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Abstract
The thesis deals with the problem of mag-
netic levitation and magnetic confinement,
mainly with the development of funda-
mental bounds on these phenomena and
their comparison with the performance
of commonly used levitation and confine-
ment devices. Local approximations are
introduced, which allows the proposal of
scalar metrics judging the performance.
Optimization problems for the fundamen-
tal bounds are established in this for-
malism. Computational tools are intro-
duced and implemented to evaluate per-
formance metrics and determine funda-
mental bounds for arbitrary current sup-
porting regions. The optimization algo-
rithms are also introduced and imple-
mented. The aforementioned tools are
applied to find the fundamental bound on
magnetic levitation for a circular plate,
which is then compared to the perfor-
mance of the two selected realizations.
Fundamental bounds on magnetic con-
finement are evaluated for current sup-
port in the form of a sphere, cylinder,
and cube. Performance of magnetic traps:
baseball, Ioffe-Pritchard, hexapole, and
quadrupole are compared with the funda-
mental bound.

Keywords: magnetic levitation,
magnetic containment, magnetic traps,
fundamental bounds

Supervisor: Lukáš Jelínek
Faculty of Electrical Engineering,
Czech Technical University in Prague,
Technická 1902/2,
Praha 6

Abstrakt
Práce se zabývá problematikou magne-
tické levitace a magnetického zadržení,
především principiálními limity těchto
jevů a jejich porovnáním s výkonem běžně
používaných levitačních a zadržovacích za-
řízení. Jsou zavedeny lokální aproximace,
které umožňují navrhnout skalární met-
riky posuzující jejich výkon. V navrženém
formalismu jsou stanoveny optimalizační
problémy pro principiální omezení. Jsou
zavedeny a implementovány výpočetní ná-
stroje pro vyhodnocení metrik výkonnosti
a určení principiálních limitů pro libo-
volné proudové nosné oblasti. Jsou rov-
něž zavedeny a implementovány optima-
lizační algoritmy. Výše uvedené nástroje
jsou použity k nalezení principiálních ome-
zení magnetické levitace pro kruhovou
desku, která je následně porovnána s vý-
konností dvou vybraných realizací. Prin-
cipiální omezení magnetického zadržování
jsou vyhodnoceny pro proudovou oblast
ve tvaru koule, válce a krychle. Výkonnost
magnetických pastí: baseballové, Ioffeovy-
Pritchardovy, hexapólové a kvadrupólové
je porovnána s principiální mezí.

Klíčová slova: magnetická levitace,
magnetické zadržování, magnetické pasti,
principiální limity

Překlad názvu: Principiální omezení
magnetické levitace a magnetického
zadržování
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Chapter 1

Introduction

The phenomenon of levitation is a gravity compensation problem, which
has always attracted attention: illusionists let objects float freely in mid-
air by “supernatural forces”, while applied physics successfully attempt to
levitate maglev trains which are then capable of moving at speeds as high
as 500 km/h [1–4]. Levitation can be achieved in different ways: a jet of
gas (aerodynamic levitation of laser-heated solids [5], indoor skydiving [6]),
intense sound waves (structure measurements on low-temperature liquid
droplets [7]) or laser beams (observation of light scattering from non-spherical
particles [8]) and notably for this thesis, conductors can levitate in strong
time-varying magnetic fields, charged particles in quasi-static electric fields,
diamagnets and neutral atoms in a quasi-static magnetic field, magnets above
superconductors or vice versa [1, 3]. This thesis focuses on levitation induced
by a quasistatic magnetic field formed by a properly shaped surface current
density.

The first goal of this thesis is to study physical bounds on magnetic
levitation within the view of classical electrodynamics. Magnetic levitation is
achieved by the spatial distribution of magnetic field magnitude, which can
exhibit a local minimum in a source-free region [1,3,9–11], [12, section 10.1.4]
in which objects made of material with negative magnetic susceptibility, or
objects with negative magnetic polarisability can levitate [2,3,12–14], see the
detailed analysis in chapter 2. This is the case of diamagnets such as water
and living matter, with the widely known example of a levitating frog shown
in figure 1.1, or superconductors [1, 10,13,14].

The second goal of this thesis is a study of physical bounds to magnetic
confinement, which results from similar conditions as magnetic levitation.
The fundamental difference is that the magnetic field is used to spatially
localize microscopic particles and does not fight against gravity but against
thermal excitation. The particles at room temperature move at speeds of the
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1. Introduction .....................................

Figure 1.1: Frog levitated in stable zone of a 16 T magnet [10,14].

order 300 m/s, the speed of sound, thermal velocity is decreased by cooling.
The deceleration of atoms is done by a laser beam before trapping them by
magnetic field [11]. The phenomenon of magnetic confinement (localization
in a potential well) establishes the basis for modern ultracold physics and its
applications, quantum information processing, quantum metrology, quantum
objects, quantum optics, gravimetry, or high-resolution spectroscopy [9,15].
Apart from applications, magnetic confinement indicates many similarities
with magnetic levitation, mainly that the confining potential is attributed to
the minimum of magnetic field magnitude, where the particles are trapped [1,
3, 9–11], [12, section 10.1.4].

2



Chapter 2

Assumptions & Restrictions

This chapter introduces the requirements, assumptions, and restrictions on the
description of magnetic levitation and confinement that are used throughout
this thesis. Apart from physical requirements like low field seekers and
magnetic precession, assumptions for local approximations leading to the
application of second-order Taylor polynomial to the potential energy are
established.

Since this thesis is solely focused on magnetic levitation and confinement
in quasistatic settings, only the vacuum surrounding is considered with ε0
denoting permittivity of vacuum and µ0 denoting the permeability of vacuum.

An essential assumption used in the thesis is that the objects attracted,
repelled by the magnetic field are much smaller than the important space
changes of the magnetic field. This allows to use a local approximation of
the magnetic potential energy [12, section 12.4.2]

φ = −γm ·B, (2.1)

where γ is a positive scaling constant, m is a magnetic dipole moment of the
trapped or levitating particle and B is magnetic field without the presence of
the particle. This local description also allows to expand potential energy φ
into second-order Taylor polynomial [16, section 4.3], [17, section 8.7] as

φ(ρ) ≈ φ(r0) + gTρ+ 1
2ρ

THρ, ρ = r − r0 (2.2)

where g denotes gradient of potential energy at point r0,

gi = ∂φ

∂i

∣∣∣∣
r=r0

, (2.3)

and H is Hessian matrix evaluated at the same point, the elements of which
read

Hij = ∂2φ

∂j∂i

∣∣∣∣
r=r0

, (2.4)
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2. Assumptions & Restrictions ..............................
with ∂i and ∂j denoting derivatives with respect to Cartesian coordinates,
i.e. i, j ∈ {x, y, z}. Hessian matrix is symmetric thanks to the interchange-
ability of derivatives. The quadratic approximation (2.2) is used to quantify
the properties of the magnetic potential wells.

The aforementioned local description is adequate for microscopic objects
(the most important case of magnetic confinement) or mesoscopic objects.
Macroscopic objects of general shape and size cannot be described in this
way. The description of the action of the magnetic force on an extended body
will demand to precisely evaluate the current densities flowing in it, back-
reaction of the body, the full Lorentz’s force, and, importantly, also nontrivial
kinematics. This will immensely complicate the mathematical description. For
this reason, this thesis will solely focus on problems where local approximation
is sufficient and the main goal of this thesis is to provide a basic appraisal of
magnetic levitation and confinement in which the approximation is convenient.

Within the local approximation (2.1), this thesis assumes two types of
dipole moments: induced and permanent. The induced dipole is assumed in
the form [12, section 13.6]

m = αB (2.5)

with isotropic polarisability α to avoid the need to study the spatial orientation
of the levitating body. The potential energy (2.1) in this case reads

φ = −α2 |B|
2, (2.6)

with scaling constant γ = −1/2. Since the magnitude of the magnetic field
can only exhibit local minimum [1,3,9–11], [12, section 10.1.4], the phenomena
of magnetic levitation and confinement demand negative magnetic polariz-
ability α < 0, i.e., diamagnetic objects, in which the induced current densities
arrange themselves to create magnetic field opposing the excitation. The
superconducting body is a particular case of a diamagnet [12, section 13.6.6]
as is a highly conducting body exposed to an alternating magnetic field.

A permanent magnetic dipole is a vector of constant magnitude m, which
can, however, precess around the direction of the magnetic field at an angle and
at angular velocity ωp determined by the field magnitude [12, section 12.4.5].
Here we adopt the adiabatic approximation [18] in which the precessing
dipole only experiences a slowly rotating magnetic field around its local
main direction. Macroscopic permanent magnetic dipoles always arrange
themselves in parallel with external magnetic field and can not thus be
levitated or trapped by magnetic field [12, application 12.2]. Since there is
very little interest to levitate microscopic particles, throughout this thesis, it
is therefore assumed that permanent magnetic dipoles are only to be confined.

Neutral atoms prepared in specific (low field seeking) Zeeman sub-levels [9,
19], provide a permanent magnetic dipole antiparallel to the magnetic field

4



............................... 2. Assumptions & Restrictions

main direction. Such neutral atoms can therefore be trapped in the magnetic
field which is used in preparing them for Bose-Einstein condensation [9,19], [12,
application 12.2].

When a precessing microscopic magnetic dipole is placed in a magnetic
field, the time-averaged magnetic moment reads [18]

m = −m B

|B|
, (2.7)

its direction is antiparallel to magnetic field and m = |m| is the moment
magnitude. The magnetic potential energy is given by (2.1) with scaling γ = 1
and reads

φ = m|B|, (2.8)

which is also called adiabatic approximation to magnetic potential energy [18].
This approximation is justified when vibrational frequency ωv of the dipole is
small compared to ωp which is the case in most practical scenarios [9, 18, 19].
The condition for vibrational and precession frequencies implies the necessity
of enough strong magnetic field at the position of levitation or trapping.
This is nevertheless desired property, as zero-field at the point of trapping
increases the probability of non-adiabatic transitions leading to an escape of
the particles via spin-flip Majorana transition [9, 19].
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Chapter 3

Problem Analysis

This chapter provides a detailed analysis of magnetic levitation and confine-
ment using the squared magnitude of the magnetic field, which is then used
to write the magnetic potential energy (2.1) as second-order Taylor polyno-
mial (2.2). This treatment serves to unify the description of induced (2.6) and
permanent (2.8) magnetic dipole. The chapter also contains an introduction
to the fundamental bounds of magnetic levitation and confinement.

Regardless of the nature of the dipole, the force it feels in an external
magnetic field reads element-wise [12, section 12.4.1]

Fi = m · ∂B
∂i

(3.1)

which also corresponds to the minus gradient of potential energy φ [20,
section 2.6] for both models introduced in chapter 2. The linear term in
Taylor expansion (2.2) is therefore related to force. The quadratic term
in (2.2) is defined via the Hessian matrix (2.4), which reads element-wise

Hij = −∂Fi
∂j

= −m · ∂
2B

∂j∂i
− ∂m

∂j
· ∂B
∂i

. (3.2)

While the role of force (3.1) in the analysis is clear, the Hessian matrix
deserves an explanation. The properties of the Hessian matrix are entirely
determined by its eigenpairs coming from eigenvalue problem

Hqi = λiqi, i ∈ {1, 2, 3}, (3.3)

where λi is an eigenvalue and qi is an associated eigenvector. “Second
derivative test” says that, if there is zero force at a given point and the
Hessian matrix is positive definite, the potential function has local minimum
at that point [16, section 4.3], [17, section 11.7]. Definiteness of a matrix
is given by its eigenvalues: all of them are positive for positive definite
matrix, none of them are negative for positive semi-definite and analogously
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3. Problem Analysis ...................................
for negative semi-definite and negative definite matrices [21, section 7.2].
Furthermore, the Hessian matrix eigenvalues determine the force derivatives
(potential curvature) along the eigenvectors.

In order to simplify the analysis and to unify the cases of polarizable and
permanent dipoles, it is advantageous to introduce auxiliary quantities defined
as follows1. The squared magnitude of the magnetic field is denoted as

Φ = B2 = B ·B, (3.4)

its gradient is denoted Γ, the components of which read

Γi =
(
∂B

∂i
·B +B · ∂B

∂i

)
, (3.5)

and the Hessian matrix of the function Φ is denoted as Ξ with elements

Ξij =
(
∂2B

∂j∂i
·B +B · ∂

2B

∂j∂i
+ ∂B

∂i
· ∂B
∂j

+ ∂B

∂j
· ∂B
∂i

)
. (3.6)

The arbitrariness of Γ and Ξ is further restricted by the properties of the
magnetic field in source free region,

∇ ·B = 0, (3.7)
∇×B = 0, (3.8)

∆B = 0, (3.9)

or element-wise ∑
i

∂Bi
∂i

= 0, (3.10)

∂Bi
∂j
− ∂Bj

∂i
= 0, (3.11)

∑
i

∂2Bi
∂i2

= 0. (3.12)

If the magnetic field is used as an optimization variable, these last relations
have to be considered as constraints. In this thesis, however, the magnetic
field is generated by the current density, which is the degree of freedom in
optimization, so equations (3.7)–(3.9) are automatically satisfied through the
use of an appropriate Green’s function (Biot-Sawart’s law), shown later in
section 4.1.

Using (3.4)–(3.6), the description of the magnetic field interaction with
induced and permanent dipole models from chapter 2 can be written as:

1All expressions are written in symmetric form suitable for subsequent optimization
process.
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...................................... 3.1. Levitation

. induced magnetic dipole:

φ = −α2 Φ, (3.13)

Fi = α

2 Γi, (3.14)

Hij = −α2 Ξij , (3.15)

. permanent magnetic dipole:

φ = µ
√

Φ, (3.16)

Fi = −µ
2

2φΓi, (3.17)

Hij = µ2

2φΞij −
1
φ
FiFj . (3.18)

Knowledge of these quantities allows the analysis of levitation and confinement
provided in the following sections.

3.1 Levitation

The phenomenon of levitation is a fight against gravity by other forces.
Suppose gravity antiparallel to z-axis. Then the total potential energy
perceived by the magnetic dipole reads

φT = φ+mgz + φ0, (3.19)

where m is the mass of the dipole, g is the gravitational acceleration and
φ0 is an arbitrary constant. Suppose the origin of the coordinate system is
located at the point of levitation and that φ0 = 0. Total force derived from
the total potential energy 3.19 is given by

FT = F −mgz0, (3.20)

where z0 is unitary vector along z-axis. The Hessian matrix does not change
when gravity is taken into account.

If the object is freely floating in air, the total force (3.20) is zero. The goal
is to levitate as massive objects as possible, which leads to the maximization
of the magnetic force along z-axis. Stable levitation also requires three-
dimensional well of potential energy which should be as steep as possible.

The noted goals state the objective function to be optimized: force fighting
gravity, and stability. This leads to multiobjective optimization. Force

9



3. Problem Analysis ...................................
maximization is a straightforward goal. The stability, in contrast, means
the maximization of the minimal eigenvalue of the Hessian matrix, which
is equivalent to the convexity maximization of a quadratic potential well in
three dimensions. The optimization should also properly be constrained since
the magnetic force can be made as large as desired by boosting the magnitude
of electric currents flowing in the design region. A natural constraint in that
respect is the maximum feasible power lost by the current flowing in the
supporting material.

The final optimization problem reads

max
J

{
Fz, λ

min
}

(3.21)

s.t. Plost = Pmax
lost , (3.22)

Fx = Fy = 0, (3.23)

where J is current density (optimization variable) and λmin is the mini-
mal eigenvalue of the Hessian matrix introduced in (3.3). As mentioned in
chapter 2, levitation of a permanent magnetic dipole is not of interest. As-
suming therefore a levitation of a small polarizable body of isotropic magnetic
polarizability α < 0, the optimization problem is equivalent to

max
J

{
−Γz, λ̃min

}
(3.24)

s.t. Plost = Pmax
lost , (3.25)

Γx = Γy = 0, (3.26)

where λ̃min is the smallest eigenvalue of matrix Ξ. Since all quantities, F , λmin

are proportional to Γ, λ̃min, the optimal solution is the only one for all objects
with different suitable properties, this evidence is also valid to the problem of
confinement.

3.2 Confinement

The phenomenon of confinement is only important for microscopic particles,
for which the gravity force is negligible compared to thermal excitation. The
goal of a magnetic trap is to design a potential well with the highest possible
temperature of particles that can be trapped. The optimization goals are
therefore the steepness of the potential well which is assessed by the Hessian
matrix and its eigenvalues and, as mentioned earlier in chapter 2, a highest
possible bias field to avoid spin-flip Majorana transitions which will lead
to the escape of particles from the trap. High bias field also increases the
precession frequency, which is favorable, keeping in mind the assumption
that the vibrational frequency must be small compared to the frequency of
precession.

10



.....................................3.2. Confinement

Similarly to levitation, the fundamental bounds on the performance of the
magnetic trap are found by multiobjective optimization with two objective
functions: bias field and convexity. Choosing the squared magnitude of the
bias field, the optimization problem reads

max
J

{
Φ, λmin

}
(3.27)

s.t. Plost = Pmax
lost , (3.28)

Fx = Fy = Fz = 0. (3.29)

Since all force components are zero, the properties of the potential energy
Hessian matrix are solely dependent on matrix Ξ, for both the induced
magnetic dipole (3.15) and the permanent one (3.18). Then for both types
of dipole optimization can therefore be rewritten as

max
J

{
Φ, λ̃min

}
(3.30)

s.t. Plost = Pmax
lost , (3.31)

Γx = Γy = Γz = 0. (3.32)

The algorithms used to find the physical bounds are discussed later in sec-
tion 4.3.

To illustrate the physical content of the aforementioned optimization prob-
lems, figure 3.1 shows the potential profile of two classical designs of magnetic
traps, namely, the quadrupole trap, see figure 3.2a, and the Ioffe-Pritchard
trap, see figure 3.2b. Their parameters2 are taken from [9].

First of all, figure 3.1 indicates, that the quadratic approximation of the
squared magnetic field magnitude in the center of the trap is sufficient for a
precise description. Figure 3.1 also shows that the designs differ considerably
in the two most important parameters, which are the magnetic field magnitude
in the center of the trap (non-zero magnetic field is needed to avoid spin-flips)
and convexity, i.e. the ability of the trap to localize the trapped objects. If
the eigenvalues are higher, the confined objects are better localized. It can be
seen that the quadrupole trap exhibits higher overall convexity but insufficient
polarizing magnetic field. Ioffe-Pritchard trap offers great convexity in the
xy-plane, non-zero polarizing field, but fails to localize the particle along
z-direction.

Both realized traps can clearly be optimized for better performance, which
is the role of mathematical formulation (3.30)–(3.32), which aims to equalize
convexity in all directions, make it as high as possible and also to put this
metric in mutual trade-off with maximum polarizing field in the center of the
trap.

2Ioffe-Pritchard trap with loop radius 1 cm, distance from origin 1.25 cm, wires distance
from origin 1.41 cm, current in loops 300 A and wires 104 A. Parameters of quadrupole trap
are written in section 5.2.
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Figure 3.1: Potential well of Quadrupole and Ioffe-Pritchard trap [9] plotted in
cuts.

(a) : Quadrupole trap. (b) : Ioffe-Pritchard trap.

Figure 3.2: Examples of magnetic traps.
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Chapter 4

Computational Tools

This chapter introduces the basic tools of mathematical physics used in
the thesis, starting from the matrix formulation of the magnetic field and
its derivatives through the expansion of the current density into a set of
basis functions and use of method of moments (MoM). Subsequent section
introduces field-integral description of electromagnetic field, electric field
integral equation (EFIE), which is used to obtain entire-domain basis functions
suitable to represent stationary (zero-divergence) current density, as well as
to evaluate currents on metallic objects excited by sources under quasi-
static conditions. Finally, basics of quadratically constrained quadratic
program (QCQP) are shown and used to formulate the fundamental bounds
of magnetic levitation and confinement.

4.1 B-field Operators

Under quasistatic conditions, the magnetic field excited by a stationary current
density J is given by Biot-Savart’s formula [12, section 10.2], [22, section 5.3],

B(r) = µ0
4π

∫
J(r′)× R(r, r′)

|R(r, r′)|3 dV ′, R(r, r′) = r − r′. (4.1)

Assuming that the current density is expanded in a set of appropriate basis
functions as

J(r′) ≈
N∑
n=1

Inψn(r′), (4.2)

then, the Biot-Savart’s formula (4.1) reads

B ≈ BI, B ∈ R3×N , (4.3)
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where the current expansion coefficients have been collected into a column
vector I, and where columns of matrix B are given by

Bn = µ0
4π

∫
Vn

ψn(r′)× g(r, r′) dV ′ (4.4)

with substitution
g(r, r′) = R(r, r′)

|R(r, r′)|3 . (4.5)

An important merit of this matrix formulation is that matrix B only depends
on a given distribution of basis functions ψn(r) and on the observation
point r. The evaluation of magnetic field at that point is then reduced to a
matrix multiplication (4.3) allowing for fast evaluation for arbitrary current
distribution described by current vector I.

Apart from the magnetic field also its first and second spatial deriva-
tives (3.5) and (3.6) are needed to be evaluated. These can be easily obtained
from the Biot-Savart’s formula (4.1). Following the procedure analogous
to (4.1)–(4.5), it is possible to write

∂B

∂i
≈ B,iI, B,i ∈ R3×N (4.6)

∂2B

∂j∂i
≈ B,ijI, B,ij ∈ R3×N (4.7)

where columns of matrices B,i and B,ij read

Bn,i = µ0
4π

∫
Vn

ψn(r′)× ∂g(r, r′)
∂i

dV ′, (4.8)

Bn,ij = µ0
4π

∫
Vn

ψn(r′)× ∂2g(r, r′)
∂j∂i

dV ′. (4.9)

Practical implementation of integrals used in (4.4), (4.8), (4.9) involves a
numerical quadrature and is detailed in appendix A.

The derived matrix operators B,B,i,B,ij are in the subsequent text used
to express squared magnitude of magnetic field (3.4), its gradient (3.5) and
Hessian matrix (3.6), they can be written elementwise as quadratic forms of
current vector I

Φ ≈ IHΦI, (4.10)
Γi ≈ IHΓiI, (4.11)

Ξij ≈ IHΞijI, (4.12)
where

Φ = BTB, (4.13)

Γi = −
(
BT
,iB + BTB,i

)
, (4.14)

Ξij =
(
BT
,ijB + BTB,ij + BT

,jB,i + BT
,iB,j

)
, (4.15)
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are symmetric matrices from their definition.

4.2 Electric Field Integral Equation and Method
of Moments

This section focuses on the application of MoM on EFIE using an expansion
of current density to basis functions1 partially discussed in appendix A. One
of the important aims is also to create zero-divergence entire-domain basis
functions as specific linear combinations of basis functions in order to form an
expansion basis suitable to describe quasi-static electromagnetic problems2.

MoM application to EFIE recasts an electromagnetic problem containing
electric conductors and electric sources into a linear equations system [24]

(Zρ + Z0) I = V, (4.16)
Zρ = Rρ + iXρ, (4.17)
Z0 = R0 + iX0 (4.18)

where Zρ denotes material part of impedance matrix with real part Rρ

corresponding to ohmic losses and imaginary part Xρ related to reactance,
and where Z0 denotes vacuum part of impedance matrix, with real part R0
corresponding to radiation and imaginary part X0 to reactance. Vector V rep-
resents electric sources. Element-wise, the impedance matrix and excitation
vector reads [24]

zρmn(k) =Zm(k)
∫
V

ψm(r) ·ψn(r) dV, (4.19)

z0
mn(k) =ik

√
µ0
ε0

∫
V

∫
V

[
ψm(r) ·ψn(r′)+

− 1
k2∇ ·ψm(r)∇′ ·ψn(r′)

]
G(r, r′, k) dV ′ dV,

(4.20)

vm(k) =
∫
V

ψm(r) ·Ei(r, k) dV. (4.21)

with free-space wavenumber

k = ω
√
ε0µ0, (4.22)

the free-space Green’s function

G(r, r′, k) = e−ik|r−r′|

|r − r′|
(4.23)

1RWG [23] basis functions are defined over triangular mesh and are used to expand
surface current density, which is solely used in all problems in the thesis.

2In the subsequent text, time-harmonic steady state under time convention e−iωt is
assumed with ω being angular velocity.
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impressed electric field Ei and with

Zm(k) = Rm(k) + iXm(k) (4.24)

being the material impedance of conductors, whose real part Rm denotes
resistance and imaginary part Xm denotes reactance. Matrix Rρ is positive
definite (it represents losses) and impedance matrix (Zρ + Z0) is invertible.
The evaluation is implemented in MATLABr [25] as a part of Antenna
Toolbox for MATLAB (AToM)3.

The description via EFIE and RWG basis functions is primarily used in
electromagnetic scattering and it cannot be directly used for quasi-static
problems in its native form. A better formulation would use magneto-static
integral equation for which however the open codes are not available. For that
reason, the EFIE will be used in this thesis and the modifications described
below will be employed to make this description stable also in quasistatic
scenarios.

Application of EFIE to quasistatic problems causes problems. The major
problem of EFIE and RWG is the assumption of nonzero charge density on
every basis function, i.e., of nonstationary current density. This is not a
major problem for the realized excited problems, the current I on which is
evaluated by direct inversion

I = (Zρ + Z0)−1 V. (4.25)

There, the excitation vector V forces the current to behave accordingly to the
real physical situation, i.e., to erase the charge density in quasi-magnetostatic
scenarios. In the case of optimization, however, a proper set of basis functions
has to be used, because the application of fully dynamical basis functions to
quasi-static magnetic problems can result in physically nonsensical current
density since no real excitation restricts its shape. Another unpleasant
problem is the second term in the evaluation of the vacuum part of the
impedance matrix (4.20). This second part containing the divegergence of
basis functions is divided by the wavenumber k. If the wavenumber goes to
zero (or is very small compared to the extent of the basis functions), which
is the case of the quasi-static scenario used in this thesis, this part of the
integral diverges (or at least causes numerical issues). In order to avoid this
second difficulty, a nonvanishing electric size ka > 10−3, where a is the radius
of the smallest sphere circumscribing the structure, is used.

To remove this deficiency, a proper combination of RWG basis functions
will be derived in subsequent section 4.2.1 forming a new basis with minimum
excess charge and therefore well adapted to describe stationary currents.

3Author of the thesis is also a member of AToM development team.
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4.2.1 “Loop-Star” Decomposition

The construction of a basis with minimum (ideally zero) charge density
requires the knowledge of the cycle mean electric and magnetic energy, which,
by description (4.16), can be defined as [26]

We = 1
4ω IHXeI, (4.26)

Wm = 1
4ω IHXmI, (4.27)

where

Xe = 1
2

(
ω
∂X
∂ω
−X

)
, (4.28)

Xm = 1
2

(
ω
∂X
∂ω

+ X
)
. (4.29)

General current density flow can be composed of solenoidal Jm and irrota-
tional Je parts [27]

J = Jm + Je. (4.30)

where under quasistatic conditions (vanishingly small electric size of the
analyzed object), the solenoidal (loop-like) current density provides zero
divergence and generates predominantly magnetic energy, while the irro-
tational (star-like) current density generates predominantly electric energy.
Employing (4.28) and (4.29), the decomposition of current density (4.30) can
approximately be achieved by eigenvalue decomposition

XmQ = XeQD, (4.31)

where loop-like current densities are eigenvectors (columns in matrix Q)
with eigenvalues (elements of diagonal matrix D) greater than one (their
cycle mean magnetic energy is greater than the electric energy) and vice
versa for eigenvectors representing star-like current densities. These loop-like
eigenvectors will be used in this thesis as the basis for all stationary current
distributions.

An example of decomposition (4.31) is shown in figure 4.1. The plot of
current density clearly demonstrates the decomposition into loop-like and
star-like current densities.

The decomposition (4.31) allows to define new entire domain basis functions

Ψi =
∑
n

Qniψn, Dii > 1 (4.32)

suitable for the description of quasi-magnetostatic problems. In which follows,
basis functions {Ψn} are used instead of basis functions {ψn}. The operators
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Figure 4.1: “Loop-Star” decomposition over RWG basis functions distributed
on a circle which is discretized into 500 triangles. Variable n represents number
of eigenvalue.
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expressed in basis {ψn} are transformed into new basis {Ψn} by matrix Ql
which columns are those eigenvectors of (4.31) with eigenvalues greater than
one. The operators of magnetic field, its first and second derivatives in the
new basis are formed as

Bn ∼ BnQl, (4.33)
Bn,i ∼ Bn,iQl, (4.34)

Bn,ij ∼ Bn,ijQl. (4.35)

4.3 Optimization

This section introduces quadratically constrained quadratic program (QCQP),
which is used to solve optimization problems leading to fundamental bounds
of magnetic levitation and confinement. In these formulations, the current
density vector I is used as an optimized variable.

Throughout this work, the following form of QCQP is considered

min
I

(
IHAI + IHa + α

)
(4.36)

s.t. IHCiI + IHci + γi = 0; ∀i = 1, . . . ,m (4.37)

where

I,a, ci ∈ Cn×1,

A,Ci ∈ Cn×n,
α, γi ∈ R,
C1 � 0,

all matrices are Hermitian and where the solution is supposed to exist. The
solution is approached via duality [28, sections 12.9,16.1], [29, chapter 5] and
its implementation is done in MATLABr [25]. Matrix Rρ is considered in
all problems as matrix C1. This matrix is of full rank, it is positive definite,
determines ohmic losses in the optimized structure, and provides a natural
normalization of vector I not letting its elements to be unbounded.

In sections 3.1, 3.2, the optimization problems were introduced in general
terms. The following two subsections employ the formulation of the squared
magnetic field and its first and second derivatives via quadratic forms in
the current density vector (4.10) – (4.12) and give explicit QCQP forms of
optimization problems for magnetic levitation (3.24) – (3.26) and magnetic
confinement (3.30) – (3.32).
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4.3.1 Levitation

As discussed in chapter 3, the quality of the spatial distribution of the
magnetic field with respect to levitation is determined by the force fighting
gravity and stability, which results in Pareto-optimal set of these two objective
functions [30]. The curvature of the potential (stability criterion) is however
related to the eigenvalues of Hessian matrix and is therefore not a quadratic
form of current vector. As presented in (3.24) – (3.26), the optimization
problem does not belong to QCQP.

To overcome this difficulty, an assumption is made (and enforced by op-
timization constraints) that the Hessian matrix is diagonal (all off-diagonal
terms are zero) and all diagonal terms are equal. Consequence of this as-
sumption is that all eigenvalues of Hessian matrix λ̃ are equal and on top
of that they matches the diagonal terms of the Hessian matrix. This re-
quirement results in equal convexities of squared magnetic field magnitude in
all directions and, importantly, to convexity described by a quadratic form
of current vector. A drawback of this assumption is the loss of freedom in
current vector I and therefore a possible shift of the optimized values towards
the suboptimal region.

With the aforementioned assumption, the optimization problem for current
vector I which is Pareto-optimal with respect to levitation (3.24) – (3.26)
is rewritten as QCQP containing two objective quadratic functions and 8
quadratic constraints,

max
I

IH [ξΞxx − (1− ξ)Γz] I, ξ ∈ [0, 1] (4.38)

s.t. IHRρI− 2 ∗ Pmax
lost = 0, (4.39)

IHΓiI = 0, i ∈ {x, y} (4.40)
ξIH(Ξii −Ξjj)I = 0, ∀i 6= j (4.41)
ξIHΞijI = 0, ∀i 6= j (4.42)

The coefficient ξ provides a linear combination of the objective functions and
sweeps over Pareto-optimal sets.

The constraints on maximum lost power and on vanishing xy-components
of gradient of squared magnetic field magnitude (3.25), (3.26) are directly
related to quadratic constraints (4.39), (4.40). The constrains (4.41), (4.42)
ensure that Hessian matrix Ξ is equal to a scalar multiple of identity matrix.
The element Ξxx can therefore be considered as the smallest eigenvalue of
Hessian matrix λ̃min, which denotes convexity. The linear combination used as
the optimized metric provides trade-off between the maximization of convexity
and maximization of force in z-direction. The Pareto-optimal set is swept via
coefficient ξ.
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The solutions to optimization problem (4.38)–(4.42) for different coeffi-
cients ξ do not necessarily satisfy the basic condition for levitation, i.e.,
positive z-component of force and convexity in all directions. If coefficient ξ
providing a linear combination of the objective function is close to zero, the
optimization prefers maximization of force at the cost of potential curvature
which might even become concave (levitation will be unstable). On the other
side, if coefficient ξ is close to unity, the importance of force is diminished,
which leads to high convexity but might also lead to the magnetic force being
unable to compensate gravity. The appropriate range of coefficient ξ must
therefore be set after the optimization process.

4.3.2 Confinement

The same assumption on Hessian matrix Ξ as in section 4.3.1 is made in the
optimization problem for confinement (3.27)–(3.29) the QCQP form of which
reads

max
I

IH [ξΞxx + (1− ξ)Φ] I, ξ ∈ [0, 1] (4.43)

s.t. IHRρI− 2 ∗ Pmax
lost = 0, (4.44)

IHΓiI = 0, i ∈ {x, y, z} (4.45)
ξIH(Ξii −Ξjj)I = 0, ∀i 6= j (4.46)
ξIHΞijI = 0, ∀i 6= j (4.47)
BiI = 0, i ∈ {x, y}. (4.48)

where coefficient ξ again provides a linear combination of objective functions.
The difference to optimization problem (4.38)–(4.42) is that instead of maxi-
mizing z-component of force, squared magnetic field magnitude is maximized.
In this case, the entire force vector is zeroed via constraints (4.45).

The additional constraint (4.48), which is not taken into account in original
problem (3.27)–(3.29), limits the magnetic field in the trap to point only
in z-direction. This is a nonrestrictive assumption, which allows to set the
direction of trapped particles polarization. The linear constraints on magnetic
field (4.48) can easily be fulfilled by employing null-space of matrix Bi.
Furthermore, if x, y-components of magnetic field are zero and z-component
of magnetic field is non-zero, the only way to ensure zero force in the trapping
center is to use vectors from a null-space common to matrices Bz,i, which is
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a consequence of relation (3.5). With the assumption, the optimization reads

max
I

IH [ξΞxx + (1− ξ)Φ] I, ξ ∈ [0, 1] (4.49)

s.t. IHRρI− 2 ∗ Pmax
lost = 0, (4.50)

ξIH(Ξii −Ξjj)I = 0, ∀i 6= j (4.51)
ξIHΞijI = 0, ∀i 6= j (4.52)
BiI = 0, i ∈ {x, y} (4.53)
Bz,iI = 0, i ∈ {x, y, z}. (4.54)

Analogously to the optimization problem for levitation, the solutions to
optimization problem (4.38)–(4.42) for different coefficients ξ do not have to
always satisfy the condition for confinement: squared magnetic field magnitude
convexity in all directions. It might happen that a concave potential (unstable
equilibrium) is produced when coefficient ξ is close to zero. On the other side,
if coefficient ξ is close to one, the magnetic field magnitude might tend to be
zero, but a nonzero magnetic field is not a strict condition for confinement.
Its presence is only desired to avoid the loss of particles due to spin-flip effects
and to justify the adiabatic approximation.

4.3.3 Subspace Reduction

The optimization problems (4.38)–(4.42), (4.49)–(4.54) consist of matrices
representing cycle mean lost power Rρ, squared magnetic field, its first and
second derivatives. Furthermore, except of matrix Rρ, these matrices are
composed solely of magnetic field and its first and second derivatives, which
induces that matrices can be at maximum formed by 30 independent rows4.
Thanks the restrictions (3.7)–(3.9), which contains 7 independent equations,
the maximal number of independent rows is further reduced to 23 and this
subspace can be advantageously treated as a new set of basis function (specific
linear combinations of basis functions {Ψn}) to which all operators might
be mapped. The new set of basis functions is accomplished by generalized
eigenvalue decomposition

ΩTΩI = λRρI, (4.55)

4Three vectors are given by B-field operators (3 components), 9 by first derivatives (3
components, 3 derivatives) and 18 by second derivatives (3 components, 6 different second
derivatives).
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where

Ω =



B
B,x

B,y

B,z

B,xx
...

B,ij
...

B,zz


, Ω ∈ R30×N . (4.56)

Eigenvectors corresponding to nonzero eigenvalues given by the generalized
eigenvalue problem (4.55) generate the subspace with the basis vectors
important to magnetic potential energy operators. As mentioned earlier in
chapter 2, ohmic losses constraints the optimal current density, so the desired
basis is orthogonal according to the cycle mean ohmic losses matrix Rρ.

Notice, that the subspace dimension has to be lower or equal5 to 23. The
evidence simplifies further computation and immensely decreases optimization
complexity, it allows to reduce the basis solely to a few independent vectors.
For the particular case of a spherical shell and trapping center corresponding
to its center, the set current density profiles within this subset are thoroughly
analyzed, discussed and its properties are highlighted in appendix B.

5Since all basis functions representing current density are solenoidal, see section 4.2.1,
the rank of matrix Ω is in fact 15 and not 23.

23



24



Chapter 5

Results

This chapter summarises all outcomes of the thesis and presents the results in
two sections: levitation and confinement. The study of magnetic confinement
further opens new interesting questions and topics for further study.

5.1 Magnetic Levitation

The problem of magnetic levitation is introduced in section 3.1 with appropri-
ate mathematical and physical description. This chapter shows some levitator
realizations and compares them to the physical bounds, which are determined
through optimization (4.38)–(4.42) introduced in section 4.3.1.

For levitation, only planar structures are considered, although solenoids
are practically used [13,14]. This simplification is not overly restrictive and
it leads to unimportant qualitative changes.

The degrees of freedom in the design of levitator: the shape of the bounding
box, absolute size, material, current distribution, current amplitude are
many. To compare different designs and to apprise the levitator geometry
performance, a normalization

a2Rs
µ2

0Plost
B2 = a2Rs

µ2
0Plost

Φ (−) (5.1)

is applied, where a is a radius of the smallest sphere circumscribing the current
support and Rs is the real part of surface impedance1 Zs. This normalization
removes the dependence on the used material and on absolute dimensions.

1All evaluations were performed using surface resistance Rs = 0.01 Ω.
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Normalized gradient2 (3.5) of squared magnitude of the magnetic field

−a3Rs
µ2

0Plost
Γ (−) (5.2)

and normalized eigenvalues of Hessian matrix (3.6)

a4Rs
µ2

0Plost
λ̃ (−) (5.3)

are used as well.

The normalization allows to compare different structures from different
materials, leaving geometry to be the main cause of varying performance.
For brevity, the normalized squared magnitude of the magnetic field is in
what follows referenced as potential energy, normalized gradient as force,
and normalized eigenvalues of Hessian matrix as convexity. It is however
important to remind that the depicted quantities are only proportional to
potential energy, force, and convexity via positive factors (dependent on
the levitated object), which brings no qualitative changes but may alter the
depicted values.

A simple levitator can be composed of four strong permanent magnets
centered at the vertices of a square [31]. In this thesis, the four permanent
magnets are replaced by four conducting loops carrying a homogeneous current
density, see figure 5.1a. In this configuration (loop radius 1.1 cm, distance
of the loop’s centers from the origin equal to 1.21 cm, radius of the smallest
circumscribing sphere a = 2.31 cm), optimal point for stable levitation is only
achieved at height 0.8a above the plane of the loops, with z-component of
the force and convexity noted in table 5.1.

To assess the performance of the realized levitator, it is necessary to compare
it with the physical bound. In section 4.3.1, multi-objective optimization for
levitation (4.38)–(4.42) was introduced. A disc centered in the xy-plane and
discretized in 500 triangles is used as the support for optimal current density
giving the fundamental bound. Although, the optimization is introduced
as multi-objective it only results in one point for all coefficient 0 < ξ ≤ 1,
the objective functions, force and convexity, are not in contradiction, which
rises questions to be focused on during further study. Otherwise, for ξ = 0,
the optimization maximizes only force without any restrictions to Hessian
matrix, which causes that the resulting minimal eigenvalue λ̃min is negative
and levitation is unstable. The optimal current density is shown in figure 5.1b
and the performance is shown in the first row of table 5.1.

Since the optimal current density is known, one can also try to realize it.
Figure 5.1b suggests that the optimal current density in essence consists of

2Keep in mind that force is proportional to minus gradient (3.1).
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two loops of currents flowing in opposite directions. The task is therefore to
find their appropriate radius and the ratio of currents in the inner and outer
loop Iin/Iout. An attempt to do so is shown in figure 5.1c. If simple loops
are replaced by cylindrical coils, this configuration is referred to as “Bitter
magnet” [14]. With inner radius 0.25a, the stable levitation at point 0.8a
above the plain is achieved with ratio Iin/Iout = 0.78. For this configura-
tion, the values of the force along z-direction at the point of levitation and
convexity (5.3) are also noted in table 5.1.

Table 5.1: Performance in force along z-direction and convexity at the point of
levitation, depicted for various domains.

−a3Rs
µ2

0Plost
Γz (−) a4Rs

µ2
0Plost

λ̃min (−)

fundamental bound 6.52 · 10−3 4.07 · 10−3

coaxial configuration 2.56 · 10−3 1.49 · 10−3

4-loop configuration 4.30 · 10−4 2.65 · 10−4

x

y

(a) : Four-loops con-
figuration with all cur-
rents flowing in the
same direction.

(b) : Optimal current
density on a disc.

(c) : An attempt
to mimic optimal cur-
rent density with a
coaxial configuration of
loops. The excited cur-
rents flows in opposite
directions in different
loops.

Figure 5.1: Examples of levitators and optimal current density. The optimal
point for levitation is placed at the axis of the system at height 0.8a above plane
of the current density.

The conclusion is that the inspiration of the optimal current density is
useful and the coaxial configuration provides almost six times better per-
formance in both criteria than the four-loop configuration. As suggested
by the performance of the optimal current, there is, however, still room for
improvement.

Potential energies along the coordinate axes generated by the realizations
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from figures 5.1a, 5.1c and by the optimal current density from figure 5.1b
are compared in figure 5.2. Notice that the force corresponds to the steepness
of potential energy and the stability of levitation is judged by the convexity.
The point of stable levitation is denoted by the black circles in figure 5.2
(d/a = 0) and parameter d/a denotes the normalized distance from the point
of levitation.
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Figure 5.2: Realizations and optimal current density from figure 5.1 generates
potential energy distribution plotted in cuts along axis at the point of levitation,
where d/a is normalized distance from point of levitation.

Figure 5.2 also shows that the quadratic approximation of potential en-
ergy (2.2) is sufficient only near the point of levitation. This observation
is detailed in figure 5.3 which shows the true potential and its quadratic
approximation for the case of fundamental bound. It can be observed that
the local approximation introduced in chapter 2 is only applicable when the
levitating object is much smaller than the important space changes of the
magnetic field. The figure 5.3 suggests that in this particular scenario, the
optimal current density will only have its denoted performance for levitating
objects not exceeding 0.1a in any direction, or in another words, for objects
more than ten times smaller than the radius of the disc supporting the current.

5.2 Magnetic Confinement

This chapter presents common designs of magnetic traps and compares
their performance with the corresponding fundamental bound, which was
introduced in section 3.2 and mathematically formulated in section 4.3.2.
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Figure 5.3: Potential energy distribution generated by optimal current in com-
parison to its quadratic approximation at the point of levitation plotted in cuts
along axes.

Similarly to magnetic levitation, the normalization to the squared magnitude
of magnetic field (3.4) and its Hessian matrix (3.6) eigenvalues are set as

ρ2Rs
µ2

0Plost
B2 (−), (5.4)

ρ4Rs
µ2

0Plost
λ̃ (−). (5.5)

The normalization to the gradient of the squared magnetic field magnitude
is not introduced, since in magnetic levitation problems, the force at the
trapping point is enforced to be zero. In contrast to magnetic levitation, the
normalization by the radius of the smallest circumscribing sphere a is replaced
by the radius of the largest inscribed sphere ρ centred at the trapping point
since magnetic traps are typically closed structures. Similarly to the case of
levitation, the normalized squared magnitude of the magnetic field (5.4) is
in what follows referenced as the confinement potential and its normalized
eigenvalues of Hessian matrix as convexity.

5.2.1 Common Designs of Magnetic Traps

The known designs of magnetic traps can be divided into two main groups.
The first group, which includes quadrupole trap and hexapole trap as major
representatives, operates with zero bias field and these traps do not actively
avoid particle loss due to spin-flip Majorana transitions [9,19]. The second
group, which includes the baseball trap and Ioffe-Pritchard trap as major
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representatives, in contrast, avoids particle loss by operating with non-zero
bias magnetic field. Performance of both kinds of traps is studied in detail in
subsequent sections and is later compared to fundamental bounds.

Baseball Trap

Baseball trap is a magnetic trap with a nonzero bias magnetic field in the
trapping center. The shape is inspired by the seam on a baseball ball and it
is one of the practically used configurations [19,32,33].

Baseball trap is made of a parametrically shaped current path on the
surface of a sphere which generates magnetic field confining particles in the
center of the spherical surface [19]. The parametrization reads [34]

r(t) =


ra sin(2πt) + rb sin(6πt)

ra cos(2πt)− rb cos(6πt)
√

4rarb cos(4πt)

 , t ∈ [0, 1], (5.6)

where R = ra + rb is a constant distance from origin3. In [19], coefficients
ra and rb are defined through angles with appropriate description as follows

ra = R cos2
(
π

4 − β
)
, (5.7)

rb = R sin2
(
π

4 − β
)
, (5.8)

(5.9)

where
β = π

2 − α− arccos
(cosα√

2

)
, α ∈ [0◦, 35.26◦]. (5.10)

The geometry of baseball magnetic trap for angle α = 17◦ and α = 27◦ are
shown in figure 5.4. Their confinement potential distributions are depicted
in figure 5.5 and are parametrized by a relative position with respect to the
trapping center d/ρ = 0. Only cuts along all axes are shown and feeding with
delta-gap voltage source is assumed.

The performance of baseball trap for angle α in the range form 17◦ to 27◦
is also latter compared with fundamental bound in figure 5.9 showing that
optimal angles α are in the range [17◦, 22◦].

3Parameter rb has different values for several ball seams: 0.28R baseball, 0.30R softball,
0.20R tennis ball and 0.38R basketball [34].
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(a) : α = 17◦.
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(b) : α = 22◦.

Figure 5.4: Examples of baseball magnetic traps.
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Figure 5.5: Potential wells realized by baseball and Ioffe-Pritchard traps which
offer non-zero bias magnetic field in the trapping centre d/ρ = 0. Confinement
potentials are plotted in cuts along all axes.

Ioffe-Pritchard Trap

Ioffe-Pritchard trap is another example of a practically used magnetic trap
with a nonzero bias magnetic field in the trapping center. Its design is
introduced in [9, 18, 19] and consists of two coaxial loops and four parallel
wires passing through them. In this work, this design is slightly modified by
connecting the four wires into a single connected strip, see figure 5.6a and
figure 5.6b, which allows for an excitation by solely three delta-gap sources.
The performance of three Ioffe-Pritchard trap configurations:

31



5. Results .........................................1. Loops with radius 1 cm positioned at height ±1 cm and wires distance4

from z-axis 1 cm, whose proportions are shown in figure 5.6a. Loops are
excited in same direction with current 100 A. The current flowing in
parallel wires equals to 123 A. This configuration achieves the highest
value of normalized hessian matrix eigenvalue among the mentioned
Ioffe-Pritchard traps...2. The geometrical proportions are same as in the previous design, the
only difference being that parallel wires carry current of 70 A. This
configuration achieves the highest value of normalized squared magnitude
of magnetic field among the mentioned Ioffe-Pritchard traps...3. Loops with radius 1 cm positioned at height ±1.25 cm and wires distance
from z-axis equals 1 cm. The proportions are shown in figure 5.6b. Loops
and parallel wires carry current of 100 A. This configuration is proposed
by Bergeman in [19].

x

y
z

(a) : Loops with radius 1.5 cm
positioned at height ±1 cm
and wires distance from z-axis
1 cm.

x

y
z

(b) : Loop with radius 1.5 cm
positioned at height ±1.25 cm
and wires distance from z-axis
1 cm.

Figure 5.6: Two assessed designs of Ioffe-Pritchard traps.

are shown in figures 5.5, 5.9. Figure 5.5 shows confinement potential in cuts
along all axes, while figure 5.9 focuses on the performance comparison of
baseball traps and fundamental bounds.

4Vertical wires intersects with loops, which might cause problem in their physical
realizations, not in the numerical simulation where no conducting contact is made.
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................................ 5.2. Magnetic Confinement

Magnetic Traps with Zero Bias Field

Although chapter 2 introduced the assumption of strong enough magnetic
field in the trapping center to allow for adiabatic approximation and to avoid
spin-flip Majorana transitions [9, 19], the realizations of magnetic traps with
zero bias field can be found in the literature and their performance is therefore
also discussed here. Two representatives are:

.Quadrupole trap proposed in [9, 19] which consists of two coaxial loops
with equivalent radius and identical currents flowing in opposite directions.
Two particular designs are analyzed:.Quadrupole trap introduced by Ríos in [9] which is shown in fig-

ure 3.2a and discussed in section 3.2 and in figure 3.1. The radius
of loops is 1 cm, distance from origin is 1.25 cm and current flowing
in the loops equals 3000A..Quadrupole trap introduced by Bergeman in [19] which has loops
of radius 1 cm, distance from origin 0.62673 cm and operates with
current 100A.

Spatial distribution of the confinement potential generated by these two
quadrupole traps is shown in figure 5.8.. Hexapole trap is also introduced by Bergeman in [19] which consists of
three loops placed on a sphere with radius 1 cm. The central loop is
accompanied by two outer loops positioned

√
2/2 times the sphere radius

above and below the origin (trapping point). The design is shown in
figure 5.7. All three loops carry the same current of 100A. The resulting
space distribution of confinement potential in cuts along all axes can be
found in figure 5.8.

x

y
z

Figure 5.7: Hexapole trap.
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Figure 5.8: Potential wells realized by quadrupole and hexapole magnetic trap.
Both traps produce zero bias magnetic field. Confinement potentials are plotted
in cuts along all axes. Thanks to the rotational symmetry of quadrupole and
hexapole traps around z-axis, the confinement potential plotted in cuts along
x, y-axes is valid for the entire xy-plane.

Figure 5.8 shows good performance of quadrupole traps in localization of
trapped particles thanks to the high convexity of the well (high normalized
eigenvalues of the Hessian matrix). In the case of the hexapole trap, the
eigenvalues of the Hessian matrix are equal to zero and the potential well
is shaped by the spatial derivatives of the fourth order. This kind of trap
does not allow for the description via second-order Taylor polynomial and
is therefore out of the focus of this thesis. Figure 5.8, nevertheless, shows
that the quadrupole traps outperform the hexapole trap in the localization of
trapped particles.

5.2.2 Fundamental Bounds

To assess the performance of the aforementioned magnetic traps, a comparison
with fundamental bounds is made. The multiobjective optimization problem
resulting in the fundamental bound on magnetic confinement (4.49)–(4.54)
was introduced in section 4.3.2 and it is in this section applied to three
different current supporting regions: a spherical shell, a cylindrical shell and
a box with the ratio of its diameter and height equal to one. In contrast to
magnetic levitation, the optimization results in a populated Pareto-optimal
set swept by coefficient ξ. In what follows, only those values of coefficient ξ
that provides the potential wells in all directions are taken into account, see
the detailed discussion in section 4.3.2 on this aspect. Fundamental bounds
of confinement potential and convexity are plotted and compared to those
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realized by magnetic traps with non-zero bias magnetic field in figure 5.9.

Figure 5.9: Pareto-optimal set to convexity and confinement potential in trapping
center in comparison to selected practical realizations.

Figure 5.9 shows that the spherical shell dominates over other current
supporting domains in both criteria. This recognition favors the use of
baseball traps compared to Ioffe-Pritchard traps, which is supported by the
depicted performance of both kinds of traps in the same figure.

An important difference between the potential wells produced by the
optimal current density and those produced by the realized traps can also
be seen from the comparison of figures 5.5, 5.8 and of figure 5.10. The
optimal wells are isotropic near the trapping center, as enforced by the
optimization, with only a slight anisotropy farther from it. This contrasts
with the realized wells where the anisotropy is significant. The anisotropy is
especially pronounced in baseball and Ioffe-Pritchad traps, greatly degrading
their performance as it is the direction of the smallest curvature that dictates
the localization of trapped particles.

Properties of Optimal Current Densities

Figures 5.9, 5.10 show sphere as the best geometry to achieve magnetic
confinement. This section gives a detailed insight into the properties of the
corresponding optimal current densities which are depicted in figure 5.11
for two points at the opposite ends of Pareto-optimal set in figure 5.9. As
mentioned in section 4.3, the optimal current can be decomposed into a
maximum of 15 independent current densities shown in appendix B, which
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Figure 5.10: Potential wells corresponding to maximally convex Pareto-optimal
points in figure 5.9 of sphere, cylinder and cube. Confinement potentials are
plotted in cuts along all axes.

can be divided into three groups: one generating the magnetic field, one
generating its first derivatives and one generating second derivatives of the
magnetic field. The current density basis composing both optimal currents
from figure 5.11 are shown in figure 5.12, giving an intuitive picture of how
the optimal potential well is built. All basis currents generate a vanishing
magnetic field at the trapping point (center of the sphere) except for the
first, which setups the bias field along the z-axis. At the same time, all basis
currents generate a vanishingly small first spatial derivative of the magnetic
field z-component at the trapping center. Therefore, the two affine constraints
of optimization problem (4.49)–(4.54) are satisfied independently by all basis
currents. A linear combination of the basis currents is then used to form
curvature of the potential well and provide trade-off between the bias field
and curvature.

(a) : Point with low normalized con-
vexity and high bias field.

(b) : Point with the best convexity.

Figure 5.11: Current density generating two Pareto-optimal points in figure 5.9.
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(a) : Current density
generating magnetic field
along z-axis.

(b) : Current den-
sity generating the first
derivative along x-axis of
the y-component of mag-
netic field and the first
derivative along y-axis
of the x-component mag-
netic field. These com-
ponents are equal thanks
to (3.8).

(c) : Current density
generating second deriva-
tives along x, y, z-axes
of the z-component of
magnetic field, the sum
of which is zero thanks
to (3.9).

Figure 5.12: Basis current densities composing the optimal current density on a
sphere.

The decomposition of the optimal current density into the basis generated
by the generalized eigenvalue problem (4.55) can be performed on arbitrarily
shaped current supports. Compared to a spherical surface, their linear com-
bination forming an optimal current density (see figure 5.13 for nonspherical
examples) is, however, more complicated and the basis currents can not be
split into independent subspecies generating the magnetic field, its first or
second derivatives.

Figure 5.13: Optimal current densities with maximal convexity for different
shapes of current supporting region.
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5. Results .......................................
5.2.3 Final Comparison

Through all this section, many magnetic traps are mentioned. To compare
them, their performance in convexity and potential energy in the trapping
center are written in table 5.2, which also contains the values of fundamental
bounds for the introduced geometries.

Table 5.2: Performance in convexity and potential energy in the trapping center
for all designs of magnetic traps analyzed in this thesis.

Structure a4Rs
µ2

0Plost
λ̃min (−) ρ2Rs

µ2
0Plost

B2 (−)

Sphere 1.23 · 10−1 1.04 · 10−1

Cylinder 7.35 · 10−2 9.12 · 10−2

Cube 6.04 · 10−2 6.65 · 10−2

Baseball 17◦ 4.02 · 10−3 6.97 · 10−3

Baseball 22◦ 1.82 · 10−2 3.16 · 10−3

1. Ioffe-Pritchard 3.88 · 10−3 8.91 · 10−4

2. Ioffe-Pritchard 5.67 · 10−4 1.40 · 10−3

3. Ioffe-Pritchard 1.88 · 10−3 1.13 · 10−3

Hexapole 0 0
Quadrupole “Bergeman” 4.77 · 10−3 0

Quadrupole “Ríos” 3.02 · 10−3 0

As can be seen in the table, realizations performance in given metrics
is quite far from their fundamental bounds, which implies the necessity of
their optimization and improvement to get closer to these limit values. An
important realization is also that quadrupole traps provide comparatively
good performance in localization of particles, having higher Hessian matrix
eigenvalues than all introduced Ioffe-Pritchard magnetic traps.

Although the baseball traps in figure 5.9 are obviously similar to optimal
current densities in figure 5.11, their performance is almost ten times lower
than the fundamental bound to magnetic confinement for a sphere. Figure 5.5
with space distribution of confinement potential generated by baseball traps
shows that the weakest convexity is along z-axis. This can serve as a guide for
further improvement. Performance of Ioffe-Pritchard traps is lower compared
to baseball traps. It is probably the simplicity of design which however makes
them popular.
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Chapter 6

Conclusion

The aim of the thesis was to get acquainted with the principles of magnetic
levitation, magnetic confinement, and their classical quasi-static description,
propose scalar metrics to judge their performance, describe quasi-static
electromagnetic field via electric field integral equation (EFIE) formulated in
method of moments (MoM) formalism and use Rao-Wilton-Glisson (RWG)
basis functions over a triangular mesh. The last goal was to formulate and
evaluate fundamental bounds on the performance of the proposed scalar
metrics and compare them with the performance of existing devices. The
thesis addressed all these tasks, dividing the work into several individual
steps.

Firstly, important assumptions and restrictions, greatly reducing the math-
ematical complexity but having only insignificant impact on the generality of
the description and its applicability, were introduced. The major one was the
application of the second-order Taylor polynomial expansion to the potential
energy, which later allowed for problem description using quadratic forms.

Secondly, the magnetic levitation and magnetic confinement problems were
analysed by the second-order Taylor polynomial expansion of potential energy
at the desired point for levitation or confinement. The first three terms of
the Taylor polynomial were used to propose a scalar metric to judge the
performance of devices for magnetic levitation and magnetic confinement.
The optimization problems generating fundamental bounds were established.

Thirdly, the computational tools of mathematical physics such as the
formulation of magnetic field and its derivatives through the expansion of
the current density into a set of basis functions with the use of MoM, EFIE
description of electromagnetic field and QCQP were introduced. Furthermore,
apropriate entire-domain basis functions were derived from field integral
description of electromagnetic field. This set of the basis functions is suitable
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6. Conclusion......................................
for representation of stationary current density on metallic objects excited
by sources under quasi-static conditions. The optimization problems to
fundamental bounds were rewritten employing the expansion of current
density and MoM to a QCQP.

Lastly, the tools were applied to assess the performance of common devices
for magnetic levitation and magnetic confinement and to evaluate the fun-
damental bounds. The outcomes and results were compared and discussed
implying interesting questions for further study.

6.1 Further Studies

Since the thesis addressed many attractive questions regarding fundamental
bounds on magnetic levitation and magnetic confinement, it also induced
several important questions and topics for further research which are briefly
commented in this section.

Chapter 5 in tables 5.1, 5.2 showed that the commonly used levitators
and magnetic traps perform far from the corresponding fundamental bounds.
This observation calls for an improvement of these practical realizations being
inspired by the shape of the optimal current density. A future goal is also
to employ topology optimization and produce magnetic traps and levitators
with significantly higher performance than those known in the literature.

The optimization problem for fundamental bounds on magnetic levitation
and magnetic confinement introduced in sections 4.3.1, 4.3.2 uses an assump-
tion of diagonal Hessian matrix and equal diagonal terms which results in
isotropic potential wells. An interesting question is what would be the result if
the Hessian matrix did not have to satisfy these assumptions and directly the
minimal eigenvalue was maximized as described in sections 3.1, 3.2. Would
the fundamental bounds generated by this general optimization be signifi-
cantly higher than those described in the thesis or would they be close to
each other? The further goal is to implement such generalized optimization
for fundamental bounds and compare its results with those from the thesis.

More generally, what would be the result, if the local criteria for the
potential well given by the second-order Taylor polynomial expansion in the
center of the potential well were not used and the trap depth was measured
by the difference between the minimal potential energy in the trap and its
lowest threshold1 (minimal potential energy on the boundary of the potential
well)? Algorithm for searching the global threshold will be rather complex

1Commonly used measure of trap’s depth is temperature of particles which remain
confined by the trap, T = Φ∆/kB, where Φ∆ is potential energy difference between the
lowest threshold and the trap minimum, kB is the Boltzmann constant [19].
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as it is generally difficult to find the threshold in three dimensions. This
metric would however be useful for the global comparison of magnetic traps
and devices for levitation with the advantage that it could be applied to all
devices2.

Another interesting question is the difference between the fundamental
bounds on magnetic levitation and magnetic confinement for the current
supporting region in a form of surface and volume. Can the performance of
volumetric supporting regions significantly improve the performance? For
example, what is the difference between the fundamental bounds for con-
finement with surface current distributed on a spherical shell or volumetric
current distributed in a spherical layer?

The relation to vector spherical harmonics shown in appendix B also offers
an attractive topic and implies some questions, mainly if it is possible to find
the fundamental bound on confinement for the sphere analytically? How do
the higher-order spherical vector harmonics on a spherical shell influence the
potential near the trapping center?

Magnetic traps with multiple trapping centers are in practice used to confine
different atomic species [35]. The description given in sections 3.2, 4.3.2 can be
easily expanded for multiple trapping centers and similarly can be expanded
the current density subspace for their optimization shown in appendix B. The
expansion can serve to find fundamental bounds for confining particles in
multiple trapping centers, which might be the focus of further studies with
practical impact.

2This approach would allow to compare also hexapole trap with other realizations or with
fundamental bounds which was not possible within the approximation via the second-order
Taylor polynomial
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Appendix A

Evaluation of Magnetic Field Operators

This appendix introduces Rao-Wilton-Glisson (RWG) function defined on a
triangular mesh1, which is used as primary basis for surface current density and
magnetic field operators introduced in section 4.1 and for impedance matrix
introduced in section 4.2. Within this thesis, RWG functions are used as basis
and testing functions in MoM solution to EFIE, see [23, 24], [36, section 8.2]
for more details.

A.1 Rao-Wilton-Glisson (RWG) function

RWG function is defined for a triangular mesh as

ψn(r) =



Ln

2A+
n
ρ+
n (r), r ∈ T+

n

Ln

2A−n
ρ−n (r), r ∈ T−n

0, otherwise,

(A.1)

where T+
n and T−n is a pair of adjacent triangles sharing a common edge en

with length Ln, see figure A.1. Vector ρ+
n (r) is oriented towards the vertex

V+
n , i.e.,

ρ+
n (r) = V+

n − r, r ∈ T+
n , (A.2)

while, vector ρ−n (r) points away from the vertex V−n , i.e.,

ρ−n (r) = V−n − r, r ∈ T−n . (A.3)
1RWG functions are the most commonly used basis functions in MoM solution to surface

EFIE since its introduction in 1982 [36, section 8.2].
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Figure A.1: Illustration of RWG function.

A.2 Magnetic Field Operators in a Set of Basis
Functions

This section introduces the numerical implementation of the magnetic field
and its first and second spatial derivatives in a set of basis functions {ψn}.
The implementation involves a numerical quadrature [37], the prototype of
which reads∫

T+
n ∪T−

n

ψn(r′)× R(r, r′)
|R(r, r′)|3 dS′ ≈

∑
m

wmψn(rm)× Rm(r)
|Rm(r)|3 (A.4)

where the separation vector

Rm(r) = r − rm, (A.5)

is defined and wm are weights of quadrature points (QPs) rm. For the
particular set of QPs and weights for triangular domains see [37].

Suppose substitution
gm(r) = Rm(r)

|Rm(r)|3 (A.6)

per each QP. Then, the Biot-Savart formula (4.1), with current density
expanded in a set of basis functions, reads

B(r) ≈ µ0
4π

N∑
n=1

In
∑
m

wmψn(rm)× gm(r). (A.7)

The same procedure is applied to derivatives (4.8), (4.9), which are then
evaluated as

∂B

∂i
= µ0

4π

N∑
n=1

In
∑
m

wmψn(rm)× ∂gm(r)
∂i

, (A.8)

∂2B

∂j∂i
= µ0

4π

N∑
n=1

In
∑
m

wmψn(rm)× ∂2gm(r)
∂j∂i

, (A.9)
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where the first derivative of the substituted function reads component-wise

∂gm,i(r)
∂j

=



1
|Rm(r)|3 − 3(ri − rm,i)2

|Rm(r)|5 , i = j,

−3(ri − rm,i)(rj − rm,j)
|Rm(r)|5 , i 6= j,

(A.10)

and second derivatives with interchangeability of derivatives taken into account
read component-wise

∂2gm,i(r)
∂k∂j

=



15(ri − rm,i)3

|Rm(r)|7 − 9(ri − rm,i)3

|Rm(r)|5 , i = j = k,

15(rj − rm,j)2(ri − rm,i)
|Rm(r)|7 − 3(ri − rm,i)3

|Rm(r)|5 , i 6= j = k,

15(ri − rm,i)2(rk − rm,k)
|Rm(r)|7 − 3(rk − rm,k)3

|Rm(r)|5 , i = j 6= k,

15(ri − rm,i)(rj − rm,j)(rk − rm,k)
|Rm(r)|7 , i 6= j 6= k.

(A.11)
Finally, matrices for the magnetic field and its first, second spatial deriva-
tives (4.4) – (4.9) can be evaluated element-wise as

Bn = µ0
4π
∑
m

wmψn(rm)× gm(r), (A.12)

Bn,i = µ0
4π
∑
m

wmψn(rm)× ∂gm(r)
∂i

, (A.13)

Bn,ij = µ0
4π
∑
m

wmψn(rm)× ∂2gm(r)
∂j∂i

. (A.14)
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Appendix B

Minimal Subset of Currents on a Spherical
Shell

In this appendix, the entire domain basis functions significant to magnetic
potential energy operators in the centre of a sphere, eigenvectors corresponding
to non-zero eigenvalues in (4.55), are shown and analyzed. The geometry of a
sphere and the investigated point in its centre simplifies the presentation and
offers mutually orthogonal subspaces to the magnetic field and its derivatives.
The decomposition can nevertheless be done for any shape of current support
and any point in space. In a general scenario, the aforementioned orthogonality
is however lost.

If eigenvalue problem (4.55) is applied directly on operators projected
to RWG basis, the dimension of resulting sub-basis is 23, thanks to con-
straints (3.7)–(3.9). If the eigenvalue problem (4.55) is applied after conduct-
ing “Loop-Star” decomposition introduced in section 4.2.1 and all considered
matrices are mapped onto the basis given by solenoidal current densities
in (4.31), the resulting sub-basis dimension is only 15. This later linearly
independent set is the topic of this chapter.

For a sphere and investigated point in its centre, the sub-basis of 15 vectors
closely reassemble vector spherical harmonics [38, appendix C.4], which are
defined as

A1σml(r0) = 1√
l(l + 1)

∇× [rYσml(r0)] = 1√
l(l + 1)

∇Yσml(r0)× r, (B.1)

A2σml(r0) = 1√
l(l + 1)

r∇Yσml(r0), (B.2)

A3σml(r0) = r0Yσml(r0), (B.3)
where r is radial vector, r0 is unit vector along r and bottom index σ ∈ {e, o}
determines the spherical harmonic Yσml to be even1 (σ = e) or odd (σ =

1If order m = 0, then spherical harmonic is always even.
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o). The indices m ∈ {0, 1, . . . , l} and l ∈ {0, 1, . . .} denote the degree and
order of spherical harmonics, respectively. The vector spherical harmonics
A1σml, A2σml are perpendicular to radial vector, while the vector spherical
harmonic A3σml is parallel to radial vector. Since the current density flows on
the surface of a sphere and since only currents with stored magnetic energy
dominating over stored electric energy are used, vector spherical harmonics
A1σml (TE waves) will solely be needed.

The sub-basis can be divided into three main groups:

. Current densities generating only magnetic field in the centre of the
sphere, but exhibiting vanishing first and second spatial derivatives.
Since the magnetic field operator (4.4) has three linearly independent
rows, these current densities are also three. These current densities are
shown in figure B.1.Via this set, an arbitrary magnetic field in the centre
of the sphere can be generated. The three depicted current densities
reassemble vector spherical harmonics A1σm1, m ∈ {0, 1}.

Figure B.1: Current densities generating magnetic field in the center of the
sphere. The only differenc between the plotted currentsities, vector spherical
harmonic is their orientation in space, they are arbitrarily rotated in space.

. Current densities forming the first spatial derivative of the magnetic field
in the centre of the sphere. The operators describing the first derivatives
of magnetic field (4.8) are composed of nine different rows, however, they
are linearly dependent and the first derivatives of the magnetic field
in the centre of the sphere can fully be controlled by only five current
densities, which corresponds to certain combinations of vector spherical
harmonics A1σm2, m ∈ {0, 1, 2}. The current densities can be found in
figure B.2.. Current densities forming second spatial derivatives of the magnetic field
in the centre of the sphere. There are 18 rows forming the magnetic field
second derivative operator (4.9) from which only seven are independent.
These resemble vector spherical harmonics A1σm3, m ∈ {0, 1, 2, 3} and
are depicted in figure B.3.

In the case of a sphere and inspected point in its centre the combination

48



...................... B. Minimal Subset of Currents on a Spherical Shell

Figure B.2: Current densities generating first spatial derivatives of magnetic
field in the center of the sphere. Each row of the figure contains similar vector
spherical harmonics differently rotated in space.

of vector spherical harmonics from figures B.1–B.3 produces currents with
optimal performance. This property results from the spherical symmetry of
the configuration. For different geometries of the current density support or
position of the inspected point, higher-order vector spherical harmonics have
to be used to obtain optimal performance. The significance of higher-order
waves nevertheless decreases fast with increasing degree l.
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Figure B.3: Current densities generating second spatial derivatives of magnetic
field in the center of the sphere. Each row of the figure contains similar vector
spherical harmonics differently rotated in space.
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