
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

GraphQL layer for RESTful API in practice

Arina Iamshchikova

Supervisor: Ing. Martin Komárek
Field of study: Software engineering and technologies
May 2021

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

487215Osobní číslo:ArinaJméno:IamshchikovaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

GraphQL vrstva pro RESTful API v praxi

Název bakalářské práce anglicky:

GraphQL Layer for RESTful API in practice

Pokyny pro vypracování:
For the web application developers, who intend to aggregate multiple RESTful APIs
into a single API Gateway, create an application that will automatically generate a
single API Gateway based on GraphQL.
1) Create a command line interface that takes a swagger specification files from
the existing service as arguments.
2) Handle a security http basic auth issues, if the service related to given
swagger file is secured.
3) Parse the swagger specification file into the GraphQL schema,
4) to parse the swagger specification file into Java POJO, resolvers and
mutations.
5) Create a single endpoint that will handle GET,POST,PUT and DELETE requests.
Generate a fully functional project representing the GraphQL API gateway.

Seznam doporučené literatury:
1. Marc-Andre Giroux. "Production Ready GraphQL", 2020
2. Eve Porcello, Alex Banks. "Learning GraphQL: Declarative Data Fetching for Modern
Web Apps", 2018
3. Roy Thomas Fielding. "Architectural Styles and
the Design of Network-based Software Architectures", 2000
4. Eric Evans. "Domain-Driven Design: Tackling Complexity in the Heart of Software",
2003

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Martin Komárek, katedra informační bezpečnosti FIT

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 21.05.2021Datum zadání bakalářské práce: 12.02.2021

Platnost zadání bakalářské práce: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Martin Komárek

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Studentka bere na vědomí, že je povinna vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to express my appreciation for
Ondřej Michalčík for providing technical
consultations through this thesis. I would
like to extend my thanks to my boyfriend
that accompanied and supported me dur-
ing my study.

Declaration
I hereby declare I have written this work
independently and quoted all the sources
of information used in accordance with
methodological instructions on ethical
principles for writing an academic thesis.

In Prague, 21. May 2021

v

Abstract
GraphQL establishes a new architecture
style for web applications. Using it, this
work introduces a new way of creating
an API client for web applications. This
work aims to design and implement the ap-
plication that will simplify the transition
between using the multiple life services
and creating a single unified service for re-
trieving data. The resulting application is
a CLI utility that takes URLs referencing
Swagger specification files as input and
producing a GraphQL application based
on Spring Boot that is aggregating APIs
described by those specifications. In case
of APIs that are protected by HTTP Ba-
sic Authentication, it is possible to spec-
ify credentials for each API separately so
that the resulting application would use
the credentials for communication with
APIs.

Keywords: web API, GraphQL,
Swagger, RESTful architecture, HTTP
Basic Auth

Supervisor: Ing. Martin Komárek

Abstrakt
GraphQL přináší nový architektonický
styl pro webové aplikace.Pomocí něj, tato
práce představuje nový způsob vytváření
API klienta pro webové aplikace. Úče-
lem této práci navrhnout a implementovat
aplikaci, která zjednoduší přechod mezi
používáním četných life-služeb a vytvo-
řením jediné sjednocené služby pro načí-
tání dat. Výslednou aplikací je CLI uti-
lita, která přijímá URL adresy odkazující
na soubory specifikací Swagger a produ-
kuje GraphQL aplikaci za použitím Spring
Boot frameworku, která agreguje API po-
psaná těmito specifikacemi. V případě, že
API jsou chráněna pomocí HTTP Basic
Authentication, je možné zadat pověření
pro každé API samostatně, aby výsledná
aplikace používala toto pověření pro ko-
munikaci s API.

Klíčová slova: webové API, GraphQL,
Swagger, architektura REST, HTTP
Basic Auth

Překlad názvu: GraphQL vrstva pro
RESTful API v praxi

vi

Contents
1 Introduction 1
1.1 Goals . 1
1.2 Possible applications 1
2 Analysis 3
2.1 Important definitions 3
2.1.1 GraphQL 3
2.1.2 RESTful architecture 5

2.2 Technologies 5
3 Design 7
3.1 Architecture 7
3.1.1 Monolithic architecture 7

3.2 The project structure 8
3.2.1 Package diagram 8

3.3 The processes of the project 9
3.4 The structure of the generated
project . 11
3.4.1 Package diagram 11
3.4.2 Example of project invocation 11

4 Implementation difficulties 13
4.1 Parsing the Swagger 13
4.1.1 Parsing parameters 13
4.1.2 Swagger version 13

4.2 Generating a BaseClient.java . . . 13
4.2.1 Creating a URL with the
parameters 14

4.3 Generating the Maven project . . 14
4.3.1 Default generated classes 14
4.3.2 Java version 14

5 Testing 15
5.1 Testing of the implemented
solution . 15

5.2 Testing of the generated project 15
5.2.1 Create a single object via API
without required authentication. . 16

5.2.2 Get a single object via API
without required authentication. . 16

5.2.3 Create a single object secured
via an API secured with HTTP
Basic Authorization. 16

5.2.4 Get a single object secured via
an API secured with HTTP Basic
Authorization. 17

5.2.5 Create data via two APIs
simultaneously where one API is
secured and another is not. 17

5.2.6 Get data using the objects
created by two APIs where one API
is secured and another is not. . . . 18

5.3 Testing conclusion 18
6 Conclusion 19
6.1 Summary . 19
6.1.1 Command-line interface 19
6.1.2 Generating the Spring Boot
project with Maven 19

6.1.3 Creating a GraphQL schema 19
6.1.4 HTTP Basic Authorization . . 19
6.1.5 Generating the java source
code . 19

6.2 Further extensibility 20
6.2.1 Error handling 20
6.2.2 Parse different Swagger
versions . 20

6.2.3 Generate unit tests 20
6.2.4 Injection of a logger into the
generated classes 20

6.2.5 OAuth authorization support 20
Bibliography 21
A Attachments 22

vii

Figures
3.1 Package diagram - first iteration
concept . 8

3.2 Package diagram - final structure 9
3.3 Sequence diagram of the
application . 10

3.4 Package diagram for the generated
project . 11

viii

Chapter 1
Introduction

This chapter defines the goals of the thesis as well as possible applications for
the end-user.

1.1 Goals

The main goal of this work is to introduce a new, modern way of creating an
API for web applications using GraphQL[11] and design an application for
generating a GraphQL API gateway from life services.

For the coding part of this project will be used Java language v11. The goals
of this part of the work can be divided into the following smaller subtasks:. The application will have the command-line interface taken one or mul-

tiple Swagger[9] configuration files as a parameter. The path to the
Swagger configuration file can be lead to a Swagger JSON[6] file on the
PC or the Internet.. The application will also handle the HTTP Basic Auth[4] security if the
Swagger configuration file is secured.. The received Swagger configuration file will then be parsed to create a
GraphQL schema, mutations, and resolvers.. Created components will then be placed into the newly generated Spring
Boot[8] project using Maven[1].

The main output of the application will be a single HTTP endpoint that
manages all the data and methods from every swagger file it receives as an
input. The client request will then propagate through this API gateway to
the separate microservices.

1.2 Possible applications

This project is a valuable tool for developers of web applications who intend
to create an additional layer above their existing infrastructure to unify their
APIs. By creating an API gateway, users will be able to access any interface

1

1. Introduction
of the system using a single endpoint, so not only will it simplify the transition
to the GraphQL from the RESTful architectures[14], but it will also simplify
the access to the APIs that are composing the system.

The generated project will simplify the data integration for the front-end
developer as the developer doesn’t need to call various endpoints to collect
the required data. Instead, the developer can communicate using a single
endpoint for fetching multiple data.

The generated application draws specific data like the URL of the web
API or credentials for authorization from the configuration file. So change in
resource location or credentials of one of the covered APIs can be met with
the corresponding change in the configuration file.

2

Chapter 2
Analysis

This chapter introduces definitions that are essential for understanding the
goals of the thesis and describes technologies used for implementing the
project.

2.1 Important definitions

Definitions in this section are essential for understanding the discussion of
the concept and implementation part of the thesis.

2.1.1 GraphQL

This section gives a brief introduction to the GraphQL.

Description

GraphQL is a query language designed to build client applications by pro-
viding an intuitive and flexible syntax and system for describing their data
requirements and interactions.

Design principles

GraphQL was built based on the design principles that make it a powerful
and productive environment for building client applications:.Hierarchical

Most product development today involves the creation and manipulation
of view hierarchies. To achieve congruence with the structure of these
applications, a GraphQL query itself is structured hierarchically. The
query is shaped just like the data it returns..Product-centric
GraphQL is unapologetically driven by the requirements of views and
the front-end engineers that write them. GraphQL starts with their
way of thinking and requirements and builds the language and runtime
necessary to enable that.[11]

3

2. Analysis
. Strong-typing

Every GraphQL server defines an application-specific type system. Queries
are executed within the context of that type system. Given a query,
tools can ensure that the query is both syntactically correct and valid
within the GraphQL type system before execution, i.e. at development
time, and the server can make certain guarantees about the shape and
nature of the response.[11].Client-specified queries
Through its type system, a GraphQL server publishes the capabilities that
its clients are allowed to consume. It is the client that is responsible for
specifying exactly how it will consume those published capabilities. These
queries are specified at field-level granularity. In the majority of client-
server applications written without GraphQL, the server determines the
data returned in its various scripted endpoints. A GraphQL query, on
the other hand, returns exactly what a client asks for and no more.[11]. Introspective
A GraphQL server’s type system must be queryable by the GraphQL
language itself, as will be described in this specification.

GraphQL schema

A GraphQL service’s collective type system capabilities are referred to as that
service’s "schema".[11] The GraphQL schema tells which queries, mutations,
types, and directives exist on the server. To say it simple, GraphQL schema
is a description of the server’s data graph.

The one important rule of the GraphQL schema is that all types within a
GraphQL schema must have unique names.

A common way of representing a schema is through the GraphQL Schema
Definition Language (SDL). The great thing about the SDL is that it is
language agnostic. No matter what language you’re running a GraphQL API
with, the SDL describes the final schema.[12]

GraphQL operations

GraphQL supports all the HTTP operations such as GET, POST, PUT and
DELETE.

The GET operation in a GraphQL schema is wrapped into a Query data
type. The query root operation type must be provided and must be an Object
type.

All operations that mutate the application state or data are wrapped into
one data type: the Mutation. The mutation root operation type is optional.
If this type is not provided, it means the service does not support the data
changes. If it is provided, it must be an Object type.

4

.....................................2.2. Technologies
2.1.2 RESTful architecture

This section gives a brief introduction to the RESTful architecture style and
describes concerns it introduces.

Description

REST is a resource-oriented architecture in which users would progress
through web resources by performing operations such as GET, PUT, POST,
and DELETE. The network of resources can be thought of as a virtual state
machine, and the actions (GET, PUT, POST, DELETE) are state changes
within the machine. In a RESTful architecture, routes represent information.
For example, requesting information from each of these routes will yield a
specific response:. /api/food/hot-dog. /api/sport/skiing. /api/city/Lisbon

Concerns it introduces

There are several concerns that make REST API uncomfortable and not a
good choice for every solution:.Overfetching

With REST, we’re getting a lot of data back that we don’t need. The
client requires three data points, but we’re getting back an object with
16 keys and sending information over the network that is useless..Underfetching
If we wanted to list the characters that are part of this movie, we’d need
to make a lot more requests. In this case, we’d need to hit 16 more
routes and make 16 more roundtrips to the client. Each HTTP request
uses client resources and overfetches data. The result is a slower user
experience, and users with slower network speeds or slower devices might
not be able to view the content at all..Managing REST Endpoint
Another common complaint about REST APIs is the lack of flexibility. As
the needs on the client change, you usually have to create new endpoints
and those endpoints can begin to multiply quickly.

2.2 Technologies

The solution is written using the Java programming language v11, Maven build
tool, and Spring Boot Framework. Other technologies will be represented as
Maven dependencies:

5

/api/food/hot-dog
/api/sport/skiing
/api/city/Lisbon

2. Analysis
.PicoCLI[7]

A framework for exposing the CLI interface.. Swagger Parser[10]
For parsing the Swagger specification file and handling the access to the
Swagger specification file secured using the HTTP Basic Auth..GraphQL Java[3]
For building a GraphQL schema.. JavaPoet API[5]
Simple API for generating Java classes..Apache Maven[1]
Maven is a build automation tool used primarily for Java projects..Apache Maven Invoker API[2]
For generating a new Java project with Maven.. Java Spring Boot Framework
The output project will be running using the Spring Boot Framework.

6

Chapter 3
Design

This chapter is focused on the design of the final solution. This chapter
describes the chosen architecture, project structure using package diagrams,
and internal processes using the sequence diagram.

3.1 Architecture

This section is describing the architecture style that suggestively is the most
suitable for the final implementation part of the thesis.

3.1.1 Monolithic architecture

Description

The software architecture that was built using monolithic architecture is
designed to work as a single, self-contained unit. The components within a
monolithic architecture are interconnected and interdependent, resulting in
tightly coupled code.[13]

Advantages

There are several benefits of the monolithic architecture style. The most
noticeable is its simplicity in every approach. A solution that is written as a
monolith is simple to develop and test for small groups of developers due to
its compactness. It is also simple to scale horizontally by running multiple
copies behind a load balancer.

Disadvantages

Monolithic architecture has its downsides. The most significant one is that
this system is hardly maintainable by multiple engineers simultaneously as
the code is coupled too tight. Another significant disadvantage is that the
applications are consuming too many resources when scaled horizontally.

7

3. Design..
Application to the project

The solution will be written as a monolith project that is not divided between
different services(projects). The division between the specific tasks will be
achieved using the package hierarchy and Object-Oriented Programming
approach[15].

3.2 The project structure

This section will describe the structure of the implemented project.

3.2.1 Package diagram

The subsection describes the project structure using package diagrams and
how it evolved during the implementation process.

First concept

The first concept of the package hierarchy with related java classes that were
created before the implementation process has started looks like the Fig 3.1.

Figure 3.1: Package diagram - first iteration concept

Final structure

The final concept of the package hierarchy with related java classes that were
created after the implementation process has begun looks like the Fig 3.2.
This concept is an extension of the first concept.
The main differences are:

8

.............................. 3.3. The processes of the project

. SwaggerReader class was renamed to GraphQLSchemaGenerator due to
the intuitivity of the project structure.

. The package project_generator was extended for model and service
packages with related java classes.

Figure 3.2: Package diagram - final structure

3.3 The processes of the project

This section describes processes that are running inside the implemented
application during the project generation process.

Sequence diagram

The internal processes of the implemented application described using the
sequence diagram look like the Fig 3.3.

9

3. Design..

Figure 3.3: Sequence diagram of the application

10

......................... 3.4. The structure of the generated project

3.4 The structure of the generated project

This section describes the structure of the project generated as an output of
the implemented application.

3.4.1 Package diagram

The structure of the generated project will look like the Fig 3.4.

Figure 3.4: Package diagram for the generated project

3.4.2 Example of project invocation

The following command is an example of how to invoke the project generation:

java -jar "./target/swagger-to-graphql-0.0.1-SNAPSHOT.jar"
parse
-i "https://petstore.swagger.io/v2/swagger.json"
-i "https://swagger-example-app.azurewebsites.net/swagger/v1/swagger.json;A:B"
-o "C:/"
-m "C:/Program Files/maven"
-n "NewProject"

11

3. Design..
Where:. -i receives the path to a Swagger specification file. Note, that if the file

is secured using the HTTP Basic Auth, the path and semicolons should
be followed by the credentials in a form of "A:B".. -o accepts the path that will be used for generating a new project.. -m specifies the path to the local Maven executable file.. -n specifies the project name.

12

Chapter 4
Implementation difficulties

This chapter discusses the difficulties that were met during the implementation
process and the solution that was offered.

4.1 Parsing the Swagger

This section defines and provides a solution for difficulties that were met
during the parsing process of Swagger specification files.

4.1.1 Parsing parameters

One of the difficulties that were met during the Swagger parsing process was
the parsing of the Swagger parameters.

Swagger defines many different parameters, such as PathParameters for the
argument that will be passed into the URL of the endpoint or BodyParameters
representing either the object that is returned or operated in the given
endpoint.

The problem was to identify each type of parameter and parse them
separately. Each parameter type has its distinctive properties that should be
handled in order to create a proper Java object.

The offered solution was to identify the parameter type before processing
it using the if statement that defines the behavior for every type.

4.1.2 Swagger version

During the implementation process was established that every Swagger version
requires a different parser. After inspecting the Swagger specification files of
some specific companies, was chosen 2.0 Swagger version to be parsed. The
choice is supported by the assumption that most of the Swagger specifications
are written using the 2.0 version based on this analysis.

4.2 Generating a BaseClient.java

The section describes problems and implemented solutions for the Base-
Client.java abstract class generating process.

13

4. Implementation difficulties
4.2.1 Creating a URL with the parameters

Swagger offers two ways of passing the parameter into the endpoint path(URL):
either by using the PathParameter or QueryParameter.

The methods of creating the path for the web client to be able to request the
data are distinct, which leads to a necessity of different parameter handling.

The PathParameter, as well as QueryParameter is represented as a param-
eter inside the requested path. Distinctive is only the way of their representa-
tion. For example in the path "petstore/pets/petId/status?="available" the
petId parameter is a PathParameter and "available" is a QueryParameter of
type String.

The solution for the correct parameter handling was to identify the param-
eter type using the if statement and place the corresponding path inside the
request method.

4.3 Generating the Maven project

The section describes difficulties that were met during the project generating
process.

4.3.1 Default generated classes

During generating the Maven project using the Apache Maven Invoker API
was established that for the Spring Boot project, the interface generates the
App.java class with the method that writes "Hello World" in the output.

To remove the unnecessary class was created a method that after the
project is generated finds the App.java file and deletes it from the project
folder.

4.3.2 Java version

The java version that is specified for the newly generated project is 11. If the
version is lower, the project won’t compile correctly.

14

Chapter 5
Testing

This section will focus on the testing part of the project implementation. The
testing process will be performed for both the developing solution and the
project that is generated as an output.

5.1 Testing of the implemented solution

For the testing of the solution are used Unit Tests that are validating the
generation of the required files rather than the correctness of the content
inside them. Files are generated into the temp folders of the OS, which
are cleaned after the restart of the operational system. The paths to the
Maven executable file and to the folder where the project will be generated
are defined inside the application.properties in the test resource folder.

5.2 Testing of the generated project

To test the generated GraphQL server several, tests were created using
Postman. By default, the generated project is running on the localhost
on port 8080. Based on this information, the URL for test invocation is
"localhost:8080/graphql".
All test cases are collected in the following list:. Create a single object via API without required authentication..Get a single object via API without required authentication.. Create a single object secured via an API secured with HTTP Basic

Authorization.. Get a single object secured via an API secured with HTTP Basic Autho-
rization.. Create data via two APIs simultaneously where one API is secured and
another is not.. Get data using the objects created by two APIs where one API is secured
and another is not.

15

5. Testing
All the tested features with the test example are represented in the following

subsections.

5.2.1 Create a single object via API without required
authentication.

QUERY:

mutation Mutation($pet: PetInput!) {
addPet(body: $pet)

}

GRAPHQL VARIABLES:

{
"pet": {

"id": "123",
"name": "The big black dog",
"status": "available",
"photoUrls": ["firstUrl", "secondUrl"],
"category": {

"id" : 1,
"name" : "Large"

}
}

}

5.2.2 Get a single object via API without required
authentication.

QUERY:

{
getPetById(petId: 123) {

name
}

}

5.2.3 Create a single object secured via an API secured with
HTTP Basic Authorization.

QUERY:

mutation Mutation($client: ClientDTOInput!) {
client_createClient(dto: $client){

clientname,
id

}
}

16

............................ 5.2. Testing of the generated project

GRAPHQL VARIABLES:

{
"client": {

"email": "john.doe@mail.com",
"firstName": "John",
"lastName": "Doe",
"id": "a",
"password": "1337p455w012D",
"phone": "555-555-555",
"clientStatus": 1,
"clientname": "jodo"

}
}

5.2.4 Get a single object secured via an API secured with
HTTP Basic Authorization.

QUERY:

{
client_readClient(ClientId: "{{client_id}}") {

firstName
}

}

5.2.5 Create data via two APIs simultaneously where one
API is secured and another is not.

QUERY:

mutation Mutation($client: ClientDTOInput!, $pet: PetInput!) {
client_createClient(dto: $client){

clientname,
id

}
addPet(body: $pet)

}

GRAPHQL VARIABLES:

{
"pet": {

"id": "124",
"name": "Pikachu",
"status": "pending",
"photoUrls": ["firstUrl"],
"category": {

"id" : 125,
"name" : "Small"

}
},
"client": {

"email": "jonny.heresn@mail.com",
"firstName": "Jonny",
"lastName": "Heres",

17

5. Testing
"id": "b",
"password": "j02nyH4r4\$",
"phone": "123-124-125",
"clientStatus": 1,
"clientname": "jo2ny"

}
}

5.2.6 Get data using the objects created by two APIs where
one API is secured and another is not.

QUERY:

{
client_readClient(ClientId: "{{client_id}}") {

firstName
}
getPetById(petId: 124) {

name
}

}

5.3 Testing conclusion

All test cases that were running against the newly generated project were using
the example command from the subsection "Example of project invocation"
of the "Design" chapter.

The tests against both projects were successfully executed and returned
the expected results.

18

Chapter 6
Conclusion

This chapter is drawing the results of this project and concludes this work.
It also suggests topics for further extension of this project.

6.1 Summary

All goals that were identified at the beginning of the work were reached at
least on a fundamental level. A detailed description of how every goal was
reached is discussed below.

6.1.1 Command-line interface

The application is accessible via the Command-line Interface. When the
user wants to generate a project, he can do so by executing the .jar file via
terminal and passing all the required arguments.

6.1.2 Generating the Spring Boot project with Maven

A new project is generated into the specified path, and its POM file is modified
after the generation to contain all required dependencies.

6.1.3 Creating a GraphQL schema

All swagger schemes are read from specific files and then parsed into a single
GraphQL schema file, which contains all methods and objects following the
GraphQL syntax.

6.1.4 HTTP Basic Authorization

Authorization is handled via injection of the encoded credentials from the
configuration file into the request header.

6.1.5 Generating the java source code

All the classes (such as DTOs, web clients, and services) are generated into
the related packages inside of the newly generated project.

19

6. Conclusion......................................
6.2 Further extensibility

Even though the output for this thesis is a project that generates the fully
working GraphQL based server, there are some parts of it that can be extended
and improved. This section is discussing the ways it can be achieved.

6.2.1 Error handling

Usually, in the Swagger specification, there are several return types that are
defined by the status code they are assigned to. For the purpose of this thesis
was decided to handle only the return types for the status code 200 and
201. In the future, the project can be extended so that it handles all the
status codes and its return types that are defined inside the specific Swagger
specification file.

6.2.2 Parse different Swagger versions

The project is currently focusing on parsing the Swagger 2.0 version, and
it doesn’t support the latest 3.0 Swagger version. As one of the significant
extensibility for the project could be the support of the latest Swagger version.

6.2.3 Generate unit tests

Currently, there are no unit or integration tests generated inside the output
project. It would be a benefit if unit tests were generated with the source
code. This way, a user doesn’t need to create tests by himself before starting
the server.

6.2.4 Injection of a logger into the generated classes

The other minor recommendation for further extensibility is the injection of
a logger for the source code to log events inside the generated project.

6.2.5 OAuth authorization support

OAuth is an open-source authorization method that is gaining popularity,
and support of this authorization method would certainly be critical for a fair
share of the web developers considering the usage of the project of this work.

20

Bibliography

[1] Apache Maven. https://maven.apache.org/. [Online].

[2] Apache Maven Invoker. https://maven.apache.org/shared/maven-
invoker/. [Online].

[3] GraphQL Java. https://www.graphql-java.com/documentation/v16/.
[Online].

[4] HTTP Basic Auth. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Authorization. [Online].

[5] JavaPoet. https://github.com/square/javapoet. [Online].

[6] JSON. https://www.json.org/json-en.html. [Online].

[7] PicoCLI. https://picocli.info/. [Online].

[8] Spring Boot Framework. https://spring.io/projects/spring-boot. [On-
line].

[9] Swagger. https://swagger.io/. [Online].

[10] Swagger Parser. https://github.com/swagger-api/swagger-parser. [On-
line].

[11] Inc. Facebook. GraphQL. https://spec.graphql.org/June2018/, June
2018 Edition. [Online].

[12] Marc-Andre Giroux. Production Ready GraphQL, chapter 1.2. 2020.

[13] Joseph Ingeno. Software architect’s handbook: become a successful soft-
ware architect by implementing effective architecture concepts. Packt
Publishing, 2018.

[14] Mark Masse. REST API Design Rulebook: Designing Consistent Restful
Web Service Interfaces. O’Reilly Media, 31 Oct. 2011.

[15] Lewis J.Pinson Richard Wiener. Fundamentals of OOP and Data Struc-
tures in Java. Cambridge University Press, 10 Aug. 2000.

21

A. Attachments.....................................

Appendix A
Attachments

GraphQLProjectGenerator.zip

graphql-project-generator..................... source code
README.md.............. instructions on project execution

22

	Introduction
	Goals
	Possible applications

	Analysis
	Important definitions
	GraphQL
	RESTful architecture

	Technologies

	Design
	Architecture
	Monolithic architecture

	The project structure
	Package diagram

	The processes of the project
	The structure of the generated project
	Package diagram
	Example of project invocation

	Implementation difficulties
	Parsing the Swagger
	Parsing parameters
	Swagger version

	Generating a BaseClient.java
	Creating a URL with the parameters

	Generating the Maven project
	Default generated classes
	Java version

	Testing
	Testing of the implemented solution
	Testing of the generated project
	Create a single object via API without required authentication.
	Get a single object via API without required authentication.
	Create a single object secured via an API secured with HTTP Basic Authorization.
	Get a single object secured via an API secured with HTTP Basic Authorization.
	Create data via two APIs simultaneously where one API is secured and another is not.
	Get data using the objects created by two APIs where one API is secured and another is not.

	Testing conclusion

	Conclusion
	Summary
	Command-line interface
	Generating the Spring Boot project with Maven
	Creating a GraphQL schema
	HTTP Basic Authorization
	Generating the java source code

	Further extensibility
	Error handling
	Parse different Swagger versions
	Generate unit tests
	Injection of a logger into the generated classes
	OAuth authorization support

	Bibliography
	Attachments

