15 1 0

Popularity 1/15 1 0
Performance Throughput 3/15 0 1

Latency 3/15 1 0
Cloud deployment Compatibility 2/15 1 1
Openness Open-Source 1/15 1 1
Cost Free to use 2/15 1 1

Table A.3. Data distribution tools without broker, preferential evaluation.

A.2 Data Processing

Requirement Weight Storm Flink Spark
FR1 - Streaming support 1/10 1 1 1
FR3 - Machine Learning support 1/10 0,5 1 1
FR4 - Python support 1/10 1 1 1
FR5 - Additional programming language support 1/10 1 1 1
FR6 - Reasonable scalability 1/10 1 1 1
FR8 - Automation support 1/10 1 1 1
FR9 - In-Memory processing support 1/10 1 1 1
FR10 - Configurable resiliency 1/10 1 1 1
NFR1 - No special licensing 1/10 1 1 1
NFR3 - Cloud deployability 1/10 1 1 1

Table A.4. Data Processing requirement evaluation.

Characteristic Eval. Method Weight Storm Flink Spark
Scalability Scaling capabilities 2/19 0,5 1 1
Efficient res. use Direct DB connection 2/19 0,5 0,5 1
Simplicity of Dev. Flow control 1/19 0 1 1

Popularity 1/19 0 0,5 1
Delivery guarantee 2/19 0,5 1 1

Performance Throughput 2/19 0,5 1 0
Latency 2/19 0,5 1 0
Del. guarantee perf. impact 1/19 0 1 0
Time window capability 1/19 0 1 0,5

Cloud deployment Compatibility 2/19 1 1 1
Openness Open-Source 1/19 1 1 1
Cost Free to use 2/19 1 1 1

Table A.5. Data processing tools, preferential evaluation.
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A.3 Data Storage

Requirement Weight Druid ClickHouse
FR1 - Streaming support 1/8 1 1
FR4 - Python support 1/8 1 1
FR5 - Additional programming language support 1/8 1 1
FR6 - Reasonable scalability 1/8 1 0,5
FR9 - In-Memory processing support 1/8 1 1
FR10 - Configurable resiliency 1/8 1 1
NFR1 - No special licensing 1/8 1 1
NFR3 - Cloud deployability 1/8 1 0

Table A.6. Data storage requirement evaluation proposal.

Characteristic Eval. Method Weight Druid ClickHouse
Scalability Scaling capabilities 2/14 1 0
Efficient res. use Core engine efficiency 2/14 0 1

Tiering 1/14 1 0
Simplicity of Dev. User interface 1/14 1 0,5

Popularity 1/14 0,5 1
Performance Temporal data optimisations 2/14 1 0
Cloud deployment Compatibility 2/14 1 0
Openness Open-Source 1/14 1 1
Cost Free to use 2/14 1 1

Table A.7. Data storage tools, preferential evaluation.
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Appendix B
Attached Files

SigProcAdapter.zip : SigProcKafkaAdapter C++ source code.

42


	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Introduction
	The Abstracted Problem Statement
	The General Problem Statement
	The Scope of This Thesis
	Outline of This Thesis

	Analysis
	System Characteristics of Interest
	Scalability
	Efficient Use of Resources
	The Simplicity of Development and Deployment
	Performance
	Cloud Deployment
	Openness
	Cost

	Requirements
	Functional Requirements (FR)
	Non-Functional Requirements (NFR)
	Architectural Requirements

	Current System Architecture
	Prospective Architecture Proposal
	L1
	Data Distribution 
	Data Processing 
	Database
	Analytics

	Tool Selection
	Data Distribution
	Processing Engine
	Data Storage
	Process Automation

	Analysis Conclusion

	Theoretical Evaluation of Selected Tools
	Metrics and Methodology
	Tool Evaluation
	Results

	System Configurations
	First Approach
	Second Approach
	Third Approach

	Evaluation Conclusion

	Testing
	Conclusion
	References
	Detailed Evaluation
	Data Distribution
	Data Processing
	Data Storage

	Attached Files

