
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Monitoring and automated regulation of
parameters of hydroponic system
environment

Ali Akhmadov

Supervisor: Ing. David Kadleček, Ph. D.
Field of study: Software Engineering and Technology
May 2021

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483815Osobní číslo:AliJméno:AkhmadovPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Monitoring a automatizované regulace parametrů prostředí hydroponického systému

Název bakalářské práce anglicky:

Monitoring and automated regulation of parameters of hydroponic system environment

Pokyny pro vypracování:
Vytvořte simulaci monitoringu a automatizované regulace parametrů prostředí kolem hydroponického systému.
Monitorované parametry:
- Hladina CO2
- PAR (photosynthetic active radiation)
- Teplota
- Vlhkost
Automatizace regulace:
- Větrák (in/out) na regulaci CO2 a teploty
- Bomba s CO2 pro regulaci hladiny CO2
- Zvlhčovač
- Přívodní ventil na vodu a odpusť
- Topení
- Chlazení
- Zařívky - řeší se regulace podle typu rostliny a prostředí (out/indoor)
Výstup:
- Navrh komponent a jejich integrace
- Prototyp formou počítačové simulace nebo fyzického nasazení

Seznam doporučené literatury:
[1] William Texier – Hydroponie pro každého. ISBN: 978-2-84594-161-8
[2] Stuart Russell / Peter Norvig – Artificial Intelligence: A Modern Approach. ISBN: 9781292153964

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. David Kadleček, Ph.D., Centrum znalostního managementu FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 21.05.2021Datum zadání bakalářské práce: 21.02.2021

Platnost zadání bakalářské práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. David Kadleček, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank Ing. David Kadleček,
Ph.D. for being my supervisor. I would
also like to thank Ing. Jiří Šebek, Jakub
Szasz, Adam Kučera and Pavel Wimmer
for the huge support provided during the
project.

Declaration
I declare that this thesis has been com-
posed solely by myself and that it has
not been submitted, in whole or in part,
for any other degree. Except where states
otherwise by reference or acknowledgment,
the work presented is entirely my own.

In Prague, May, 2021

v

Abstract
This thesis aims to design and develop a
responsive automated hydroponic system
by implementing monitoring and regula-
tion of environmental parameters around
the system. In recent decades, hydropon-
ics has become quite popular and a lot of
researches have revealed that plants grown
hydroponically are of high quality and
consume fewer resources than traditional
growing methods. Hydroponic systems
are affected by several factors, however,
this thesis primarily focuses on controlling
the light intensity, air temperature and
humidity. This work contains the study
of the theory around hydroponics, anal-
ysis of hardware, software and available
technologies, design and implementation
of the system and finally, the evaluation
of the achieved results.

Keywords: Automated Hydroponic
System, Hydroponics, Environmental
Parameters

Supervisor: Ing. David Kadleček, Ph.
D.
Prague, Technická 2, A3-222

Abstrakt
Cílem této práce je navrhnout a vyvi-
nout responzivní automatizovaný hydro-
ponický systém pomocí implementace mo-
nitoringu a regulace parametrů prostředí
kolem systému. V posledních desetiletích
se hydroponie stala docela popularní a
řada výzkumů objevila, že rostliny pěsto-
vané hydroponicky jsou vysoce kvalitní a
spotřebovávají méně zdrojů než tradiční
metody pěstování. Hydroponické systémy
jsou ovlivňovány několika faktory, avšak
tato práce se primárně zaměřuje na řízení
světla, teploty vzduchu a vlkosti. Tato
práce obsahuje studium teorie hydropo-
nie, analýzu hardware, software a dostup-
ných technologií, návrh a implementaci
systému a nakonec zhodnocení dosaže-
ných výsledku.

Klíčová slova: Automatizovaný
Hydroponický Systém, Hydroponie,
Parametry prostředí

Překlad názvu: Monitoring a
automatizované regulace parametrů
prostředí hydroponického systému

vi

Contents
1 Introduction 1
2 Familiarization with the topic 3
2.1 Introduction to Hydroponics 3
2.2 Pros and Cons of Hydroponics . . . 4
2.2.1 Advantages 4
2.2.2 Disadvantages 4

2.3 Hydroponic Systems 5
2.3.1 Ebb and Flow 5
2.3.2 Deep Water Culture 6
2.3.3 Nutrient Film Technique 6
2.3.4 Dutch Bucket 7

2.4 Growing Media 8
2.4.1 Coconut Coir 8
2.4.2 Perlite . 8
2.4.3 Rockwool 9

2.5 Environmental Parameters 9
2.5.1 Air . 9
2.5.2 Grow Lights 10
2.5.3 Water Solution 10

3 Hardware Analysis 13
3.1 Computing Power 13
3.1.1 Raspberry Pi 13
3.1.2 Arduino Uno 14
3.1.3 Raspberry Pi vs Arduino 15

3.2 Sensors . 16
3.3 Actuators . 17
4 Software and Technologies
Analysis 19
4.1 Communication Protocols 19
4.1.1 Inter-Integrated Circuit 20
4.1.2 Universal Asynchronous
Receiver and Transmitter 20

4.1.3 Serial Peripheral Interface . . . 21
4.2 Software Architecture 21
4.2.1 Monolithic Architecture 21
4.2.2 Microservices Architecture . . 22
4.2.3 Comparison Table 23

4.3 Data Storage 23
4.4 Programming Languages 25
4.4.1 Arduino Programming
Language . 25

4.4.2 Python 26
5 System Design and
Requirements 27
5.1 Functional Requirements 27

5.2 Non-functional Requirements . . . 28
5.3 Hydroponic System Environment
Structure . 28

5.4 System Component Diagram . . . 29
5.5 System Deployment Diagram . . . 30
5.6 Communication Between Services 31
5.6.1 Publish-Subscribe Pattern . . . 31
5.6.2 Redis Pub/Sub Channels . . . 32

6 Implementation 33
6.1 Arduino Uno Sketches 33
6.1.1 Sensors Sketch 33
6.1.2 Actuators Sketch 36

6.2 Redis Persistence Service 39
6.2.1 Sensors and Actuators
Configuration Data 40

6.2.2 Serial Connections
Management 40

6.2.3 Persisting Sensor Data 41
6.3 AWS Persistence Service 42
6.3.1 Persisting Sensor Data 43
6.3.2 Managing Data Corruption . . 43

6.4 Data Processing and Controlling
Service . 44
6.4.1 Regulation Rules and
Coefficients 45

6.4.2 Environmental Parameters
Regulation . 47

7 System Evaluation 49
7.1 Sensor Data Measurement and
Persistence . 49

7.2 Parameter Regulation Outputs . 50
7.2.1 Air Temperature 50
7.2.2 Lights . 53
7.2.3 Humidity 53

8 Conclusion 55
A Source Code 57
B Installed System Images 59
C List of Abbreviations 61
D Bibliography 63

vii

Figures
2.1 Ebb and Flow Schema 5
2.2 Deep Water Culture Schema 6
2.3 Nutrient Film Technique Schema 7
2.4 Dutch Bucket Schema 7
2.5 Coconut Coir 8
2.6 Perlite . 8
2.7 Rockwool . 9

3.1 Raspberry Pi 14
3.2 Arduino Uno 14

4.1 Monolithic Architecture 22
4.2 Microservices Architecture 22

5.1 System Environment Schema . . . 28
5.2 System UML Component
Diagram . 29

5.3 System UML Deployment
Diagram . 30

5.4 Redis Pub/Sub Channels 32

6.1 Sensor Handling UML Sequence
Diagram . 34

6.2 Actuators Handling UML Sequence
Diagram . 36

6.3 Redis Persistence Service UML
Sequence Diagram 39

6.4 AWS Persistence Service UML
Sequence Diagram 42

6.5 Data Processing and Controlling
Service UML Sequence Diagram . . 45

7.1 AWS DynamoDB Sensor Data . . 50
7.2 Low Room and High Server Room
Air Temperature Logs 51

7.3 Low Room and Low Server Room
Air Temperature Logs 52

7.4 High Room and Low Server Room
Air Temperature Logs 52

7.5 High Room and High Server Room
Air Temperature Logs 53

7.6 PAR Regulation Logs 53
7.7 Low Humidity Logs 54
7.8 High Humidity Logs 54

B.1 Growing Plants 59
B.2 Hardware Box 60

Tables
3.1 Raspberry Pi vs Arduino Uno . 15
3.2 List of Sensors 16
3.3 List of Actuators 17

4.1 Comparison of Communication
Protocols . 19

4.2 Comparison of Software
Architectures 23

4.3 Comparison of SQL and NoSQL
databases . 24

5.1 Functional Requirements 27

viii

Chapter 1
Introduction

Agriculture on a big scale is, and will always be, an integral part of society. As
the world population continues to grow, so must the food production. With
the increased focus on environmental sustainability, the option of growing
plants in non-native environments is gaining more and more interest from
the public. Conventional gardening has a lot of disadvantages that can be
addressed by hydroponics.
Hydroponic systems use water as a growing medium instead of soil and lead
to great results. The system produces higher yields and can be designed to
support continuous and effective production throughout the year. Creating a
self-sufficient hydroponic system operating without dependence on outside
climate enables the possibility of growing plants in any part of the globe.

The goal of this thesis is to construct a reliable automated hydroponic system
by implementing monitoring and regulation of environmental parameters
around the system. I have chosen this topic because I think that automated
hydroponic systems can provide an effective solution to the growing consump-
tion of food and minimize the labor required to grow and maintain plants.
The system that I have implemented is part of the larger project, which also
includes the regulation of water-related physical parameters. That part of the
system was managed by my colleague and both our solutions are integrated
into one hydroponic automated system. [1]

In the following chapters, I will describe the main aspects of hydropon-
ics and the theory around it. After that, I will go through the steps I had to
take to implement the system and evaluate the results.

1

2

Chapter 2
Familiarization with the topic

In this chapter, we will get familiar with the general parts and terms of
hydroponics that it is useful to know while implementing an automated
hydroponic gardening system. Mainly I will focus on basic hydroponic
system types, substrates that are used to maintain plants and environmental
parameters that are being measured in the scope of this project as well as
nutrient solution parameters to have a basic understanding of the entire
system.

2.1 Introduction to Hydroponics

The word hydroponics is derived from the combination of two Greek words,
hydro meaning water and ponos meaning labor. The word first appeared in a
scientific magazine article published in 1937 and authored by W.F. Gericke.
Dr. Gericke started experimenting with hydroponic techniques in the late
1920s and then published one of the early books on soilless gardening.
There are lots of definitions for the word hydroponics in various sources and
each has some small difference. However, the most common aspect of all defi-
nitions is that hydroponics means growing plants without utilizing soil, with
the sources of nutrients either from a nutrient solution or nutrient-enriched
water. [2]

It turns out that growing plants in nutrient-rich water has been practiced for
centuries. For instance, the ancient Hanging Gardens of Babylon and the
floating gardens of the Aztecs were hydroponic in nature. The basic concepts
for the hydroponic growing of plants were established in the 1800s. The
culture of cultivating plants in a soilless environment was then popularized
in the 1930s in a series of publications by a California scientist (Gericke).
Since then, hydroponics started to develop its potential. During World War
II, the U.S. Army constructed large hydroponic gardens on several islands
in the western Pacific to supply vegetables to troops. Since the 1980s, the
hydroponic technique has gained considerable commercial value for vegetable
and flower production and in 1995 there were over 60,000 acres of hydroponi-
cally grown vegetables throughout the world. The popularity of hydroponics
continued to grow and is still growing nowadays. [2]

3

2. Familiarization with the topic..............................
2.2 Pros and Cons of Hydroponics

In this section, I will analyze the advantages and disadvantages of hydroponics
in general. The assumptions and knowledge presented in this section is an
aggregation of information available on the internet and my personal beliefs.

2.2.1 Advantages

Improved growth and yield

In the majority of cases, hydroponic systems result in faster-growing and
higher-yielding plants. This is due to the increased concentration of nutrients
in the nutrient solution and the carefully controlled environmental parameters.
[3]

An extended growing season

In the outdoor environment, plants are tied to the environment they grow in
and cannot produce a yield in some periods of the year. With a hydroponic
system, plants can grow all year round because the grower controls the
environmental parameters. [4]

Less water consumption

Besides the fact that hydroponics is primarily based on using water to grow
plants, it uses between 80 to 90% less water than plants cultivated in the
traditional manner. In classical gardening, a large amount of water is applied
to the soil to allow adequate moisture to reach the root zone. While water
travels to the roots, it evaporates and only a small percentage of it reaches
the roots. [3]

Plants can grow everywhere

Traditional gardening requires outdoor space for plants, while hydroponic
systems can be easily incorporated into many homes. Moreover, in an
isolated environment, parameters can be more effectively adjusted for each
corresponding plant.

2.2.2 Disadvantages

Expensive to set up

Hydroponic systems are more expensive to acquire and construct. It requires
a lot of components, costs of which range depending on the type and size of
the building system.

4

................................. 2.3. Hydroponic Systems

Constant monitoring and maintenance

Hydroponic systems should be frequently monitored compared to traditional
gardening. All system components need to be observed and adjusted if
required - lights, temperature, nutrient solution and many other aspects.
With poor control over the system, plants will result in low yield and can
obtain diseases.

2.3 Hydroponic Systems

The first step to starting hydroponic gardening is choosing a suitable system.
The systems are distinguished as active or passive. By active is meant that
the nutrient solutions are moved, usually by a pump, whereas passive means
that a wick or the anchor of the growing medium helps flow the nutrients
to the roots of plants [5]. There are hundreds of variations of hydroponic
systems available for use, however, there are only several fundamental types
of hydroponic systems, on which all variations are based. In this section, I
will describe some of the most popular hydroponic systems, on which our
solution can be built.

2.3.1 Ebb and Flow

The Ebb and Flow system represented in figure 2.1 is characterized by an
automatic flood and drain watering technique, in which plants are flooded
temporarily and regularly. The water or nutrient solution in the reservoir
ascends to a growth tray via a water pump, accumulates to a certain level,
and stays in the growth tray for a prescribed amount of time providing water
and nutrients to the plants. After the expiration of time, the solution is
drained back into the reservoir through a tubing system. To maintain this
circulation system, continuous observation should be present to control the
amount of water provided to the system. Although it is possible to grow a lot
of different kinds of plants and provide them with a large amount of water,
root diseases and growth of algae or molds may occur in this system. [5]

Figure 2.1: Ebb and Flow Schema

5

2. Familiarization with the topic..............................
2.3.2 Deep Water Culture

The Water Culture System given in figure 2.2 is a simple model, composed
of a reservoir, a tubing system, an airstone, an air pump, and a floating
platform. This system was developed so that plants can be grown with roots
constantly suspended in water. This contributes to active food production for
plants: a floating platform holds plants or pots in a reservoir, where the root
parts are constantly immersed in the water or nutrient solution, and oxygen
is supplied by an airstone and air pump. To optimize growing conditions, it
is necessary to monitor the oxygen level and nutrient concentrations, salinity,
and pH. Although this environment suits many different plants, especially
cucumber and radish, large or long-term crops may not grow well. Moreover,
algae and molds can grow rapidly in the reservoir. [5]

Figure 2.2: Deep Water Culture Schema

2.3.3 Nutrient Film Technique

The nutrient film technique (NFT) described in figure 2.3 is a system gener-
ated to compensate for the weak points of the Ebb and Flow systems. With
the NFT technique, the plants are grown in channels, via which the nutrient
solution is pumped. The roots are kept moist by the thin film of nutrient
solution as it passes by. The ideal way is to expose the bottom of the roots
to the nutrient solution, while the top is kept moist but not water-logged. [5]
Most NFT channels are fed continuously at a rate of approximately 1 liter per
minute. Since the plant roots are not maintained in a growing medium, it is
obligatory to keep them moist at all times. In the majority of NFT systems,
the nutrient solutions mixed beforehand in a primary reservoir are cycled
through the channels and back to the reservoir. The nutrient reservoir can be
automatically regulated, and with proper aeration and pH adjustment can
effortlessly be kept fresh for weeks. [6]
NFT is ideal for short-term crops, however, for long-term crops, e.g., cucum-
ber and tomatoes, larger NFT channels can be applied. One of the great
advantages of the NFT system is that the crops are clean and no washing is
necessary. [6]

6

................................. 2.3. Hydroponic Systems

Figure 2.3: Nutrient Film Technique Schema

2.3.4 Dutch Bucket

As the name implies, Dutch Bucket illustrated in figure 2.4 was first introduced
in Holland and is now effectively used by commercial growers for different
kinds of plants. The Dutch Bucket method allows the grower to use any
growing medium including coco-coir, perlite, gravel, LECA stone and sand.
The Dutch Bucket system is represented by a 2.5 gallon (9.5 liters) bucket
with a special drain that maintains a small reserve of nutrients at the bottom
as a precautionary measure. Each bucket is fed a nutrient solution by a single
or double dripper, and it drains through the bucket into a common drain
tube made from a 1.5 inch (3.81 cm) PVC pipe. The reservoir is placed below
the level of the drainpipe, and with the help of gravity, the solution is carried
back to it. Subsequently, the pump re-circulates the nutrients back to the
drippers to start the cycle over again. The method is mostly suited for large,
long-term crops, e.g., cucumbers, vine tomatoes and roses. [7]
It was decided that Dutch Bucket method will be used in the scope of this
project due to its universality, efficiency and simplicity.

Figure 2.4: Dutch Bucket Schema

7

2. Familiarization with the topic..............................
2.4 Growing Media

As hydroponic implies a soilless environment, plants need something that
would hold and support them. Moreover, the media should be able to transmit
moisture, nutrients and oxygen to the roots of the plants. A growing medium
is responsible for this job. There are lots of variations of media but only a
few are considered the best.

2.4.1 Coconut Coir

Coconut coir, shown in figure 2.5, is an organic material created from coconut
shell husks. This type of media is able to hold water and air well and is
environmentally friendly. Nevertheless, the media does not have good drainage;
thus, it often mixes with other materials and becomes uncompressed after
several uses. [8]

Figure 2.5: Coconut Coir

2.4.2 Perlite

Perlite is one of the commonly used media in hydroponics. It is created by
expanding volcanic glass under extremely high temperatures. Consequently,
countless small white particles pop out. This medium is distinguished by
high oxygen retention and its reusability. However, it can be too lightweight
for some systems and produce excess dust from particles. Perlite is shown in
figure 2.6. [8]

Figure 2.6: Perlite

8

...............................2.5. Environmental Parameters

2.4.3 Rockwool

Rockwool has been used widely both by hobbyists and commercial farmers in
recent decades. This material is generated by melting rocks and spinning them
into bundles of filament fibers. Rockwool is a versatile inert growing medium
that is used in many different hydroponic systems, especially recirculation
types. The great pros of rockwool are that it holds water very well, provides
good oxygen retention and has a variety of sizes and shapes. On the other
hand, rockwool is not pH neutral and produces dust from particles that can
harm the plants. Rockwool is shown in figure 2.7. [8]

Figure 2.7: Rockwool

2.5 Environmental Parameters

In this part, I will go through the environmental parameters that will be mea-
sured in this project solution. However, I will also slightly cover water-related
parameters as it is good to have an idea of the overall system architecture.

2.5.1 Air

Air is a vital component that plants need to live and grow healthy and
efficiently. Plants highly depend on air parameters, such as temperature,
humidity and carbon dioxide.

Temperature

Plants are constantly processing energy 24 hours a day. The speed, at
which plants process energy, is directly related to air temperature. The
best temperature for warm-season crops is 16°C at night and 24°C during
the daytime. On the other hand, cool-season crops grow better at 10°C at
nighttime and 16°C during the day. Of course, these values are not the same
for all kinds of plants. Specific optimal minimum and maximum values depend
on species. If the temperature is too low, plant growth will be slower and
some purpling of the leaves may arise. Nevertheless, too high temperatures
may result in poor-quality plants. [9]

9

2. Familiarization with the topic..............................
Humidity

Humidity is one of the major factors influencing the process of photosynthesis
and the entire growing process. Humidity is the concentration of water vapor
present in the air. Maintaining optimal humidity value is often a challenge
because it depends on other factors such as air temperature.
Warm air maintains more water than cold air. It is important to understand
that the percentage of humidity is related to the water vapor, which air
can maintain at the given temperature. For instance, in the room with
10°C temperature and 100% of relative humidity, the concentration of water
vapor is half as much as in the room with 20°C temperature and 100% of
relative humidity. This indicates that increasing temperature will lead to
humidity reduction. Oppositely, decreasing temperature will make humidity
level increase. [3]
In the humid environment plant leaves grow larger. Conducted experiments
have revealed that maximal growth rate is reached at the humidity level
ranging from 60% to 80%. However, in order to avoid extremes, it is better
to keep humidity level in range 65 - 75%. Humidity level is adjusted using
humidifiers and ventilators synchronized together. [3]

CO2

Plants are the only organisms able to feed on sunlight. During the daytime,
plants consume CO2 for photosynthesis and release oxygen. While growing
indoors, it is important to maintain natural airflow. In order to bring new
CO2 to the grow room for plants, a proper air renewal system should be
implemented. Usually, this is solved by ventilators, which simulate natural
air conditions for plants. The power and number of ventilators depend on
the size of the space where plants grow. [3]

2.5.2 Grow Lights

In order to survive, plants need food. They use sunlight to make food (sugars)
via a process called photosynthesis. In modern hydroponics, artificial lights
are used to provide plants with a comfortable environment. There are different
units of measurement for lighting but the one that is measured in hydroponics
is PAR (Photosynthetically Active Radiation). Nowadays one of the widely
used sources of artificial light in hydroponics is LED (Light Emitting Diode).
LED has become so popular due to its efficiency and lightweightness. They
produce much light with little electricity. LEDs are made up of many diodes
and growers can customize which light colors and light wavelength they need
for different species. [8]

2.5.3 Water Solution

In hydroponics, water is the main element providing plants with nutrients.
In most cases water solution is maintained in a reservoir and is periodically

10

...............................2.5. Environmental Parameters

transported to the plant roots. The amount of water and the volume of the
reservoir depend on the type of hydroponic system as well as the species and
quantity of plants.
To let plants grow effectively, it is crucial to maintain optimal values for
water parameters, mainly water temperature, pH (potential of hydrogen) and
EC (Electrical Conductivity). The values differ depending on the type and
growth phase of a plant.

Temperature

Temperature of water solution plays a critical role in the process of growing
plants. It determines an amount of oxygen in a solution. The higher the
temperature, the lower the concentration of oxygen in the solution. At the
same time, higher temperatures contribute to metabolism of plants. To
reach a good process of nutrients transportation to plants, there has to be a
relatively high amount of oxygen. Water temperature also has a great impact
on the speed of plant growth. The ideal interval for temperature ranges from
18°C to 24°C. This is the optimal value, at which balanced growth can be
maintained. [3]

Potential of Hydrogen

pH is considered to be the most important factor in hydroponics. pH level
should be measured and regulated regularly, so that the nutrients are evenly
and effectively distributed between the roots. It is clear that the optimal pH
values vary from plant to plant, however, it is considered that the best pH
for hydroponics is a range of 5.5-6.5. [3]

Electrical Conductivity

EC is the measurement of electrical conductivity within nutrient solution. It
indicates the amount of available nutrients in water solution. Once minerals
are added into water, the dissolved salts allow it to conduct electricity. The
higher the concentration of salts, the higher the electrical conductivity. For
most plants optimal EC values range from 1.2 to 1.6 during the vegetative
stage and 1.6-2.4 during flowering. However, these values depend on the type
of the growing plant. [10]

11

12

Chapter 3
Hardware Analysis

This chapter describes the hardware part of the project by giving information
about the computing power components, sensors and actuators that will
appear in the implementation.

3.1 Computing Power

In this section, I will go through computing power components, i.e. Raspberry
Pi and Arduino Uno. These two were chosen due to the fact that they have
large communities, documentation and, in general, they are the most popular
components used in such kinds of projects. Another advantage is that they
are pretty cheap and simple to use.

3.1.1 Raspberry Pi

Raspberry Pi, also abbreviated as RPI, is a small, powerful, cheap and hack-
able computer board that can be held on palm with the capacity of functioning
as a full-fledged computer. Using RPI, one can design and implement different
applications and prototype models with the minimum knowledge of program-
ming. The great advantage of Raspberry Pi is that all the components of a
computer are integrated into a single chip that comprise CPU, memory, I/O
port, secondary memory and other components. Some versions of RPI have
in-built Bluetooth and WiFi modules along with Gigabit Ethernet for data
transfer and connectivity. Via the USB ports, one can connect peripheral
devices, e.g. keyboard and mouse. RPI can be used as a strong device
in controlling applications and appliances with the internet; therefore, it
represents an ideal platform for IoT based applications. [11]

In this project, Raspberry Pi 4 Model B will be used as home for com-
plex calculations on gathered data and will provide connectivity with the
internet. This version of RPI is the best as it has WiFi and Ethernet modules,
Bluetooth and USB connectors. Using a serial network, It will be connected
to Arduino Uno, which will be responsible for data collection and activation
of actuators according to the instructions from RPI. Raspberry Pi is shown
in figure 3.1.

13

3. Hardware Analysis

Figure 3.1: Raspberry Pi

3.1.2 Arduino Uno

The Arduino Uno is a microcontroller board developed by Arduino.cc. The
board contains sets of digital and analog I/O pins that may be interfaced to
various expansion boards and other circuits. Arduino Uno has 14 digital I/O
pins, six of which are capable of PWM output, 6 analog I/O pins and can be
programmed with the Arduino IDE (Integrated Development Environment)
via a type B cable. Arduino boards are capable of reading inputs - lights on
a sensor, touching a button, or sending and receiving a message - and turning
it into an output - activating a motor, lighting an LED, etc. To achieve this,
Arduino uses its own programming language with Arduino IDE based on
processing. [12]

In this project, Original Arduino Uno will be used to collect data from
sensors and to activate actuators. Collected data will be sent to Raspberry
Pi, which will save data to the database, make computations on the data and
send back instructions to Arduino. Arduino Uno is illustrated in figure 3.2.

Figure 3.2: Arduino Uno

14

.................................. 3.1. Computing Power

3.1.3 Raspberry Pi vs Arduino

Raspberry Pi and Arduino are quite different boards. The main obvious
difference is that Arduino is a microcontroller while RPI is a mini computer.
Each one has its own pros and cons, and it is not a trivial task to choose
the best one. The following table 3.1 describes some of the main differences
between them. [13]

Table 3.1: Raspberry Pi vs Arduino Uno

For the purpose of this project, both of the boards will be present in the
solution. As can be seen in the comparison table, Arduino is better for working
with sensors and actuators while RPI shows great results in computation and
connectivity to the internet. Thus, the final solution will include Arduino,
which will be connected to sensors, actuators and Raspberry Pi via a serial
network. RPI will be responsible for connectivity to the internet and complex
computations on collected data from sensors sent by Arduino and will send
instructions back to Arduino to activate relevant actuators.

15

3. Hardware Analysis
3.2 Sensors

In this section, I will briefly introduce the sensors that were chosen to mea-
sure the environmental parameters. The sensors are divided according to
environmental parameters they are able to measure. Each sensor has a library
support for Arduino Uno, which enables to manipulate them easily. Sensors
represented in table 3.2 were chosen according to their efficiency, performance
and measuring accuracy.

Table 3.2: List of Sensors

16

...................................... 3.3. Actuators

3.3 Actuators

In this section, I will describe the actuators given in table 3.3 that were chosen
to regulate the environmental parameters. Similarly to sensors, actuators
were chosen according to their performance and efficiency. Each actuator
can be conveniently controlled via Arduino Uno using third party libraries or
standard Arduino functions, such as producing output signal for a certain
pin or generating PWM (Pulse-width modulation) signals.

Table 3.3: List of Actuators

17

18

Chapter 4
Software and Technologies Analysis

Implementing an automated hydroponic gardening system requiring lots of
hardware and software configurations and interconnections can be a hard
task to accomplish. To achieve this goal, one should thoroughly analyze the
technologies that can be used for realization. In this chapter, I will scrutinize
existing communication protocols, data storage options, potential software
architectures and programming languages that can be applied in the final
solution to the problem.

4.1 Communication Protocols

To create automated and efficient environment for hydroponic system, nodes
of the system require communication mechanisms in order to exchange data
retrieved from sensors to the aggregation node, which in the case of this project
is represented by Raspberry Pi, and also to get data from the aggregation
node to the sensor node represented by Arduino Uno. With the increased
use of Sensor Networks and applications in the most diverse environments,
the need for both wired and wireless protocols is growing. Due to the fact
that wired protocols are more reliable, secure and can transfer data at higher
rates, they are still widely used.The following table 4.1 describes the features
of some of the most popular wired and wireless protocols. [14]

Table 4.1: Comparison of Communication Protocols

19

4. Software and Technologies Analysis
As the system must be highly reliable, it was decided to use wired commu-
nication protocols to overcome problems, e.g., loss of internet connection.
The most common wired technologies are Serial Communication or Universal
Asynchronous Receiver and Transmitter (UART), mainly in the form of USB
or RS232, SPI and I2C.

4.1.1 Inter-Integrated Circuit

I2C is a serial communication protocol specifically designed for microcon-
trollers. With I2C, you can connect multiple slaves to a single master and you
can have multiple masters controlling single or multiple slaves. It is incredibly
popular with modules and sensors, making it useful for projects that require
many parts working together. [14]

Advantages.Widely supported. Easy to connect. Automatically configured. Low Power Consumption

Disadvantages. Does not support long distance communication. Number of nodes is limited. Does not support high speed connections

4.1.2 Universal Asynchronous Receiver and Transmitter

UART, standing for Universal Asynchronous Receiver and Transmitter, is
a simple communication protocol that can allow Arduino to communicate
with serial devices. The UART system communicates with digital pin 0 (RX),
digital pin 1 (TX) and with another computer via the USB port. [14]
This peripheral on Arduino boards allows direct communication with a
computer, in our case Raspberry Pi, thanks to the fact that the Arduino has
onboard USB-to-Serial converter.

Advantages.Widely supported. Robust to errors. No clock signal needed

20

.................................4.2. Software Architecture

Disadvantages. Limited size of 9 bits

4.1.3 Serial Peripheral Interface

SPI is a different form of serial communication protocol specifically designed
for microcontrollers to talk to each other. The most notable difference from
I2C is that, while you can use multiple masters and slaves with I2C, SPI allows
a single master device with a maximum of four slave devices, e.g., sensores
and actuators. SPI is commonly used in places where speed is important,
such as with SD cards and display modules. [15]

Advantages. Very simple hardware interfacing. Not limited to any maximum clock speed enabling potentially high speed

Disadvantages. It supports only one master device. SPI usually requires separate SS (slave select) lines to each slave, which
can be problematic if numerous slaves are needed

After scrutinizing all the mentioned characteristics, the protocol stack for this
project will be built from I2C and UART. All the sensors and actuators will
be connected to Arduino Uno and use I2C for communication, while Arduino
itself will be connected to Raspberry Pi using UART serial link.

4.2 Software Architecture

To design a reliable, scalable and effective system, it is extremely important to
choose and design right software architecture. Designing software architecture
is about arranging components of a system to best fit the desired quality
attributes of the system. In this section, I will describe software architectures
that can find application in the implementation.

4.2.1 Monolithic Architecture

The monolithic architecture implies that different components of the system
are combined into a single unit on a single platform. In most cases, monolithic
applications consist of a database, client-side user interface and server-side
application. All the software parts are unified and all its functions are
managed in one place. The monolithic architecture structure is displayed in
figure 4.1. [16]

21

4. Software and Technologies Analysis

Figure 4.1: Monolithic Architecture

4.2.2 Microservices Architecture

Microservices presented in figure 4.2 is a type of Service Oriented Architecture
that focuses on building systems comprised from a series of autonomous com-
ponents called services. Compared to monolithic architecture, microservice
applications consist of multiple independent components that communicate
with each other using API to accomplish the goal.
The microservices approach focuses mainly on business priorities, while the
monolithic approach is organized around technology layers, UIs, and databases.
The microservices approach has become a trend in recent years as more and
more enterprises become agile and move toward DevOps. [16]

Figure 4.2: Microservices Architecture

22

.................................... 4.3. Data Storage

4.2.3 Comparison Table

The information presented in table 4.2 compares monolithic and microservices
architectures and describes some features of each architecture. [17]

Table 4.2: Comparison of Software Architectures

In the scope of this project, described software architectures can be integrated
with Raspberry Pi because it is the center for most software part. We have
to take into account all the requirements to choose the most suitable one. I
decided to use microservices architecture and decompose the system into 3
logical units and implement the communication mechanism between them
using Redis Pub/Sub messaging system. More information about individual
services, messaging system and overall implementation is described in chapter
Implementation.

4.3 Data Storage

To make the hydroponic system consistent and reliable, it is important to
equip the system with a data storage mechanism. For this purpose, the
database should be very dynamic, rapid, flexible and scalable. When it comes
to choosing a modern database, one of the biggest decisions is picking a
relational SQL or non-relational NoSQL database. The following table 4.3
provides feature comparisons between relational SQL databases and NoSQL
databases. [18]

23

4. Software and Technologies Analysis

Table 4.3: Comparison of SQL and NoSQL databases

Despite the fact that relational database management systems play an impor-
tant role when processing structured and highly uniform data sets, it is more
suitable for collecting data generated from a vast number of enterprise IT
systems and where these data are managed in a relatively isolated manner.
When it comes to managing more heterogeneous data generated by a number
of sensors, devices and gateways, each potentially with their own data struc-
tures, databases will require new levels of agility, flexibility and scalability.
In the scope of this project, NoSQL databases are proving their value and
thus will be applied in the implementation. [18]

From NoSQL databases, DynamoDB is the best candidate to be in the
implementation of the system. Another candidate could be MongoDB but
it is less scalable and does not have such low latency as DynamoDB [20].
DynamoDB is a fully managed NoSQL database service providing fast and
predictable performance. Moreover, it provides a very good scalability. With
DynamoDB, one can create a database that can store and retrieve any amount
of data and operate at any level of request traffic. It can scale up or scale
down throughput capacity without performance degradation. [19]

According to the requirement that the system should operate without internet
connection, we also need to have a local storage for data from sensors on
Raspberry Pi, where data will be kept intact even in case of internet unavail-
ability. For this purpose, we can pick from several options, such as Redis,
MongoDB and Cassandra. Due to the fact that Redis is much faster and

24

............................... 4.4. Programming Languages

provides publish-subscribe pattern, which is a great and simple option to
implement communication between our services, I decided to choose it for
storing sensor data locally on Raspberry Pi. Furthermore, Redis has in-built
data structures, e.g., list, sorted set and hash, that can be effectively used to
manipulate sensor data. [21]

4.4 Programming Languages

One of the major steps to take to implement any kind of software system
is choosing programming language or languages. There is a plenty of open
source available languages, each usually having its own distinctive feature.
However, our language stack highly depends on the hardware we chose to
implement an automated hydroponic system. For instance, Arduino Uno
is a microcontroller, which can be programmed only by writing sketches in
the Arduino Integrated Development Environment in the language similar to
the C/C++ language [22]. Nevertheless programs on Raspberry Pi can be
written in nearly any language. In this section, I will go through the available
programming languages, review their pros and cons and highlight those that
will be present in the final solution.

4.4.1 Arduino Programming Language

As it was already mentioned, Arduino Uno boards can only be programmed
using Arduino programming language. This means that there is no need to
make further investigations for this hardware component in terms of program-
ming languages; thus, Arduino programming language will definitely appear in
the final solution. Arduino provides a cross-platform integrated development
environment based in Java, which contains multiple code examples, a debug
serial console, and is open source. With the Arduino IDE, you can create
programms called sketches, which are then uploaded to Arduino boards. The
syntax is quite similar to C++ and the language itself represents a simplified
version of C++ programming language. Arduino has lots of libraries that
can be used to communicate with sensors, actuators and Raspberry Pi via
serial link. [22]

Each Arduino program must contain at least two functions, which are:. setup() - called once when the program starts. This function will be used
for configuration purposes.. loop() - called repetitively as long as Arduino has power. The main logic
will be derived from this function, which includes reading values from
sensors using the Wire library and sending them to Raspberry Pi over
serial link. [23]

To communicate with Raspberry Pi via UART, Arduino provides Serial
library, which has 2 basic functions:

25

4. Software and Technologies Analysis
. Serial.read() - reads one byte from UART. Serial.write() - writes one byte into UART

Furthermore, Arduino provides a Wire library allowing it to communicate
with I2C devices. [24]

4.4.2 Python

Python is a powerful and easy to use programming language that is extremely
popular in the modern community. Due to the fact that Python is classified
as a high level language, it allows to use fewer lines of code for complex
tasks. One of the best things about working with Python on the Raspberry
Pi is that Python is a first-class citizen on the platform. The Raspberry Pi
Foundation specifically selected Python as the main language because of its
power, versatility, and ease of use. Python comes preinstalled on Raspbian, so
there is no need to install it manually [25]. There is also a whole set of Python
modules that make it easy to work with Raspberry Pi and its peripherals.
For example, serial from the PySerial module will be used in this project to
communicate with Arduino Uno over the serial link. [26]
Python is also known as an AI language and has showed great results in the
area of machine learning. This is also a great advantage for this project, as it
is likely to be incorporated into the AI environment in the further development.

Considering all of the advantages of Python specifically for this project,
I decided to use it to implement the software on Raspberry Pi. Alternatives
could be Java or C/C++ languages, however, they require more configura-
tions and are sometimes frustrating to use while implementing such types of
systems.

26

Chapter 5
System Design and Requirements

In this chapter, I will go through the main system components, describe
system requirements and illustrate the infrastructure of the final solution. I
will cover all the aspects required to visualize the entire system and highlight
main points.

5.1 Functional Requirements

The table 5.1 captures all functional requirements that should be taken into
account while developing the system.

Table 5.1: Functional Requirements

27

5. System Design and Requirements
5.2 Non-functional Requirements

. The system shall be able to operate without internet connection.. The system shall be able to scale and accommodate new sensors or
actuators.. The system shall be able to recalibrate when sensor or actuator rules are
modified even during runtime.. The system shall be available non-stop.. The system shall be consistent and maintain data integrity.. The system shall be robust, highly performant and make calculations
rather quickly.

5.3 Hydroponic System Environment Structure

In this section, I will go through the hydroponic system and describe how it
functions. Figure 5.1 illustrates the entire hydroponic system structure, its
individual components and the room where all components are located.

Figure 5.1: System Environment Schema

It can be seen that the hydroponic room is isolated and almost all the com-
ponents required to control the system are located inside. The plant system
is placed above the water tank, which contains nutrient-rich solution that is
transported to the plant roots regularly.
The CO2 and PAR sensors are located as close as possible to the plant system,
so that the measurements are as accurate as possible. Moreover, PAR sensor

28

..............................5.4. System Component Diagram

is placed wisely under the LED system to measure the correct values with
respect to the light that plants actually receive. It was decided to use three
air temperature sensors inside the room that are distributed evenly in the
room. The three measured values are then processed by the corresponding
service on Raspberry Pi. Due to the fact that humidity sensors are combined
with air temperature sensors in one device, one of the room air temperature
sensors is responsible for humidity measurements.
When it comes to actuators, the LED complex is placed on the ceiling of the
room above the plants, thus distributing maximum amount of light evenly
among all plants. Humidifier is responsible for increasing humidity values
inside the room when it is needed, while air heater is in charge of raising air
temperature in the room.

Although air heater is shown on the schema, it will not always be needed to
regulate air temperature. Due to the fact that the room is located on the
second floor above the server room where air temperature is usually relatively
high, it was decided to use that air by pulling it in the room via tube. The
tube has a fan that will control the amount of passing air from the server
room. Moreover, the temperature of the air from the server room is also
measured by one temperature sensor. The power of the fan is controlled by
the system with respect to the air temperature values collected by three room
temperature sensors and one tube temperature sensor. Finally, the room
also has another tube, via which the air is pulled out of the room. Thus, air
around the plant system is regularly circulated and renewed.

5.4 System Component Diagram

The UML component diagram illustrated in figure 5.2 describes individual
system components, how they are connected and function altogether.

Figure 5.2: System UML Component Diagram

29

5. System Design and Requirements
The system consists of three major components:. Sensing component. It is responsible for working with sensors, their

configurations and measurements of environmental parameters. The
main component is Arduino program, which has most of the logic and
collects data from sensors.. Activating component. This is the part where the physical regulation
of environmental parameters takes place. Arduino program component
configures and sends signals to actuators to align the environmental
parameters according to commands received from Automation and Per-
sistence System or otherwise, Raspberry Pi.. Automation and Persistence System. This is the brain of the entire
hydroponic system. It consists of three components: Redis Persistence
Service, Data Processing and Controlling Service and AWS Persistence
Service. Each of these services are described in detail in the chapter
Implementation.

5.5 System Deployment Diagram

The UML deployment diagram given in figure 5.3 describes how the system
components will be physically deployed on the hardware.

Figure 5.3: System UML Deployment Diagram

30

............................5.6. Communication Between Services

The hardware parts are classified into 5 types:. Sensors. As it was already noted, the system consists of four types
of sensors: air temperature and humidity sensors, CO2 sensor and
PAR sensor. Each sensor is connected via I2C to the Arduino Uno
microcontroller, which is responsible for handling sensors. In the actual
system there are four air temperature and humidity sensors.. Actuators. The following components comprise the actuator part of the
system: fan, humidifier, led and air heater..Microcontrollers. Due to the fact that Arduino Uno has limited memory
around 2 KB, it was decided to use two Arduino Uno boards. First
one handles sensors, while second Arduino is responsible for activating
actuators according to the commands received from Raspberry Pi. Not
only this makes the logic clearer and increases cohesion of individual
boards, but also makes the entire system faster by decreasing the reaction
time of the microcontroller to commands.. Computational computer. The brain of the system is Raspberry Pi. It
makes most of the calculations on the collected data and persists data
to local Redis database as well as AWS DynamoDB.. Databases. The system uses two databases: Redis and AWS DynamoDB.
The Redis is located on the Raspberry Pi and stores sensor data locally,
while DynamoDB stores data in the cloud for data analytics. Furthermore,
Redis is used as a message broker to implement the communication
between services on Raspberry Pi.

5.6 Communication Between Services

The main software part of the system located on Raspberry Pi is built from
three services: Redis Persistence Service, AWS Persistence Service and Data
Processing and Controlling Service. Since the system is being developed using
microservices architecture, the individual services must somehow communicate.
The communication mechanism is implemented using Redis as a message
broker because it also implements pulish-subscribe pattern.

5.6.1 Publish-Subscribe Pattern

The publish-subscribe pattern is a way of passing messages to an arbitrary
number of receivers. The senders of these messages, also known as publishers,
do not explicitly identify the targeted recipients. Instead, the messages
are sent out on a channel, on which any number of recipients, also called
subscribers, can be waiting for them. [27]

31

5. System Design and Requirements
5.6.2 Redis Pub/Sub Channels

The figure 5.4 illustrates the way services exchange data via channels using
Redis Pub/Sub mechanism.

Figure 5.4: Redis Pub/Sub Channels

The channels are divided into two categories according to the data that pass
through them. The first channel sensor_data is responsible for handling and
distributing sensor data to subscribes. Redis Persistence service publishes
sensor data received from Arduino Uno, while Data Processing and Controlling
service and AWS Persistence service receive the data in real-time, as they
are subscribed to the same channel. The second one actuator_commands
transports data about actuator commands produces by Data Processing and
Controlling service and sends them to Redis Persistence service. Subsequently,
Redis Persistence service sends information to the corresponding Arduino
Uno that manages actuators.

32

Chapter 6
Implementation

The overall automating system consists of several parts, mainly: programs
on Arduino Uno, three services on Raspberry Pi and two databases. Each
of these components are segregated and have certain responsibilities. In
this chapter, I will describe the overall system implementation including the
programs on two Arduinos, the services on Raspberry Pi and how databases
are related to these services.

6.1 Arduino Uno Sketches

As I have already noted, the system is built from two Arduino Uno boards;
first one responsible for working with sensors, whereas second Arduino handles
actuators. In this section, I will go through the programs, also known as
sketches, that are running on these two Arduino Uno boards and describe
how they operate with hardware components, i.e., sensors and actuators, and
communicate with the delegated service running on Raspberry Pi.

6.1.1 Sensors Sketch

First Arduino Uno runs a sketch, which is responsible for reading environ-
mental data from sensors and sending them to Raspberry Pi. When the
Arduino program starts, it requests configuration data for sensors including
sensor name, type, address and time interval from the Redis Persistence
service operating on Raspberry Pi. Subsequently, the service reads data from
a configuration file and returns sensor data to Arduino Uno. After that,
Arduino Uno has all information required to handle sensors.
First step is to configure all sensors. This means that each sensor is initialized
on some given address using the corresponding library, in case if it is needed.
After that, Arduino Uno constantly checks if any sensor measurements are
required. In case if some measurement is needed, it reads data from the
sensor and sends it to Redis Persistence Service. The UML sequence diagram
illustrated in figure 6.1 describes the behaviour of this part of the system.

33

6. Implementation....................................

Figure 6.1: Sensor Handling UML Sequence Diagram

Setup Function

The following code snippet given in listing 6.1 shows what happens when
Arduino Uno program is activated.

Listing 6.1: Setup Function
char config_data[500]; // used to fill in devices_data[][]

void setup() {
Serial.begin(9600);
Wire.begin();
fetch_config_data();
split(config_data);
setup_devices();

}

When Arduino Uno board is turned on, the first thing that happens is calling
setup() function. It retrieves sensors data from Raspberry Pi and transforms
them into two-dimensional array devices_data using fetch_config_data()
and split() helper functions. Each first-level entry of the array represents
one sensor, while each second-level entry contains information about sensor
name, type, address and time interval for the corresponding sensor. Finally,
setup_devices() function initializes all sensors on the given addresses.

34

................................ 6.1. Arduino Uno Sketches

Loop Function

The code sample given below on listing 6.2 describes the functionality of
measuring certain sensor data.

Listing 6.2: Loop Function
void loop() {

for (int i = 0; i < number_of_sensors; i++) {
const char* sensor_name = devices_data[i][0];
const char* sensor_type = devices_data[i][1];
unsigned long sensor_tempo = to_int(devices_data[i][3]);
float sensor_value = 0;
bool measuring_required = time_passed(last_sensor_timestamps[i],

sensor_tempo);

if (!measuring_required) continue;

if (!strcmp(sensor_type, AIR_TEMP_SENSOR)) {
if (!strcmp(sensor_name, SHT_SENSOR_NAME)) {

sensor_value = sht20_lib.temperature();
} else if (!strcmp(sensor_name, DHT_SENSOR_NAME_1)) {

sensor_value = dht1.readTemperature();
} else if (!strcmp(sensor_name, DHT_SENSOR_NAME_2)) {

sensor_value = dht2.readTemperature();
} else if (!strcmp(sensor_name, DHT_SENSOR_NAME_3)) {

sensor_value = dht3.readTemperature();
}

} else if (!strcmp(sensor_type, HUMIDITY_SENSOR)) {
sensor_value = sht20_lib.humidity();

} else if (!strcmp(sensor_type, PAR_SENSOR)) {
sensor_value = par_lib.measurePAR();

} else if (!strcmp(sensor_type, CO2_SENSOR)) {
sensor_value = co2_lib.readCO2PWM();

}

last_sensor_timestamps[i] = millis();
send_data(sensor_name, sensor_type, sensor_value);

}
}

The loop() function is called repeatedly on Arduino Uno board. It does the
main job, which is collecting data from sensors. Each function call, we iterate
over the devices_data[][] array and in each iteration representing current
sensor, retrieve sensor_name, sensor_type and sensor_tempo, or else time
interval, in which sensor data should be measured.
Next, the function checks whether the time interval of the current sensor is
smaller that the difference between current time and last measured time for
the iterating sensor. This is done using last_sensor_timestamps array that
holds last timestamp for each sensor. Indices of the last_sensor_timestamps
and devices_data correspond to the same sensor. Thus in each iteration,
we can check whether it is time to make new sensor measurement. If this is

35

6. Implementation....................................
the case, then using the conditionals, function identifies what sensor type is
in the current iteration and makes measurement. Finally, the last timestamp
is updated and the measured value is send via serial link to Raspberry Pi,
where it is accepted by Redis Persistence service.

6.1.2 Actuators Sketch

When it comes to the second Arduino Uno, its main goal is to listen to
commands from Raspberry Pi and regulate actuators according to those
commands. The principle is quite similar to the program described in the
previous section, however, this program has to wait until some event triggers
it. The event obviously is the actuator command. In the beginning of the
program, Arduino requests configuration data for actuators including actuator
name, type and address from Redis Persistence service. After that, the service
fetches data from a configuration file and returns actuators data to Arduino
Uno.
First step, after getting all the information about actuators, is to configure
actuator addresses. Once this is done, the program is ready to listen to actu-
ator commands and set actuators. The program constantly checks whether
there is a message in a serial buffer. The UML sequence diagram given in
figure 6.2 illustrates the behavior of physical actuator handling part of the
system.

Figure 6.2: Actuators Handling UML Sequence Diagram

36

................................ 6.1. Arduino Uno Sketches

Setup Function

The following code illustrated in listing 6.3 reveals the initial setup of the
program.

Listing 6.3: Setup Function
void setup() {

Serial.begin(9600);
Wire.begin();
fetch_config_data();
split(config_data);
setup_devices();

}

As it can be seen, this part of the program is identical to the one, that
runs on sensors handling Arduino. The only difference is in the messages
they send to request data about devices. According to the following code
snippet in listing 6.4, it is clear that the actuators handling Arduino sends
HELLO_FROM_ACTUATORS string message, whereas sensor handling Arduino
described in the previous section sends HELLO_FROM_SENSORS string.

Listing 6.4: Requesting Actuators Data
void fetch_config_data() {

Serial.println("HELLO_FROM_ACTUATORS");

while (true) {
if (Serial.available() > 0) {

String devices_data = Serial.readString();
Serial.println(devices_data);
int size = devices_data.length() + 1;
devices_data.toCharArray(config_data, size);
break;

}
}

}

After the message is sent, the program waits until Raspberry Pi sends reply
containing data about actuators. This part is almost the same in the program
that works with sensors. The only difference is in the message it sends to
request data about sensors.

Loop Function

The following code snippet in listing 6.5 shows the way Arduino Uno con-
stantly waits for the actuator commands by listening to the serial link. The
Arduino loop() function calls check_for_actuator_command() function to
find out whether there is data available in the serial buffer. When data
arrive, it retrieves actuator type and value from the message. Next, the
process_command() function is called to handle the actuator command.

37

6. Implementation....................................
Listing 6.5: Listening to Actuator Commands

void loop() {
check_for_actuator_command();

}
void check_for_actuator_command() {

while (Serial.available()) {
String act_type = Serial.readStringUntil(’\n’);
String act_command_value = Serial.readStringUntil(’\n’);
process_command(act_type, act_command_value);

}
}

The below code in listing 6.6 illustrates how the program handles the received
actuator commands.

Listing 6.6: Processing Actuator Command
void process_command(String act_type, String command_value) {

for (int i = 0; i < POSSIBLE_NUMBER_OF_DEVICES; i++) {
const char* act_type = devices_data[i][1];
int device_address = to_int(devices_data[i][2]);

if (strcmp(received_act_type.c_str(), act_type)) continue;

if (!strcmp(act_type, LED_ACT)) {
analogWrite(device_address, act_command_value.toInt());
return;

}

if (!strcmp(act_type, FAN_ACT)) {
fanDimmer.setPower(act_command_value.toInt());
return;

}

if (act_command_value.equals("0")) {
digitalWrite(device_address, LOW); // turn relay off
return;

}

digitalWrite(device_address, HIGH); // turn relay on
return;

}
}

The process_command() function receives two arguments: actuator type and
command value. It goes through the devices_data array until it reaches
the required actuator data and retrieves the address of that actuator. After
that, it adjusts the required actuator by sending the corresponding signal.
The possible signals are: LOW or HIGH for relay based actuators, percentage of
power between 0% and 100% for fans based on TRIAC and number between
0 and 255 for LED, which is using pulse-width modulation method.

38

............................... 6.2. Redis Persistence Service

6.2 Redis Persistence Service

As it was already mentioned, Raspberry Pi runs 3 services: Redis Persistence
service, AWS Persistence service and Data Processing and Controlling service.
Each has a bit different responsibility. In this section, I will describe Redis
Persistence service, which has an obligation to control the data flow between
two Arduinos and the remaining services.

Redis Persistence service is an entry point to the business logic of the entire
system. When the service starts, it establishes connection with Redis and
subscribes to actuator_commands channel. Next, the service initializes Ar-
duinos and waits for the request to share the data about sensors and actuators.
These data are stored in separate configuration files, which are read when
requests arrive.
When it comes to sensor data, the service triggers the message containing
the measured environmental parameter value and information about the
sensor. These data are then stored in local Redis database and subsequently
published to sensor_data Redis Pub/Sub channel. The channel transports
sensor data to AWS Persistence service and Data Processing and Controlling
service, which then process these data.
When actuator command shows up from actuator_commands channel, the
service sends the command further to actuators handling Arduino Uno. The
following UML sequence diagram in figure 6.3 visualizes the described flow.

Figure 6.3: Redis Persistence Service UML Sequence Diagram

39

6. Implementation....................................
6.2.1 Sensors and Actuators Configuration Data

The data about each sensor and actuator can be easily configured or even
modified later in configuration files. The Redis Persistence service works with
two files, one of which contains data about all sensors, while another one has
information about actuators. I will only go through the file related to sensors
since the the actuator-related file has the analogous structure. The below
listing 6.7 shows the format, in which data are stored in the file.

Listing 6.7: Configuration File
sht20 humidity_sensor 0x3B 60
par par_sensor 0x3B 70
sht20 air_temperature_sensor 0x3B 80
dht1 air_temperature_sensor 4 80
dht2 air_temperature_sensor 6 80
dht3 air_temperature_sensor 7 80
mhz14 co2_sensor 0x3F 90

Each row has four entries: [name], [type], [address] and [time interval].
Time interval means how often the sensor should collect environmental data.
The only difference between sensor-related and actuator-related files is that
the latter does not have the [time interval] entry. There is no need to
overwhelm Arduino Uno by putting more logic on it. Every operation with
actuators is conducted by Data Processing and Controlling service.
The major advantage of this approach is that data can be easily modified
on Raspberry Pi and all the modifications will be automatically reflected on
Arduino Uno programs.

6.2.2 Serial Connections Management

In this section, I will describe how Redis Persistence service handles connec-
tions and messages on serial link. There is a dedicated class SerialHandler
that is responsible for communication with serial devices given in listing 6.8.

Listing 6.8: Serial Link Handling Class
class SerialHandler:

def __init__(self, device_address, baud_rate):
self.ser = serial.Serial(device_address, baud_rate)
self.ser.setDTR(False)
self.ser.setDTR(True)
self.redis_handler = RedisHandler.get_instance()

Once the SerialHandler object is created, it establishes the connection with
the device at the given address and baud rate. Furthermore, SerialHandler
has a reference to RedisHandler, which is responsible for persisting received
sensor data to Redis.

40

............................... 6.2. Redis Persistence Service

6.2.3 Persisting Sensor Data

Once sensor data arrives, Redis Persistence service processes these data and
stores it in Redis. For this, there is a dedicated singleton class given in listing
6.9 that handles Redis related logic.

Listing 6.9: Redis Handling Class
class RedisHandler:

instance = None

@staticmethod
def get_instance():

""" Static access method for Singleton """
if RedisHandler.instance is None:

RedisHandler.instance = RedisHandler()
return RedisHandler.instance

def __init__(self):
""" Virtually private constructor. """
if RedisHandler.instance is not None:

raise Exception("This class is a singleton!")

self.redis_client = redis.StrictRedis(host=’localhost’,
decode_responses=True, port=6379, db=0)

self.redis_sub = self.redis_client.pubsub()
self.redis_sub.subscribe(constants.PUB_SUB_ACT_CHANNEL_NAME)

The constructor initializes connection with Redis, enables publish-subscribe
mechanism and subsribes to actuator_commands Pub/Sub channel.
Once sensor data arrives, they get persisted by RedisHandler save_data()
function. The code snippet is given in the following listing 6.10.

Listing 6.10: Persisting Sensor Data
def save_data(self, sensor_data):

timestamp = sensor_data["timestamp"]
sensor_name = sensor_data["sensor_name"]
sensor_values = f’{sensor_name}_timestamps’
new_timestamp_id = self.generate_id(timestamp)
self.redis_client.hset(timestamp, mapping=sensor_data)
self.redis_client.rpush(TIMESTAMPS_LIST_NAME, timestamp)
self.redis_client.rpush(sensor_values, timestamp)
self.redis_client.zadd(TIMESTAMPS_FOR_IDS_SORTED_SET_NAME,

{timestamp: new_timestamp_id})
self.redis_client.publish(PUB_SUB_SENSORS_CHANNEL_NAME,

f’{timestamp} {str(new_timestamp_id)}’)

Firstly, data are extracted and stored in Redis data structures mainly hash, list
and sorted set. Each of them is needed to enable correct data sharing between
services and to elevate data querying options. Finally, the information is sent
to sensor_data channel and distributed to other services.

41

6. Implementation....................................
6.3 AWS Persistence Service

One of the major system requirements is that data collected by individual
sensors are stored in a cloud database. This provides a great opportunity to
introduce data analysis or even artificial intelligence. In this section, I will
cover AWS Persistence service, which is responsible for storing sensor data in
Amazon DynamoDB.

The Initial step AWS Persistence service takes is configuring connections with
DynamoDB and Redis databases. It also subscribes to sensor_data Redis
Pub/Sub channel to retrieve new messages about collected sensor data.
When sensor data arrive, the service persists them to DynamoDB. As it was
mentioned before, the system should function and maintain data integrity.
This means that, even if internet connection is unavailable, the data that are
being measured while there is no internet should not be lost. Thus, there
should be a mechanism that will control the flow of the data and identify
which data was and was not persisted to DynamoDB. The following figure
6.4 shows UML sequence diagram describing the flow of operations.

Figure 6.4: AWS Persistence Service UML Sequence Diagram

42

............................... 6.3. AWS Persistence Service

In case internet connection was lost and is available at the current moment,
the service fetches sensor data from Redis that was not yet persisted to AWS
DynamoDB. After that, the data are saved and the cloud data integrity is
restored.

6.3.1 Persisting Sensor Data

Once sensor data arrive, AWS Persistence services triggers and stores data
in the cloud. There is a dedicated function illustrated in listing 6.11 that
handles this job.

Listing 6.11: Persisting Sensor Data
def save_item(item):

"""
Persists item to DynamoDB.
If HTTP status is not 2xx or internet is corrupted returns False.
:param item: item to persist
:return: if error => False; else True
"""
try:

response = table.put_item(Item=item)
resp_status = response[RESPONSE_METADATA][HTTP_STATUS_CODE]
return str(resp_status).startswith("2")

except botocore.exceptions.EndpointConnectionError:
return False

The function calls put_item function from boto3 module to persist data
to DynamoDB. One of the most important parts of the AWS Persistence
service is located in this code snippet. It checks whether data were stored
successfully or not. In case data were not stored, it is detected in other parts
of the service and handled.

6.3.2 Managing Data Corruption

In this section, I will describe how the system behaves when problems with
internet occur. The following code in listing 6.12 shows the way sensor data
is retrieved from the channel and stored using save_item() function.

Listing 6.12: Retrieving Sensor Data From Channel
message = redis_handler.redis_sub.get_message()

if not message or message[’type’] != "message":
continue

timestamp, current_id = utils.split_timestamp_and_id(message)
sensor_data = redis_handler.redis_client.hgetall(timestamp)
is_saved = save_item(sensor_data)

43

6. Implementation....................................
However, connection to cloud may sometimes be inconsistent or even inter-
rupted by failure in network. The following code snippet contains the logic
that tackles this issue and restores sensor data integrity in DynamoDB.

Listing 6.13: Internet Connection Handling
if not is_saved and not disconnected:

disconnected = True
first_unsuccessful_id = current_id

elif is_saved and disconnected:
disconnected = False
last_unsuccessful_id = current_id - 1
unsent_timestamps = redis_handler.get_data_in_range(

min=first_unsuccessful_id, max=last_unsuccessful_id)
save_all(unsent_timestamps)

This algorithm ensures that, when data are not persisted successfully, the
id of this record will be registered and in a moment of network recovery, it
will fetch all records from Redis ranging from first_unsuccessful_id to
last_unsuccessful_id. Subsequently, these records are persisted to Dy-
namoDB in save_all() function.

6.4 Data Processing and Controlling Service

Finally, in this section, I will describe the last, probably the most important
service, which is Data Processing and Controlling service. This service is
the brain of the entire hydroponic automated system. It is responsible for
computing commands required for actuator regulation according to collected
sensor data and predefined rules, in some cases, using mathematical functions
to elect the most suitable value.

When the service starts, it establishes connection with Redis and subscribes
to sensor_data Redis Pub/Sub channel. This channel delivers information
about sensor measurements published by Redis Persistence service.
In the moment when data from sensor arrive, the service starts computing
the corresponding actuator command value with respect to the environmental
parameter value extracted from sensor data and rules related to this actuator
type. When the computation finishes, the output command is published to
actuator_commands Redis Pub/Sub channel along with the actuator type.
After that, Redis Persistence service receives the subscribe message containing
the computed actuator command and instructs Arduino Uno to manage the
actuator. The following UML sequence diagram illustrated in figure 6.5 shows
how the service interacts with peripheral entities and makes calculations on
collected data.

44

.........................6.4. Data Processing and Controlling Service

Figure 6.5: Data Processing and Controlling Service UML Sequence Diagram

6.4.1 Regulation Rules and Coefficients

To enable effective and sustainable regulation of environmental parameters,
the service relies on a set of defined rules and coefficients. Each type of sensor
data is handled by a corresponding actuator handler, which computes the
output command according to the collected environmental parameter value.
Moreover, during the computation, the service incorporates corresponding
actuator rules and coefficients defined in separate JSON files.

The following listing 6.14 describes the coefficients used when calculating
output actuator commands.

Listing 6.14: Actuator Coefficients
{

"roomVolume": 6,
"ledCoefficient": 0.5,
"temperatureLossCoefficient": 2,
"fanCoefficient": 0.6

}

The first coefficient roomVolume represents the volume of the room, where the
hydroponic system is located. The fanCoefficient and ledCoefficient
account for the performance and efficiency of fan and LED system respectively,
while temperatureLossCoefficient represents the loss of air temperature

45

6. Implementation....................................
that is being transported from server room via tube. It is important to
include these coefficients in some actuator-related calculations, which I will
describe in the following section, to produce the most effective command value.

When it comes to actuator rules, the corresponding JSON file content is
decomposed into three logical units: led, airTemperature and humidity.
According to the listing 6.15, each property contains the rules related to the
actuator type it represents.

Listing 6.15: Actuator Rules
{

"led": {
"required": 600,
"led_power_lower_bound": 70,
"led_power_upper_bound": 100,
"sensor_type": "par_sensor",
"actuator_type": "led_actuator",
"actuator_relay_type": "led_actuator_relay",
"turn_on_time": "08:00",
"turn_off_time": "20:00"

},
"airTemperature": {

"lower_bound": 24,
"upper_bound": 26,
"sensor_type": "air_temperature_sensor",
"room_sensors_names": ["sht20", "dht1", "dht2"],
"tube_sensor_name": "dht3",
"actuator_up_type": "air_heater_actuator",
"actuator_down_type": "fan_actuator",
"desired_fan_power": 65,
"fan_power_lower_bound": 40,
"fan_power_upper_bound": 80

},
"humidity": {

"required": 50,
"sensor_type": "humidity_sensor",
"actuator_type": "humidity_actuator"

}
}

Each rule has lower_bound, upper_bound or required properties represent-
ing the boundaries for the environmental parameter value. They are used to
identify whether the parameter value is in the tolerated range or not. Next
properties observed in led and air temperature rules account for the actuator
power boundaries, between which the actuator values can fluctuate. The next
property sensor_type indicates, which sensor is responsible for measuring
the required parameter value. Last but not least, actuator_type specifies
the actuator type that is responsible for adjusting the given parameter.
The service is configured so that rules and coefficients JSON files can be
modified even when the entire hydroponic system is operating since this is

46

.........................6.4. Data Processing and Controlling Service

one of the non-functional requirements. The service detects the last time
the files were changed and, in case of modification, updates the rules and
coefficients used for actuator command computation.

6.4.2 Environmental Parameters Regulation

In this section, I will describe the logic of individual actuator regulation
according to the collected sensor data. The regulated actuators are: fan, LED
system, humidifier and heater.

Fan

As it was already specified, fan actuator is responsible for transporting warm
air from server room to the hydroponic room via specially installed tube. The
fan itself is located inside the tube and controls the amount of air passing into
the room. The power of the fan is adjusted using the output of the following
formula

∆P = Vroom · cfan · (treq − troom) · (ttube − treq − closs) (6.1)

where Vroom is the volume of the room, while cfan represents the efficiency
coefficient of the fan. The parameters treq and troom account for the desired
air temperature and actual room air temperature respectively, whereas ttube

is the temperature of the air coming from the server room. troom is calculated
as the average of all collected room temperature values at a given moment.
Finally, closs is a coefficient describing the temperature loss of the air that is
being pulled in the room by the tube.
The output of this formula ∆P is added to the desired fan power specified
in the rules file to produce the final command value. In case the final value
for fan power is out of the defined boundaries, the value is aligned using the
dedicated function. In our case, the desired fan power is set to 65% and
adjusted every time the computation takes place. When the calculations are
completed, the final value is sent to the corresponding fan actuator.

Heater

The heater regulation is closely related to the fan regulation using some
parameters from its formula, however, managed in a bit different way. Com-
pared to the fan, which is constantly operating and just switching power
values according to the received commands, the heater is not always turned
on. It is being controlled using a relay module responsible for turning the
heater on and off. The following formula

tdiff = ttube − treq (6.2)

outputs the value tdiff that is used to identify, whether the heater should be
turned on or off.

47

6. Implementation....................................
In case tdiff < closs, where closs is a temperature loss coefficient described
in the previous section, the heater is turned on. If tdiff > closs, the heater
is switched off. Subsequently, the output command is sent to the heater
actuator to stabilize the air temperature in the room.

LED

According to the fact that plants highly depend on the surrounding lights
mainly Photosynthetically Active Radiation, the PAR values should be regu-
lated accurately. For this, the LED power is adjusted using the output of the
following formula

∆P = cled · (preq − proom) (6.3)

where preq and proom are desired and actual PAR values respectively, whereas
cled is the efficiency coefficient of LED.
∆P is then added to the current LED power to produce the final command
value. If the value is out of the specified boundaries, it is adjusted using the
error fixing function. The final value is indicated by Pper.

Due to the fact that LED is controlled with PWM signals that are on a
scale of 0 − 255 and the Pper value produced from the previous calculations
is expressed in percentages ranging from 0% to 100%, the value should be
mapped to the [0, 255] interval using the following equation

Ppwm = Pper · 255
100 (6.4)

After that, the output command value is sent to the LED actuator to regulate
the lights.

Humidifier

The function of humidifier is quite similar to the heater. However, the moment
when the humidifier should be turned on or off is detected in a different way.
Just like the heather, the humidifier is controlled with the relay module, which
is responsible for switching the power on and off.
According to the defined humidity rules, the humidity optimal value should
fluctuate around the defined required value. In our case, the desired value is
50%. However, this can be easily modified in the rules due to your wish.

If the measured humidity value hroom < hreq where hreq is the required
humidity, the humidifier is turned on. Whereas, if hroom > hreq, the humidi-
fier is turned off.

48

Chapter 7
System Evaluation

In this chapter, I will evaluate the achieved results and illustrate them
using sensor data saved in AWS DynamoDB and the outputs of the logs for
individual actuator command calculations.

7.1 Sensor Data Measurement and Persistence

According to one of the functional requirements the system should be able
to persist data collected from sensors. Later, these data can be efficiently
queried and utilized in analytics and frontend development. In this section, I
will show the way sensor data is being persisted to Amazon DynamoDB and
provide some actual samples.

The installed sensors collect the following environmental parameters:. Humidity in %. Air temperature in ◦C. Photosynthetically Active Radiation (PAR) in nm. Carbon Dioxide (CO2) in ppm

Every new record of sensor data related to the corresponding parameter is
saved under the current timestamp; thus, these data can be used for time
series analysis in the future.

The following figure 7.1 is a screenshot of a DynamoDB table that shows
the way data collected by sensors is stored in AWS DynamoDB. We can see
that each sensor value is stored with the specific timestamp, sensor name
and type. Moreover, every new record of the same sensor type being inserted
to the table will not delete the previous record. On the contrary, it will be
saved as a new item, thus, preserving all previous collected data. These data
then can be easily queried and used for statistics and other purposes.

49

7. System Evaluation

Figure 7.1: AWS DynamoDB Sensor Data

Besides the fact that sensor data is being successfully persisted, we can also
see that the sensor measurements happen regularly. As it was mentioned
previously, measurements take place according to the time interval specified
in the configuration file for sensors in Redis Persistence Service. For instance,
air temperature value collected by sht_air_temp_sensor is measured every
80 seconds. This corresponds to the timestamps 16:23:33 and 16:24:54. A
similar pattern is observed in the rest of sensor measurements.

We can conclude that the data about environmental parameters are being
successfully persisted and maintained. Moreover, sensors function correctly
and measure parameters in the defined time intervals.

7.2 Parameter Regulation Outputs

In this section, I will evaluate the outputs produced by individual regulators
described in Data Processing and Controlling Service chapter in different
scenarios according to the collected data.

7.2.1 Air Temperature

Air temperature is being adjusted using the fan pulling the warm air from
server room and the heater working together. One of the situations that
can occur in the system is that the room air temperature is lower than the
required temperature. Another one is that the room air temperature is higher
than the desired temperature.

50

............................. 7.2. Parameter Regulation Outputs

To make the evaluation clearer, I introduce the following variables:. treq - required air temperature, which in our case is 26.5 ◦C. troom - current room air temperature. ttube - server room air temperature being transported via tube.∆P - output value from fan power regulating formula

Low Room Air Temperature

It is obvious that if the room air temperature near plants is less than the
required temperature, it should be somehow aligned. Due to the fact that,
in most situations, air temperature in server room is quite high, the heater
is not required for elevating the room air temperature. Instead, the fan will
pull the warm air into the room and adjust the temperature. Nevertheless, I
will go through every possible scenario and illustrate the output commands.

Scenario 1: troom < treq and ttube > treq

The logs from Data Processing and Controlling service given n figure 7.2 show
how air temperature values are collected from all three room air temperature
sensors and one tube sensor. When all values are collected, the computation
of actuator commands starts and calculates the output commands for fan
and heater.

Figure 7.2: Low Room and High Server Room Air Temperature Logs

troom is equal to 24.36 ◦C, whereas ttube is 30.9 ◦C, which is more than
enough to adjust the room air temperature using fan. The fan power should
increase, so that more warm server room air passes into the room. The
fan actuator formula produced ∆P = 9, which means that the fan should
increase the power by 9%. On the other hand, we can also observe that the
heater-related calculations instructed to turn the heater off, because it is re-
dundant due to the fact that the server room air temperature is warm enough.

In this scenario the regulation of actuators was successful.

51

7. System Evaluation
Scenario 2: troom < treq and ttube < treq

In case server room air temperature is lower than the required air temperature,
that air cannot be used to increase the room air temperature. The following
figure 7.3 shows the logs for this scenario.

Figure 7.3: Low Room and Low Server Room Air Temperature Logs

troom is equal to 24.31 ◦C, while ttube is 24.3 ◦C, which is not enough to
elevate the room air temperature. On the contrary, server room air is colder;
thus, the fan power should decrease, so that less server room air can pass
into the room. The fan actuator formula produced ∆P = −16, which means
that the fan power should be decreased by 16%. It can be seen that the
computation instructs to turn the heater on to adjust room air temperature.

In this scenario the regulation of actuators was successful.

High Room Air Temperature

If the room air gets warmer, its temperature should be regulated and returned
to the desired range. The following scenarios describe how the system behaves
in this case.

Scenario 1: troom > treq and ttube < treq

If the server room air temperature ttube is lower than required, this air is used
to adjust the room air temperature. The following figure 7.4 shows the logs
for this scenario.

Figure 7.4: High Room and Low Server Room Air Temperature Logs

troom is equal to 29.89 ◦C, while ttube is 24.3 ◦C, which is just right to reduce
the room air temperature troom to the required treq. The fan actuator formula
outputted ∆P = 25, which means that the fan power should be intensified by
25%. Thus, the fan will pull more cold server room air into the main room
and align the air temperature.

In this scenario the regulation of actuators was successful.

52

............................. 7.2. Parameter Regulation Outputs

Scenario 2: troom > treq and ttube > treq

In case both troom and treq are higher than the required air temperature value,
there is no need to pull server room air. Instead, there should a mechanism
that will chill the room air temperature, which is not yet installed in the
system but will definitely be present in the close future. However, we can
still analyze how the system behaves in this situation shown in figure 7.5.

Figure 7.5: High Room and High Server Room Air Temperature Logs

troom is equal to 30.16 ◦C, whereas ttube is 32.1 ◦C. The produced value from
fan actuator formula is ∆P = −21 meaning that the fan power should be
lowered by 21%. This is acceptable since less warm server room air will pass
into the room, however, not ideal to resolve the issue.

In this scenario the regulation of actuators was satisfactory but needs to be
improved.

7.2.2 Lights

In this section, I will evaluate the regulation of PAR values. The lights around
plants are regulated by a specialized LED system. The power of the LED is
regulated every time the PAR sensor reads the value and approximated to
the required value, which in our case is 600 nm. The following logs in figure
7.6 illustrate the regulation of LED power.

Figure 7.6: PAR Regulation Logs

The collected PAR value is equal to 54.51 nm, which is extremely small
amount of light for plants. Therefore, produced ∆P from the led actuator
formula is much higher than 100%; thus, the power of the LED is set to 100%.

We can conclude that the LED regulation was successful.

7.2.3 Humidity

Since humidifier is managed in the similar way as is the heater, there is no
need to examine complex computational formulas for producing delta power
values. Instead, the service checks whether the collected humidity value is
lower or higher than the required value. In our case, the required humidity
value is set to 50%. The following scenarios describe how the system operates
in these situations.

53

7. System Evaluation
To make the evaluation clearer, I introduce the following variables:. hreq - required humidity, which in our case is 50%. hroom - current humidity in the room

Scenario 1: hroom < hreq

In case current humidity value hroom is less than the required hreq, the
humidity in the room should increase; thus, the humidifier is turned on. The
logs in figure 7.7 show how the system reacts in this scenario.

Figure 7.7: Low Humidity Logs

The actual humidity value is equal to 49.88%, which is lower than the defined
required humidity value 50%. Thus, the humidifier is turned on to increase
relative humidity in the hydroponic room.

In this scenario the regulation of the humidifier was successful.

Scenario 2: hroom > hreq

If the actual humidity value hroom is greater than the required hreq, the
humidifier is turned off. The logs for this scenario are given in figure 7.8.

Figure 7.8: High Humidity Logs

The current humidity value is 50.8%, which is higher than the desired value.
According to the logs, the humidifier is switched off.

In this scenario the regulation of the humidifier was successful.

54

Chapter 8
Conclusion

The goal of this thesis was to construct a reliable automated system for
hydroponically grown plants by implementing monitoring and regulation of
environmental parameters.

I would like to say that this work has accomplished its goals. This paper
includes the study of hydroponics in general, analysis of hardware, software
and available technologies, design and implementation of automated hydro-
ponic system and finally, the evaluation of the entire system operation. In
the last chapter I have illustrated how the final product functions and given
some outputs of the installed system logs. I can conclude that the solution
has been successfully constructed, automated and integrated into the regular
hydroponic system making it significantly more effective and efficient. The
environmental parameters around the installed system are being adequately
measured and regulated by the intelligently developed service.

For me personally, this work has given enormous knowledge in different
spheres, with which I was not quite familiar. I have gained great experience
while configuring hardware and incorporating it into the system. Moreover,
developing the system based on microservices architecture gave me a better
understanding of the way the services can communicate and operate side by
side. Last but not least, I have expanded my knowledge of databases mainly
while working with Redis and Amazon DynamoDB, which were used in the
implementation of the system.

Nevertheless, there is a lot of room for further development and improvement,
which would bring the system quality to another level. The regulation of
parameters will become even more effective, if the Artificial Intelligence is
introduced into the system. Also, there is a great opportunity to develop
a front-end application that will be summarizing and displaying the mea-
sured data in the form of graphs and charts. Finally, the collected sensor
values can be used to create time series data for data analysis to examine the
environmental changes around the plants.

55

56

Appendix A
Source Code

To view the system source code visit the project git repository by scanning
the above QR code. You can also click on it and redirect to the repository
page.

57

https://gitlab.com/ali.akhmadov3/hydroponics_environment_automation
https://gitlab.com/ali.akhmadov3/hydroponics_environment_automation

58

Appendix B
Installed System Images

Figure B.1: Growing Plants

59

B. Installed System Images................................

Figure B.2: Hardware Box

60

Appendix C
List of Abbreviations

. PAR - Photosynthetically Active Radiation. NFT - Nutrient Film Technique. PVC pipe - polyvinyl chloride pipe. LECA - light expanded clay aggregate. LED - Light Emitting Diode. EC - Electrical Conductivity. RPI - Raspberry Pi. CPU - Central Processing Unit. I/O - Input/output. USB - Universal Serial Bus. IoT - Internet of Things. PWM - Pulse width modulation. IDE - Integrated Development Environment. SD - Secure Digital.OS - Operating System. I2C - Inter-Integrated Circuit. UART - Universal Asynchronous Receiver and Transmitter. SPI - Serial Peripheral Interface. SQL - Structured Query Language. API - Application Programming Interface. UML - Unified Modeling Language. AWS - Amazon Web Services. AI - Artificial Intelligence

61

62

Appendix D
Bibliography

[1] Nikita Bondarev. Monitoring simulation and automated regulation of pa-
rameters of hydroponic system solution. Bachelor Thesis. Czech Technical
University in Prague, Faculty of Electrical Engineering and Technology,
2021.

[2] J. Benton Jones Jr. Hydroponics: A Practical Guide for the Soil-
less Grower. 2nd Edition. Boca Raton: CRC Press, 2016. ISBN 978-
0849331671.

[3] Textier William. Hydroponics for Everybody: All About Home Horticulture.
San Francisco: Quick American Archives, 2015. ISBN 978-2845941205.

[4] M. Max. Advantages and Disadvantages of Hydroponics. 2021. [online].
[cit. 2021-03-15]. https://www.trees.com/gardening-and-landscap
ing/advantages-disadvantages-of-hydroponics.

[5] 6 Types of Hydroponic Systems. 2019. [online]. [cit. 2021-03-20]. https://
sensorex.com/blog/2019/10/29/hydroponic-systems-explained/.

[6] Pak. J. Agri., Agril. Engg., Vet. Sc. Hydroponics: Key to Sustain Agri-
culture in Water Stressed and Urban Environment. 2006. [online]. [cit.
2021-03-20]. http://citeseerx.ist.psu.edu/viewdoc/download?doi
=10.1.1.514.4323&rep=rep1&type=pdf.

[7] Keith Roberto. How-To Hydroponics. 4th Edition. Futuregarden, Inc.
2003. ISBN 978-0967202617.

[8] Hydroponics For Beginners - The Definitive Guide. 2018. [online]. [cit.
2021-03-24]. https://www.trees.com/gardening-and-landscaping/
hydroponic-gardening.

[9] Howard M. Resh. Hydroponic Food Production. A Definitive Guidebook for
the Advanced Home Gardener and the Commercial Hydroponic Grower.
7th Edition. Boca Raton: CRC Press, 2012. ISBN 978-1439878675.

[10] Holland Hortilcture. Why EC Is important in hydroponics. 2017. [online].
[cit. 2021-03-27]. https://www.hydroponics.co.uk/news/why-ec-is
-important-in-hydroponics/.

63

https://www.trees.com/gardening-and-landscaping/advantages-disadvantages-of-hydroponics
https://www.trees.com/gardening-and-landscaping/advantages-disadvantages-of-hydroponics
https://sensorex.com/blog/2019/10/29/hydroponic-systems-explained/
https://sensorex.com/blog/2019/10/29/hydroponic-systems-explained/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.4323&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.4323&rep=rep1&type=pdf
https://www.trees.com/gardening-and-landscaping/hydroponic-gardening
https://www.trees.com/gardening-and-landscaping/hydroponic-gardening
https://www.hydroponics.co.uk/news/why-ec-is-important-in-hydroponics/
https://www.hydroponics.co.uk/news/why-ec-is-important-in-hydroponics/

D. Bibliography.....................................
[11] C Eng Faruk Bin Poyen. Raspberry Pi and its use in IoT applications.

2019. [online]. [cit. 2021-04-05]. https://www.researchgate.net/publi
cation/330200556_Raspberry_Pi_and_its_Use_in_IoT_Application
s.

[12] Yusuf Abdullahi Badamasi. The Working Principle of an Arduino. IEEE,
2014. [online]. [cit. 2021-04-06]. https://ieeexplore.ieee.org/abstra
ct/document/6997578.

[13] Ravi Teja. What are the differences between Raspberry Pi and Arduino
Uno? 2021. [online]. [cit. 2021-04-09]. https://www.electronicshub.o
rg/raspberry-pi-vs-arduino/.

[14] André Glória, Francisco Cercas, Nuno Souto. Comparison of commu-
nication protocols for low cost Internet of Things devices. IEEE, 2017.
[online]. [cit. 2021-04-11]. https://ieeexplore.ieee.org/abstract/d
ocument/8088226.

[15] Robin Mitchell. Common Communication Peripherals on the Arduino:
UART, I2C, and SPI. 2018. [online]. [cit. 2021-04-11]. https://maker.pr
o/arduino/tutorial/common-communication-peripherals-on-the
-arduino-uart-i2c-and-spi.

[16] D. Anastasia. Best Architecture for an MVP: Monolith, SOA, Microser-
vices, or Serverless? 2019. [online]. [cit. 2021-04-15]. https://ruby
garage.org/blog/monolith-soa-microservices-serverless#:~:
text=Monolithic%20apps%20consist%20of%20interdependent,and%
20feature%20rapid%20continuous%20development.

[17] Mahesh Parahar. Difference between monolithic and microservices ar-
chitecture. 2020. [online]. [cit. 2021-04-15]. https://www.tutorialspoi
nt.com/difference-between-monolithic-and-microservices-arc
hitecture#:~:text=Monolithic%20architecture%20is%20built%20
as,is%20usually%20one%20code%2Dbase.&text=Microservices%20ar
chitecture%20is%20built%20as%20small%20independent%20module%
20based%20on%20business%20functionality.

[18] Sitalakshmi Venkatraman, Kiran Fahd, Samuel Kaspi, Ramanathan
Venkatraman. SQL Versus NoSQL Movement with Big Data Analytics.
2016. [online]. [cit. 2021-04-19]. http://j.mecs-press.net/ijitcs/ij
itcs-v8-n12/IJITCS-V8-N12-7.pdf.

[19] Amazon Web Services. What is DynamoDB?. [online]. [cit. 2021-04-19].
https://docs.aws.amazon.com/amazondynamodb/latest/developerg
uide/Introduction.html.

[20] MongoDb Documentation. Sharding. [online]. [cit. 2021-04-19]. https:
//docs.mongodb.com/manual/sharding/.

[21] Redis Documentation. Data types. [online]. [cit. 2021-04-19]. https:
//redis.io/topics/data-types.

64

https://www.researchgate.net/publication/330200556_Raspberry_Pi_and_its_Use_in_IoT_Applications
https://www.researchgate.net/publication/330200556_Raspberry_Pi_and_its_Use_in_IoT_Applications
https://www.researchgate.net/publication/330200556_Raspberry_Pi_and_its_Use_in_IoT_Applications
https://ieeexplore.ieee.org/abstract/document/6997578
https://ieeexplore.ieee.org/abstract/document/6997578
https://www.electronicshub.org/raspberry-pi-vs-arduino/
https://www.electronicshub.org/raspberry-pi-vs-arduino/
https://ieeexplore.ieee.org/abstract/document/8088226
https://ieeexplore.ieee.org/abstract/document/8088226
https://maker.pro/arduino/tutorial/common-communication-peripherals-on-the-arduino-uart-i2c-and-spi
https://maker.pro/arduino/tutorial/common-communication-peripherals-on-the-arduino-uart-i2c-and-spi
https://maker.pro/arduino/tutorial/common-communication-peripherals-on-the-arduino-uart-i2c-and-spi
https://rubygarage.org/blog/monolith-soa-microservices-serverless#:~:text=Monolithic%20apps%20consist%20of%20interdependent,and%20feature%20rapid%20continuous%20development
https://rubygarage.org/blog/monolith-soa-microservices-serverless#:~:text=Monolithic%20apps%20consist%20of%20interdependent,and%20feature%20rapid%20continuous%20development
https://rubygarage.org/blog/monolith-soa-microservices-serverless#:~:text=Monolithic%20apps%20consist%20of%20interdependent,and%20feature%20rapid%20continuous%20development
https://rubygarage.org/blog/monolith-soa-microservices-serverless#:~:text=Monolithic%20apps%20consist%20of%20interdependent,and%20feature%20rapid%20continuous%20development
https://www.tutorialspoint.com/difference-between-monolithic-and-microservices-architecture#:~:text=Monolithic%20architecture%20is%20built%20as,is%20usually%20one%20code%2Dbase.&text=Microservices%20architecture%20is%20built%20as%20small%20independent%20module%20based%20on%20business%20functionality
https://www.tutorialspoint.com/difference-between-monolithic-and-microservices-architecture#:~:text=Monolithic%20architecture%20is%20built%20as,is%20usually%20one%20code%2Dbase.&text=Microservices%20architecture%20is%20built%20as%20small%20independent%20module%20based%20on%20business%20functionality
https://www.tutorialspoint.com/difference-between-monolithic-and-microservices-architecture#:~:text=Monolithic%20architecture%20is%20built%20as,is%20usually%20one%20code%2Dbase.&text=Microservices%20architecture%20is%20built%20as%20small%20independent%20module%20based%20on%20business%20functionality
https://www.tutorialspoint.com/difference-between-monolithic-and-microservices-architecture#:~:text=Monolithic%20architecture%20is%20built%20as,is%20usually%20one%20code%2Dbase.&text=Microservices%20architecture%20is%20built%20as%20small%20independent%20module%20based%20on%20business%20functionality
https://www.tutorialspoint.com/difference-between-monolithic-and-microservices-architecture#:~:text=Monolithic%20architecture%20is%20built%20as,is%20usually%20one%20code%2Dbase.&text=Microservices%20architecture%20is%20built%20as%20small%20independent%20module%20based%20on%20business%20functionality
https://www.tutorialspoint.com/difference-between-monolithic-and-microservices-architecture#:~:text=Monolithic%20architecture%20is%20built%20as,is%20usually%20one%20code%2Dbase.&text=Microservices%20architecture%20is%20built%20as%20small%20independent%20module%20based%20on%20business%20functionality
http://j.mecs-press.net/ijitcs/ijitcs-v8-n12/IJITCS-V8-N12-7.pdf
http://j.mecs-press.net/ijitcs/ijitcs-v8-n12/IJITCS-V8-N12-7.pdf
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://redis.io/topics/data-types
https://redis.io/topics/data-types

..................................... D. Bibliography

[22] Michael McRoberts. Beginning Arduino. 2nd Edition. New York: Apress,
2011. ISBN 978-1430250166.

[23] Manoel Carlos Ramon. Arduino IDE and Wiring Language. 2014. [online].
[cit. 2021-04-21]. https://link.springer.com/chapter/10.1007/978-
1-4302-6838-3_3.

[24] Arduino.cc. Wire Library. [online]. [cit. 2021-04-21]. https://www.ardu
ino.cc/en/reference/wire.

[25] Matt Richardson, Shawn Wallace. Getting Started with Raspberry Pi. 1st
Edition. Sebastopol: O’Reilly Media, Inc., 2012. ISBN 978-1449344214.

[26] Serial Communication between Python and Arduino. [online]. [cit. 2021-
04-21]. https://create.arduino.cc/projecthub/ansh2919/serial-c
ommunication-between-python-and-arduino-e7cce0

[27] Redis Documentation. Redis Pub/Sub. [online]. [cit. 2021-04-25]. https:
//redis.io/topics/pubsub.

65

https://link.springer.com/chapter/10.1007/978-1-4302-6838-3_3
https://link.springer.com/chapter/10.1007/978-1-4302-6838-3_3
https://www.arduino.cc/en/reference/wire
https://www.arduino.cc/en/reference/wire
https://create.arduino.cc/projecthub/ansh2919/serial-communication-between-python-and-arduino-e7cce0
https://create.arduino.cc/projecthub/ansh2919/serial-communication-between-python-and-arduino-e7cce0
https://redis.io/topics/pubsub
https://redis.io/topics/pubsub

	Introduction
	Familiarization with the topic
	Introduction to Hydroponics
	Pros and Cons of Hydroponics
	Advantages
	Disadvantages

	Hydroponic Systems
	Ebb and Flow
	Deep Water Culture
	Nutrient Film Technique
	Dutch Bucket

	Growing Media
	Coconut Coir
	Perlite
	Rockwool

	Environmental Parameters
	Air
	Grow Lights
	Water Solution

	Hardware Analysis
	Computing Power
	Raspberry Pi
	Arduino Uno
	Raspberry Pi vs Arduino

	Sensors
	Actuators

	Software and Technologies Analysis
	Communication Protocols
	Inter-Integrated Circuit
	Universal Asynchronous Receiver and Transmitter
	Serial Peripheral Interface

	Software Architecture
	Monolithic Architecture
	Microservices Architecture
	Comparison Table

	Data Storage
	Programming Languages
	Arduino Programming Language
	Python

	System Design and Requirements
	Functional Requirements
	Non-functional Requirements
	Hydroponic System Environment Structure
	System Component Diagram
	System Deployment Diagram
	Communication Between Services
	Publish-Subscribe Pattern
	Redis Pub/Sub Channels

	Implementation
	Arduino Uno Sketches
	Sensors Sketch
	Actuators Sketch

	Redis Persistence Service
	Sensors and Actuators Configuration Data
	Serial Connections Management
	Persisting Sensor Data

	AWS Persistence Service
	Persisting Sensor Data
	Managing Data Corruption

	Data Processing and Controlling Service
	Regulation Rules and Coefficients
	Environmental Parameters Regulation

	System Evaluation
	Sensor Data Measurement and Persistence
	Parameter Regulation Outputs
	Air Temperature
	Lights
	Humidity

	Conclusion
	Source Code
	Installed System Images
	List of Abbreviations
	Bibliography

