Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Measurement

Acoustic Event Detection System

Bc. Michal Opocensky

Supervisor: prof. Ing. Jan Holub, Ph.D.
May 2021



ii



cvuT ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNIi A STUDIJNi UDAJE
4 ™
PFijmeni: Opocensky Jméno: Michal Osobni Eislo: 465946

Fakulta/astav: Fakulta elektrotechnicka
Zadavajici katedra/Gstav: Katedra méreni

Studijni program: Kybernetika a robotika

L Studijni obor: Kybernetika a robotika
J

Il. UDAJE K DIPLOMOVE PRACI

~
Nazev diplomové prace:
Systém pro detekci akustickych udalosti
Nazev diplomové prace anglicky:
Acoustic Event Detection System
Pokyny pro vypracovani:
Navrhnéte a realizujte systém pro detekci a lokalizaci akustickych pulsnich udalosti. Systém musi obsahovat nejméné 3
¢idla, komunikujici prostfednictvim vhodné zvolené bezdratové technologie (Wifi, LTE, LoRa apod.). Pfi feSeni vyuzijte
teoretické poznatky a SW feSeni serveru, nabyté v ramci tymového projektu. Funkénost systému demonstrujte experimentem,
odhadnéte spolehlivost detekce a spolehlivost lokalizace.
Seznam doporucené literatury:
[1] Hakl J.: Jednotka pro akustickou detekci, diplomova prace 2019 FEL CVUT, dostupné z
https://dspace.cvut.cz/handle/10467/80115
[2] https://github.com/jurasofish/multilateration/
[3] Svatos, J., Holub, J.: Smart Acoustic Sensor, IEEE RTSI 2019, DOI: 10.1109/RTSI1.2019.8895591
Jméno a pracovisté vedouci(ho) diplomové prace:
prof. Ing. Jan Holub, Ph.D., katedra méreni FEL
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:
Datum zadani diplomové prace: 15.01.2021 Termin odevzdani diplomové prace:
Platnost zadani diplomové prace:
do konce letniho semestru 2021/2022
prof. Ing. Jan Holub, Ph.D. podpis vedouci(ho) Ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky)
\ J
lIl. PREVZETIi ZADANI
é Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci. h
Seznam pouzité literatury, jinych pramenu a jmen konzultant( je tfeba uvést v diplomové praci.
S Datum pfevzeti zadani Podpis studenta )

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC




iv



Acknowledgements

I would like to thank Ing. Jakub Sva-
tos, Ph.D for his valuable insight into
given topic and never-ending optimism.
Many thanks to the guys that kick started
this work on the team project, namely
Be.  Jiff Minarik, Be. Michal Spadek,
Be. Josef Cech and Be. Pert Vanc. Big
thanks to my family for grammatical cor-
rection of the thesis. And finally, thanks
to Be. Kristyna Kucerova for providing
tikz-hotline service.

Declaration

,2Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné a ze jsem uvedl
veskeré  pouzité zdroje
v souladu s Metodickym pokynem o do-
drzovani etickych principa pii priprave
vysokoskolskych zévéreénych praci.

V Praze, kvéten 2021

informacni

“I declare that this work is all my own
work and I have cited all sources I have
used in the bibliography in accordance
with the Methodological Instruction on
observance of ethical principles in the
preparation of university theses.”

Prague, May, 2021



Abstract

The main goal of the thesis is to cre-
ate a system capable of gunshot detection,
classification, and localization. The detec-
tion system consists of a specialized board
and a server application.

At first, the gunshot detection algo-
rithm is executed for filtration of non-
gunshot events. Afterwards, the features
are extracted by Mel-Frequency Cepstral
Coefficients. The feature vector is then
passed to the gunshot classification, per-
formed through Support Vector Machine.

The localization task is executed on pre-
cisely timestamped acoustic events that
are coupled with position of the measur-
ing devices (nodes) on the server. The
aggregated data are utilized for solving
the Time of Arrival Localization Problem.
Two different methods are described based
on the number of nodes that detected the
event.

The created server application solves
the localization task as mentioned above
but also offers visualization and adminis-
tration of users, nodes, and node’s mes-
sages.

The proposed board is able to acquire
position with precise timestamping and
send the required information through Lo-
RaWAN network to the server. The board
implements detection and classification al-
gorithms and also offers a command line
interface for setting the firmware’s param-
eters such as detection algorithms’ coeffi-
cients.

Keywords: gunshot detection, gunshot
classification, embedded, server
application, multilateration, Time of
Arrival localization

Supervisor:
Ph.D.
A3-320, Technicka 2, Praha

prof. Ing. Jan Holub,

vi

Abstrakt

Hlavnim cilem této prace je vytvorit sys-
tém schopny detekce, klasifikace a loka-
lizace strelby. Systém se sklada z dediko-
vané desky a serverové aplikace.

Systém detekuje zvukové uddlosti a
jako prvni krok vyfiltruje udélosti, které
nejsou strelba. Nasledné jsou klicové vlast-
nosti nahravky extrahovany pomoci Mel-
Frequency Cepstral Coefficients. Na vek-
toru klicovych vlastnosti je dale provedena
klasifikace pouzitého kalibru zbrané, kte-
rou provadi metoda podpurnych vektora
(Support-Vector Machine).

Lokalizace stielby je provadéna na zvu-
kovych udalostech, ke kterym je pripojena
velmi pfesna ¢asova znacka (timestamp)
a pozice mériciho pristroje (uzlu). Data
shromazdéna z jednotlivych zarizeni jsou
pouzita pro feseni lokaliza¢niho problému
na zakladé zmétreného ¢asu zaznamenani
(Time of Arrival Localization Problem).
Pro jeho feseni jsou popsany dvé rtzné
metody, lisici se dle poctu méticich zari-
zeni, které danou udalost detekovaly.

Vytvorena serverova aplikace je nejen
schopna Tesit lokalizac¢ni lohu popsanou
vyse, ale také poskytuje vizualizaci s ad-
ministraci uzivateli, uzli a zprav uzla.
Navrzend deska je schopna ziskat svou
pozici spolu s presnou ¢asovou znackou
udalosti a odeslat vsechny pottebné infor-
mace pomoci LoRaWan sité na server. Na
desce je naimplementovan jak detekéni,
tak klasifika¢ni algoritmus. Navic deska
nabizi rozhrani ve formé prikazové radky
pro nastaveni parametri aplikace, jako
jsou napriklad koeficienty detekéniho al-
goritmu.

Klicova slova: detekce strelby,
clasifikace stielby, embedded, servrova
aplikace, multilaterace, Time of Arrival
lokalizace

Preklad nazvu: Systém pro detekei
akustickych udalosti



Contents

1 Introduction
1.1 State of the art
1.2 Methods
1.3 Requirements

2 Board

2.1 Components
2.1.1 Micro-Controller
2.1.2 LoRaWAN
2.1.3 Position and Timestamp
2.1.4 Battery
2.1.5 Nonvolatile Memory
2.1.6 Environment Sensor
2.1.7 Sound Acquisition. . .. ..

2.2 Board Preparation
2.2.1 Board Schema
2.2.2 PCB Mounting
2.2.3 Case for Board

2.3 Firmware
2.3.1 Firmware Structure
2.3.2 Interfaces

2.3.3 Command Line Interface. . ..

2.3.4 Data Storing
2.3.5 LoRa Messages

3 Server
3.1 Structure
3.2 Security
3.2.1 Secure connection
3.2.2 Password storing
3.2.3 Cookie management
3.3 Database
3.4 CRUD API
3.5 Website
3.6 Message Queuing Telemetry
Transport — MQTT

4 Algorithms
4.1 Detection Algorithm
4.1.1 Median Filter
4.1.2 Dataset
4.1.3 Board Implementation
4.1.4 Results
4.2 Classification Algorithm
4.2.1 Mel-Frequency Cepstral
Coefficients — MFCC

4.2.2 Support Vector Machine . . ..

4.2.3 Board Implementation

vii

4.2.4 Results
4.3 Localization Algorithm
4.3.1 Speed of Sound
4.3.2 Coordinate Systems
4.3.3 Basic Principle of Localization

4.3.4 3D Localization............ 5%

4.3.5 2D Localization . ........... (7l

436 Results .......... ... ... ... 62l
5 Conclusion
Bibliography
A Board schematics
B Development Environment and
tools 91



Figures
1.1 Project structure. . .............
2.1 Board components interconnection

schema.
2.2 LoRaWAN device class A timing

diagram.............. ...
2.3 Photo of homemade LoRaWAN

BALEWAY. « vttt 9
2.4 NMEA message structure. .....
2.5 UBX packet structure. ........
2.6 Battery charging current profile.
2.7 Peak detector logical schema.. . .
2.8 Peak detector signal processing.
2.9 Board visualization. ...........

2.10 Board PCB after manufacturing.

2.11 Fully mounted board. ........
2.12 Custom case for board. ....... 16/
2.13 Board functionality flowchart. .
2.14 Firmware structure. .......... 18]

3.1 Logical structure of the application
software........................
3.2 Web-server middleware layering.

3.3 ER schema of the database. . ...
3.4 Database schema generated with
DBeaver. .............c.ccooo.... 30/
3.5 CRUD API top level structure. .
3.6 Website’s home page. .........
3.7 MQTT message transportation.

4.1 Acoustic event detection algorithm
flowchart. ......... ... .. .. ...
4.2 Visual median filter principle
representation. ................. 37|
4.3 Signal divided into taps for

detection. ...................... 37
4.4 Signal decomposition into single

acoustic events.................. [40]
4.5 Classification flowchart......... 43|
4.6 MFCC flowchart. .............
4.7 Mel-frequency filter bank. ... ...
4.8 Mel-Frequency scale. ..........
4.9 FFT conversion from time to

frequency domain. ..............
4.10 Cepstrum creation steps. .....
4.11 SVM principle. ..............

viii

4.12 SVM one to all multiclass

classification. . .................. 48]
4.13 SVM one to one multiclass

classification. . .................. 49|
4.14 Coordinate systems...........
4.15 Localization problem

visualization. ...................
4.16 Inverse localization problem

visualization. . .................. 55
4.17 2D transformation moves origin

to the center of mass. ........... 58]
4.18 2D transformation rotation

around & axis. ........... .. .. ... 59
4.19 2D transformation rotation

around y axis. ................ ..
4.20 2D transformation operations. .
4.21 Localization algorithm 3D

solution with 4 sensors. ..........
4.22 Localization problem with local

and global minimum. ............
4.23 Localization mean error. ...... [64]

4.24 Localization standard deviation. [64

5.1 Recorded 9 mm Luger blank



Tables
2.1 12C device address table. ......

4.1 Contents of the provided dataset.
4.2 Detection algorithm parameters.
4.3 Detection algorithm confusion
matrix. . ... [42]
4.4 Classification algorithm resulting
parameters. .................... 50|
4.5 Classification algorithm error over
10-folds cross-validation. ......... 50/
4.6 Coordinates defining rectangular
area from which testing location are

generated. .......... .. ... .. ...,
B.1 Board firmware development

environment and tools. .......... 91
B.2 Server application development

environment and tools. .......... 91]
B.3 Development environment and

tools for algorithms..............

ix






Chapter 1

Introduction

Nowadays, the sensors are lightweight, power efficient and can be easily placed
in public areas. There are already surveillance cameras around the city that
help solve crimes. In the same manner, seismic sensors can be placed to
predict incoming earthquakes and therefore prevent loss of life. Strategically
placed sensors can also monitor other events, such as sound spikes. The audio
spikes can signal a car crash, gunshot, or other dangerous event.

With the rapidly evolving Internet of Things (IoT'), combining the detection
of sound waveforms with a classification algorithm for, for example, gunshots,
is just another logical step. In the thesis, the usage of sound recording devices
for the detection and localization of audio events is examined. The events can
be afterwards automatically classified, which might be used for the detection
of dangerous states.

One part of the thesis is devoted to a real implementation from scratch of
the algorithm for gunshot detection described in the paper [I] created on the
CTU FEL department of Measurement.

The thesis is complemented by the proposition and implementation of

algorithms for classification of gunshot caliber and localization based on time
of arrival (TOA).

The algorithms for detection and classification are deployed on the hardware
board and tested. The last algorithm for localization was implemented and
tested on the server.

The work is divided into three main parts: Board, Server and Algorithms.

In the Board Chapter [2| the elaborated creation of the system node can
be found. The nodes detect gunshots, classify the audio recording, and the
results are then sent to server, see the Figure |1.1l

In the Server Chapter 3| the features and capabilities of the resulting server
application are specified. The server processes the received data and then
solves the localization task.



1. Introduction

In the Algorithms Chapter 4] the detection and classification algorithm
in the board firmware and the localization task in the server application
are described. The classification algorithm is used for the classification of
recorded audio. It uses Support Vector Machine classifier with Mel-Frequency
Cepstral Coefficients feature extraction. The detection algorithm is performed
in the time domain and uses median filters. The localization algorithm uses
Levemberg-Marquardt iterative solution of a set of nonlinear equations with
possible coordinate system transformation from 3D to 2D.

Nodev\\\\\\\ | / ”//////

3

2

Figure 1.1: Project structure - nodes send messages (timestamps) based on
events to the server.

The results for each described method are placed within the corresponding
part, and the thesis summary is provided in Chapter

. 1.1 State of the art

At this time, providers of gunshot localization and detection services already
exist, e.g., the U.S. ShotSpotter [2] or V5 Acoustic Gunshot Sensor from the
V5 Systems [3]. Currently, these services use human evaluation step for the
final gunshot classification.

Many papers focus on localization in situations where a low number of
sensors are available, therefore the gunshot is recorded from a greater distance
(in kilometers) [4]. This localization is useful, for example, for sniper localiza-
tion, however the open-field environment is considered. There is research for
the urban area, where the number of sensors can be large, scattered through
the city structure.



1.2. Methods

. 1.2 Methods

The detection of the gunshot can be done in three different ways: optical
flash detection, muzzle blast sound wave impulse, and shock wave created by
a traveling bullet.

The localization of a Muzzle blast impulse can be obtained via two methods:
Time of Arrival, or with an array of microphones. If the Time of Arrival
is used, just one microphone is sufficient and at least 3 sensors are neces-
sary. On the other hand, the array of microphones requires at least three
microphones. From the time delay between microphones, the direction of the
incoming gunshot is computed and from at least two directions, the position
can be acquired (azimuth and elevation). The array can be also used for
detection using shock wave

In this work, the muzzle blast sound wave impulse (Sections 4.1} 4.2) is
used for the detection and the Time of Arrival method (Section [4.3) is utilized
for the localization.

B 13 Requirements

The resulting system shall be capable of localization and classification of
gunshots with the Time of Arrival method of localization.

The hardware shall be powerful enough for further development of possibly
more demanding computations.

Every node shall listen for the acoustic event. When an acoustic event
occurs, it is precisely timestamped and classified, whether it is a gunshot or
not. If the acoustic event is a gunshot, the timestamp with the position of
the node is sent to the server.

The server aggregates the incoming data from the nodes and performs
a localization algorithm. The server shall provide a user and administration
interface.

The requirements specified imply the top level structure of the project in
the form shown in the Figure 1.1l






Chapter 2
Board

The board is in the naming convention of the server called a node, which is
one of the basic parts of the system chain.

The design of the node was created based on the defined requirements:

1. Position acquisition 6. Audio recording

2. Precise timestamping of an event 7. Storing parameters

3. Radio communication 8. USB communication
4. Temperature measurement 9. Floating Point Unit (FPU)
5. Battery operation 10. Mass-space storage (SD card)

EEPROM

[T Environmental sensor] [ SD card
Configuration

Temperature Recordings
({10 Vil
Time
= ]
Packets Position Q@ GNSS
CLI
Sound Peak Peak

% USB
[Q Sound Acquisitionji Sound

Figure 2.1: Board components interconnection schema.




2. Board

B 21 Components

Components determine not only the capabilities of the board but also the
ergonomics of the firmware programming, reliability, etc. For board’s compo-
nents logical interconnection schema see the Figure [2.1L

B 2.1.1 Micro-Controller

The used microcontroller is from the family stm32, manufactured by ST. The
choice was made based on my preceding work with API of the provided High
Abstraction Layer (HAL) libraries.

The next step was the selection of the right type. The ARM Cortex
MO+ is not suitable because it does not contain FPU, moreover it is not
powerful enough for more computationally demanding tasks. We selected
a chip with higher performance than estimated for the proposed application
to allow further functionality expansion. Furthermore, the chip should have
enough flash and RAM for possible development of more resource demanding
algorithms such as classification using deep neural network. Due to the
limited availability of other chips the chip stm32F413RH [5] was selected.

The stm32F413RH microprocessor satisfies the requirements (6-10). Main
parameters are:

® 320kB of SRAM ® Internal 12-bit ADC

® 1.5MB of Flash memory ® Power consumption of
112pA MHz ! (peripherals off)

® Clock frequency up to 100 MHz

® SDIO interface (for SD card)
= FPU

USB 2.0

Real Time Clock (RTC) Supply voltage 1.7V up to 3.6 V
The SDIO interface allows connection with an SD card, which can be used
as mass storage.

B 2.1.2 LoRaWAN

The LoRa, developed by Semtech, is a low-power communication network
that specifies only the physical layer, LoRaWAN defines the higher layers of
the communication.

The LoRa in Europe is using a free license radio band on 868 MHz. As
there is no fee for using the band, we can use any number of devices that
we need. LoRa clients should comply with solidarity rules to enable the
coexistence of more devices in the range.

LoRa uses Chirp spread spectrum modulation. The distance between
a LoRa gateway and the device can be up to 10 km based on the radio power,
antennas, and environmental conditions.

6



2.1. Components

At first, the chip Semtech SX1278 was considered but was not finally used,
because the LoRaWAN stack needs to be run on the MCU and libraries for the
LoRaWAN stack from Semtech, which are not well documented. Therefore,
the Microchip RN2483 was selected, because it provides a simple text-based
communication protocol over UART, where the LoRaWAN stack is running
on the chip.

The LoRaWANs maximal packet size depends on the transmission speed;
at the slowest data rate, it is 52 B.

In the specification of LoRaWAN, there is also an option for the capability
of localization. The localization is done in such a way that if a message is
received by a gateway, it is precisely timestamped with GPS and sent to the
processing server that gathers the positions of the gateways with timestamps.

If the message is received by multiple gateways, the timestamps and gate-
ways positions are used in localization algorithms as described in Section 4.3
and [6].

The LoRaWAN has two authentication methods, Activation By Personal-
ization (ABP) and Over-The-Air Activation (OTAA). With the ABP authen-
tication method, the device has all keys and device address hardcoded, this
method is simpler because the devices do not need joining to the network.

On the other hand, the OTAA authentication method has a joining phase
with a dynamic assignment of security keys to the device address.

For the OTAA authentication method, the device needs to store Device EUI
(8 B), application EUI and application key (16 B). The ABP requires device
EUI, application EUI, device address, network session key, and application
session key.

The LoRaWAN devices usually have additional protection based on frame
counting. The frame counter is automatically incremented when a message is
received by the server, and compared with the frame counter contained in
the message. If the counters mismatch, the incoming message is not accepted.
This feature was disabled for development purposes because the board resets
the frame counter during every restart.

The LoraWAN has three device classes based on communication profiles:

Class A: after transmitting a message, there are two receiving windows
delayed specific times (1s, 2s). The rest of the time it is sleeping. This
class is the most power-saving mode. Example of communication is
visible in Figure 2.2

Class B: is the same as for class A but in addition has receiving windows
time-synchronized with a gateway.

Class C: extends the class A with a receiving window opened permanently
unless transmitting.



2. Board

i /

Receive Delay 1
-«
Receive Delay 2

< »
< »

! ! | Slot 2
Transmit 3 3 Slot 1 3
| | | Tt
Transmit 1 1 Receive
| | | t
! ! } Receive
Transmit 3 3 Slot 1 3

Figure 2.2: LoRaWAN device class A timing diagram, all possible cases of
receiving message, first from top: no message, second: message received in first
window, third: message received in second window.

LoRaWAN was selected based on extreme low power consumption and very
long distance communication. It is suitable for a small amount of data like
event definition with timestamp and position. If a complete recording of the
acoustic event is to be sent, a different network type for transferring a bigger
amount of data has to be used.

B Other Networks

Apart from LoRa, there are other types of networks with various advantages
and disadvantages:

WiFi is a high power with a high data throughput network.

Bluetooth offers low power mode, but the range of the network is very
limited.

NarrowBand can provide low power with small messages. This network
is commercial and each message is charged by a local service provider
based on an agreement.

GSM (LTE) has the largest coverage from all mentioned networks, but
requires an agreement with a service provider similar to the Narrowband
network.

B Providers

In the Czech Republic, there are two providers CRA (Ceské Radiokomuni-
kace) [7] or The Things Network (TTN) [8]. CRA offers an enterprise-grade
network with dense coverage in comparison to TTN that is a community-
driven network, so the gateways are not as reliable as from CRA.

It is also possible to create your own network, for this purpose exists
open-source project ChirpStack [9].



2.1. Components

B Gateway

The area, where the board is developed, is not covered by the chosen network
TTN, so a new own gateway had to be created for the development. The
gateway is based on raspberry PI 3 with IC880a LoRaWAN concentrator
board, shown in Figure [2.3] The gateway was connected and registered to
TTN using manual [10].

Figure 2.3: Photo of homemade LoRaWAN gateway.

B 2.1.3 Position and Timestamp

Acquisition of position and precise timestamping is provided with GPS from
Ublox professional grade, model LEA-6T. The GPS is capable of timestamping
an event with the accuracy of RMS 30 ns.

The communication interface with MCU is UART. USB communication
interface is also provided with custom configuration and testing software on
Windows with the name u-center [11].

Declared position accuracy is 2.5 m CEP. The supply voltage is 2.7V to
3.6V.



2. Board

B Communication protocols

The GPS is capable of communication in two protocols at the same time.
The user can select in the configuration the NMEA messages, USBX protocol,

or both

NMEA protocol [12] is a standardized ASCII based message protocol, where
each message starts with $ and ends with <CR><LF> (Carriage return,
Line feed). Every message contains two hexadecimal ASCII characters as
a security checksum which is created with XOR function. The message
structure is shown in Figure 2.4

$GPGLL,4717.11634,N,00833.91297 ,E,124923.00,A,A*6E
Listing 2.1: An example of NMEA position message

<Address>

{,

<Value>}

x<Checksum>

<CR><LF>

<

v

Checksum calculation fields

Figure 2.4: NMEA message structure.

UBX protocol [13] is uBlox proprietary byte-oriented protocol, where mes-
sages start with two bytes synchronizing characters followed by byte
for packet class specification, message ID, two bytes for data length,
data and at the end are two bytes for security checksum. The message
structure is in Figure |2.5.

{ 0xB5, 0x62, 0x0D, 0x03, 0x00, 0x00, 0x10, 0x3D }

Listing 2.2: An example of UBX timestamp polling packet

Sync
byte 1

Sync
byte 2

Class

1D

Data length
(Little endian)

Data

Chsum

Chsum

B 2.1.4 Battery

v

A

Checksum calculation fields

Figure 2.5: UBX packet structure.

The board shall be capable of independent operation on the battery for at
least 4 hours during an external power interruption. For the power backup
operation was selected a single cell high drain Li-Ion rechargeable battery
IMR 18650, with nominal voltage 3.7V and capacity 9.25 W h.

10



2.1. Components

B Battery Charger

For charging a battery during a standard external power, a battery-friendly
charger for Li-ion single-cell battery from Texas Instruments BQ24075TRGTR
is used based on previous positive experience.

The charger has internal temperature protection and a maximal charging
current limiter. The maximal and minimal charging cutoff temperature can
be set via an external resistor. With resistors can be also set the maximal
charging current. The profile of current during charging of the battery is
plotted in Figure |2.6.

| |
0 20 40 60 80 100 120 140 160 180 20

0 | | |
t [minutes]

Figure 2.6: Battery charging current profile.

B Battery Monitor

If the device is capable of battery-powered operation, it is quite convenient
to be able to get the state of the battery, like percentage. For this purpose,
there exists ModelGauge Battery Fuel Gauge Technology from Maxim Inte-
grated [14]. With this particular technology in mind, the chip MAX17260
was selected. The chip can learn by itself all necessary parameters such as
capacity and state of charge from the battery usage. It can also estimate the
life expectancy of the battery by monitoring the capacity.

B 2.1.5 Nonvolatile Memory

Nonvolatile memory keeps stored information even in case of losing power.
The MCU has two types of memory: volatile RAM, where the program runs,
and nonvolatile flash, where the program is stored. Flash memory has to
be altered in blocks, which means that the change of just one byte requires
reading the whole block, storing it inside RAM, modifying it as desired,

11



2. Board

erasing the original block in the flash, and storing the modified block back to
the flash. It is a complicated process and in case of error, the program can
be modified.

Due to the issues described, the external nonvolatile EEPROM memory
was added. The selected nonvolatile memory from ST, M24C16 which is
16kB EEPROM memory with I?C interface. The chip was chosen based on
previous experience. The memory is divided into independent eight pages
where every page has its own I?C address. Its operations are byte-oriented.

B 2.1.6 Environment Sensor

For the capability of temperature measurement, the sensor from Bosch was se-
lected. The sensor BME280 is capable of measuring not only temperature but
also atmospheric pressure and humidity. The selected chip is an automotive
grade product with a well-documented official C library on GitHub [15].

B 2.1.7 Sound Acquisition

The audio recording is one of the main features of the board and can be
accomplished with an external or internal Analog-Digital Converter (ADC).
The internal ADC is 12bit and can be sampled without interrupting MCU
via timers and Direct Memory Access (DMA). In addition, external 16 bit
ADC with SPI interface from Texas Instruments, ADS8866, was selected.

The signal needs to be amplified before conversion from the microphone, for
amplification the operational amplifier (op-amp) from Microchip MCP6002 is
used.

The external ADC and op-amp were selected based on [16].

The resolution of internal ADC (12bit) is sufficient because we are looking
for step changes instead of detail during the signal. To process a signal with
more than a 16 bit ADC, more CPU power and especially more space for
data storage is needed.

The selected sampling frequency of sound acquisition is 44 776 Hz. It is the
closest higher frequency to 44.1 kHz, the standard CD sample rate, achievable
with timer configuration registers. The created sampling frequency deviation
is 676 Hz which relatively is 1.5 %.

12



2.2. Board Preparation

B Peak Detection

The function of the peak detector is to create an event based on a recognized
signal [16]. The event then triggers the GPS module for timestamping and
starts the digital signal processing (DSP).

The peak detector contains a standard peak detection circuit with forgetting
and a high-pass filter, shown in Figure 2.7. The peak detection circuit consists
of the diode and a capacitor, where the diode permits discharging of the
capacitor when a lower voltage is on the input. The relation between input
and output is depicted in Figure 2.8. The output from the peak detection is
connected to the op-amp with gain % + 1 =~ 3.35 to ensure a true logical

value on the output.

In | N Peak
| .
| L1 out Out
(O
R

1 02 RQ

Discharging

— R

Figure 2.7: Peak detector logical schema, blue is high-pass filter, red is the peak
detection with discharging resistor and on output is op-amp with gain.

»
!

t [s

Figure 2.8: Peak detector signal processing, black is the input signal, red is the
output signal with discharging R, blue is the output signal without discharging
(ideal peak detector).

B 2.2 Board Preparation

The Board schema and Printed Circuit Board (PCB) layout were created in
the software Altium Designer [I7]. The Altium Designer is a professional tool
for designing boards.

13



2. Board

B 2.2.1 Board Schema

To create a wiring diagram of the selected components, it was necessary to
specify power supplies. The Texas Instrument LMZ20502 switching power
supply was selected for the digital part. The switching power supply is enclosed
inside a shielding cage for the improvement of Electro-Magnetic Compatibility
(EMC). A Texas Instruments LP5912-3.3 linear voltage regulator was selected
for the analog part of the power supply, especially for the audio amplifier and
ADC.

For security reasons, reversible 1.5 A fuses are added for every input power
source.

A micro USB port was selected for configuration and battery charging.
An additional UART interface is provided internally in case the integrated
LoRaWAN does not meet the communication requirements and it is necessary
to add other network device (e.g. GSM / LTE).

Another safety measure is an antistatic ring with the exposed ground
around the edge of the board. It enables manipulation of the board without
exposing the board to static electricity. The final design of PCB contains
four layers: two layers with logical connections, one grounding layer (ground
plane), and one layer for power supplies only (power plane). Figure shows
top and bottom side visualization. For maximum EMC is in free areas of the
logical layers poured out the ground with stitching.

(a) : Top side. (b) : Bottom side.

Figure 2.9: Board visualization.

After the successful deployment of the selected components and the inter-
connection of all connections, step files for the production of the PCB and
schema in Chapter [A] were generated with the Altium Designer software.

14



2.2. Board Preparation
l 2.2.2 PCB Mounting

The PCB was manufactured by Printed s.r.o. (shown in Figure |2.10) and the
components were mounted in home condition (photo of finished board is in
Figure 2.11)). Several components such as charger, switching power supply, or
battery monitor are in QFN housing with a thermal pad which requires an
oven or rework station for soldering.

(a) : Top side. (b) : Bottom side.

Figure 2.10: Board PCB after manufacturing.

Probably due to the inability to comply with the temperature soldering
profile, it was not possible to install the MAX17260 battery monitoring chip
in home conditions even with a rework station without damage.

In some cases (especially with the LoRa chip) there was a problem with via
(an electrical connection between layers) masking. LoRa chip has no masking
on the bottom side and after mounting on the board there was a short circuit
with connections that lead under the chip. In these cases, it was necessary to
stick the Kapton tape to the board for vias insulation.

Figure 2.11: Fully mounted board, top side.

15



2. Board

B 2.2.3 Case for Board

A tailor-made box was created for testing in outdoor conditions, shown in
Figure The design of the box was prepared in 3D software OnShape [L§]
and then printed at home on a 3D printer AnyCubic Photon resin printer.
The threaded plug visible in Figure is used for device configuration and
battery charging.

Intensive testing with the created box has shown that it is more suitable
to use a generic waterproof box for electrical installations. Commonly used
boxes do not attract so much attention and have higher long-term weather
resistance.

(a) : Closed box. (b) : Opened box.

Figure 2.12: Custom case for board.

. 2.3 Firmware

The firmware, which is the program of the main STM32 processor, defines
the behavior of the whole system. It connects individual components on
the board to each other based on logical links. The functionality of the
board is shown in Figure 2.13. The firmware operates components from
the lowest level via registers (timer interrupt), via digital communication
on the bus (environment sensor), to communication with GPS and network
communication via LoRaWAN.

It was developed in Atolollic TrueSTUDIO [19] due to the previous experi-
ence with the toolchain.

In the code, the naming convention is that the name of each variable
starts with a data type specification using, in_ (for input) or out_ (for output)
variables in funciton calls, followed by a sequence of letters standing for the
type of variable. For example out_paiil6SoundData stands for the variable which
is output from the function and its type is a pointer to the array of int16_t
(int16_t *SoundData[]).

16



2.3. Firmware

The convention prevents unwanted implicit data type conversion. It also
helps with specification, if the pointer in the function call is an input or the
output argument. The modification const could solve this problem, but it is
not used for example in STs HALs. The code is documented using comments
in code and Doxygen [20].

[ Wait ]
RTC Peak detect
Alarm interrupt
% - \ 4
Get Position, [ Get recordin ]
Battery state °
* \ 4

Housekeeping ‘ Detection ’

packet creation algorithm
v Classizcation
[ LoRa send ] .
algorithm

\ 4
[ Get Timestamp ]

\ 4
‘ Get Environment properties

(Temperature, Humidity, Pressure)

v

Event packet
creation

[ Store recording ]

Figure 2.13: Board functionality flowchart.

B 2.3.1 Firmware Structure

The firmware is internally divided into two parts, where each part consists of
folders. The division is outlined in Figure [2.14. The first part is the written
code and the second part is auto-generated code via CubeMX software [21]
from ST.

17



2. Board

The written code contains the following parts:

BSP is Board Support package, this group interacts with the hardware and
is using HAL libraries. The BSP is custom made for the specific board.
The BSP shall not be using anything from the ASW.

ASW is Application Software where the high-level logic is implemented. The
ASW does not directly access HAL libraries or hardware but uses BSP
to allow switching to another board with the same API defined through
BSP header files.

CLI (Command Line Interface) is a framework for dispatching com-
mands from Command Line.

Drivers contains high level logic of the device driver such as packet
decoding or memory management for EEPROM.

Algorithms is where the detection (Section 4.1) and the classification

(Section |4.2)) algorithms are.

LIB is for third-party libraries such as for BME280 and code that can be
shared with BSP and ASW such as the definition of generally used types,
for example, the return value LibError_RetVal_e.

arm DSP

[ Middleware ]—>[ USB

FatF's

I

N

j

Generated

src

CMSIS

HAL
BSP

[ Wiitten }»{ LB |

Figure 2.14: Firmware structure.

18



2.3. Firmware

B 2.3.2 Interfaces

The interfaces are commonly used for the interaction of MCU with other
units or with the outside world. MCU contains several interfaces like UART,
I2C, SPL...

B Universal Asynchronous Receiver-Transmitter — UART

The Universal Asynchronous Receiver-Transmitter (UART) is one of the
simplest buses of all and is a full-duplex serial point-to-point communication
between two peers. The physical connection uses two wires (Rx, Tx). The
UART communication is block-oriented with 7 or 8 bits of data with an
optionally additional one parity bit. Both peers have to have configured the
same communication speed.

The used MCU can provide an interrupt signalizing the bus is idle. It en-
ables notification about the end of a packet during packet-oriented communi-
cation with other devices. Without searching for the start and end of a packet,
MCU can do other tasks. Moreover, the receiving is done via DMA, so the
MCU is not loaded with handling incoming communication.

B Inter-Integrated Circuit — 12C

Interface Inter-Integrated Circuit (I?C) is a synchronous, multi-slave serial
communication bus. It is used for the connection of low-speed peripherals to
MCUs in a short distance. The physical connection is via two wires (SDA
and SCL). In our case, MCU is used as a master and other devices with the
appropriate address defined by the manufacturer are slaves, see Table [2.1.

’ Device ‘ Address ‘ Bus ‘ Enum
BME280 0x76 2 E_BSP_I2C_MAX
MAX17260 0x36 1 E_BSP_I2C_BOSH
M24C16 page 0 0x50 1 | E_BSP_I2C_MEMO
M24C16 page 1 0x51 1 E_BSP_I2C_MEM1
M24C16 page 2 0x52 1 E_BSP_I2C_MEM2
M24C16 page 3 0xb53 1 | E_BSP_I2C_MEM3
M24C16 page 4 0xb4 1 E_BSP_I2C_MEM4
M24C16 page 5 0x55 1 E_BSP_I2C_MEM5
M24C16 page 6 0x56 1 E_BSP_I2C_MEM6
M24C16 page 7 0x57 1 E_BSP_I2C_MEM7

Table 2.1: I2C device address table.

19



— =

2. Board

For communication with devices over I?C a C module was created. The
module needs for communication with the desired slave a device enum identifier
only and handles operations between the device and a higher level of the
program. All the needed information such as the slave’s address and bus are
stored inside the module.

1|/ static const SlaveInfo_t m_atI2cDevs[E_BSP_I2C_CNT] = {
2 /* Bus, Addr, Device */

3 {E_BSP_I2C_BUS_I2C2, 0x76u}, /* BOSH */

4 {E_BSP_I2C_BUS_I2C1, 0x50u}, /% MEMO */

5 {E_BSP_I2C_BUS_I2C1, 0x51u}l}, /* MEM1 */

6 {E_BSP_I2C_BUS_I2C1, 0x52u}, /* MEM2 */

7 {E_BSP_I2C_BUS_I2C1, 0x53u}l, /* MEM3 x/
81};

Listing 2.3: I?C slave definition sample source code.

B Serial Peripheral Interface — SPI

The Serial Peripheral Interface (SPI) is a synchronous full-duplex serial
communication primarily used in embedded systems for short-distance com-
munication. SPI is a four-wire bus with individual slave select (SS, CS) lines
for multiple slave devices, master output (MOSI), slave output (MISO), and
the clock signal (CLK).

The module created for handling communication between SPI devices and
the program allows two modes of communication: blocking and non-blocking
(DMA) transfer. The selection of the appropriate device is based on enum
identifier.

1||/* SPI devices table */

2 || static const DevInfo_t m_atSpiDevs[E_BSP_SPI_CNT] = {

3 /* Port, Pin, Bus, Device */

4 { ADC_CS_Port, ADC_CS_Pin, E_BSP_SPI_BUS_SPI1 } /x*
E_BSP_SPI_ADC x/

51 };

6

71| /* SPI bus states */

8 || static BusInfo_t m_aeSpiStatus[E_BSP_SPI_BUS_CNT] = {

9 /* Status, Selected, BUS */

0 {E_BSP_SPI_STATUS_READY, E_BSP_SPI_CNT}, /* SPI1 */

143}

Listing 2.4: SPI slave definition sample source code.

20



— =

2.3. Firmware

B 2.3.3 Command Line Interface

The command-line module is created as a communication interface between
MCU and human. The command-line interface is capable of allowing password-
protected access with first-level command multiplexers and help command.
In the initialization of the module, it accepts array of AswCli_Command_t where
every array entry is a top level command.

After entering the command, the input parameters are tokenized, so the
signature of the functions shall mimic the known signature of the C main
function on the operating system int main(int argc, char **argv).

1 || typedef struct{

2 const uint8_t *au8CmdString;

3 const uint8_t *au8HelpString;

4 LibError_RetVal_e (*fCallback) (const uint32_t in_u32Argc,
const uint8_t *in_pau8Argv([]);

51| }AswCli_Command_t;

6

7 ||#define ASW_CLI_GENERIC_RESET_CMD {\

8 .au8CmdString = (uint8_t*) A\

9 .au8HelpString = (uint8_tx*) 2\

0 .fCallback = AswCliGeneric_Reset ,\

11}

Listing 2.5: Sample defininition of CLI command.

B 2.3.4 Data Storing

The application has two different data storage requirements. The first is
the storage of parameters that affect the behavior of individual parts of the
application. Parameters occupy less space in memory but must be available
during runs of the application. The parameters can be changed on the fly,
for example, through CLI (Section 2.3.3).

The second requirement is the storage of recorded audio data. In this
case, it may consume a large amount of space, the data can be subsequently
transferred to another device, and therefore it is advisable to use a removable
medium.

B SD card

The SD card is primarily used for storing recorded audio of the acoustic
events for possible post-processing. The written module SoundStore stores
events into the BOOMS folder, the name of the file comprises the number
of acoustic event. The quota for space on the SD card can be set, if space
would be insufficient for adding a new recording, the oldest recording will be
deleted. The age of the file is based on file descriptor created time which is
set in the time of creating according to internal Real Time Clock (RTC).

21



2. Board

Bl EEPROM

The application parameters are stored in Electrically Erasable Programmable
Read-Only Memory (EEPROM), which is a type of non-volatile memory.

The parameters are held inside module called Datapool. It provides getters
and setters for parameters that are stored internally. It also provides a hard-
coded fallback configuration in case that EEPROM is unavailable.

B 2.3.5 LoRa Messages

The structures are packed with the compiler’s attribute __attribute__((
__packed__)) and then sent via LoRaWAN without other changes. Usually,
the fields inside a struct are aligned with the system memory layout, in this
case, the uint8_t occupies 4 B (32bit) because of 32 bit processor. However,
with the attribute, the compiler squeezes the size of fields just to the type
specific size (uint8_t — 8bit).

B Housekeeping

The housekeeping message serves as a notification that the device is alive
with additional information about its current state.

Sending of this message is triggered via RTC alarm in configured time.
The housekeeping message contains position information, i.e. longitude,
latitude, and altitude, and battery percentage.

There is a prerequisite that the node’s position is stationary so that position
sent for example once per day is more than sufficient.

1|| typedef struct __attribute__ ((__packed__)){

2 double dLongitude;

3 double dLatitude;

4 double dAltitude;

5 int8_t i8Battery; /* mnegative walue -> unavailable */
6 || FAswComm_Housekeeping_t;

Listing 2.6: Defininition of Housekeeping packet structure.

B Event

The event packet can be triggered by more events. The main reason is that an
acoustic event was detected (Section 4.1) and classified as a gunshot (boom
event type) by classification algorithm (Section 4.2). Other reasons can be
that the box with the tamper switch is opened (alert event type), or that the
battery is low.

22



2.3. Firmware

The event packet contains eType that says if it is boom (gunshot) or
alert type, with eSubType specifying the event more closely, depending on
type. If the eType is a boom type, then the esubType contains result of the
classification algorithm (Section [4.2), on the other hand if the eType is an
alert type then the esubType specifies what kind of alert such as lid opened,
low battery.

The other fields represent variable information that is needed for performing
the localization task described in Section 4.3l

typedef struct __attribute__ ((__packed__)){

uint8_t eType;

uint8_t eSubType;

uint8_t u8HumidityPercentage;

uint32_t u32PressurePa;

int32_t i32TempMilliC;

uint32_t u32TimeStampSeconds;

uint32_t u32TimeStampNanoSeconds;
}AswComm_Event_t;

© 0~ O O Wi

Listing 2.7: Defininition of Event packet structure.

23



24



Chapter 3

Server

The server is a computer that stores data sent from nodes, calculates the
position of a gunshot based on events, and provides web administration and
reporting console. For a machine to machine communication, API is available.

The server is directly accessible from the internet to enable access to the
web page and LoraWAN communication with nodes. Because of this, the
security needs to be taken into account.

The main programming language of the application software on server is
Go [22]. The Go is an open-source statically typed programming language
backed by Google. The output from the compilation process is native machine
code and can be compiled for most of used operating systems like Linux,
MAC OS, MS Windows, and most of UNIXes. For testing, UNIX platform
FreeBSD was used.

Some of the language features are garbage collector [23], blazing-fast com-
pilation times, and green threads [24]. The green threads (Goroutine) enable
the creation of threads inside the user space instead of the kernel space. The
Goroutine are managed with a runtime scheduler. This approach enables
easy and efficient creation of a big number of Goroutines. It is useful, for
example, for the webserver because a separate Goroutine needs to be created
for every client. The runtime scheduler used with Goroutine offers cooperative
scheduling with mechanisms such as channel communication, that are much
simpler and effective than the scheduler for system threads.

Its syntax is influenced by C with emphasis on simplicity and safety.
The language out of the box comes with a package manager, testing and
performance benchmarking framework, and documentation generator with
output in the form of a website.

Furthermore, the Go is used for creation of, for example, Docker [25],
container system. Moreover, Uber uses Go and has open-source guidelines [26]
for improving code correctness and moving runtime errors to compile-time
errors, which is easier to solve.

As the main framework for http/https handling, Echo [27] from Labstack
was selected because it is lightweight, high performance, and easy extensible.

25



3. Server

. 3.1 Structure

The application software can be divided into the following sections (also
shown in Figure 3.1):

Application contains the main application (business) logic. It operates
as a “relay” between ports and algorithms, especially if an event of
boom type is detected, the localization algorithm will be queued for
performance.

Ports are tailored for given adapters such as database operation, queries are
inside the Ports, and only functions are exposed.

Algorithms contain currently only the localization algorithm.

Adapters are external libraries for subscription to LoRaWan, performing
queries, and handling connections to the database.

For a clearer code structure, the server is separated into internal packages
such as models, app, triangulate,. ..

For easier data transfer between server’s packages, the package called models
was created. It contains models of data types (structures) that the server
is internally using. For example Event structure is used in database package
and API package.

Adapters

Application

Algorithms

(External libraries)

Figure 3.1: Logical structure of the application software.

26



3.2. Security

B 32 Security

For the first level of security, the Transport Layer Security (TLS) is used.
TLS is a cryptographic protocol designed to provide communication security,
data integrity, and mainly privacy.

For managing access to the API and webpage, the so-called middleware is
used. The middleware handles the connection between web server and the
handler function for given Uniform Resource Locator (URL). The middleware,
outlined in Figure does the authentication of users and preprocessing
of incoming requests. Authentication is a second level of security for access
to API or a web page. Preprocessing/Postprocessing is needed when Gzip
(compression algorithm) is used, because then outcoming messages are com-
pressed to save data transfer and hence make faster page loading, and save
the data plan on a mobile device or in case of incoming messages it performs
decompression.

Handler A

Middleware n
Gzip

Middleware 2
Authentication

Request

Figure 3.2: Web-server middleware layering.

B 3.2.1 Secure connection

The connection between client and server is always secured based on TLS
enhancement. The difference between secure and unsecure connection is
visible directly in the URL, when URL for secure connection is starting with
https (Hyper Transfer Protocol Secure).

The process establishing TLS connection [28] contains several steps. TLS
protocols use a combination of symmetric and asymmetric encryption, when
the client and the server must negotiate the exchange of information about
the keys and the algorithms used. The most important part of establishing
a secure connection is called handshake. During the TLS handshake, the
client and the server exchange all necessary information used to determine
connection properties.

27



3. Server

B 3.2.2 Password storing

Storing passwords in plain text without any kind of mangling is frowned
upon because all database administrators can see the passwords or in case
the database is hacked, the attacker can directly read the client’s passwords
too.

To eliminate this problem, the password salting [29] algorithm is applied
for hashing of the password. In this particular case, the BlowFish cipher [30]
provided in the berypt package from the standard library was utilized. The
BlowFish cipher’s inputs are password (thing to hash), key, and cost of the
hashing. The cost of the hashing is a trade-off between security and speed.

B 3.2.3 Cookie management

For managing the sessions with the client, the cookie session management
was selected. It means that the session information is stored on the client in
the form of a cookie. Cookie has 2 string fields: name and data, because it is
stored on the client who is by default untrusted, the contained information
has to be secured.

The data fields are encrypted with AES-256. To improve security, the
cookie has a field with time of creation to ensure that every created cookie is
unique.

. 3.3 Database

The application needs to permanently store the data and its state. The
amount of stored data can be large, so to enable fast reading and processing
of data, it needs to be organised. The database offers exactly this property.

Nowadays, a large number of database systems with different properties [31]
is available. The decision factor when choosing a database system is the
type of the database [32] - schema-less or with schema, relational (SQL -
Structured Query Language) or without relations (NoSQL).

The most known schema-less and NoSQL database is MongoDB [33],
schema-less means that it does not store data inside columns but as JavaScript
Object Notation (JSON), graph, etc.

The SQL database is more suitable for the data stored in this project,
because the structure of the stored data is known ahead. Another reason is
that the amount of data needed to store is not large, and relations for the
elimination of data duplicity are convenient too.

There are many SQL databases such as MySQL [34], Microsoft SQL,
PostgreSQL, MariaDB. MariaDB [35] was selected because it is an open-
source alternative for already well battle-tested MySQL through industry
usage. MariaDB is a drop-in replacement for MySQL.

For more user-friendly development, the DBeaver [36] community edition,
which is a graphical database manager, was used. DBeaver is open-source
project, which exists in a community (free) and enterprise (paid) variant.

28



3.3. Database

Nanoseconds

Time uncertainty

Position uncertainty

Boom
computation

Node ID @
1
..m

Time Time

Longitude w @ Initialized Battery

e

Unauthorized Event

Received time

Humidity

Figure 3.3: ER schema of the database.

29



3. Server

®% nodes
=% events

¢ nodelD
¢ EID
uID

type
@ nodelD

4 UID
4 lastComm
< added

S & modified
ec
N posLon
sec
posLat
o JIEE ®% users
" comment
em
h P initializec ¢ userID
um
a modifiedBy username
press

#% used_booms battery role
subType .
¢ UsedID PosAlt & email
EID passworc
& lastLogir

& created

Q
== api_keys
¢ APIkey

®% unauthEvents a userID

¢ EID name

2 lastUse
uID nsec

type uncPos
Sec uncSec
Nsec uncNsec
recv & computed
temp alt

hum

press

subType

Figure 3.4: Database schema generated with DBeaver.

For the communication between application and the database, an universal
interface modul was created. It enables easy switching between multiple
database implementations. If MariaDB is for some reason insufficient, the
application code does not need to be changed. Merely the driver for the
MarianDB needs to be replaced by the module with new database and the
interface remain unchanged.

At first, the ER schema of the database structure was created (Figure
and after, based on the schema, the tables and relationships were constructed

(Figure [3.4).

30



3.4. CRUD API

B 3.4 CRuUD API

The CRUD API is a machine-to-machine interface for controlling and checking
the state of the application. The CRUD stands for Create, Read, Update,
Delete, which means that the API supports the method for the mentioned
operations. The top level structure of the CRUD API is outlined in Figure|3.5.

Other ways of API creation such as GraphQL or gRPC exist, but these
interfaces are much more complicated or even need specialized clients due to
the usage of technologies other than HTTP (gRPC).

The API can be accessed with two authorization models: API key or cookie
session. The API key is a unique string of length 64 lowercase and uppercase
alphanumeric characters that are generated by the server for the user. The
user can generate the keys via the website or directly through API after
logging in with the username and password.

The API is documented with Postman [37] and has 2 layers: the client
layer and the admin layer.

The API call convention utilizes HT'TP methods. For example, to obtain
the list of all users, the HTTP method GET would be called on {addr}/api
/admin/getAl1Users. When the user information needs to be updated, PATCH

method will be called on {addr}/api/user URL. The creation of things is done
via POST method.

API

[Admin] [Event] [Boom] [Node] [User]

[Event] [Boom] [Node] [User]

Figure 3.5: CRUD API top level structure.

All information received is validated through Go’s package validator [38]
from go-playground, which is able to use tags inside the definition of a struct
as validation parameters.

1|/ type Pos struct {
2 Lat float64

3 Lon float64
411>

Listing 3.1: Example of Go’s structure with validation and JSON
serialization/deserialization tags.

31



3. Server

. 3.5 Website

The content of the website is server-side rendered, unlike modern JavaScript
applications where the content is dynamically loaded and rendered on the
client-side. The design of the website is in Figure 3.6

For the rendering, Go’s standard library template package is used, where
tags inside the templates are replaced with data during the rendering process.

For quicker development, the plain JavaScript/HTML website template
from MDBootstrap [39] was used. Inside the template, there are well-prepared
web components such as layouts, dynamic tables, etc.

As maps, the Google maps were considered, but rejected, because they can
not be on-premise and are closed-source. Hence, the Leaflet [40] was used.
Leaflet is open-source JavaScript library for interactive maps.

If the user wants to update or insert data on the website, the JavaScript at

first validates the fields and after uses the server’s API described in Section [3.4]
to perform the desired operation.

Boom Spotter Home Nodes Create Node Events Booms S USER ~ ADMIN ~
MBOOM P ! < *®

IA%3-{SPOTTER

(/e 2L
+|

/I _ I
€ Main page —

z
® Map

Noges

Informaéni’
centrum

Korejska
Evur,

%
&
5

5 S W (e snaasice o
- & e et | N8 - Rooseveliova
%obe, VECHT n 2 | \ 2 :
> 180 e 2l
il budava , G pudava, VN Laboratof LT L&
8, P s Pty e, TE D pperetiova—
g 1 s ~ At ez
5'a /8 i o k| -+
s o 80041, N Al {
bofore o B 1ot » £l
ko 190506 7 3

Xt

Figure 3.6: Website’s home page.

32



3.6. Message Queuing Telemetry Transport — MQTT

. 3.6 Message Queuing Telemetry Transport —
MQTT

The Message Queuing Telemetry Transport (MQTT) is a modern, lightweight,
and compact messaging protocol for the Internet of Things (IoT). It is
a publisher-subscriber type of network running over a TCP/IP stack. It is
useful for the transfer of data to remote destinations, where small code size
is required, mainly for M2M (machine-to-machine).

The basic features of the MQTT:

B asynchronous protocol

B compact messages

B operation under unstable transmission line conditions
® support for different levels of quality services (QoS)
B cagsy integration of new devices

In the MQTT protocol, messages are exchanged between a client, which
can be a publisher (message provider) or subscriber (recipient of messages),
and a message broker as depicted in Figure [3.7.

A publisher sends a message on a certain topic to the central point - MQTT
Broker. Subscribers can receive different data from multiple publishers
depending on the subscription to the corresponding topic. Every message has
a topic that is a leaf of the topic’s tree structure. Subscribing to a node of
the tree structure means subscribing to all subsequent leaves.

In Go, mgtt client package for TTN [41] was utilized. It underneath uses
Paho-MQTT package from eclipse [42]. The client from TTN was selected
because the package has already prepared functions for subscribing to the
topics.

33



3. Server

Client 1 Broker Client 2

| Connect >
< Connect ACK |

Subscribe
Topic:node/temp

Published
35 Topic:node/temp | - -
Payload: 35°C

Publish

Topic:node/temp
Payload: 20°C

Published Publish
Topic:node/temp Topic:node/temp

Publish
Topic:node/temp
Payload: 35°C

+ retain

Payload: 28°C Payload: 28°C

Figure 3.7: MQTT message transportation.

34



Chapter 4
Algorithms

The algorithms are a crucial part of the project. They provide key functional-
ities such as localization, acoustic event filtration, and further acoustic event
classification.

Every algorithm was created and tested in Matlab for easier development
and then reimplemented in the production language (C or Go).

B 4.1 Detection Algorithm

The peak detector (described in Section [2.1.7) is not selective enough to
reliably distinguish gunshots from, for example, breaking glass. To eliminate
the problem, the acoustic event detection algorithm [I] is implemented.

Execution of this algorithm is fairly cheap in terms of computing power.

The input signal is divided into taps, where the size and number of taps
are hyperparameters of the algorithm. Furthermore, the algorithm has three
detection parameters: level, energy, and Root Mean Square (RMS).

The median filter (described in Section 4.1.1)) is used to gather an approxi-
mation of the background noise.

After the approximation of the background noise, the noise is subtracted
from the middle tap which shall contain the main event (rising edge) of
a potential gunshot.

From the newly created tap, the maximal value is determined and from
the background noise, the RMS is calculated. These 2 values are used in the
first gunshot criterion.

The second criterion is based on the median values of newly created taps
around the maximal value, meaning before and after the main rising edge of
the potential gunshot.

35



4. Algorithms

Signal —»| 32 r RMS
+
> > MAX
. Y L
| Signal division into taps 1 Energy
' | Tap Tap Tap Tap Tap Tap Tap | .
; 1 2 Middle 12 13 |

’ Median Filter }7

Figure 4.1: Acoustic event detection algorithm flowchart.

The algorithm is performed in the time domain (see the Figure 4.1) and
consists of only simple operations such as the power of two, median filter,
and root mean squared (RMS).

Parameter: DetRM S = Gunshot detection RMS
DetLevel = Gunshot detection level
DetEnergy = Gunshot detection energy
TapSize = Number of measurements in one tap

Input : S = Acoustic event signal
Result :boolean < True if acoustic event is gunshot

1 begin
2 P« S
3 Noise < MedianFilter(P);
4 Middle < P(middleTap) — Noise;
5 (Val, Pos) < Max(Middle);
6 if Val > DetLevel and Val > (DetRM S * RMS (Noise)) then
7 Before < P[Pos : Pos + TapSize];
8 After < P[Pos — TapSize : Posl;
9 B + Median(Before);

10 A < Median(After);

11 if B > (A * DetEnergy) then

12 ‘ return True

13 else

14 ‘ return False

15 end

16 else

17 ‘ return False

18 end

19 end

Algorithm 1: Acoustic event detection.

36



4.1. Detection Algorithm

B 4.1.1 Median Filter

The key component of the detection algorithm is the median filter, shown
in Figure The input parameter is an array containing multiple taps
(Figure and the algorithm creates a new output array of tap size. For
each index i in tap size, it calculates the median from values at index i from
all taps, and the value is stored at index ¢ in the output array.

Tap m
1

B’

Median n

—— Signal
- -~ Taps border | |

0.8 -

0.6 |-

0.2 -

Amplitude [-]

|
|
|
!
I
!
|
|
|
1
|
|
|
|
!
|
|
|
|
|
1
|
|
|
|
I
!
|
|
|
1

—-0.4
0 14

t [ms]

Figure 4.3: Signal divided into taps for detection.

37



4. Algorithms

B 4.1.2 Dataset

Recordings of various sounds, especially gunshots, were needed for determining
the parameters of algorithms.

The available dataset [43] provided by the supervisor contains in total 247
recordings, where some recordings contain more than one acoustic event.

Unfortunately, all recordings were not created in the same place under the
same conditions, especially some of the recordings of gunshots contain echoes,
which can decrease the performance of the algorithm.

To acquire the annotation of a recording in the dataset necessary for
machine processing, the name of the folder and the file is combined. Despite
this, some parameters such as the sampling frequency were missing in some
recordings.

Label Recordings Acoustic
events

22 LR 36 67
.22 LR subsonic 28 64
9 mm Luger 24 32
9 mm Luger subsonic 0 0
5.56 mm NATO 0 0
7.62 mm NATO 0 0
7.65 mm Browning 20 20
45 ACP 0 0
Other caliber 0 0
Bio bubble wrap 16 18
Book slam 31 31
Bubble wrap 20 20
Hand clap 8 8
Door slam 24 24
Glass breaking 40 42
Other 0 0
Gunshots 108 183
Not gunshots 139 143
| Total 247 326

Table 4.1: Contents of the provided dataset.

38



4.1. Detection Algorithm

B Matlab Object

A Matlab Object named Recording was implemented for easier manipulation
with recordings.
The new object consists of fields:

Signal A vector consisting of the sound data.

Label An enumeration object Labels used for training purposes
Gun Boolean indicating if the recording contains a gunshot

Fs Sampling frequency of the recording

Location The name of the location where the recording was acquired. The
sound characteristics can be similar in sound samples recorded at the
same location.

Note Note for the recording such as what weapon and ammunition was
used, special environmental conditions such as rain, motor noise in the
background,. ..

Source A string containing information of the signal creation and each of
the operations performed.

For example, a Recording is created from variable named x9mm_1_2 44100
and after separation into different acoustic events, the event source will
result in x9 _mm_1_ 2 4100_id_ N, where N is the order of a given
event.

Overview of created methods:

B AddNote B GetSource B IsSource
B GetGuns B HasNote
B Plot
B GetLabel B IntoMfcc
B GetLabels B IntoPeaks ® Recording
B GetLocations B TIsFs ® SetCun
B GetOther B IsGun
B Setlocation
B GetSignal B TIsLabel
B GetSignalMat B TsLocation B SetNote

Currently, the enumeration Labels contains the fields listed in Table [4.1].

39



4. Algorithms

Method IntoPeaks. This method allows the extraction of individual acous-
tic events from a recording into separate standalone instances of Recording.
An example of the extracted events is shown in Figure 4.4,

The first step of the method is finding the absolute value of the signal. Then
the moving average filter is applied. This operation creates a singular peak
at every acoustic event. The starting location of each peak is approximate,
therefore another operation for finding the beginning of the event is used.
The beginning is defined as the first value higher than the given threshold.
The input signal is then cropped into separate acoustic events based on the
found beginnings, the specified number of samples before the beginning of
the events, and the total length.

1
0.8 o
0.6 - o
T 04] |
O
.|
3
= 02 -
g
<
0 o
0.2} ]
—0.4 .
\ \ \ \ \ \ \ \ \ \ \
0 0.5 1 1.5 2 2.5 3 3.5 4 45 5 5.5 6
t [s]
(a) : Input signal for decomposition.
1 T T T T 1 T T T T 1 T T
5 051 ’ l . E 0.5 | ‘ J‘ 1 5 05 J\
2o Mt | 20 %m;‘r*f’w’“lwwww“‘“ R \W‘WWW"WW“ 1
Wt W
0 5 T TR R | 5 015w % 5 10 15 20 2
t [ms] ¢ [ms] t [ms]
(b) : First acoustic event.  (c) : Second acoustic event. (d) : Third acoustic event.

Figure 4.4: Signal decomposition into single acoustic events.

40



4.1. Detection Algorithm

Parameter: D = Number of samples before event
L = Number of samples
T = Threshold
o = Size of filter for finding peaks

Input : .S = Acoustic signal
Result :V € (L, N) < Acoustic events signals, where N is
a number of detected events
1 begin
2 | D« |S]/Max(|S]); /* Normalize and absolute signal */
3 idrs < find_local_max(D,o) ; /* Finds peaks in signal */
4 events < find_init_peak(D,idzs,T) ; /* Find beginning of
peaks */
5 14+ 0;
6 for event in events do
7 Vi,:] = Slevent — D, event — D + L] ;
8 14 1+1;
9 end
10 end

Algorithm 2: Method IntoPeaks.

B 4.1.3 Board Implementation

Recorded signal is in int16_t type. In the first operation, the signal is converted
into uint32_t with the operation power of two. This operation should not
overflow because even in the worst case scenario the resulting type can contain
the resulting value.

The most demanding operation on the representation is 2, the maximal
value of int16_t is |[—32768|, power of this value is 1073 741 824 which can be
stored in uint32_t without any mangling.

Median computation requires sorting of the array, as a sorting algorithm
gsort () from the standard library is used.

B Testing

For testing purposes, a new module containing testing data and correct results
was created. The module performs tests on these signals.

Overall, six testing signals were selected where three are guns recordings
and three non-guns recordings.

Using Matlab, each selected signal is checked if the results correspond to
the label. Furthermore, the parameters for the detection of these signals were
set inside the testing module.

The test is successful if all gunshots are detected as gunshots and all
non-gunshot signals are determined as signals without gunshot.

41



4. Algorithms

B 4.1.4 Results

The detection algorithm has to be calibrated to a given environment. When
the node is permanently on one location, the parameters can be tuned to
the location and therefore produce better results than in the tests conducted,
where the dataset’s locations differ.

The algorithm has two types of errors: False Negative (FN) and False
Positive (FP). In this particular case, the number of FN shall be zero, because
FN means that a gunshot happened, but the algorithm did not recognize it
as such. With this precondition in mind, the parameters of the algorithm
based on the provided dataset were derived as shown in Table 4.2/

The Detection Level parameter could not be determined from the provided
dataset, because the parameter differs between locations and all signals had

to be normalized in amplitude during preprocessing, therefore it is set to
NaN.

The resulted confusion matrix is shown in Table 4.3l The correct detection
is 68.20 % and the gunshots were not recognized in 2.87 % of cases.

Parameter ‘ Value ‘

Detection Level NaN
Detection Energy | 0.1
Detection RMS 14.5

Table 4.2: Detection algorithm parameters.

Positive | Negative
True 169 52
False 95 5)

Table 4.3: Detection algorithm confusion matrix.

42



4.2. Classification Algorithm

B 4.2 Classification Algorithm

Classification of the acoustic event can potentially filter out more false-positive
events that the detection algorithm (Section |4.1). It also offers additional
information about possible incidents, mainly the classification of the gun
caliber. For the classification, Mel-Frequency Cepstral Coefficients (MFCC)
are used as the feature extractor, and afterwards the multiclass Support
Vector Machine (SVM) classification is applied. The flowchart of classification
is shown in Figure |4.5/

MFCC » SVM » Class
\ SVM /

Figure 4.5: Classification flowchart.

\ 4

Signal

Bl 4.2.1 Mel-Frequency Cepstral Coefficients — MFCC

Mel-Frequency Cepstral Coefficients (MFCC) are widely used in audio process-
ing, especially for recognition like speech recording or song genre classification.
The flowchart of retrieving the coefficients is in Figure [4.6

Signal (— n -»| FET (— 5 —» Mo tOUAT ol gy L sl DOT
v m :
MFCC
Coefficients

Figure 4.6: MFCC flowchart.

In the cases mentioned above, the implementation requires dividing the
signal into frames, for example, a whole song cannot be taken as one frame
for MFCC. The song is divided into overlapping frames and from the frames,
the coefficients are extracted. In this particular case, the events are short
enough that they can fit inside one frame, so framing does not need to be
implemented.

For every MFC Coefficient, there is a mel-frequency filter. All mel-frequency
filters create mel-frequency filter bank (Figure 4.7). The filters in the fil-
ter bank are overlaping, therefore the DCT (Section 4.2.1)) is used for its
decorelating properties.

43



4. Algorithms

1
0.8 |
i
o 0.6 |
<
k5
= 04/ |
<
0.2 |
0 | |
0 0.5 2 2.5
f [Hz] 104

Figure 4.7: Mel-Frequency filter bank for 13 MFCC.

B Mel-Frequency

Mel-Frequency (m) is one of the psychoacoustical scales. The psychoacoustical
scales are defined as non-linear frequency scales which more accurately depict
the change in human perception of pitch across different frequencies (f). The
human ear perceives the change from 100 Hz to 200 Hz differently than 1 kHz
to 1.1 kHz, although it has the same difference 100 Hz, it is generally assumed
that humans perceive sound on a logarithmic scale.

Other psychoacoustical scales also exist, for example, Equivalent Rect-
angular Bandwidth (ERB) or Bark scale, but they are less popular than
mel-frequency. The ERB scale uses a more simplified approximation of human
hearing (polynomial) than the others mentioned.

The mel-frequency scale is plotted in Figure[4.8 and corresponds to the scale
sensed by the human ear. The transformation functions between frequency
and mel-frequency were created experimentally.

m(f) = 2595 log;, (1 + 750) (4.1)

f (m) =700 (1075 — 1) (4.2)

44



4.2. Classification Algorithm

3,000

2,500 N

2,000 |- .

1,500 .

1,000 - .

Mel-Frequency [mel]

500 |- a

0 \ \ \ \ \ \ \ \ \ \ \ |
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500
Frequency [Hz|

Figure 4.8: Mel-Frequency scale.

B Fast Fourier Transformation

Fast Fourier transformation (FFT) algorithm computes the Discrete Fourier
Transformation (DFT), which is a widely used transformation that converts
a signal from the time domain into the frequency domain. The transformation
can be seen in Figure In other words, the output from the transformation
is the amplitude of the sine waveforms from which the resulting signal can be
assembled.

N-1
Xp= > wpe @/N -k =0,...,N-1 (4.3)
n=0
2 T T T 1
1 %\ /\ //\ A & . 0.8 |
_ 0//\ {\ef\\ /‘ - 06 .
_0\\\/\/ /\;\‘\\M 1 =
= AW =2 |
—1F \/ Y \// \\/) \7 02} .
_20 2‘0 4‘0 G‘O Sb 100 00 160 260 3(50 460 500
t sl [ [Hz]
(a) : Time domain. (b) : Frequency domain.

Figure 4.9: FFT conversion from time to frequency domain, 2 sine waveforms
of frequency and amplitude (50 Hz; 0.7) and (120 Hz; 1).

45



4. Algorithms

B Discrete Cosine Transformation

The Discrete Cosine Transformation (DCT) is the same type of transformation
as FFT (Section 4.2.1)), but instead of sine function it uses cosines and the
output is real (R — RY) instead of complex in the case of FFT.

DCT has eight variants that have a slightly modified definition, the variants
are orthogonal to each other but for the scale factor.

The second variant is used further with .

N-1
us 1
X = — — |k k=0,....N—1
k nZ:OakInCOS[N (TL+2) :|, ) )
(4.4)
3 ifk=0
ap =
1, otherwise
B Cepstrum

The cepstrum is a spectrum of the logarithmic spectrum, and its creation is
shown in Figure [4.10. Because of that, it can detect the periodicity inside
the spectrum which can carry other information such as the rate of change in
different spectrum bands.

2
— 2
Cp = |71 {log (|7 {z(1)}*) }| (4.5)
2y 1 200) |
£ £
[ %]
E E
£ 0 1 2
e 2 100 8
& g
< <<
_9l il
0 26 4‘[) 6‘() 8‘() 100 00 1,000 2,000 3,000 4,000
¢ [ms| f [Hz]
(a) : Windowed speech signal. (b) : Power spectrum.
10 T T T I I T
600 [+ -
z | =z
¢ S 400 .
E £
R 1 5 a0
= <
=5r | | | il 0
0 1,000 2,000 3,000 4,000 0 10 20 30 40 50
f [Hz] quefrency [ms|

(c) : Log-spectrum.

(d) : Power cepstrum.

Figure 4.10: Cepstrum creation steps from a short part of audio recording of
the word “Matlab”.

46



4.2. Classification Algorithm

The cepstrum offers a new realm of definitions for lots of things in the
frequency domain, in cepstrum exist alternatives such as frequency — quefrency,
filtering — liftering, harmonic — rahmonic, etc. In other words the cepstrum
contains quefrencies whose unit is s (second) because forward and backward
DFT is used.

It can be used for canceling out echos in speech or gearbox fault detec-
tion [44]. One of the important properties of cepstrum is that the convolution
transforms into addition z1 * 9 — 21 + x2.

B 4.2.2 Support Vector Machine

Support Vector Machine (SVM) [45] is a supervised learning model that
is capable of regression and classification. The SVM principle is shown in
Figure [4.11}. In its base form, it performs linear classification with boundary
maximizing the distance between different classes. In contrast to perceptron,
it can also be used for linearly non-separable data by introducing penalty.
SVM can also be used for non-linear separation by dimension lifting, which is
a data transformation with a kernel function. There are several widely used
kernel functions such as polynomial or Gaussian radial basis.

The separating hyperplane of two classes for linear classification is given by
equation (wW!Z —b = 0). The SVM optimal separating hyperplane is obtained
by solving the quadratic optimization problem (4.6) or dual problem (4.7)),
where m* is the maximal margin.

Figure 4.11: SVM principle, data points with thick black border are the support
vectors.

47



4. Algorithms

Let T be a training set containing tuples of &; point and y; label.

=1

0 ify _‘T_% b) >
where f(fi,yz-,w,w—{ il 0) 2
oo, otherwise

1 N
(w*,b*) = arg min {2 |)|® + Z I (&, i, W, b)}
(w,b)
1

B Multi-class Classification

)

The SVM can distinguish only between two classes, therefore additional
methods are used, such as one-to-all or one-to-one multiclass classification.

One-to-all The one-to-all multiclass classification (Figure 4.12) works by
separating one class from all remaining classes. Determining to which
class a given element belongs requires in the worst case n classifications,

where n is the number of classes.

°
Y [ )
o
° ° o o0°
° o 4
o0 °
(YY)
P o ° o
[ ] o @
D
o. °
e® O
o
o o°
e ©
X

Figure 4.12: SVM one to all multiclass classification.

One-to-one One-to-one multiclass classification (Figure takes a pair
of classes and makes a classification between these two. The process is
repeated for each pair. The resulting classification of a given element
can be acquired as a majority of assigned classes. In the worst case, the
number of classifications required is n(n — 1), where n is the number of

classes.

48



4.2. Classification Algorithm

Figure 4.13: SVM one to one multiclass classification.

B 4.2.3 Board Implementation

In the board, a multiclass classification of one-to-all type is implemented.
The current dataset (Table 4.1) includes a 5 class classification, where the
fifth class is the rest (no classification), it means 4 classifications. The linear
SVM with dimensionality of 13 is used, therefore the classification itself is
fairly quick and simple. The first step is the classification, whether the event
is a boom or not. It is conducted using a class trained on sounds of all caliber
combined. If the event is classified as a boom, a narrower classification of the
caliber follows.

The real implementation is that the algorithm takes a class with vector w
and b and if W% — b > 0, the process ends with the result the class defined
by (u, b). Else the next class is selected and the process is repeated. If all
classification classes were used and none selected, the result class is unknown
gun caliber.

The SVMs were trained in Matlab using fitcsvm which returns object of
SVM classifier. In the SVM object the Beta field is w and Bias field is b in
case of linear kernel.

For the computation of MFCC where it is necessary to compute the FFT
of the signal, the DSP [46] from CMSIS was used. The library provides
a specialized FFT function for real value input, that does not need rearranging
the array into complex numbers. The complex variant requires an array twice
as long as the real variant because the representation of one number takes
two indices.

The DCT function was implemented from the definition, see (4.4).
Mel-frequency bank starting, middle, and ending indexes of frequencies are

precomputed in Matlab.

49



4. Algorithms

B Testing

Same as in the case of Section [4.1.3| the standalone module was created just
for the testing purpose of implementation of the classification algorithm.

The testing module contains five signals with their corresponding labels.
Where every signal has a different class: 9 mm Luger, .22 LR, .22 LR subsonic,
7.65 mm Browning, and book slam as a not gunshot signal. The test is
successful if all resulting classes of classification are the same as the reference
ones.

B 4.2.4 Results

The whole algorithm has three parameters given by MFCC extraction: feature
count, maximal frequency, and minimal frequency of mel-frequency filter bank.

Based on experience in the sound recognition industry using MFCCs [47],
the number of features extracted from the signal was selected as thirteen.
One of the reasons is that due to the insufficient size of the dataset, a higher
number could lead to low variance and high bias (overtraining).

The minimal and maximal frequencies were found using grid search with

minimizing cross-validation loss [48)].

For example, the .22 LR subsonic has the highest cross-validation loss,
most likely caused by the impact of the bullet in the shooting range, which is
noticeable in comparison to other gunshot recordings.

Parameter Value

Feature count 13
Maximal frequency | 22049 Hz

Minimal frequency 100 Hz

Table 4.4: Classification algorithm resulting parameters.

Class ‘ Loss ‘
.22 LR 0.61 %
.22 LR subsonic 11.04 %
9mm Luger 3.68%
7.65 mm Browning | 3.07%

’ Mean ‘ 4.60 % ‘

Table 4.5: Classification algorithm error over 10-folds cross-validation.

50



4.3. Localization Algorithm

B 23 Localization Algorithm

The localization problem is the detection of an event and its assignment
to a specific location. It can be solved by several methods, namely, Time
Of Arrival (TOA), Time Difference Of Arrival (TDOA), or Time Of Trans-
mission (TOT). It is applied in different fields such as seismic (localization
of the epicenter of the earthquake), radio (Mobile device localization), and
surveillance (localization of gunshot).

The detection using multiple nodes is called multilateration, there are also
alternatives such as trilateration which is using exactly three nodes.

B 43.1 Speed of Sound

The speed of sound ¢ in air depends on the environmental conditions, especially
on the temperature [49]. The localization algorithm uses the speed of sound
for computation, so this dependency needs to be taken into account.

The used equation of the speed of sound depends on the air temperature
(T [°C]), atmospheric pressure (P [Pa]) and relative humidity (H, [%]).

[vRTk
c= M (4.8)

Ty =T +273.15 (4.9)
P 74x1073 6
Pi.o =100 [ 1.0016 +3.15 x 1076 — L2222 ) g.112¢(35%r)

2 100 =

(4.10)
H,
H = Piyo—rt— 411
120 7 7 (4.11)
P* P*
M = Mpy (1 — H, I]{jo> + H, I}jOmHQO (4.12)
1000(1.005 + 1.82H

0% ( + ) (4.13)

" 1000(1.005 + 1.82H) — &

c is the resulting speed of sound in [ms™1].

Ty is air temperature in Kelvins.

P10 is saturation pressure for H2O vapors.

R is the universal gas constant (molar gas constant).
M is the molar mass of air.

H is the absolute humidity of the air.

Mp 4 is the molar mass of dry air.

R, is the specific gas constant for water vapor.

o1



4. Algorithms

B 4.3.2 Coordinate Systems

The position on the Earth can be expressed in many diverse coordinate
systems. One is the spherical coordinate system using three coordinates:
longitude, latitude, and altitude. Other systems are the Cartesian systems,
where the system can be fixed to the rotation of the Earth (ECEF) or is
inertial to the rotation (ECI), or a geocode, where the position is encoded
into a set of numbers, letters, or symbols.

The ECI coordinate system is used in the Global Navigation Satellite
System (GNSS) to eliminate non-Newton forces introduced by not using an
inertial coordinate system, visualized in Figure 4.14.

Figure 4.14: Coordinate systems, (z,y,z) ECEF, (¢, A\,h = 0m) LLA.

B Longitude, Latitude, Altitude

Longitude, latitude, and altitude (LLA) [50] is one of the most used position
coordinate systems. It expresses the position via spherical coordinates in
degrees.

The longitude (\) defines the east-west position, where 0° is on the prime
meridian, which is a line connecting both poles going through Royal Observa-
tory, Greenwich. The value range is from —180° up to 180°.

The latitude () defines north-south position, where 0° is on the Equator.
The value range is from —90° up to 90° from South to North Pole.

52



4.3. Localization Algorithm

The altitude (h) is declared as the height above the geoid (Earth’s shape
mathematical representation). There exists many geoids where one of the
most used is WGS 84, which defines the Earth as an ellipsoid.

B Earth-Centered, Earth-Fixed Coordinate System

Earth-Centered, Earth-Fixed Coordinate System (ECEF) [50] is the position
in the Cartesian coordinate system with z, y and z value, where position

[O 0 0} is in the center of the Earth.

There is a need for conversion from LLA into ECEF, which can be performed
with (4.15), (4.16]) and (4.17).

r

N = (4.14)
\/1 — €2 . sin (@)2

x = (N + h)cos (p) cos (A) (4.15)

y = (N + h)cos (¢)sin () (4.16)

= [(1 — 62> N + h] sin (¢)? (4.17)

e is the Earth’s model eccentricit,
in case of WGS 84 the value is 8.181919084 2622 x 10~2.

r is the Earth’s model radius, in case of WGS 84 the value is 6 378 137 m.

The inverse conversion is not as much straightforward as LLA to ECEF.
There are two types of conversion formulas [50] closed one, and with iteration
for ¢ and h. The closed formula for conversion can be written as follows:

= /22 + 92 (4.18)

6 = arctan T) (4.19)

(
= arctan Ci) (4.20)

2+ ¢%bsin? ( 0))

— e2r cos3 (0)

’EN

(4.21)

= arctan

= — (90) (4.22)

b is semi-minor axis of the Earth model for example in the case of WGS 84
the value is 6.356 752314245179 x 10°m

e’ is the second eccentricity of the Earth model for example in the case
of WGS 84 the value is 0.082094 437 949 696.

53



4. Algorithms

B 4.3.3 Basic Principle of Localization

For localization it is used a technique named multilateration, which means
computing the position from the time of arrival (TOA) of energy waves, in
this case acoustic. This method is widely used in aircraft navigation systems,
for example, Loran-C [51].

o Node 0

o BOOM

t=1617803987s
to = NaN
t1 =1617803991s

Node 1

Figure 4.15: Localization problem visualization.

For the localization of gunshots, the reverse principle has to be used,
meaning that the signal at time ¢y is not coming to the sensors who sense
the event in times (¢1,...,t,), but the sensors emit events at same times
that they would receive (¢1,...,t,) that in the same time (¢9) arrives at the
position of interest.

When from every sensor is a wave emitted at times t1,...,t,, the intersec-
tion of signals is the possible location of interest. Lines are created from the
moving intersection of 2 propagating waves (circles). The resulting line is
a hyperbola. The place where all hyperbolas cross is the position of interest
as in the Figure [4.16.

r2(t) = 22 + ¢? (4.23)
[(t; — 1) d]* =12 (4.24)
[(ti —t) ] = (& — m)* + (y — ny)? (4.25)

Where r(t) stands for wave propagation as in Figure 4.15 and z and y is
the position on the wave at a given time ¢. This leads to the nonlinear system
of equations, where n; and m,; are the positions of the nodes.

For an exact number of sensors (3-4), a closed formula for this problem
exists. However, the closed formulas do not account for real-life scenarios
where all hyperbolas do not cross at the same points due to errors, therefore,
formulas containing a type of iteration method are used, because they are
capable of finding an approximate solution.

o4



4.3. Localization Algorithm

Figure 4.16: Inverse localization problem visualization.

B 4.3.4 3D Localization

3D localization requires at least four sensors. Less than four sensors causes
the system of equations to be underdefined, because four values are calculated:
position (xg, Yo, 20) and time of the event (tp). This algorithm uses 5 or more
sensors, because in the case of four sensors, the 2D variant (Section
offers better results.

3
fE) =lF—a|T+ec(t—t)T— > (mT — 1%)® (4.26)
=1

c is the mean of all speeds of sound computed from nodes environment
information.

T € R™ consisting of ones.
@ operator stands for element-wise power of two.
T
7= {rl 79 7“3} , t is unknown location (7) and time (¢) of the event.

i, t, is the closest location (7) and its recorded time (¢y,).
L o 4T
P= [Pl P Pg} € R3*™ all locations that recorded event.

The 3D localization algorithm is using LM method (Section [4.3.4) for
solving min f(7,¢). The method is sensitive to initialization, so the initial
point is taken as the localization of the node with the lowest time (it means

95



4. Algorithms
that it is probably the closest to the boom) with a slight shift, to prevent the
loss of information while maintaining its accuracy.

The LM method also needs a derivative of the input function (4.26), in
this case it is jacobian (4.27).

[y — ——nl-A ] !
r—n N s
Vo (iR
i = | B Ll (4.27)
T, = r—n IR .
\/23:1_(”{7 1)@
ﬁ 77}‘]0,' r3l—Ps
r—n oo
i VS (-2 |

B Levenberg-Marquardt Method

Levenberg—Marquardt method is a nonlinear least-squares optimization method.
It is working on the principle of gradient descent, but for higher stability, it
introduces the regularization parameter p.

The parameter p is set on some initial value for example 10000. The
value is decreased if iteration of algorithm is successful (the value of criterion
function lowers) for example by factor of % on the other hand, if iteration is
not successful the p is increased for example with factor of % and the results
from the unsuccessful iteration are discarded.

In (4.29) one can see how p changes computation of inverse matrix

-1
(g’(xk)Tg’(a:k) +ukI) . if ¢'(z)" ' (zx) is close to singular matrix the
term il ensures full rank of the resulting matrix for inversion.

i = arg min | g()| (4.28)
w1 = ok — (o' @0) g () + ) g @) glor)  (429)
e(x) = g(x) g(x) (4:30)

56



4.3. Localization Algorithm

Parameter: ¢ Tolerance to stop iteration
m Maximal number of iterations
i Regularization value
Input : f Minimization function
/" Gradient of f
p Initializing point

1 begin
2 1+ 0;
3 C < OQ;
4 T < D;
5 while ¢, >t and i <m do
6 i1
7 Tpy1 = LM_Iteration(f, f/, xg, i) ; // Iteration step
(4.29)
8 Ck+1 < Criterion(f,xg+1) ; // Criterion (4.30)
9 if cx11 < ¢ then // Successful iteration
10 i < Decrease(u);
11 Tk < Th+1;
12 else // Increase step size
13 ‘ i < Increase(pu);
14 end
15 Ck < Ck+1;
16 end
17 end

Algorithm 3: Levenberg—Marquardt.

B 4.3.5 2D Localization

The 2D localization algorithm was created for event localization using only
3-4 sensors. The key components are the same as in 3D localization (Sec-
tion [4.3.4)), but it is operating only in two dimensions of position (z, y). This
is enabled with transformation (Section |4.3.5).

There is an assumption that all sensors are at the same altitude.

The initial value of position and time is the mean value of all nodes.

3 LD . O . o\

fEP) = [e(nd = B)|” = (rd - B.)" = (r,1 - P,) (4.31)
= {'rt Ty ry} is the resulting position and time of an event.
P= {f’t P, ﬁy} is recorded time and position from all nodes.
N
—62 (’I”t]l — t)
FEP)=2] ni-P, (4.32)
ryl — P,



4. Algorithms

B Transformation Into 2D

This transformation was created to minimize the error introduced by dis-
carding z axis coordination from the position vector. It is made through the
translation of the cluster of points to the origin (Figure and 2 rotations
around the z (Figure and y (Figure axes, respectively.

The transformation is made through homogeneous transformation ma-
trices that can perform both translation and rotation in comparison to
standard transformation matrices that can perform only rotation. The change
is in adding one more value, that is, 1 to representation of every point
[:v Y z}T—> [3: Yz 1}T.

The translation is just a subtraction of the mean position from every

point’s position where the homogeneous translation matrix of the vector d is
defined as:

1 0 0 d,
= 01 0 d
Ttrans(d) = 00 1 d?: (433)
0 0 0 1
T

Figure 4.17: First 2D transformation operation is to move the center of mass of
the points to the origin, blue before, red after.

After translation to the origin, a search for the optimal rotation can begin.
The normal vector (77) for the plane defined by points is acquired by eigenvalue
decomposition, where the vector corresponding to the highest eigenvalue is
the normal vector. At this stage, through rotation around the z and y axis,
the normal vector becomes incident with the z axis.

o8



4.3. Localization Algorithm

The angle of rotation around z axis is computed as follows:

¢ = arctan <@> (4.34)

Ny

The homogeneous rotation matrix looks like:

1 0 0 0
|0 cos(p) —sin(p) O
Ta(p) = 0 sin(p) cos(p) O (4.35)
0 0 0 1
z

Figure 4.18: Second 2D transformation operation is to rotate around the z axis,
blue before, red after.

After rotation around the z axis for computation rotation angle around
the y axis there is need to transform n, because rotation around z is rotating
with y. Additionally is the subtracted rotated z axis also because of x axis
rotation.

0
[=T, (1) (4.36)
1
r="T.n (4.37)
¥ = arctan (T—x> — arctan (l—gc) (4.38)
T L2

The term arctan <%) returns one from two possible values 7 or zero based
on the sign of the [,.

99



4. Algorithms

The homogeneous rotation matrix that defines the second rotation around
y axis is defined as follows:

cos(¥) 0 sin(d) 0
Ty(0) =1 _ Si?l () (1) coso(ﬁ) 8 (4.39)
0 0 0 1
z

Figure 4.19: Second 2D transformation operation is to rotate around y axis,
blue before, red after.

The resulting transformation matrix is calculated via multiplication.

T = T} T2 Tirans (4.40)

Resulting transformed positions (P) (Figure ) are computed by multi-

C . . . P
plication with transformation matrix Ppew =T | 5 |.
The inverse transformation matrix is obtained by changing the sign in

(v,,0) to minus — (—v,—p, —0), which is equivalent to transposition of
rotation matrices and changing the sing in v to —wv.

Tiny = Tirans(—t)Tu(@) Ty (9)" (4.41)

60



4.3. Localization Algorithm

Figure 4.20: 2D transformation operations.

Input :¥ € (N, 3) where N is a number of points

Result : 2D Points € (N, 2)
1 begin
2 Pex-%,; // Shift points to the origin
3 n + Eig (PTP) ; // Eigenvector corresponding to the
largest eigenvalue
4 ¢ < atan2(n(2),n(3)) ; // Angle for rotation around z-axis

5 T, < RotX(y) ; // Homogeneous Transformation Matrix for
rotation around z-axis
n
6 Ng < T - |}] e R . // Transform normal vector
T 4x1
7 2g & Ty - {0 0 1 1] e R*>** // Transform z-axis

8 ¥ < atan2(ng(1),n,(3)) — atan2(zx(1), 22(3));
// Multiply rotation and translation homogeneous matrices

9 | T < RotY(V) T, - Trans(X)

10 D + [E ]l} TT e RN*4 // Transform Points
11 return D(:,1:2)
12 end

Algorithm 4: 2D transformation.

In Algorithm 4}, atan2 is used instead of arctan because the atan2 function
is more numerically stable and offers the same outputs.

61



4. Algorithms

B 4.3.6 Results

In a real situation, mainly in urban areas, the signal does not only propagate
directly but can go through various paths caused by reflections from the walls
of buildings and other structures or objects. This problem is discussed in
the article [52] whose conclusion is that the multi-path propagation does not

create an enormous error.

106
x SENSOrs
4.8706 e®boom
e result
4.8704
El
N 4.8702
4.8700
- 3.9706
1.0192 - .
1.0190 - 2 3 97023 9704 .106
1.0188 ’
106 1.0186 3.9700
1.0184 X [m]
Y [m]
(a) : Solution with spheres.
-10°
e x SENSOr's
4.8706 - 4 ehoom
/ e result
4.8704 -
El
N 4.8702 -
4.8700 -
3.9706

~ 3.9704 .
3.9702 ‘10

1.0188 N
1.0184 X [m]

Y [m]
(b) : Solution with circles going through result on the sphere for better visibility.

1.0192
1.0190

Figure 4.21: Localization algorithm 3D solution with 4 sensors.

62



4.3. Localization Algorithm

The solution of localization algorithm is visualized in Figure in 3D
space. The localization algorithm sometimes results in an incorrect (non-
optimal) solution. The investigation showed that the data in question had
a global minimum, but also a local minimum near the global, which is
not a correct solution, this behavior is visualized in 2D localization in the
Figure 4.22

50~ Wl surface
—boom
40 - —result
30
N 20
10
0; -
3.97 S~
3g7o5 ~_
x10° 3971 40189 101805 1.019  1.01905 1.0191  1.01915
X [m] Y [m] x 108

Figure 4.22: Localization problem with local and global minimum.

In case that the searched location (boom) is not inside the polygon created
by nodes, the 3D localization algorithm has better results than the 2D
localization.

The Figures were acquired with Monte Carlo method. It means
that 1000000 locations were generated for every number of sensors and for
each location and sensor, the time registered was computed with added
dilatation to make the simulation closer to reality. The location of the sensors
was also randomly generated. The test was performed in the geographical

location of the Czech Technical University’s campus in Dejvice (Table .

’ Corner ‘ Longitude Latitude ‘

North East | 50.106 213226 093 23° | 14.394 538 698 211 612°
South East | 50.100639 198 356 44° | 14.395418462 768 497°
South West | 50.100129 933857 18° | 14.386 159477 249 088°
North West | 50.1049539654325° | 14.386 717 376 724 185°

Table 4.6: Coordinates defining rectangular area from which testing location
are generated.

Tests were written for the resulting production code in Go, they cover
93.3 % of the written code. The coverage is not 100 %, because some of the
handling errors cannot be raised.

63



4. Algorithms

Error [m]

Standard deviation [m]

100 |

102

| | | | | | |

E | | | | |
3 4 5 6 7 8 9 10 11 12 13 14 15

Number of sensors [-]

Figure 4.23: Localization mean error.

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

N2 N2 N N2 Y NZ

3 4 5 6 7 8 9 10 11 12 13 14 15

Number of sensors [-]

Figure 4.24: Localization standard deviation.

64



Chapter 5

Conclusion

The detection algorithm (Section |4.1)) based on paper [I] was tested on the
provided dataset [43] with successful results. Moreover, the classification
algorithm (Section 4.2), which classifies the gunshot caliber with SVM classifier
that uses MFCC feature extraction, showed excellent results of mean loss
over classes for 10 folds cross-validation 4.6 % shown in Table 4.5, although
the dataset provided for this purpose was limited.

In the implementation of the detection and especially classification algo-
rithm, all functions except FF'T were written from scratch to have complete
control of properties and dependencies to assure correct reimplementation.
In the case of FFT, the Matlab function and a third-party implementation
(arm__ math) were used and the results were compared to each other that
outputs are the same.

The testing of the whole system could not be performed because of the gov-
ernment restrictions due to a pandemic situation. For future implementation,
a real life full test should be performed.

A small test was performed with 9 mm Luger and .22 LR with short
barrel where the detection and classification were successful. Audio waveform
example of the recorded gunshot is plotted in Figure |5.1l

Every algorithm was tested in Matlab and after verification that everything
is working correctly, reimplemented in production languages, namely C and
Go. For testing of the production implementation, smaller datasets were
generated with Matlab implementation.

During testing, the use of LoraWan proved to be insufficient due to its
inability to send a recording of acoustic events to the server.

The Matlab tests showed that the localization algorithm (Section 4.3)) is
working with the error of localization at a maximum around few meters
(Figure 4.23), even though the real life errors were introduced into the
simulation, such as error in the precision of timestamp or error in position
acquisition.

65



5. Conclusion

104

Value [-|

0 10 20 30 40 50 60 70 80 90

t [ms]

Figure 5.1: Recorded 9 mm Luger blank gunshot in closed room with the board
during testing.

66



1]

2]

[9]

Bibliography

Svatos, J.; Holub, J.: Smart Acoustic Sensor. 5th International Forum
on Research and Technologies for Society and Industry: Innovation
to Shape the Future, RTSI 2019 - Proceedings, 2019: p. 161-165, doi:
10.1109/RTSI.2019.8895591.

ShotSpotter: Home - ShotSpotter.
URL: https://www.shotspotter.com/|

V5 Systems: Wireless Gunshot Detection And Location Solution.
URL: https://vbsystems.us/products/vbpsu-ptz/|

Maékinen, T.; Pertild, P.: Shooter localization and bullet trajectory,
caliber, and speed estimation based on detected firing sounds. Applied
Acoustics, volume 71, n. 10, 2010: p. 902-913, ISSN 0003682X, doi:
10.1016/j.apacoust.2010.05.021.

ST: STM32F413RH - High-performance access line, Arm Cortex-M4
core with DSP and FPU, 1,5 MByte of Flash memory, 100 MHz CPU,
ART Accelerator, DFSDM - STMicroelectronics.

URL: https://www.st.com/content/st_com/en/|
products/microcontrollers-microprocessors/ |
|stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/ |
[stm32f4-series/stm32f413-423/stm32f413rh. html# |
ldocumentation

Jurasovic, M.: jurasofish/multilateration: Multilateration in 2D: IoT /Lo-
RaWAN Mass Surveillance. 2019.
URL: https://github.com/jurasofish/multilateration/|

CRA: Sluzby IoT - Pripojime vase chytra zafizeni k internetu.
URL: https://www.cra.cz/sluzby-iot|

The Things Industries: The Things Network.
URL: https://www.thethingsnetwork.org/|

ChirpStack: ChirpStack open-source LoORaWAN® Network Server.
URL: https://www.chirpstack.io/

67


https://www.shotspotter.com/
https://v5systems.us/products/v5psu-ptz/
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f4-series/stm32f413-423/stm32f413rh.html#documentation
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f4-series/stm32f413-423/stm32f413rh.html#documentation
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f4-series/stm32f413-423/stm32f413rh.html#documentation
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f4-series/stm32f413-423/stm32f413rh.html#documentation
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f4-series/stm32f413-423/stm32f413rh.html#documentation
https://github.com/jurasofish/multilateration/
https://www.cra.cz/sluzby-iot
https://www.thethingsnetwork.org/
https://www.chirpstack.io/

5. Conclusion

[10]

[14]

[20]

[21]

Home - ttn-zh/ic880a-gateway Wiki.
URL: https://github.com/ttn-zh/ic880a-gateway/wiki|

U-blox: u-center | u-blox. 2018.
URL: https://www.u-blox.com/en/product/u-center|

National, D.; Electronics, M.; Nmea, A.: National Marine Electronics
Association. History, , n. June, 1983: p. 1-4.
URL: https://www.nmea.org/|

U-blox: U-Blox 6: Receiver Description Including Protocal Specification.
2011.

URL: |ttp://www.u-blox.com/images/downloads/Product_Docs/
u-blox6_ReceiverDescriptionProtocolSpec_(GPS.G6-SW-10018) |

[-pdf]

Maxim Integrated: ModelGauge Battery Fuel Gauge Technology -
Maxim Integrated.

URL: https://www.maximintegrated.com/en/design/|
partners-and-technology/design-technology/ |
modelgauge-battery-fuel-gauge-technology.html

Bosch Sensortec: Bosch Sensortec BME280 sensor driver. 2020.
URL: https://github.com/BoschSensortec/BME280_driver|

Hakl, J.: Jednotka pro akustickou detekci. 2018, ISBN 9789521538070.

Altium: PCB Design Software - Altium.
URL: http://www.altium.com/|

Onshape Inc.: Onshape | Product Development Platform. 2014.
URL: https://www.onshape.com/en/|

STMicroelectronics: TrueSTUDIO - A powerful eclipse-based C/C++
integrated development tool for your STM32 projects - STMicroelec-
tronics.

URL: https://www.st.com/en/development-tools/truestudiol
html]

van Heesch, D.: Doxygen: Doxygen.
URL: https://www.doxygen.nl/index.html|

ST: STM32CubeMX - STM32Cube initialization code generator -
STMicroelectronics.

URL: |https://www.st.com/en/development-tools/stm32cubemx|
htmll

The Go Programming Language.
URL: https://golang.org/|

68


https://github.com/ttn-zh/ic880a-gateway/wiki
https://www.u-blox.com/en/product/u-center
https://www.nmea.org/
http://www.u-blox.com/images/downloads/Product_Docs/u-blox6_ReceiverDescriptionProtocolSpec_(GPS.G6-SW-10018).pdf
http://www.u-blox.com/images/downloads/Product_Docs/u-blox6_ReceiverDescriptionProtocolSpec_(GPS.G6-SW-10018).pdf
http://www.u-blox.com/images/downloads/Product_Docs/u-blox6_ReceiverDescriptionProtocolSpec_(GPS.G6-SW-10018).pdf
https://www.maximintegrated.com/en/design/partners-and-technology/design-technology/modelgauge-battery-fuel-gauge-technology.html
https://www.maximintegrated.com/en/design/partners-and-technology/design-technology/modelgauge-battery-fuel-gauge-technology.html
https://www.maximintegrated.com/en/design/partners-and-technology/design-technology/modelgauge-battery-fuel-gauge-technology.html
https://github.com/BoschSensortec/BME280_driver
http://www.altium.com/
https://www.onshape.com/en/
https://www.st.com/en/development-tools/truestudio.html
https://www.st.com/en/development-tools/truestudio.html
https://www.doxygen.nl/index.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://golang.org/

[23]

[24]

31]

32]

[33]

5. Conclusion

Wilson, P. R.: Uniprocessor garbage collection techniques. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), volume 637
LNCS, Springer Verlag, 1992, ISBN 9783540559405, ISSN 16113349, p.
1-42, doi:10.1007 /bfb0017182.

URL: https://1link.springer.com/chapter/10.1007/BFb0017182

Toyoda, K.; Machi, K.; Ohtake, Y.; aj.: Function-Level Bottleneck
Analysis of Private Proof-of-Authority Ethereum Blockchain. IFEE
Access, volume 8, 2020: p. 141611-141621, ISSN 21693536, doi:10.1109/
ACCESS.2020.3011876.

Docker Inc.: Empowering App Development for Developers | Docker.
URL: https://www.docker.com/

Uber Technologies Inc.: uber-go/guide: The Uber Go Style Guide.
URL: https://github.com/uber-go/guide

Labstack: Echo - High performance, minimalist Go web framework.
URL: https://echo.labstack.com/

Dierks, T.; Rescorla, E.: The Transport Layer Security (TLS) Protocol
Version 1.2. 2008.
URL: https://www.hjp.at/doc/rfc/rfc5246.html

Gauravaram, P.: Security analysis of salt||password hashes. In Proceed-
ings - 2012 International Conference on Advanced Computer Science
Applications and Technologies, ACSAT 2012, IEEE Computer Society,
2012, ISBN 9780769549590, p. 25-30, doi:10.1109/ACSAT.2012.49.

Schneier, B.: Description of a new variable-length key, 64-bit block cipher
(Blowfish). In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 809 LNCS, Springer Verlag, 1994, ISBN 9783540581086,
ISSN 16113349, p. 191-204, doi:10.1007/3-540-58108-1__24.

URL: https://link.springer.com/chapter/10.1007/
3-540-58108-1_24

Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Record,
volume 39, n. 4, dec 2010: p. 12-27, ISSN 01635808, doi:10.1145/1978915.
1978919.

URL: https://dl.acm.org/doi/10.1145/1978915.1978919

Scylladb: SCYLLADB WHITE PAPER SQL to NoSQL : Architecture
Differences and Considerations for Migration. 2021.

MongoDB Inc.: The most popular database for modern apps | MongoDB.
2021.
URL: https://www.mongodb.com/

69


https://link.springer.com/chapter/10.1007/BFb0017182
https://www.docker.com/
https://github.com/uber-go/guide
https://echo.labstack.com/
https://www.hjp.at/doc/rfc/rfc5246.html
https://link.springer.com/chapter/10.1007/3-540-58108-1_24
https://link.springer.com/chapter/10.1007/3-540-58108-1_24
https://dl.acm.org/doi/10.1145/1978915.1978919
https://www.mongodb.com/

5. Conclusion

[34]

[35]

[36]

[37]

[38]

[39]

[41]

[42]

Oracle: MySQL.
URL: https://www.mysql.com/|

foundation, M.: MariaDB Foundation - MariaDB.org. 2021.
URL: https://mariadb.org/|

DBeaver Community: DBeaver Community: Free Universal Database
Tool.
URL: https://dbeaver.io/|

Postman Inc.: Postman | The Collaboration Platform for API Develop-
ment. 2021.
URL: https://www.postman.com/|

go-playground/validator: :100:Go Struct and Field validation, including
Cross Field, Cross Struct, Map, Slice and Array diving.
URL: https://github.com/go-playground/validator|

MDBootstrap.com: Material Design for Bootstrap 5 and 4 - Material
Design for Bootstrap.
URL: https://mdbootstrap.com/|

Leaflet Development Team: Leaflet - a JavaScript library for interactive
maps. 2020.
URL: https://leafletjs.com/|

The Things Industries: TheThingsNetwork MQTT client.
URL: https://github.com/TheThingsNetwork/ttn/tree/develop/

Eclipse: Eclipse Paho MQTT Go client.
URL: https://github.com/eclipse/paho.mgtt.golang

Svatos, J.; Holub, J.: Acoustic events dataset. 2019.

Randall, R. B.: CEPSTRUM ANALYSIS AND GEARBOX FAULT
DIAGNOSIS. Maintenance Management International, volume 3, n. 3,
1982: p. 183-208, ISSN 01675389.

Meyer, D.; Leisch, F.; Hornik, K.: The support vector machine under
test. Neurocomputing, volume 55, n. 1-2, sep 2003: p. 169-186, ISSN
09252312, doi:10.1016,/S0925-2312(03)00431-4.

Keil, R.; Krech, J.: ARM-software/CMSIS: Cortex Microcontroller
Software Interface Standard.
URL: https://github.com/ARM-software/CMSIS|

Velardo, V.: Mel-Frequency Cepstral Coefficients Explained Easily.
Technical report.

URL: https://github.com/musikalkemist/|
lAudioSignalProcessingForML/blob/master/ |

70



https://www.mysql.com/
https://mariadb.org/
https://dbeaver.io/
https://www.postman.com/
https://github.com/go-playground/validator
https://mdbootstrap.com/
https://leafletjs.com/
https://github.com/TheThingsNetwork/ttn/tree/develop/mqtt
https://github.com/TheThingsNetwork/ttn/tree/develop/mqtt
https://github.com/eclipse/paho.mqtt.golang
https://github.com/ARM-software/CMSIS
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/19- MFCCs Explained Easily/Mel-Frequency Cepstral Coefficients Explained Easily.pdf
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/19- MFCCs Explained Easily/Mel-Frequency Cepstral Coefficients Explained Easily.pdf
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/19- MFCCs Explained Easily/Mel-Frequency Cepstral Coefficients Explained Easily.pdf
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/19- MFCCs Explained Easily/Mel-Frequency Cepstral Coefficients Explained Easily.pdf

5. Conc/usion|

|19-MFCCsExplainedEasily/Mel-FrequencyCepstralCoefficientsExplainedEasily.

pdf]

[48] Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. Technical report, 1995.
URL: http://robotics.stanford.edu/$\sim$ronnyk|

[49] Cramer, O.: The variation of the specific heat ratio and the speed of
sound in air with temperature, pressure, humidity, and CO2 concentra-
tion. Journal of the Acoustical Society of America, volume 93, n. 5, jun
1993: p. 2510-2516, ISSN NA, doi:10.1121/1.405827.

URL: https://asa.scitation.org/doi/abs/10.1121/1.405827

[50] NAL Research: Datum Transformations of GPS Positions: Application
Note. U-blox ag, 1999: page 12.
URL: http://www.u-blox.ch

[51] Loran-C - Introduction.
URL: http://www. jproc.ca/hyperbolic/loran_c.html|

[52] Holub, J.; Svatos, J.: Limits and Accuracy of Gunshot Detection. 2021.

71


https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/19- MFCCs Explained Easily/Mel-Frequency Cepstral Coefficients Explained Easily.pdf
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/19- MFCCs Explained Easily/Mel-Frequency Cepstral Coefficients Explained Easily.pdf
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/19- MFCCs Explained Easily/Mel-Frequency Cepstral Coefficients Explained Easily.pdf
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/19- MFCCs Explained Easily/Mel-Frequency Cepstral Coefficients Explained Easily.pdf
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/19- MFCCs Explained Easily/Mel-Frequency Cepstral Coefficients Explained Easily.pdf
http://robotics.stanford.edu/$\sim $ronnyk
https://asa.scitation.org/doi/abs/10.1121/1.405827
http://www.u-blox.ch
http://www.jproc.ca/hyperbolic/loran_c.html

72



Appendix A

Board schematics

73



3V3_ANALOG 3v3
3V3_ANALOG
us
REF  DVDD 22— o )
AVDD DIN ;16 > MOSI
A s R g — o L apem
==C11 C12 c13 C14 5 RIS 2
o o 100n T 200 GND CONVST cs
ADSB866
e ANALOG_OUT
ci5 D3
11 N
I 13
10u BASIGWJ_
3v3 R19 C16 20
100K 1u 00K
R21
—=c17 C18 L
1] 2000 R2z 22 GND 3V3_ANALOG]
10K g
L R23 C19 R24 VOUT_A VDD —
= L3 i} 1 551 VINAA- - VOUT B ¢ ADC_PEAK_DETECT »
GND T0K 1 22K 21 VIN_A+ VIN B- g
VSs VIN B+ 62
2 25 MCP6002-1/SN_SO8 2K
1 0K
—
MiC
63
ki
GND —
GND

CVUT FEL

Project name boom_spotter.PrjPCB
Sheet name adc_peak_detector.SchDoc
Date 06.04.2021

1 2 3 4




™
[N

(2]
2z
o

3v3
RS54
Ui
VCC WC_NEG Z Lk EEPROM_WC |
S ——c
SDA K&— . SDA S
Ne 3
NC 2
vss NC
M24C16

CVUT FEL

Project name boom_spotter.PrjPCB
Sheet name eeprom.SchDoc

Date 06.04.2021

3 4




2
u7
GPS_RESET 10 RESET N RXDL (o4 - . RXD "\ s TET
TXD1 F TXD /
o) scL2 :ﬁ:
SDA2
6 | vee .
TMPLS 6= GPS_ TMPLS >
TMPLS_2 p—
::;:uzo n EXTINTO (2L R28 —p2 ADC_PEAK_DETECT |
V_BCKP
USB_DP USB DP
12 | ResERV USB_DM USB_DM R29 22 GPS_EXTINTO |
> | NG VDDUSB VDD USB
21 NG For possibility change source of signal
= gg NC AADET_N <§°ﬁ<
NC vee_ouT
Use R30 if is used passive antenna
£ oo V_ANT
GND e Use R31 if is used active antenna
y VCC_RF
GND
GND
GND RF_IN
LEA-6T-0 trace need to be 50 ohms | CON_ULF
and shielded Net Class
GND GND GND
D4
1 [ ﬂ_ 4
"N s
2
PRTR5V0U2X J4 2 us
— 6 IN ouT 1 VDD USB
- R32 7 _USB DMt 2] o
GND R33 2 USB DP =21 [ R34
—— C22 10u | ok
2 4u7
C 214 ne £
microUsB J_ ECEECED
35 C2. LP5912-33
00K 1n/jLo0V —— .
GND 5
CVUT FEL
GND Project name boom_spotter.PrjPCB
Sheet name gps_module.SchDoc
Date 06.04.2021
3 4




[ LORA_RESET

LORA_UART

3v3
3v3
55 u12
K7
voo 3
32 VDD
RESET_NEG l
—=C40==C41
UART_RTS L
UART_CTS 47
UART_TX o [T
1 UART_RX 33
- GND 28
trace need to be 50 ohms GND 57
and shielded GND 56
Net Class GND o4
GND 22
2 | ReH GND =57
— 5 g GND 5t
ANT_LORA GND T
GND
GND
GND
Bet cpI00 s
3 GPIO1 RESERVED 7
3 GP102 RESERVED
3 GP103 4
2 GPIO4 NC
2 GPIO5 NC
GPIO6 NC
4o epio7 NC 3v3
2 GPIO8 NC 5
GPIO9 NC 15 P
GPI010 NC
GPIO1L vee
poc wr S BO—u0 % Y2
o4 GPIO13 PGD_INT — SWD
GND
RN2483A-1/RM105
Mask vias on lora module to avoid short circuit debug_port
GND

CVUT FEL
Project name boom_spotter.PrjPCB
Sheet name lora.SchDoc
Date 06.04.2021
3 4




,_‘
N
™
IS

3 3v3 3va G
) 3v3
4
SWC__R40 00 | OC Ve
Bl SWD__RdL 0 S SDIO DO T pato
€25 —=C26 =—=C27 —=c28 —=C29 } 3o Swp SDIO_D. SR o e |
100n [ 100n | 100n | 1000 | 100n GND —-C30 —SDI0_D: . CARD_DETECT
18 DAT2 CARD_DETECT
3 debug_port 10u- __SDIO D CDIDAT3 cMD SDIO_CMD,
2 SWITCHL 8 : I SDIO_CK
= lheader 3 (E) 4 XE‘% ggK
3v3 GND 3 microSD
a3 © |2 switche =
,—.4K7 12C2 PULLUP SCL 1h / e 1
eader_3 3v3 3
R4 1pc2 PULLUP SDA cat . ca2 ene
5 0SC_ouT |
brea . | | VBAT PHO-OSC_IN i
i — 1000 VDD PH1-0SC_OUT (>— | J_ 2p7
R45 1pc1 PULLUP SCL GND VDD uppemeg| 3 !
a7 = 28 ] VPP pc15.05C32 OUT Kt T aBsorw
R46 GND T30 [ IVRD -
R 12C1 PULLUP SDA VDDA/VREF+ C33
5 Bel pB2 PAL2 kdS  USB D+ 2p7
et PBIS Pl |44 USB D L
—5%f PAIS == GRD
[CANALGG_0UT > o
w3 ANALOG_OUT LS ops Lust__spio cwp
0SC STANDBY c3ay| z §§3 SDIO_CK
r 1 R47T—OR 1100 NRST f’(c:ﬁ 2 SDIO D
SIS | — R48 —(10K 60, PAY iz SDIO D
VDD ; BOOTO Poe |540___SDIO D
ouTPUT b3 0SC ouT Pa |53 ___SDIO DO
c35) 30
an B Erom VCAP_1
pa2 kA6 CARD DETECT
DSC1033D12  / sDA-I2CLPULLUP SDA 59| oo,
= (o s 12C1_PULLUP SCL__61] fog ocs Lall__OSC STANDBY
GRD e
/ SDA —12C2 PULLUP SDA 85| oo
(12C2) {4 122 PULLUP SCL e oo PAO ADC_PEAK_DETECT
== PAS
PAG -
o ADC_SPI >
W “ L pCa
3 |9 pco 8 EEPROM_WC
V‘['N e | P9 [ POWER AT
310 GND g PC13 (i POWER_CHG
F use
USE D-__Rd! 2 2] e pC7 S SWICHL
USB D+ RS 2 D+ PA10 e SWITLHE
4
T 3 49 swc
e—
2 GND ‘ s L6 —swp
SH <{_LORA_UART 2 ==
_l_ microUSB 3v3 2
36 51 vss |18
n/100v | fLook R52 — 1K 10 31 =
Pt ez VS ap CVUT FEL
n vss 88— - -
R53 K | pc1 VSSA/VREF- 12 Project name boom_spotter.PrjPCB
1 o7
= STM32F413_LQFP64 . . Sheet name mcu.SchDoc
GND =
GND Date 06.04.2021

1 2 3 4




V_SYS 3V3_ANALOG
U1
w 3va IN out
a 5 % R1 EN
V_IN TS PGOOD_NEG 5 TS —=cC1
2 BAT <K R2 —_—=C2 10u
EN2 =1, EN1 =0 -> current set by ILIM 3 | BAT CHG_NEG 9 D2j = —— 4u? 2] e o L7
V_SYS 3 5
18 |12 W 1 ew
KL Q0K V_CHARGE T SUTd L e LP5912-33
13 10 = ==
IN ouT — T =
EN2 GND
A4 —=C3
s e S SYSOFF SNSOEE a7
[:FKZS IEE:E_NTC Les ‘ 16 R7
T a7 CE_NEG ISET (o= 1 =
EN1 TMR ka4 1K13 R8
| —
1 VSs o 7678 R9
EP ILIM 1
e BO2I0T5TRGTR RISET =800 AQ/0.89 A=1K 1K
GND —_ =
= GND
B V_sYsS 3v3
u3
2 En vout -2
————- VIN J_ J_
[:Euo C6 Cc7
—Lcs 37K 82p 10u
10u
2= moDE FB o3
—————1 GND NC
{ EP PG p— [:Eu
V_CHARGE LMZ20502 3K2
Q
3 M2 F1_ R12 il
1T = T = =
| bmp20ogsu7 U m GND GND
u4 Switch
+r1 co Lo osn cspH (0 =
—LLi-ion_18650 [:Em i} GND
—
K25 R14 100n "
NTC 14 12C address 0x6C
R_NTC C10 SCL DI sCL "\ 12C1
- m 1] reg SDA p;——SDA /
i ALRT =
4700 =
1 e .
—_ — 7 NC EP 1—5
o o S
MAX17260 CVUT FEL
— Project name boom_spotter.PrjPCB
GND Sheet name power_supply.SchDoc
Date 06.04.2021
1 2 3 4




3v3

1@
S

u10
2 8
1362 /~ SDA ggf glng VE\)/DDIg 5 _L J_
\_ SCL m——===——1> SCK 7 C37 C38
12C address 0x76 GND —¢ TlOOn T100n
SDO GND
BME280
GND
3v3
—|— J11
vcc
Tk
=1 SCL
GND
12C_out
GND
CVUT FEL
Project name boom_spotter.PrjPCB
Sheet name temp_and_hum.SchDoc
Date 06.04.2021
2 3

4




D
J
yany
AN
-
ya
3V
yany
3V

[2]
Z
o

U_mcu U_gps_module
mcu.SchDoc s_module.SchDoc

U_adc_peak_detector
adc_peak_detector.SchDoc

U_power_supply
ower_supply.SchDoc

U_eeprom
eeprom.SchDoc

U_lora
lora.SchDoc

U_unused_module
unused_module.SchDoc

U_temp_and_hum
temp_and_hum.SchDoc

CVUT FEL

Project name boom_spotter.PrjPCB
Sheet name top.SchDoc

Date 06.04.2021

2 3 4




3v3
5
R36 2
3v3 GPIO2
GPIOL Rﬁ 12
e
2o UART_RX B - RXD \
GND  UART_TX ™D J
uart_out

GND

UNUSED_GPIO2
UNUSED_GPIO1

UNUSED_UART

CVUT FEL

Project name boom_spotter.PrjPCB
Sheet name unused_module.SchDoc
Date 06.04.2021

4




ISVd_I1LOV
VNN3LNV

2av NOW

asn NON

O()NTC1 OONTCZ

32

Prs
~r




I--I-f\l r
b ™/ a
v

O
O
O

B BTN
S

| Mg
e Sk
\..r..IRI\J _\\..Joa - ".

r— 1 3 1
Il r m il

(N
v

Oﬁ/ua__m_ by










XX e
008

D
A 4




A
- o

' 1 C21R34
Ja M1y MM
° o
R59 R58 R57 R56
. —r i res 3
e MM [ ] o )
| 3 | |

ANTENNA
ACTI[PASI
L1

J9 J8 [ :||_||_||_||_.| R35[ | L R29[ :E R
v N R32|: :l F2 u7_ L
R33
ool MCU

VCC
W

4> > 5 debug

-l 13
>

J12
e—1 1 I: :ci;sl: :ll_l
IZI_I I_ISE [ [ ]g U9 [ ]CZG \ E’e
: — —
g 00 R60 ) |: ]2 c35 2
ST |_|E o © I: :l rmr R51 C36 g
& 5 R45 |: :l 5 e gl
L L g e . |
us J13 R 40 g R37 R36 R39 R38 R26 C20 LIl L
o L Lo 5 o "
lmlcm.- C e _ = pos £ R54 c31 ‘ § §I_I < — .
L :|° : I: :|c16 u11.|: :": :l '_|X|1:|X2 i . _ -o -
o L I+ [ ] =i T
&I: :l : L R14 R6 | F2
lmII_RIZS L | IIEE]' | 8 8 R47
c14 c12 U1
L Y e M.~ m | u3 |
LI E9 :l - [ ] y L — L Ee L
i - o g
. |u1o Qi - 3 R3 R5 | - | J1
: S i “m
I_I L — I_UIZor " CILII&I . . %%
1RrR13 |: :l L g€
L R12 ™| o Ll
™
o

P N
(4
o (=] = [=]

- e
Boom Spotter (D 'E"E' |_§.,_N, /ﬂ\’;(/\//ﬁ



€9

82u 299

TUO

0V

0V

© o UDM
g0 B

CblO2
NVE.L

ASAO
pudsb

CUD
2MD
2MC

rq

lmi OLE

D

@
o x
A

ACC

SOTU

roTU

|_|

MMWNHHEH mEunHﬂmﬂuumJMMM



90



Appendix B

Development Environment and tools

’ Software \ Version
Atollic TrueSTUDIO 9.3.0
arm-atollic-eabi-gcc 6.3.1
arm-atollic-eabi-objcopy 2.27.90.20170215
STM32CubeMX 6.1.1
ARM.CMSIS 5.6.0
FATFS R.12¢c
Firmware Package STM32Cube FW__ F4 1.25.2
Driver for bme280 3.4.3

Table B.1: Board firmware development environment and tools.

’ Software ‘ Version
MariaDB 10.5.8
Go 1.16.2
VSCodium 1.55.2
DBeaver 7.3.3.20201231610

] Software ‘ Version ‘

| Matlab | R2020D |

91

Table B.2: Server application development environment and tools.

Table B.3: Development environment and tools for algorithms.



	Introduction
	State of the art
	Methods
	Requirements

	Board
	Components
	Micro-Controller
	LoRaWAN
	Position and Timestamp
	Battery
	Nonvolatile Memory
	Environment Sensor
	Sound Acquisition

	Board Preparation
	Board Schema
	PCB Mounting
	Case for Board

	Firmware
	Firmware Structure
	Interfaces
	Command Line Interface
	Data Storing
	LoRa Messages


	Server
	Structure
	Security
	Secure connection
	Password storing
	Cookie management

	Database
	CRUD API
	Website
	Message Queuing Telemetry Transport – MQTT

	Algorithms
	Detection Algorithm
	Median Filter
	Dataset
	Board Implementation
	Results

	Classification Algorithm
	Mel-Frequency Cepstral Coefficients – MFCC
	Support Vector Machine
	Board Implementation
	Results

	Localization Algorithm
	Speed of Sound
	Coordinate Systems
	Basic Principle of Localization
	3D Localization
	2D Localization
	Results


	Conclusion
	Bibliography
	Board schematics
	Development Environment and tools

