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Abstract

This work deals with an application of
matching of high-level CNN features for
object pose estimation from camera im-
ages. First, research of the current state-
of-the-art in object pose estimation is con-
ducted. Then a solution based on an im-
proved version of an existing semantic spa-
tial matching framework is proposed. The
result is a functional pipeline for object
pose estimation, which is then compared
against the current state-of-the-art meth-
ods.

Keywords: object pose estimation,
object localization

Supervisor: Ing. Viktor Kozák
CIIRC B-324,
Jugoslávských partyzánů 3,
16000 Praha 6

Abstrakt

Tato práce se zabývá aplikací porovnávání
aktivací konvolučních neuronových sítí
pro odhad pozice objektu z kamerových
obrázků. Nejprve je proveden výzkum sou-
časného stavu poznání pro odhad pozice
objektu. Poté je navrženo řešení založené
na vylepšené verzi existujícího softwaro-
vého rámce pro sémantické a prostorové
porovnání. Výsledkem je funkční software
pro odhad pozice objektu, který je poté
porovnán se současnými nejmodernějšími
metodami.

Klíčová slova: odhad pozice objektu,
lokalizace objektu

Překlad názvu: Lokalizace objektů
pomocí prostorové informace vyšších
vrstev CNN
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Chapter 1

Preliminaries

1.1 Introduction

This thesis addresses the problem of object pose estimation from camera
images. Object pose estimation sometimes denoted object localization, is
the task of detecting the 6D pose of an object, including its location and
orientation. Object localization is a highly relevant research topic in robotics.
A fast, robust, and scalable solution will significantly impact the industry,
such as production lines, human-robot interaction, and more. Calculating
pose from RGB images is considered a complex problem, mainly because
of the loss of information about depth. Another option is to use RGB-D
cameras. The problem is the high cost of industrial-grade equipment or low
resolution for Kinect-like devices. Moreover, introducing depth also brings
the curse of dimensionality and thus is not always possible to perform in
real-time.

Traditionally, the problem has been tackled by matching local 2D features
such as SIFT[36], SURF[8] or ORB[47] with the corresponding 3D model.
This leads to a well-known problem of Perspective-n-Point [17]. The main
problem with these methods is that they are posed to fail with texture-less
objects. Another option is to use template matching [39], which work by
creating a database of template images and finding the most similar one in
the database. This has been proven to work sufficiently well, and we will use
some core ideas to devise our own approach.

In recent years many solutions have been proposed with varying degree of
success. One of the most prominent groups of algorithms is the ones based
on machine learning, which have been deployed to solve such a task with
promising results. Convolutional neural networks [33] being by far the most
popular one. Still, general pose estimation of objects from a single RGB
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1. Preliminaries .....................................
image remains an unsolved problem and have been a subject of multiple
international contests as an underlying problem [4], or main objective [25].

1.2 Goal

The primary goal of our work is to research state-of-the-art of object pose
estimation and utilize such knowledge to design and develop a pipeline for
object pose estimation based on an SSM-VPR framework [11], which is, in
fact, state-of-the-art for the task of image retrieval. This framework was
initially used for visual place recognition, but we hope to utilize the core
principles and transfer them to the task of object pose estimation. Moreover,
it is desirable to explore the advantages and limitations of using SSM for
object pose estimation.

The secondary goal is the software development and advancement of the
former SSM-VPR framework. As mentioned before, it was primary designed
for visual place recognition. Thus it is necessary to re-implement or change
several functionalities. From this point of view, it is desirable to make the re-
implementation as general as possible to allow the usage of the said framework
for multiple computer vision problems.

1.3 Structure

This thesis is divided into three main parts. The first part provides a rigorous
mathematical definition of the task while pinpointing underlying assumptions.
A brief overview of state-of-the-art algorithms follows a problem statement
with an emphasis on similar approaches.

The next part deals with pose estimation pipeline design and implemen-
tation. Core ideas and considerations are presented here, as well as related
principles. Moreover, the implementation is briefly analyzed with emphasis on
the core functionalities. We also discuss changes in the SSM-VPR framework
and highlight its improvements.

The last section contains an evaluation of the proposed algorithm and a
comparison against state-of-the-art approaches. This also includes discussing
a choice of metrics and their respective properties. Furthermore, these results
are commented on and put into context.
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Chapter 2

Problem definition

2.1 An opening example

Figure 2.1: Robot arm is required to pick-up an object.

In this section, we aim to emphasize the importance of object pose esti-
mation with an opening example. Let us start with a situation illustrated
in figure 2.1. We have a robot manipulator with a gripper, and we want
to pick up an object, but we have no way of determining transformation
from O to O′. This is a relatively common robotic problem, called random
bin picking in the literature. A possible solution is to add a sensor with a
predetermined location (position and orientation of C relative to the robot
base O are known). One such sensor can be an inexpensive RGB camera.

3



2. Problem definition ..................................
This leads us to the problem of estimating the position and orientation

of the object relative to the camera. An illustration can be seen in figure
2.2 and can be divided into three separate stages. First we have to capture
the image 2.2a, then we need to detect object 2.2b and based on that we
can estimate object position 2.2c. Such decoupling separates the problem of
finding an object and determining its relative localization. This separation
allows us to focus on the task of estimating object poses. We will not concern
ourselves with the task of capturing images as we will almost exclusively
make use of public datasets. The main focus of our work will the task object
pose estimation, but we will briefly mention algorithms used to solve object
detection.

(a) : image capture (b) : object detection (c) : object localization

Figure 2.2: Example of object localization procedure.

Input to the image capture stage is a 3D scene, which is then projected by
the camera sensor onto an image. Throughout the thesis, we will denote the
image as I and represent it either as a set of pixels or a matrix of intensities
interchangeably. The object detection stage takes the image I as an input
and outputs instances of detected objects. Object instance consists of the
object identifier and its detection inside the image I. Two common ways to
represent detection mask and bounding box as illustrated in figure 2.3. A
mask is a binary image of the same size as I with ones at the places where
an object was detected. Throughout the thesis, we will denote it as a set of
pixels M . A bounding box is a tuple of two points representing upper left
and lower right corners. Throughout the thesis we will denote bounding box
as (n0,n1). The problem of converting between these two representations
is straightforward. Converting the mask M to bounding box (n0,n1) is
equivalent to finding axis-aligned minimum bounding box within which all
the points p ∈M lie. Bounding box (n0,n1) already defines a set of pixels
M and thus the conversion is trivial.

4



................................... 2.2. Formal definition

(a) : bounding box (b) : mask

Figure 2.3: Illustration of object detection representation.

2.2 Formal definition

2.2.1 Overview

The main objective is to estimate the orientation and translation of an object
from a single image. An input is a single image RGB image with detected
objects (detection can be a bounding box or binary mask). Position and
orientation in space for each detected object is the desired output. Additional
knowledge which can be utilized is either textured 3D models or labelled
images with known poses of said objects.

We pose no restriction on the uniqueness or number of occurrences of objects
of the same class. Current literature labels this task as ViVo, which stands
for varying number of instances of a varying number of object. Moreover, we
allow a low degree of occlusion, which is caused when two objects overlap or
a view of an object is obstructed.

2.2.2 Mathematical formulation

Let us have an image I taken with camera C and a set L = {o1, o2, ..., on},
where oi is an object instance and n is a number of objects present in the
image I. The goal of object pose estimation is to find a mapping K such
as K : oi → Pi ∀oi, where Pi ∈ SE(3) is the respective pose of object oi.
Object instance oi is defined as tuple (k,M), where k is object class and M
is a set of pixels, such as M ∈ I. Also if oi = (ki,Mi), oj = (kj ,Mj) and
ki 6= kj , then Mi 6= Mj .

5



2. Problem definition ..................................
2.2.3 Machine learning context

In order to unify our formal definition with the current state-of-the-art, we
provide another definition from the machine learning point of view. Let us
define two phases, the training phase and the test phase.

During training/offline phase each object class ki gets assigned a data
collection Ti = {(I1,M1, P1), (I2,M2, P2), ..., (Im,Mm, Pm)}, where Ij is a
training image and Pj is associated object pose, Mj is the object detection
and m is number of training images. Optional input consists of a 3D object
model Si. Throughout this thesis, the tuple (Im,Mm, Pm) will be referred to
as "an annotated image" for the sake of readability. Such a process is often
called supervised learning in literature.

During test/online phase an input is a pair of I and L. Expected
output are object poses Pi ∀oi ∈ L. Throughout this thesis, the I will be
interchangeably referred to as "an (unannotated) image".

2.2.4 Constraints

While the definition provided in the previous section is sufficient to formulate
the task, it is desirable to fully constraint the problem and include/exclude
borderline cases, e.g. pose estimation of pliable objects. For this reason, we
provide the following list of assumptions.

. Camera C with the same focal length is used for training and testing..Objects oi are in focus.. Image I was taken without any or negligible motion, thus we do not
need to consider the effect of rolling shutter..Object o is rigid, non deformable.. The list of detected objects L is assumed to be correct.. The training data collection T is also assumed to be correct..Object marker M can only have small errors (< 10% pixels).

2.2.5 Challenges

As mentioned before, estimating object pose from a single RGB image is
considered to be a difficult problem. The main issue is the lack of depth

6



................................... 2.2. Formal definition

measurement when capturing the image, which has to be compensated for
with prior knowledge. There has been research effort [32] put into directly
estimating depth from monocular camera images, but the resulting precision
is not sufficient for 6D pose estimation.

Another challenging problem is an inconsistency between training and
testing images. Any successful algorithm has to tackle changes in illumination,
relative distance and orientation. Furthermore, the mapping K between input
and output is highly non-linear. Because of its nature, it is difficult to come
up with a general yet effective mathematical model.

Mentioned issues have been partly, but not completely, solved by the
use of machine learning with heavy use of artificial neural networks. Such
advancement comes at the price of introducing a black-box model. This is
such a model that studying its structure will not provide any insights on the
structure of the mapping being approximated. Using an algorithm with an
unknown structure is problematic in areas where reliability and predictability
are critical.

7
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Chapter 3

State of the art

This chapter gives an overview of state-of-the-art methods for object pose
estimation from single RGB images. Although multiple types of algorithms
are mentioned, emphasis is given to approaches based on convolutional neural
networks to reflect the current state-of-the-art. Because CNNs are heavily
featured in the following parts of the thesis, we only mention the core ideas
in this chapter and leave the detailed explanation for later.

3.1 Context

Because of the potential industrial impact, object pose estimation has been a
target of multiple challenges over the years. Apart from yearly challenges at
the International Workshop on Recovering 6D Object Pose we want to explore
other notable examples. One of the first competition where pose estimation
has been featured as a sub-task was Amazon Picking Challenge[4]. Another
challange was SIXD Challenge 2017 [5], although challenging it covered only
the task of a single instance of a single object (SiSo) localization.

One of the most recent one is BOP [25]. Organized two consecutive years
in a row between 2019 and 2020, it is considered the benchmark of the current
state-of-the-art. It comprises several challenging datasets [9, 23, 15, 27, 14]
and features multiple categories for submission. Results of the said challenge
were then presented on European Conference on Computer Vision 2020. A
noteworthy mention is that most of the best-performing methods were based
on deep convolutional networks.

Datasets are an important part of the state-of-the art research. As men-
tioned before, the dataset consists of annotated images and 3D models.
Examples of the widely known datasets are T-LESS [23], and YCB-Video

9



3. State of the art....................................
introduced in [53]. Because capturing annotated images is time-consuming
and sometimes even impractical, a lot of researchers started using synthetic
images for training and real images for evaluation. One of the most common
synthetic datasets used to compare object pose estimation frameworks is
LINEMOD [10, 9]. A more in-depth overview of the used datasets will be
provided in chapter 6.

3.2 Methods

The most recent state-of-the-art is dominated by the use of machine learning
as supported by [25] and such methods will be the main focus of our overview.
Nevertheless, we will also provide a brief description of algorithms not based
on machine learning, mainly because our own proposed solution draws core
ideas from some of them.

3.2.1 Traditional approaches

As mentioned in chapter 1.1, there are two kinds of approaches. The first
one is based on the idea of finding distinct 2D key-points inside an input
image I and matching them to 3D key-points from object model Si. With
matches found, the task reduces to a well-known Perspective N Point problem
[17]. The solution of PnP is well studied and can be solved by, among others,
employment of Random Sample Consensus (RANSAC) paradigm. The main
challenge is to find a suitable matching model for 2D-3D correspondences.
This is not an easy task and can be made even more difficult with occlusion.
Moreover, a lot of handcrafted features require rich surface texture. As a
result, they fail with texture-less objects.

Other approaches rely on template matching, where the object pose is
estimated by comparing the input image I with templates from a reference
database based on a predefined similarity metric. These templates encode
information about the viewpoint of an object, which is then utilized to deter-
mine the final pose. One shortcoming is that similarity metrics are not robust
against heavy occlusions, which can lead to false viewpoint classification. An
example of such an approach is [21], where templates are created by sampling
the viewpoints from the hemisphere. Selected features used for template
creation are colour gradients and surface normal. Another option is to use
2D key-points for template generation as shown in [37], where images were
clustered by SIFT[36] feature similarity.

10



...................................... 3.2. Methods

3.2.2 Machine learning approaches

Current leading approaches solve pose estimation by training deep net-
works to either regress both rotation and translation from image directly e.g.
CosyPose[31] and PoseCNN[53] or to construct 2D-3D correspondences with
the use of machine learning and solve it as a PnP problem e.g Pix2Pose[41]
and DPOD [54]. Estimating pose directly requires an elaborate refinement
step. On the other hand, indirect approaches are more prone to fail with
heavy occlusion and degenerate configurations. For training, networks can
either use labelled image, 3D model or a combination of both, as mentioned in
chapter 2.2.3. Important or otherwise representative cases will be described
in the following sections.

A typical deep learning technique utilized is called transfer learning. It
consists of taking a model trained for a specific task and reusing it as the
starting point for a model on another task. General, although slightly abstract
architecture can be divided into two parts backbone and head. The backbone
part extracts features from the input image, and the head part performs
regression of either rotation, orientation or a combination of both. A common
approach is to take some off the shelf network, which is pre-trained on a large
dataset [13] and use its backbone part. The backbone is then connected to a
new head part, specifically designed for object pose estimation.

CosyPose

CosyPose[31] is highly regarded as one of the best frameworks for object pose
estimation, mainly because of its performance in BOP challenge[25]. It an
example of the direct approach. It is based on DeepIM [34] and consists of
two networks, where rotation and translation are estimated simultaneously.
Both of these networks share the same architecture but differ in parameters
used during training. The first one is used for coarse object localization and
the second one iteratively refines the pose estimates.

The backbone of the network is the EfficientNet[52] followed by spatial
average pooling and a fully connected layer. Final layer outputs translation
vector t and two vectors e1, e2 used to parameterize rotation, as described in
[56]. The training phase utilizes ADD-S loss [53], with minor adjustments.
Training is performed with standard Adam optimizer [29].

11



3. State of the art....................................
DPOD

Dense Pose Object Detector [54] is an indirect approach. Pipeline architec-
ture can be seen in figure 3.1. During the training phase, an annotated input
image is fed to the encoder-decoder network. The encoder-decoder part learns
to estimate 2D-3D correspondences between the input and corresponding 3D
model. Proposed correspondences are then used to solve the PnP problem
using the RANSAC matching scheme. This initial estimate is then further
refined by an independently trained regression network.

Figure 3.1: DPOD architecture. [54]

CDPN

CDPN [35], short for Coordinates-Based Disentangled Pose Network, is a
combination of direct and indirect approach. The network consists of one
shared backbone and two independent heads, one for translation and the
other one for rotation. Translation head learns to directly regress translation
vector. The rotation head is trained to estimate 2D-3D correspondences,
which is then used to solve PnP via RANSAC.

Figure 3.2: CDPN architecture. [35]

12



Chapter 4

Prerequisites

This chapter will go over the necessary knowledge required to understand our
proposed solution.

4.1 Camera model

This section will go over the camera sensor model we will use throughout the
whole thesis. It is a standard pinhole camera model as defined in [49] with the
notation we devised in our previous work [38]. As illustrated in figure 4.1 the
origin Oc, which stands for camera coordinate system, This coordinate system
is positioned in a way that Zc axis is aligned with camera optical axis with Xc

axis facing to the right. The coordinate system with origin Oo represents the
object coordinate system, and the coordinate system with origin oi represents
a normalized image plane. The last coordinate system represents an image
influenced by intrinsic camera parameters, with origin oa located on the image
plane. The extrinsic camera matrix representing transformation between Oo

and Oc can be expressed using homogeneous coordinates as

[R t] =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 , (4.1)

where parameters rij form a rotation matrix and parameter tk form a trans-
lation vector. The projection from the camera coordinate frame Oc to
normalized image plane oi can be written as

E =

 1 0 0 0
0 1 0 0
0 0 1 0

 . (4.2)

13



4. Prerequisites .....................................

Figure 4.1: Coordinate system definition for pinhole camera model. [38]

The intrinsic camera matrix representing the transformation from the coordi-
nate system oi to the coordinate system oa is defined as

K =

 fx 0 u0
0 fy v0
0 0 1

 (4.3)

where fx and fy are focal lengths of respective axis. Parameters u0 and v0
together form the principal point. Equations 4.1,4.2 and 4.3 can be written
as a single camera matrix defined as

P = KE[R t]. (4.4)

4.2 Neural Networks

A basic building block of artificial neural network is a neuron, defined as

y = f(wT x + b) (4.5)

where wT ∈ Rn, b ∈ R and x ∈ Rn is an input vector. Function f is called
an activation function in the literature. One of the typical choices for an
activation function is sigmoid function

f(z) = 1
1 + e−z

. (4.6)
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The main drawback of a single neuron model is that it can only approx-
imate linear mapping. This can be overcome by results of the universal
approximation theorem [12], which states that given any f ∈ [0, 1]n and ε > 0,
there is a sum

G =
n∑

j=1
αjσ

(
wT

j x + bj

)
(4.7)

for which
||G(x)− f(x)|| < ε (4.8)

holds true. In other words, any continuous real function f(x) can be approxi-
mated by a neural network with a single hidden layer of sufficient width.

Combining several neurons together results in a creation of artificial neural
network. An example can be seen in figure 4.2. Output of j-th layer is defined
by following equation

xj = f(wT
j xj−1 + bj). (4.9)

This kind of connection is typically called fully connected layer in the literature.

Figure 4.2: An example of neural network. Circles represent individual neurons,
while lines mark connections between them.

4.2.1 Convolutional Neural Networks

Convolutional neural networks are a special kind of artificial neural networks
designed specifically for digital image processing tasks. Input into the network
is a tensor U ∈ Rh×w×n, where h is input height, w is input width and n
denotes a number of channels. It should be noted that this is much different
than in regular neural networks, where the input is a one-dimensional vector
of flattened image rows/columns. The absence of flattening enables better
preservation of spatial relationships between adjacent pixels.
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Convolutional layer

Convolutional layer is the basic building block of convolutional neural networks.
It is based on two dimensional discrete convolution operation. Discrete one
dimensional convolution of two discrete functions f [k] and g[k] is defined as

(f ∗ g)[k] =
∞∑
−∞

f [m]g[k −m], (4.10)

where k ∈ Z and m ∈ Z. This formula can be extended into the two-
dimensional case as

(f ∗ g)[k, l] =
∞∑
−∞

∞∑
−∞

f [m,n]g[k −m, l − n], (4.11)

where n, l,m, n ∈ Z.

When working with neural networks, it is more convenient to express
convolution using matrices and tensors. Let us define a matrix X and W,
then conv(X,W) operation performed by sliding W across X and computing
dot product of each step. An illustration of this procedure is displayed in
figure 4.3. This idea can be easily extended for additional matrix channels,
i.e. three to represent an RGB image as illustrated in figure 4.4.

Figure 4.3: An illustration of one channel convolution. [40]

Figure 4.4: An illustration of three channel convolution. [40]

Typical convolutional layer consists of multiple filters. Let us define a
tensor Di ∈ Rh×w×n which is output of i-th layer. Then let us define another
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tensor F ∈ Rk×l×m which is called bank of filters. Then output of the j-th
layer can be expressed as

Dj = Di ∗ F. (4.12)

An illustration of this operation can be seen in figure 4.5.

Figure 4.5: An illustration of convolution by a bank of filters. [40]

Pooling layer

The pooling layer is designed to reduce the number of parameters inside a
network, prevent over-fitting and reduce computational time. Commonly
used types are minimum, maximum and average pooling. Let us define a
matrix X and pooling filter of size MxN. The output of the pooling layer
is then obtained by diving matrix X into MxN regions and computing the
maximum, average or minimum of these regions. This process is illustrated
in figure 4.6 for a pooling filter of size 2x2.

Figure 4.6: An illustration of pooling.
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VGG-16

The pre-trained network heavily utilized in this thesis is VGG-16 [48]. This
network was originally designed for the task of image classification but is
commonly utilized for a variety of other tasks based on transfer learning
principles. In our work we use VGG-16 pretrained on Places365 [55] dataset.
Looking at the figure 4.7 we see that there are multiple layer groups denoted
conv1, conv2, ..., conv5. These layer groups consist of convolutional layers
with the same dimensions. Throughout this work, we will use the following
notation of convX-Y, where X is a layer group and Y is the order of the
convolutional layer inside the group. For example, conv4-3 would denote the
third layer from the fourth group with dimensions 28x28x512. Moreover, the
original VGG-16 has three fully connected layers, which are not used in our
work.

In our proposed solution, we do not use the VGG-16 output but use
activation of respective layers instead. Activation is represented by a tensor.
In the following sections, we will work with conv 4-2 and conv 5-2 layers.
These layers are represented by two tensors D4−2 ∈ R52×52×512 and D5−2 ∈
R14×14×512 respectively.

Figure 4.7: Architecture of VGG-16. [16].

4.3 Principal Component Analysis

Principal Component Analysis is a method for data transformation, which
is achieved by a change of basis. It expresses the data in a new coordinate
system in which basis vectors follow the greatest variance inside data. We
utilize this approach for dimensionality reduction.
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Let us have two real spaces Rd and Rn, where d ≤ n. Then mapping from
Rn to Rd can be defined as

Yd×m = Wd×nXn×m, (4.13)

where Y = [y1, ...,ym] y ∈ Rd, X = [x1, ...,xm] x ∈ Rn. Matrix W =
[w1, ...,wd] is orthogonal and wi are called principal components. While n is
defined by the dimension of the input data, m can be chosen arbitrarily, as
long as m ≤ n and m ≤ k. The goal of PCA is to find the Wd×n, constrained
by the choice of m. We can define sample covariance matrix as

PX = 1
m

m∑
j=1

(xj − µx)(xj − µx)T , (4.14)

where
µx = 1

m

m∑
j=1

xj . (4.15)

Vector w1 is then defined as

w1 = arg max
w

{
wT PXw

}
||w|| = 1 (4.16)

Each subsequent wi, where i ≤ d is then defined as

wi = arg max
w

{
wT PXw

}
||w|| = 1 w ·wl = 0 ∀l < i. (4.17)

There are multiple ways to solve equations 4.16 and 4.17. It can be
shown that the task of solving them is equivalent to finding eigenvectors
corresponding to the d largest eigenvalues.

4.4 Semantic Spatial Matching

4.4.1 Image retrieval

Lets us define a set apriori known images S = {I1, ..., In} and have a previously
unseen input image J . Then image retrieval task comes down to solving

I∗ = arg max
I

h(I, J), (4.18)

where term h(·) is a similarity function, which is obtained either explicitly or
implicitly. The main difficulty of this task is obtaining the similarity function.
There has been proposed CNN architectures able to learn this similarity
function in an end to end fashion. One of the examples being NetVLAD [7],
which uses VLAD layer inspired byVector of LocallyAggregatedDescriptors.
SSM, on the other hand, works in a different manner. Instead of directly
trying to learn h(·), spatial matching of CNN activation is utilized.
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4.4.2 Semantic Spatial Matching for Visual Place
Recognition

Spatial Semantic Matching is a framework for solving the task of visual place
recognition. SSM-VPR treats the task as an image retrieval one. In the
following paragraphs, we will analyze SSM in a top-down manner.

Figure 4.8: Overview of SSM image retrieval pipeline [11].

The basic architecture can be seen in figure 4.8. There are two phases
training/offline and testing/online phase. Input to the offline phase is a set of
images S = {I1, ..., In}. Output of the offline phase are two databases called
Image f iltering database (IFDB) and Spatial matching database (SMDB).
Both of them are created in a similar manner, which will be described below.
The online phase takes one image J as an input and outputs a ranked set of
candidates C.

Offline phase

First, the image I is run through VGG-16 and activation from conv 4-2 and
conv 5-2 layers are cached. Output of this step are two activation tensors
D4−2 ∈ R52×52×512 and D5−2 ∈ R14×14×512, which will be sometimes refered
to as raw activation for the sake of readability. Tensors D4−2 and D5−2 are
then converted into a set of smaller tensors by sliding selection cubes across
tensors as illustrated in figure 4.9. These selection cubes are defined by
their dimensions and stride, which in our case is equal to one. Output of
this step are two sets of tensors D5−2 = {D1, ...,D36} Di ∈ R9×9×512 and
D4−2 = {D1, ...,D625} Di ∈ R9×9×512.

The next step consists of flattening tensors along the third dimension
and applying L2 normalization. Output of this step are two sets of vectors
D

′
5−2 = {d1, ...,d36} di ∈ R41472 and D′

4−2 = {d1, ...,d625} di ∈ R4608. The
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final step consists of dimensionality reduction of vectors through PCA. After
applying PCA transformation we are left with two sets of compressed vectors
D

′′
5−2 = {d1, ...,d36} di ∈ R125 and D

′′
4−2 = {d1, ...,d625} di ∈ R100. Each

image from the set S is the represented as D′′
5−2 inside IFDB and D′′

4−2 inside
SMDB.

Principal Component Analysis is trained on a randomly chosen subset of S
from D

′
5−2 and D′

4−2. One of the shortcomings of this approach is its memory
intensity during training. Sets D′

5−2 and D′
4−2 are represented by 1 492 992

and 2 880 000 numbers respectively. The original article [11] uses around
50-250 samples depending on the other hyperparameters. This poses a serious
challenge on a machine with limited memory resources and will be further
addressed in the following chapter.

Figure 4.9: Feature extraction process for IFDB and SMDB creation. [11].

Online phase

The online phase takes an image J as an input. This image is first processed
as described in the previous section. Thus we have J and corresponding
D

′′
5−2 and D′′

4−2. Set D
′′
5−2 is compared against all entries in IFDB and k best

matches S1 ⊂ S are returned, where k is one of the hyper parameters. The
process of ranking is summarized in algorithm 1. The closest matches of di

are retrieved in terms of Euclidean distance.

During the second stage, J and corresponding D′′
4−2 is compared against

a subset of SMDB defined by S1. The process of ranking is summarized in
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Algorithm 1: Image filtering stage
Data: D′′

5−2 = {d1, ...,d36}
Result: ranked list of candidates S1
cand_hist ← Initialize histogram of candidate images
for i← 1 to 36 do

Find closest k matches of di in database IFDB
Increment the corresponding k bins in cand_hist

S1 ← Select k highest bins from cand_hist

algorithm 2. The output of this step is a list of ranked candidates S2 and the
member of S2 with the highest score is returned as the retrieved image.

Algorithm 2: Spatial matching stage
Data: D′′

5−2 = {d1, ...,d625}, S1
Result: ranked list of candidates S2
scores_hist ← Initialize score histogram for candidates
foreach s in S1 do
{ci,j} ← Get spatially-aware candidate vectors from SMDB
for all i, j ∈ {1 ... 25} do

dk,l ← Find closest match of {ci,j} in query array
Set (i, j) and (k, l) as anchor points
Define patch P around location (i, j). It may be truncated
Define identical (possibly truncated) patch around (k, l)
for all k′

, l
′ ∈ P do

ci′ ,j′ ← Find closest match of dk′ ,l′ in candidate array
if (i′, j′) - (i, j) = (k′, l′) - (k, l) then

Increment bin in scores_hist for s

Following paragraphs explain algorithm 2 in more detailed fashion. The
process of spatial matching is done independently for every member of S1.
The first step consists of finding so-called anchor points. Anchor points are
positions of di ∈ D

′′
4−2 inside D4−2. The next step is to pair anchor points

from candidate image to query image. This is done by retrieving the closest
match of di of the query from the candidate array of spatially aware vectors.
Once the correspondence (i, j) and (k, l) is decided, we can set them as anchor
points.

We will now go over the process of creating the patch P based on anchor
points (i, j) and (k, l) and demonstrate it for a patch of dimensions 9x9.
Figure 4.10 show two images: candidate with highlighted anchor point (i, j)
and query with highlighted anchor point (k, l). Patch P is defined around (i,
j), but has to be truncated to account for finite candidate image dimensions.
The same patch P is then defined around (k, l) as P ′ , with possible further

22



.............................. 4.4. Semantic Spatial Matching

truncation.

Figure 4.10: Illustration of patch definition around anchor points [11].

Geometrical comparison is the main defining element of the SSM approach.
The general idea comes from the assumption that vectors around anchor
points should have a similar location in each patch P and P

′ relative to
anchor points.
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Chapter 5

Proposed solution

This chapter will go over our proposed solution for object pose estimation
based on SSM. We will explain and formally describe our design. The final
implementation description is also present in this chapter. Contributions of
our work are following:

. Development of object localization pipeline.. Comparison of the proposed approach against the state-of-the-art solu-
tion.. Software development of the former SSM-VPR framework, which we
dubbed SSM v.2.

5.1 Pipeline

5.1.1 Overview

An overview of our proposed pipeline for object estimation can be seen in
figure 5.1. The input is an un-annotated image I with list of object instances
L = {(ki,Mi)} as defined in 2.2.2, where Mi are bounding boxes. Output is
a list of object instances and their respective poses Pi = (R, t). Each object
instance is treated independently, and the process of obtaining the location of
the object will be explained for a single instance without a loss of generality.
The input image is first cropped by a bounding box and scaled to a predefined
dimension. The processed input image is fed through the VGG-16 to obtain
CNN features. These features are then used to estimate the orientation of the
object. CNN features are used as an input into SSM, and the closest match is
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5. Proposed solution...................................
retrieved. Unlike in SSM-VPR we also store bounding box (m0,m1) camera
calibration Kd, object orientation Rd and translation td. Object orientation
Rd is then used as R. Translation t is then computed based on retrieved
(m0,m1), Kd and td.

Figure 5.1: Our proposed pipeline for object pose estimation.

The way our problem is formulated in chapter 2 we consider object detection
an input into our method. This means we use mostly pre-computed bounding
boxes or detection masks already included in the dataset. These detections
are generally either hand-selected by a human or outputted by a trained
object detector. In case there is no object detection provided, it is necessary
to train an object detector ourselves. Training the object detector is generally
a straightforward but time-consuming task, which is why we have chosen to
decouple object pose estimation into two separate problems. Because our
method is not dependent on a specific object detector provided, the same one
is used for training and evaluation. A recommended approach would be to
use one of the state-of-the-art object detectors based on CNN. An example
of a suitable bounding box detector would be YOLO [44] or Faster R-CNN
[45]. For mask detection, a potential reader can use Mask R-CNN [19].

5.1.2 Offline phase

Each object oi has a unique and independent SSM database. We will now
describe how this database is created. First arises the task of picking the
"correct" set of images for the training of the database. Let us first define a
term called view sphere. Figure 5.2 shows a graphical representation of the
set of all possible camera views of an object from a fixed distance |r| (scale)
and camera centred on the object centre. The task of choosing the training
samples is then equivalent to sampling the view sphere and scale. While it
is certainly desirable to sample as uniformly as possible, it is usually not
feasible when working with real data. We have decided to use one defined
scale, which is one of the hyperparameters. Another option would be to
store the database for a defined sequence of scales. This has proven to be
computationally infeasible during our testing, and instead, we re-scale the
input image.
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Figure 5.2: View sphere around object. Sampling also includes the rotation
around r.

Once the correct set S of annotated images is obtained, we can proceed to
create a database in a similar manner as described in 4.4.2. There are few
modifications, though. First instead of just an image and processed activation
from conv 4-2 and conv 5-2 layers, we also store bounding box (m0,m1)
camera calibration Kd, object orientation Rd and translation td.

Instead of computing PCA on a randomly chosen subset, we use the so-
called Incremental PCA, which will be described in the following chapter.
This mainly beneficial on machines with limited resources.

The third modification comes from an optional training input. Let us define
first a set of images So which is not be used for SSM database creation and
a set of images S, which is used for SSM database creation and S ∩ So = {}.
Then we train Incremental PCA on S ∪ So, but create the database itself
only from S. This is especially useful while combining real and synthetic
training images. If we used a mixture of real and synthetic training images
for SSM database creation, it would lead to worse performance. This is
due to real images being too similar to each other even though taken from
different viewpoints, while the same goes for synthetic images. This way, we
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5. Proposed solution...................................
can still extract useful information from real and synthetic images while not
compromising system performance. We refer to this optional training input
PCA injection.

5.1.3 Online phase

Image pre-processing

The input of the pre-processing phase in an image I with dimensions h× w.
Output of the pre-processing phase in an image I ′′′ with dimensions h′′′ × h′′′ .
Pre-processing is captured in figure 5.3. Image I is cropped by bounding box
(n0,n1), such as I ′ = I ∩ (n0,n1). Resulting image I ′ is then scaled to I ′′

by a factor s defined by the following equation

s = h
′′′

max(hb, wb)
. (5.1)

Dimensions of I ′′ are denoted h′′ × w′′ and either h′′ = h
′′′ or w′′ = h

′′′ holds
true. Image I ′′ is then centered and zero padded to the final dimensions
h

′′′ × h′′′ , which results in I ′′′ .

Figure 5.3: Image pre-processing illustration.

Rotation estimation

Processed image I ′′′ is fed to the VGG-16 and activation from conv 4-2
and conv 5-2 layers are processed in the same manner as described in 4.4.2.
From SSM we retrieve the best match, bounding box (m0,m1) camera
calibration Kd, object orientation Rd and translation td. Object orientation
Rd is then used as R. One thing to note, that rotation is represented in
discrete and sometimes not uniform steps. Also, this part of our pipeline
is the most computationally expensive one as it involves one feed-forward
through the CNN and then requires several expensive operations for CNN
feature processing and comparison.
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Translation estimation

Object translation is computed in t estimator module and it is determined
by three coordinates x, y and z. Starting with figure 5.4 we will now derive
a formula for z, starting with an assumption that (n0,n1), (m0,m1) have
same width to height ratio. Using the triangle similarity rule we get a set of

Figure 5.4: Pinhole camera model with focal length fx schematic used for
distance calculation. Object of width d is captured from two different distances
zn and zm, while zm is known.

following set of equations
d

zn
= fx

wn
(5.2)

d

zm
= fx

wm
, (5.3)

where fx is a camera parameter as in 4.3, d is object width.

This is generally not a case, so in order to approximate, we will now derive
a formula to estimate z by using an arithmetic average. Let us start with

z =
wn
wm

zm + hn
hm
zm

2 , (5.4)

where hn and hm object heights in pixel captured in the same context as wn

and wm as described in figure 5.4. After a several trivial steps we arrive at
the following formula

z = 1
2
wnhm + hnwm

wmhm
zd. (5.5)
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We will now derive formula to compute x and y from input bounding

box (n0,n1), database bounding box (m0,m1) and database camera matrix
Pd = KdE[Rdtd]. Based on this information we can obtain a projection m
of object coordinate system center Oo as illustrated in figure 5.5 with

m = Pd00. (5.6)

Figure 5.5: Illustration of object center projection.

Looking at figure 5.6 we will now derive a way to estimate n, which is
an estimated projection of object centre inside input image. In order to
determine n we will use the fact, that m is already known from equation 5.6.
We can obtain n as a solution of following equations

nx = wn

wm
(mx −m0x) + n0x (5.7)

and
ny = hn

hm
(my −m0y) + n0y. (5.8)

The last step consists of converting n from 2D image coordinates to 3D
coordinates. Based on equation 4.3 we can obtain x as

x = (nx − u0)z
fx

(5.9)

and y as
y = (nx − v0)z

fy
. (5.10)

30



................................... 5.2. Implementation

Figure 5.6: Illustration of translation estimation.

5.2 Implementation

5.2.1 SSM v.2

The original code base for SSM-VPR [11] is publicly available on [6] under
MIT license. As mentioned before, one of the goals of this thesis is the
development of the SSM framework. We have been able to identify the
following shortcomings

. SSM-VPR data structure is not suitable for different tasks.. Code was not easily extendable.. Large RAM requirements.

Our contribution consists of the following:

. Data abstraction and reworked object oriented design.. The use of Incremental PCA.. Update of the graphical user interface functionalities.

The new version SSM v.2 can be found in the directory ssm_v2 inside the
attached DVD. Furthermore, the results of this work, SSM v.2 in particular,
has been used as a part of the UAV Teach and Repeat framework [30], which
is currently under review for ECMR2021.
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Code and data structure

This section will go over changes made to the code structure. The codebase
has been modified to be more modular and versatile. The image retrieval
part can now be run independently without GUI.

One of the most important changes is the update of the input file format.
Previously SSM-VPR expected images in format imageXXXX.png in two
folders Live and Reference. Images in these two folders were then paired
with GroundTruth.csv, a spreadsheet containing Reference and Live columns.
While this representation was convenient for working with VPR datasets, it
proved to be unsatisfactory for working with object pose estimation datasets.

Our updated input file format works in the following way. The database is
defined by a single poses.csv file. This file contains a list of all images inside
the database, their system path and annotation. The annotation can be of
any of the supported types and is specified inside metadata.txt file. Some of
the supported types are 6D pose, used in this thesis, and ID, which simulates
the original functionality of the SSM-VPR.

Memory Usage

The problem with RAM usage stems from the use of PCA. In an ideal case,
PCA would be performed on the whole dataset, but this is just infeasible on
the average consumer computer. As mentioned before, PCA in SSM-VPR is
trained on the random subset SR of S all at once. The problem is that SR

needs to be large enough to infer meaningful dimensionality reduction, which,
especially for larger datasets, is still problematic. Instead of performing PCA
on a large sample all at once, we propose to perform PCA in an iterative
fashion with an approach called IPCA [46], short for Incremental PCA. We
used implementation provided in scikit-learn [42] library.

GUI

To reflect the changes in the code base and to make the usage of GUI more
efficient, several functionalities have been added to GUI. Overview of the most
important changes can be seen in figure 5.7. Input fields have been updated
to reflect new/changed parameters. For PCA, we have added an option to
split the input dataset into multiple batches and an additional optional input
to be used during PCA analysis, but not the database creation.

Furthermore, we have reworked database manipulation. The GUI now
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Figure 5.7: Overview of updated GUI.

allows to load and save multiple different databases to the desired location.
Also, we have added a replay feature to review the image retrieval results.
We have changed frame tolerance to the maximum distance parameter to
reflect the domain abstraction. This, along with other changes, makes it easy
to implement the custom distance metric used for evaluation.

5.2.2 SSM Pose

Pipeline presented in 5.1 was implemented as a standalone application in
Python 3 and can be found in ssm_pose inside the attached DVD. We have
also developed a standalone GUI independent of SSM v.2, which can be seen
in figure 5.8.
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Figure 5.8: An illustration of GUI implemented specifically for the task of object
pose estimation.
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Chapter 6

Evaluation

6.1 Methodology

Evaluating object pose estimation is generally not a straightforward task.
This is mainly because of the inherent ambiguity. There can be poses, which
are indistinguishable due to object symmetries, occlusions and even self-
occlusion. This characteristic is called "pose ambiguity". It is desirable for
metric to "pose ambiguity invariant". However, metrics showing this property
are generally quite complex both in definition and computation required.

Therefore we have decided to include two methodologies of evaluation.
First, we will conduct a throughout analysis of our framework performance
on a single asymmetrical and well-defined object without pose ambiguities,
i.e. SiSo task. Using such an object will allow us to use more rudimentary
metrics, which are, on the other hand, much more informative for a potential
reader not well versed in the problem of object pose estimation.

The second methodology will use more advanced metrics, which are in-
variant to pose ambiguity. We will conduct an analysis of our framework
performance on a whole dataset with multiple objects present, i.e. ViVo
task. This approach will allow us to compare our method against other
state-of-the-art algorithms. This is well suited for the relative comparison of
object pose estimation algorithms.

6.1.1 Metrics

Let us first define the notation used in the following subsections. The model
of the object, which is being evaluated, will be denoted M. Estimate of object
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pose will be denoted P̂ and ground truth pose P̄. Metric will be denoted as
e(.) with an appropriate subscript. One of the measured parameters will also
be a run time and training time.

We will now formally introduce pose ambiguity invariance. Let us define
P 0 set of all poses which are ambiguous with each other and P̂ ∈ P 0, then
metric e(.) is said to be pose ambiguity invariant if and only if e(P̂, P̄) ≈
e(P̂i, P̄) ∀P̂i ∈ P 0. It is important to note that one object can have more
than one P 0 set.

We will use two metrics which are not pose ambiguity invariant translational
and rotational error. We will use three pose ambiguous invariant metrics to
evaluate the performance of our proposed method visible surface discrepancy,
maximum symmetry-aware surface distance and maximum symmetry-aware
projection distance. Tho choice of metrics was inspired by authors of the
before-mentioned BOP in [24].

Translational and rotational error

We will use two metrics which are not pose ambiguity invariant translational
and rotational error. Translational error is defined as

etrans = ||̂t− t̄||2. (6.1)

rotational error is defined as

erot = arccos
((
trace

(
R̂R̄−1

)
− 1

)
/2
)
. (6.2)

Visible Surface Discrepancy

Visible Surface Discrepancy aims to calculate the error only over the visible
part of the model surface. It is ambiguity invariant metric and thus will be
used for all tested datasets. It defined by following equation

eV SD(D̂, D̄, V̂ , V̄ , τ) = avgp∈V̂ ∪V̄

{
1 if p ∈ V̂ ∩ V̄ ∧ |D̂(p), D̄(p)| < τ

0 otherwise,

(6.3)
where D̂, D̄ are distance maps obtained by rendering the object model S and
V̂ , V̄ are visibility masks. Parameter τ denotes a misalignment tolerance and
is usually dependent on the precision of object model S.
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Maximum Symmetry-Aware Surface Distance

Maximum Symmetry-Aware Surface Distance is based on distance of corre-
sponding points and can be described by

eMSSD(P̂, P̄, SS , VS) = min
S∈SS

max
x∈VS

||P̂x− P̄Sx||2, (6.4)

where SS is a set of global symmetry transformations and VS is a set of mesh
vertices of object model S. The results in meters.

Maximum Symmetry-Aware Projection Distance

Maximum Symmetry-Aware Projection Distance is very similar to MSSD,
but instead of

eMSP D(P̂, P̄, SM , VM ) = min
S∈SM

max
x∈VM

||pro(P̂x)− proj(P̄Sx)||2, (6.5)

where proj(.) is the 2D projection operation. This operation is performed
by projecting the object model M onto the image using the P̂ and P̄, which
means the results is in pixels.

6.1.2 Datasets

Datasets are an important part of state-of-the-art research. This section
will give a brief overview of common datasets used to compare object pose
estimation frameworks. We aim to give a potential reader an idea of problem
difficulty and illustrate the problems of the task of pose estimation from
images.

TYOL

TYOL dataset introduced in [53] contains 21 objects. Real testing images
and 3D models are provided. An example of the testing image can be seen in
figure 6.1. There is almost no occlusion present. This dataset also contains
an object without global symmetries (figure 6.1). All of the reasons above
make this dataset a suitable candidate for parameter tuning.

LM/LM-O

LINEMOD dataset with its two versions [10, 9] has been the most used
dataset for object pose estimation. It consists of 15 texture-less objects with
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Figure 6.1: Sample image from TYOL dataset. [25]

a varying level of occlusion. This dataset is split into two subsets LM and
LM-O. The LM part features only a mild level of occlusion and the LM-O has
some testing images almost fully occluded. Only 3D models and annotated
synthetic images are available for training. One of the reasons LINEMOD is
considered challenging is the absence of real training images, which can lead
to over-fitting during training. An example of the testing image can be seen
in figure 6.2 and rendered synthetic images of structured models can be seen
in figure 6.3.

Figure 6.2: Sample image from LINEMOD dataset. [10]

T-LESS

T-LESS [23] named after the fact, that it contains texture-less objects. It
provides 3D models, synthetic and real training images of 30 industrial
objects. An example of the testing image can be seen in figure 6.2 and
rendered synthetic images of structured models can be seen in figure 6.3.
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Figure 6.3: Sample views of rendered synthetic images from LM-O dataset.

6.2 Training and parameter tuning

Let us first start with a summary of all hyperparameters, which need to be
tuned. Overview and description of parameters for SSM v.2 is presented in
table 6.1 and for SSM Pose in table 6.2.
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Figure 6.4: Sample image from T-LESS dataset.[23]

Figure 6.5: Sample views of rendered synthetic images from TLESS dataset.
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Parameter Meaning
image_size Dimension of an input image.
pca_dim Dimension of database descriptors after PCA compression.
batch_size Batch size used for one iteration of IPCA.

number_of_batches Number of IPCA iterations.
candidates Number of candidates retrieved.

Table 6.1: Hyper parameters of SSM. Every parameter is set for each stage
independently.

Parameter Meaning
view_sphere_samples Number of samples from the view sphere.

scale Distance from which the object is captured during training.

Table 6.2: Hyper parameters of SSM Pose.

Because all of our experiments in the next section are centred around BOP
challenge [25] and its BOP toolkit [2], we will base parameter tuning around
them.

6.2.1 Hardware

For training and evaluation we have used laptop ASUS ROG GL702VT
with the following specifications IntelCore i76700HQ processor, NVIDIA
GeForce GTX 970M dedicated graphics card and Linux Ubuntu 20.04
LTS operating system. The graphic card was used with NVIDIA CUDA
V11.2 library and graphic card driver version 460.73.

6.2.2 Training data

The BOP challenge provides several datasets consisting of object models,
annotated synthetic, and real training images. Our approach creates the SSM
database from synthetic rendered images of the object model. We render
images by sampling the view-sphere at a single scale. There are two sampling
schemes implemented in the BOP toolkit Fibonacci [18] and Hinterhosser [20].
We have tried both and found no difference in performance but opted for
Hinterhosser one as it is the most common approach among BOP participants.
Optional PCA injection is obtained from provided real images, if available,
which are subjected to the same pre-processing as described in 5.1.3.

41



6. Evaluation ......................................
6.2.3 Parameter tuning procedure

The first parameter to be tuned is the image size for each stage of SSM.
Because we decided to use only one forward pass through the network,
we use the same dimension for each stage. The optimal image size was
inferred from the distribution of training images dimensions, bounding box
sizes and computational speed. In BOP training and testing, images are of
dimensions 640x480, and bounding boxes cover around 25 % of the image
surface. It is not desirable to upscale images too much because there is
no additional information and the image entropy stays the same. Using an
image dimension of 224x224 proved to be a good compromise, which was
then verified empirically.

The initial value of pca_dim was set according to [11] and then iteratively
adjusted by small amounts, similar to the grid search methodology. With
this approach have arrived at the value of 100 for each stage. Because of our
improvement in the form of IPCA, we can use the whole database for training
in an iterative fashion. Parameter number_of_batches is then set to the
maximum possible value. The last parameter to be tuned is the batch_size.
Here we have to consider our hardware, which provides 8 GB of RAM, and
thus the upper limit was around 30 samples per batch. The theoretical
minimum is different for each stage. Generally, if we want to compress our
feature vector to pca_dim dimension space we need atleast pca_dim or more
feature vectors. This minimum is then defined as

batch_sizemin =
⌈
pca_dim
n_vectors

⌉
, (6.6)

where n_vectors corresponds to the number of feature vectors extracted from
one image and can be inferred from figure 4.9. For the first stage of SSM
n_vectors = 36 and for the second stage n_vectors = 625 respectively.

Parameter tuning for SSM Pose is much more straightforward. Parameter
view_sphere_samples has a direct trade-off between angular resolution and
training/run time. The excellent compromise between accuracy and speed
is around 100-200 samples at a single scale. Hyperparameter scale is set
depending on the average height of an object and camera parameters man-
ually. It is desirable for the object to cover most of the image. The list of
hyperparameters used in all of the following experiments is included in table
6.3.

The training time takes around 5-15 minutes per object, with a database
of 100-200 images. We have been able to train our method with as low as 50
images, at which point the performance deteriorates significantly for some
objects. While more training images from different viewpoints mean finer
view-sphere sampling, we have found that the database of size around 150-300
is sufficient, provided the sampling is close to uniform.
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Parameter Value
SSM stage 1

image_size 224x224 [pixel x pixel]
pca_dim 100 [-]
batch_size 30 [-]

number_of_batches MAX
candidates 20 [-]
SSM stage 2

image_size 224x224 [pixel x pixel]
pca_dim 100 [-]
batch_size 30 [-]

number_of_batches MAX
candidates 1 [-]
SSMPose

view_sphere_samples 161 [-]
scale 500 mm

Table 6.3: Settings used in following experiments.

6.3 Results

6.3.1 In-depth analysis

For a more exhaustive analysis, we have selected one object from the TYOL
dataset, which can be seen in figure 6.6. The testing split consists of a
single scene with a single object and around real 80 images. The selected
object exhibits no symmetries. Thus there are no pose ambiguities. We
have conducted three experiments, one with only synthetic training dataset
(Synt), one with a combination of synthetic and real training data for the
PCA injection (Synt + Real) and one with synthetic training dataset and
object detector trained by ourselves (Synt + Det). Pre-computed bounding
boxes for training and testing have been obtained from BOP. Because these
bounding boxes are generally of high quality, we have decided to also train
our own detector for comparison to investigate the dependency of our method
on the quality of the object detector. We have chosen Faster R-CNN [45]
object detector with implementation provided in Detecto object detection
library [3].

Results can be seen in table 6.4. We also provide error histograms in 6.7,
6.8 and 6.9. The average time needed to estimate the pose of a single object
was around 300 ms. It is common for a monocular camera to have different
accuracy in the x/y axis versus the z-axis, which is why we evaluate each
axis individually and provide histograms for the x/y and z-axis separately.
Let us start discussing rotational and translational error. The way we
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Figure 6.6: Top view of structured model. [25]

compute translation vector is directly influenced by the precision we achieve
in estimating orientation. Error in the z-axis is approximately two times the
other axis, which is the expected result. Angular error is slightly higher than
desired but can be easily explained. Looking at figure 6.7c, we see that a
lot of error comes with estimates, which are around 180◦ off. If we have a
look at the figure 6.6, we see no real symmetries. Nevertheless, the object
is close to being symmetrical, and for low resolution, the rotation of 180 ◦
around the top view can be indistinguishable. This shows that our method
is insensitive to small details in object shape. This information is not really
surprising considering the low spatial resolution of CNN features as illustrated
in figure 4.9. On the other hand, this can also be a desirable feature in some
applications.

For comparison, the best-performing state of the art algorithms achieves
an MSSD, MSPD and VSD score of around 0.5-0.8. As mentioned in [24] a
high MSSD score indicates the suitability of the method for object grasping
by a robotic arm. A slightly lower VSD score can be explained by frequent
180◦ rotational miss-alignments.

Interesting results come from comparing synthetic and synthetic/real train-
ing split. There is little to no improvement from adding real training image
samples. This can be explained by the relatively low resolution of input im-
ages, quality of rendered synthetic training images and lack of colour diversity
of the object. The main difference between synthetic and real images comes
from colour differences and not the shape. Our object exhibits a simple colour
to render, and most of the information about its orientation is encoded in
its shape. This also shows that our method is easily trained on a synthetic
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dataset with little to no degradation in performance.

Metric Synt Synt + Real Synthetic + Det
Translational error

(median) 48.712 mm 49.180 mm 82.549 mm

Trans. error x-axis
(median) 20.586 mm 24.153 mm 17.965 mm

Trans. error y-axis
(median) 15.776 mm 16.551 mm 18.932 mm

Trans. error z-axis
(median) 40.860 mm 39.273 mm 74.085 mm

Rotational error
(median) 21.564 ◦ 22.828 ◦ 22.281 ◦

MSSD
(average recall) 0.309 0.306 0.208

MSPD
(average recall) 0.321 0.319 0.195

VSD
(average recall) 0.193 0.169 0.116

Table 6.4: Results of SISO experiment from synthetic training data.

Overall results of these experiments clearly demonstrate that our proposed
solution works. Nevertheless, it is obvious that most of the error comes from
the wrong result of the image retrieval stage. An obvious solution to this
would be to try a different image retrieval pipeline, which is beyond the scope
of this thesis. On the other hand, it should be noted that the SSM provides a
scoring function for retrieved images, and we were able to observe that a lows
score oftentimes correlates with retrieving an image with a wrong orientation.
This information could be utilized while building, for example, a random bin
picking pipeline to simply skip frames with a low level of confidence.
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Figure 6.7: Histogram of error for synthetic training dataset.
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Figure 6.8: Histogram of error for synthetic/real training dataset.
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Figure 6.9: Histogram of error for synthetic training dataset with trained
detector.

6.3.2 State of the art comparison

LM/LM-O

For comparison of our method against the state of the art algorithms, we
have chosen LM-O dataset. The main challenge of this dataset comes from a
heavy occlusion and thus is a good indicator of how well the method handles
occlusion. The testing split consists of a single scene with around 200 images.
Results can be seen in table 6.5. All bounding boxes for training and testing
have been obtained from BOP. Scores of other methods have been extracted
from the BOP challenge leaderboard [1]. Our method has placed in the
seventh spot. It is interesting to note that our approach has a lower VSD
score compared to other methods. This would suggest that our main error
is in the estimated rotation because VSD is more sensitive to it. Another
thing to consider is the relatively short training time of our method. It took
around 2 hours on our consumer-grade laptop to train. Other algorithms like
CosyPose take multiple days on GPU clusters to train. We have also included
the run time for illustration. Nevertheless, a direct comparison is inherently
biased as we have used a consumer laptop for evaluation, while most of the
other authors use high-end desktops.
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Place Method AR ARMSSD ARMSP D ARV SD time[s]

1 CosyPose [31] 0.633 0.480 0.606 0.812 0.550
2 CDPNv2 [35] 0.624 0.445 0.612 0.815 0.163
3 PVNet [43] 0.575 0.428 0.543 0.754 x
4 EPOS [22] 0.547 0.389 0.501 0.750 0.468
5 Jinhuiliu [x] 0.525 0.350 0.444 0.781 0.939
6 Pix2Pose[41] 0.363 0.233 0.307 0.550 1.310
7 SSMPose 0.224 0.154 0.377 0.141 2.250
8 SMPE [50] 0.217 0.150 0.153 0.346 0.200
9 DPOD [54] 0.169 0.101 0.126 0.278 0.172
10 Sundermeyer [51] 0.146 0.090 0.095 0.254 0.550
11 SSD-6D [28] 0.139 0.047 0.083 0.285 x

Table 6.5: Results of BOP challenge for LM-O dataset. For methods with
multiple submissions only the best performing one was considered. Entries
marked with x were not made public.

TLESS

As a supplementary comparison, we have chosen the TLESS dataset. The
testing split consists of 20 scenes with multiple objects present. Each scene
has around 200 images. Results can be seen in table 6.6. We used the same
methodology as in the last section. We have placed in ninth place out of
ten, which is slightly worse than in the case of the LM-O dataset. This can
indicate two things. Our method is generally more suitable for objects with
more visual texture, and it handles occlusion reasonably well. One thing,
which can be noted is higher run time. This has an obvious explanation.
An average scene in the TLESS dataset has more objects than in the LM-O
dataset, and the run time of our algorithm scales linearly with the number of
objects present in the scene.

Place Method AR ARMSSD ARMSP D ARV SD time[s]
1 CosyPose [31] 0.839 0.773 0.836 0.907 0.969
2 CDPNv2 [35] 0.490 0.377 0.418 0.674 0.708
4 EPOS [22] 0.476 0.369 0.423 0.635 1.177
5 Jinhuiliu [x] 0.403 0.225 0.271 0.712 0.611
6 Pix2Pose[41] 0.344 0.261 0.296 0.476 1.084
7 SMPE [50] 0.310 0.211 0.224 0.496 0.193
8 Sundermeyer [51] 0.304 0.196 0.211 0.504 0.194
9 SSMPose 0.130 0.145 0.192 0.053 4.712
10 DPOD [54] 0.081 0.048 0.055 0.139 0.206

Table 6.6: Results of BOP challenge for TLESS dataset. For methods with
multiple submissions only the best performing one was considered. Entries
marked with x were not made public.
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Chapter 7

Conclusion

7.1 Evaluation

This thesis set out to achieve two main goals to design and implement an
object pose estimation pipeline based on the SSM-VPR framework pipeline
and software development of the aforementioned framework. Both of these
goals have been successfully completed. From chapter 6 it is clear that our
proposed solution works and even outperforms some of the state-of-the-art
solutions with some limitations. The new version SSM v.2 has been proven
to work as expected.

In our work, we have performed an analysis of state-of-the-art approaches
for object pose estimation and familiarized ourselves with the SSM-VPR
framework. We then utilized this knowledge to design and implement our
object localization pipeline. We then conducted multiple experiments to verify
our design and compared it against other state-of-the-art approaches. Results
of the conducted experiments clearly show that our solution is viable and
even outperformed some of the state-of-the-art methods. Moreover, we have
clearly demonstrated that our proposed solution handles synthetic training
images reasonably well, which is something which other approaches struggle
with most often. Nevertheless, it is obvious that our solution is far from
perfect. The general accuracy of translation in the z-axis offers the biggest
room for improvement. Also, the variance of error in orientation is slightly
higher than desirable.

Now we need to ask ourselves if using the SSM for object pose estimation
brings any benefit over other already existing solutions. Results of section
6.3.2 already tell us that it does. Moreover, our solution offers some nontrivial
advantages. It is reasonably fast to train, requiring around 5-15 minutes on a
consumer computer per object. The next advantage is the independence of
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object databases. Adding a new object to the already pre-trained pipeline
brings no issues and requires merely an addition of another database. Most
of the state of the art approaches require around 500-1000 training images
per object, while our approach is able to produce reasonable results for as
low as 50-100 images.

Another contribution was the development of SSM v.2. One of the under-
lying requirement for the new version of the SSM framework was to make it
viable for more general problems. Not only was this version of the spatial
matching framework successfully used in this work, but it was also used during
the development of the UAV localization framework, with our contribution.
Results of this contribution are to be released in an independent research
article [30].
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7.2 Future work

The results show that SSM, while usable, is not a sufficient solution for object
orientation estimation. There are two directions to be taken to implement an
additional refinement step, which is common among object pose estimation
pipelines, or to replace SSM with a different approach. Both of these directions
have their reasoning. The only problems with adding an additional refinement
step are the computational overhead and the absence of image features with a
reasonable spatial resolution. Another option would be to replace SSM with
another image retrieval pipeline or to forgo the idea of template matching as
orientation estimation altogether. The next logical step would be to try the
aforementioned NetVLAD image retrieval pipeline [7].

Another thing which could improve our system performance is a bounding
box correction. It is obvious that our translation suffers greatly from wrong
object detection. The results of our experiments clearly show that the main
problem is with object distance estimation, i.e. the z coordinate. One of
the possible solutions could be to implement a bounding box refinement
procedure, e.g. as proposed in [26].

The last thing we would consider exploring is to implement a random
bin picking solution based on our framework. Sometimes high variance
inaccuracy could be overcome by capturing the object from multiple angles
and choosing the respective pose with the best score, the so-called multi-
view approach. Potential advantages of our approach would the training
time and the possibility to use only synthetic training data. Training time
is shorter than most of the other state-of-the-art solutions, which leads to
faster deployment times, a crucial industrial requirement. The idea of using
structured object models to generate synthetic data is becoming the more
and more prevalent method of training, with the main motivator being the
time saved.
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Appendix A

List of Mathematical Notation

Symbol Meaning

r Column vector.
A Matrix of numbers.
X Set.
x̂ Estimated value.
X Tensor.
f(x1, x2, .., xn) Scalar function of n variables.
f(x1, x2, .., xn) Vector function of n variables.
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Appendix B

List of Abbreviation

Symbol Meaning

SSM Semantic Spatial Matching
DOF Degrees of Freedom
PnP Perspective N Point
RANSAC Random Sample Consensus
GPU Graphical Processing Unit
RGB Red Green Blue
RGB-D Red Green Blue - Depth
SE(3) The Lie group
PCA Principal Component Analysis
IPCA Incremental Principal Component Analysis
SiSo Single Instance of a Single Object
ViVo Varying number of Instances of a Varying number of Object
VPR Visual Place Recognition
AR Average Recall
UAV Unmanned Aerial Vehicle
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Appendix C

DVD Content

File Content

F3-MP-2021-Lukas-Majer.pdf This thesis in PDF format.
ssm_pose/ Implementation of object pose

estimation.
ssm_v2/ Implementation of SSM v.2.
results/ Results of SSM Pose on testing datasets.
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