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Abstract which estimates the colour transformation from local cor-
respondences established in the recognition step is more
In this paper we investigate some aspects of the interac-precise than the best standard (global, correspondence-less)
tion betWeen CO|OUI’ ConStancy and ObjeCt recognition. We Co'our Constancy method. The precision of ”Co|our con-
demonstrate that even under severe changes of iIIuminationstanCy by recognition” is measured by the distance (in the
many objects are reliably recognised if relying only on ge- chromatic plane) of the white point under canonical illumi-
ometry and on invariant representation of local colour ap- nation and the transformed white point of the image under
pearance. We feel that colour constancy as a preprocessinghe unknown illumination. The achieved precision is ap-

step of an object recognition algorithm is important only in - proximately three times higher than that of Barnard et al [2].
cases when colour is major (or the only available) clue for

object discrimination. The result has to be interpreted carefully. Clearly, the

We also show that successful object recognition allows presence of a known object in the scene is a restrictive as-
for "colour constancy by recognition” — an approach where sumption. Colour constancy is often required in scenes
the global photometric transformation is estimated from lo- without known object, e.g. as a part of a white balance

cally corresponding image patches. module of a camera. The message is rather that if a known
object is in the scene, much better results of colour con-
1. Introduction stancy can be expected, if the object is recognised. It seems

that two different classes of colour constancy algorithms

In this paper we investigate some aspects of the interactionmight be distinguished: those relying on global or statis-
between colour constancy and object recognition. Colourtical properties and those attempting to recognise object or
constancy is a classical problem that has been recently conebject classes (hair, skin) and use constraints on scene illu-
nected to object recognition [11, 5, 2]. In [5], Funt et mination imposed by observed colours of known surfaces.
al. propose to judge the quality of colour constancy al- Unlike the former, the latter colour constancy algorithms
gorithms by their impact on recognition rates. The ques- are able to deal with non-uniform illumination. In a syn-
tion "Is colour constancy good enough (for object recog- thetic experiments, we show that it is possible to partition
nition)” is posed. For histogram intersection as the recog- the image according the illuminant.
nition method and a wide range of colour constancy algo- )
rithms the answer isegativei. e. none of the tested colour ~_ The rest of the paper is structured as follows. In Sec-
constancy algorithms is "good enough”. tion 2, we review a recognition methoq basec_l on the con-

We revisit the issue and show that if a recognition CePtoflocal affine frames. Locally, the image is photomet-
method relies mainly on geometry and representation of lo- "ically normalised to compensate for affine transformation
cal colour appearance invariant to affine transformation of of €ach colour channel. The normalisation is detailed in
colour components (equivalent to a diagonal colour con- Secnon 3 together.wnh the matching strategy for establish-
stancy model [3] with an offset term), object recognition N9 local image-to-image correspondences. An approach to
can be successful even under severe and unknown change of°lour constancy by recognition” is proposed in Section 4.
ilumination. This is experimentally demonstrated on a pub- A full affine model for the global photometric transforma-
lic dataset from the Simon Fraser University, that has beention is adopted. Two experiments are described in Section 5.
previously used in colour constancy experiments [1,2].  First, the recognition performance of the local affine frame

Successful recognition insensitive to illumination allows Method is tested in changing lighting conditions. In second
us to consider the intuitive approach of "colour constancy experiment, a colour transformation to a canonical illumi-

by recognition”. We show that a straightforward approach nation is estimated and its precision measured. The paper is
concluded in Section 6.
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Figure 1: Local affine invariant image descriptors. Structure of computation.

2. Overview of the Matching Process Distinguished Regiong DRs) are image elements (subsets

of image pixels), that posses some distinguishing property

The outline of the method is following (the first three steps ih4; allows their repeated and stable detection over a range
are visualised in Fig. 1): of image formation conditions. In this work we exploit

1.

. Construct local affine frames (LAFs) on the regions.

For every database and query image compute distin_the distinguished regions introduced in [7], ﬂv@ximally
guished regions (DR). Stable Extremal Region®ISERS). MSERS are image gle-
ments detected by local thresholding of a greyscale image
and are stable under monotonic transformations of the grey-
values. The transformation between RGB image and the

. Generate intensity representations of local image greyscale image used for region detection can be arbitrary.

patches normalised according to the local affine We use the intensity component of the colour image as it is
frames. and photometrically normalise the intensity stable under a wide range of illumination changes. But gen-
representation. erally, severe change in illumination can re-order the inten-

sities between the images (the grey-values transformation

. Establish correspondences between frames of querymay not be monotonic). MSERs will then fail.

and database images, by computing the euclidean dis- o further reference on MSERSs see [7] which includes a
tance between the local image intensities, and by find- forma| definition and a detailed description of the extraction
ing the nearest match. algorithm.

. An estimate of the match score is based on the numbell‘Ocal affine frames (LAFs, local object-centered coordi-

nate systems) allow normalisation of image patches into

and quality of the established local correspondences. ! . ;
g y P a canonical frame, and enable direct comparison of pho-

. If an object is recognised, global photometric transfor- tometrically normalised intensity values, eliminating the

mation is estimated between database and query im-need for invariants. For every distinguished region, multi-
ages ple frames are computed. The actual number of the frames

depends on the region’s complexity. While simple ellipti-

In the rest of this Section we briefly introduce the concepts cal regions have no stable frames detected, regions of com-
of the first two steps, the distinguished regions and the localplex non-convex shape may have tens of frames associated.
affine frames. Remaining steps are discussed in the follow-Robustness of our approach is thus achieved by 1. select-
ing sections. ing only stable frames and 2. employing multiple processes



for frame computation. A detailed description of the local The constantsn,., n,, my, ng, my, 1y differ for individ-
affine frame constructions is given in [8], [9] and [10]. ual correspondences. This model would agree with the
monochromatic reflectance model [6] in the case of narrow
band sensor. It can be viewed as an affine extension of the
3 Photometric and Geometric Nor- diagonal model, that has been shown by Finlayson to be
. : sufficient in common circumstances }4]
malisation To represent the patch invariantly to photometric trans-

Each image is represented by a set of local measurementiormat'ons’ intensities are transformed into a canonical

Once local affine frames are established, there is no nee
for geometrically invariant descriptors of local appearance.
Any measurement taken relative to the frame is affine in-
variant.

Geometry. The affi_ne transforrr%ation between the canoni- 1. Establish a local affine fram.
cal frame with originO = (0,0)" and basis vectors;, =

orm. The intensities of individual colour channels are
affinely transformed to have zero mean and unit variance.
Let us summarize thlormalisation Procedure of a local
patch:

(1,0)" ande, = (0,1)" and an established franieis de- 2. Compute the affine transformatiohr between the
scribed in homogenous coordinates by a 3 by 3 matrix canonical coordinate system afd
ar a2 ag 3. Express the intensities of tliés measurement region
Ap=| a4 a5 as |. in the canonical coordinate system
0 0 1 I'(x) = I(Arx), x € MR with some discretisa-
tion.

The image patch (defined in terms of the affine frame)
where the local measurements are taken from is referred to 4. Apply the photometric normalisation
as a measurement region (MR). The choice of MR shape f’(x) =(I'(x) —p)/o, x€MR
and size is arbitrary. Larger MRs have higher discrimina- wherey is the mean and is the standard deviation of
tive potential, but are more likely to cover part of an ob- I’ over the MR.
ject that is not locally planar. Our choice is to use a square
MR centered around a detected LAF, specifically a region The twelve normalisation parameters, (..as, m,, n,,
spanning —2, 3) x (—2, 3) in the frame coordinate system. 1, ny, M3, np) are stored along with the normalised inten-
Transformed to the image coordinate system, the measuresity measurement. When considering a pair of patches for
ment region of a framé" becomes a parallelogram with a correspondence, these twelve parameters are combined to
corners at (in homogenous coordinates): provide the local transformation (both geometric and pho-
tometric) between the images.
-2 -2 The correspondences are formed by evaluating the cor-
ct=Ar| -2 |, c=Ap 3 , relation coefficient between discretised representations of
1 1 the normalised measurement regions. Tentative correspon-
dences are formed if the coefficient is above a predefined
3 3 threshold. In a second step, the subsets of geometrically
es=Ar| -2 |, a=Ar| 3 |, and photometrically consistent tentative correspondences
1 1 are found. Examples of pairs of corresponding patches

o (MRs) are depicted in Figure 2.
Photometry. For the process of establishing local corre-

spondences we utilise a simple photometric model. We as- . . .
sume a linear camera (ie. a camera without gamma—correct-4- EStlmatmg the Photometric Trans-
ion). Specular reflections are ignored. The combined effect formation

of different scene illumination and camera and digitiser set-

tings (gain, shutter speed, aperture) is modelled by affineLocal measurements are constructed with invariance to di-
transformations of individual colour channels. The photo- agonal (or affine extension of diagonal) photometric trans-
metric transformation between two corresponding patchesformations, as described in Section 3. At local scale, such

I and!’ is considered in the form: a simple photometric model is sufficient to establish corre-
spondences. Global colour transformation is computed after
v’ my 0 0 r ny the correspondences are found, using full affine model. By
g | = 0 myg O g |+ ng
4 0 0 my b np 1At least in conjunction with sensor sharpening [3]
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Figure 2: Normalised local correspondences. (a), (f): Query and Database images, (b), (e): Examples of geometrically
normalised MRs (measurement regions), (c), (d): Photometrically normalised MRs

considering only the image regions that were put into cor-
respondence, the global transformation is found indepen-
dently of any background clutter or occluding objects.
Establishing Pixel-to-Pixel CorrespondencesEvery es-
tablished correspondence locally maps a pair of regions.
Assuming that local geometric deformations are sufficiently
well approximated by 2D affine transformations, pixel cor-
respondences are obtained by sampling the images with
respect to the local coordinate systems of corresponding
LAFs. This can be interpreted as a regular sampling of the
geometrically normalised MRs depicted in Figure 2 (b) and
(e). In our implementation, we sample the MRs on a regular
6 x 6 grid, obtaining thus 36 pixel-correspondences per ev-
ery frame-correspondence. For a typical object, the number
of pixel-correspondences is in the order of thousands.
Computing the Photometrical Transformation. With
thousands of corresponding pixels available, the global pho-
tometric transformation can be calculated in a more compli-
cated form than the diagonal, without the risk of overfitting.
We compute the transformation in its affine form, i.e.

/

T myp Mo M3 r Ny
/

g =1 mg ms mg g |+ ng

b my Mg Mg b np

The transformation coefficients are obtained by least
squares fitting, i.e. the sum of square differences between
transformed colours of query pixels and colours of corre-
sponding database pixels is minimised.

5. Experiments

Dataset The experiments were realised on a publicly avail-

able dataset published by Barnard [1]. The dataset containg/@ble 2: Recognition rate and illuminant colour estimation

images of 20 different objects, every object is taken under
11 illuminants. The total number of images in the dataset is
thus 220. The illuminants were chosen to cover the range

| Method | Recognition rate]
LAFs 89.1 %
Hist. Intersection, no CC 42.3%
Hist. Intersection, manual CC 87.7%
Hist. Intersection, best CC 80.9%
Hist. Intersection, worst CC 15.5%

Table 1: Summary of the recognition experiment

[ llluminant | Recogn. ratg WP error |
ph-ulm 17/20, 85% 0.015
solux-3500+3202 19/20, 95% 0.011
solux-3500 19/20, 95% 0.006
solux-4100+3202 17/20, 85% 0.013
solux-4100 20/20, 100% 0.008
solux-4700+3202 12/20, 60% 0.021
solux-4700 19/20, 95% 0.012
syl-50MR16Q+3202| 18/20, 90% 0.009
syl-50MR16Q 20/20, 100% -
syl-cwf 16/20, 80% 0.010
syl-wwf 19/20, 95% 0.013
average 89% 0.012

| bestmethodin[2] [ 81% | 0.038]




Figure 3: All 20 database images.

of common illumination conditions. For each image, chro- photometric transformation is verified by transforming the
maticity of the white point is provided. It was obtained by provided white paper colour of the query image. Ideally,
temporarily placing a sheet of white paper in the scene.  the transformed colour should be equal to the white paper
The object recognition task is simplified by the fact that colour of the matched database image. As it is not, the
the objects are placed on black background (ie. there isPrecision of the estimate is measured by computing the eu-
no background clutter, the objects can be segmented outflidean distance between chromaticities of the transformed
and the objects are unoccluded. However, the objects wergluery white point and the database white point.
taken in different poses. In some cases, only different partsResults ~ Results of the recognition experiments are
of their surfaces are visible. All the database objects aresumarised in Table 1. Our method (LAFs) is compared
shown in Figure 3. to results published in [2]. In [2], query images are first
Experimental Protocol. The training database (the set adjusted by one of a rather exhaustive set of 23 colour con-
of known images) contains a single image of every ob- stancy algorithms. The matching is then done by histogram
ject. We have used the images taken under illuminant 'syl- intersection method on the adjusted images.

S0MR16Q’. To follow the experimental setup from [2], all The first row of Table 1 shows the recognition rate of our
220 images are used as queries, ie. the set of queriesnethod, second row of the histogram intersection method
contains also the database images. Every query image isvithout any colour constancy being applied. The third row
matched against every database image. As there are no imshows results for manual colour constancy, where the query
ages of non-database objects, the database image with thgnages were transformed so that the manually measured
highest score is always selected (forced match). white points match. The remaining two rows report re-
We manually selected those query — database image pairsults for the best (non-diagonal, coefficient-rule) and the
where the object was successfully recognised. The globalworst (color-in-perspective) of the 23 colour constancy al-
colour transformation between the query and the databasegorithms. Our recognition performance is superior to any
images was estimated based on the photometric transformaef the results presented in [2].
tions computed from corresponding regions, as described in - Taple 2 shows how individual illuminants affect recogni-
Section 4. The transformation was estimated as full affine, tjon rate of the LAF method. There is no significant differ-
i.e. with 12 degrees of freedom. ence in the performance, except for the 'solux-4700+3202"
The query-to-database photometric transformation canilluminant (4700K incandescent light plus a blue filter).
not be used to estimate the colour of the illuminant (ie. the The recognition failures here are not due to the illuminant
white point) since image taken under "white light” are not colour, but due to the low intensity of the images captured
part of the database. The precision of the estimated globalunder this light. The third column of Table 2 shows the
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Figure 5: Scene with multiple illuminants: (a) an synthetic query image, two differently illuminated halves joined, (b) found
correspondences clustered by local photometric transformation, (c) corresponding database image

precision of the global photometric transformation estima- Multiple llluminants . In a final experiment, we demon-
tion. For comparison, a white point estimation error of the strate that our recognition system can handle objects viewed
best performing method from [2] is quoted. Our estimates under multiple illuminants at the same time, as can be the
are on average three times more precise, but note that onlycase when a shadow is cast over part of an object. Figure 5
correctly recognised images are included. Estimation baseda) shows our query image, which was obtained by artifi-
on mismatched objects may produce arbitrary photometriccially merging two images of the object. The process of
transformation. image description and matching is invariant to local illumi-
nation. Presence of multiple illuminants thus have no effect
Figure 4 shows all our recognition failures in queries for on the obtained correspondences, except for LAFs that are

the first four database objects. The query images differ fromon the boundary of differently illuminated object areas.
the database images not only in the illumination, but, more

significantly, in the object pose. The balls are rotated so  Correspondences are clustered by their local photometric
that their visual appearance is substantially different from transformation. Each such cluster represents a global trans-
the database images. The blocks-object was turned upsideformation caused by one of the illuminants. In Figure 5
down, producing a 'mirror’ image of itself, which is not (b) two clusters of correspondences are shown as green and
recognised by our method. Refer to Figure 3 to see thewhite dots respectively. With a single exception, the corre-
differences between database images and the unrecognisespondences are correctly separated according to the illumi-
queries. nant.



Summary. We have experimentally shown that our [4]
geometry-based object recognition method outperforms the
methods described in [2], ie. the histogram intersec-
tion algorithm applied after colour constancy correction. [5]

The recognition rate of our system was almost indepen-
dent of the illuminant, changes in objects’ poses had a
much stronger impact on the results. When an object [g]
was correctly recognised, even a straightforward least-
squares algorithm was able to estimate the global photomet-
ric transformation three times more precisely than the best ;
correspondence-less colour constancy method published in
[2].

Finally, an experiment on a scene where different parts
of the image are illuminated by different light sources was
shown. Computing global colour transformation to a canon-
ical illumination in such a scene is an ill-posed task. The [g]
image was however successfully recognised, partitioned ac-
cording to the colour of incident light and the illumina-
tion for each part was correctly estimated by the proposed [g]
method.

6. Conclusions

In this paper we have revisited the connection between
colour constancy and object recognition. We have demon-
strated that for many objects a recognition method relying (11]
mainly on geometry and invariant representation of local
colour appearance can be successful even under severe and
unknown changes of illumination. Successful object recog-
nition allows for "colour constancy by recognition” — an ap-
proach where the global photometric transformation is es-
timated from locally corresponding image patches. In our
experiments, such estimate was three times more precise
than that of any global colour constancy method published.

If the known objects in the scene have strong geomet-
ric features, recognition can provide good colour constancy.
On the other hand, if the objects do not have distinctive
parts, or if their structure is not preserved (e.g. by non-rigid
object deformation), recognition by colour or by texture be-
comes necessary. In this case, colour constancy can support
recognition.

(10]
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