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Abstract
The topic of this thesis is statistical signal
processing in the MAC stage of simple
WPNC radio networks. The readers will
first get acquainted with the fundamentals
of digital communication, estimation and
Wireless physical layer network coding
(WPNC).

Then the work focus on finding algo-
rithms for estimating amplitude, phase
and delay in BPSK two-source channel,
using the Least Square estimator.

Part of the thesis is also computer sim-
ulations, verifying given results.

Keywords: WPNC, hierarchical MAC
channel, channel estimator

Supervisor: Prof. Ing. Jan Sýkora,
CSc.
K13137 department of radio engineering,
Technicka 2,
166 27 Praha 6

Abstrakt
Tématem této práce je zpracování stochas-
tických signálů MAC fáze jednoduchých
WPNC rádiových sítí. Čtenáři se nejprve
seznámí se základy digitální komunikace,
estimace a kódování na fyzické vrstvě sítě
(WPNC).

Práce je dále zaměřena na hledání algo-
ritmů pro estimaci amplitudy, fáze a zpož-
dění ve dvouzdrojovém kanálu s modulací
BPSK za použití estimátoru nejmenších
čtverců.

Součástí práce jsou také počítačové si-
mulace, potvrzující dané výsledky.

Klíčová slova: WPNC, hierarchický
MAC kanál, estimátor kanálu

Překlad názvu: Estimace stavu
síťového kanálu pro WPNC rádiově sítě
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Chapter 1
Introduction

Wireless physical layer coding (WPNC) is a concept providing a faster form
of communication than traditional ways. On the opposite of them, in WPNC,
one node receives messages from multiple sources simultaneously. The relays
typically are not able to decode the initial messages, but it is not a problem
because, in destinations, enough information for decoding them is provided.

One of the biggest problems we are dealing with in WPNC is interference,
negatively affecting observation, WPNC is hence still under research.
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Chapter 2
Digital Communication

In this chapter, fundamentals of digital communication will be introduced.
Modulator is block, which discrete data (in either time and values) transforms
into continuous signal. Input-output relation for modulated signal is

s(t) =
∑
n

g(qn, t− nTs), (2.1)

where s(t) is signal, g denotes modulation, qn is channel signal and Ts is
symbol period.

If we want to have linear modulation, we have to use modulation pulse
with unit energy, ∫ ∞

−∞
|g(t)|2 dt = 1, (2.2)

and the input-output relation then is

s(t) =
∑
n

qn(dn, σn)g(t− nTs), (2.3)

where qn depends on data dn and modulator state σn.
For modulation without memory this relation becomes simpler, because

there is only one state of modulator, so we get

s(t) =
∑
n

qng(t− nTs), (2.4)

where gn = dn. Memoryless modulation has to fulfill Nyquist condition.
Definition 2.0.1. (Nyquist condition) Pulses g1 and g2 are Nyquist, if they
hold ∫ ∞

−∞
g1(t+mTs)g∗2(t) dt = 0, ∀m 6= 0, (2.5)

where ∗ denotes comlex conjugate. [4]
In other words, two pulses are Nyquist, if they are orthogonal for their every
nonzero integer shift.

Pulse is Nyquist, if holds∫ ∞
−∞

g(t+mTs)g∗(t) dt = 0, ∀m 6= 0. (2.6)
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2. Digital Communication ................................
2.1 Constellation space

Definition 2.1.1. (Constellation space) Constellation space is a orthonormal
signal space representation of modulated signal. The basis of constellation
space is

{ζn,i}n,i = {ζi(t− nTs}Nsi=1, (2.7)

where n denotes sequence number and i is index of modulation dimension. [4]
Definition 2.1.2. (Constellation points) For every nth symbol there exists
vector sn called constellation point. [4] His components sn,i are defined as

sn,i =
∫ ∞
−∞

s(t)ζ∗i (t− nTs) dt = 0. (2.8)

If pulses are orthonormal and Nyquist, we can write

ζi(t− nTs) = gi(t− nTs), (2.9)

sn,i = qn,i, i ∈ {1, ...Ns}. (2.10)

If in addition modulation is linear (Ns = 1), then

ζ(t− nTs) = g(t− nTs), (2.11)

sn,i = sn = qn. (2.12)

2.1.1 PSK modulation

Phase Shift Keying (PSK) modulation is linear modulation with all constella-
tion points on unit circle, thus all points has same symbol energy and the
difference between them is only in phase shifting. Constellation points qn
then are

qn ∈ {e
j 2π
Mq

i}Mq−1
i=0 , (2.13)

where Mq is size of alphabet.
Binary Phase Shift Keying (BPSK) is modulation with Mq = 2 and its

constellation points are

qn ∈ {−1, 1}. (2.14)

Quaternary Phase Shift Keying (QPSK) has Mq = 4 and constellation
points

qn ∈ {
1 + j√

2
,
−1 + j√

2
,
−1− j√

2
,
1− j√

2
}. (2.15)
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....................................2.2. AWGN channel

(a) : BPSK (b) : QPSK

Figure 2.1: PSK decision regions

2.2 AWGN channel

In reality all signals include distortion and thus we have to use mathematical
models. One of the most used models is Additive White Gaussian Noise
(AWGN) channel. This noise has zero mean, his spectral power density Sw(f)
is constant for all frequencies

Sw(f) = N0
2 , (2.16)

and distrubution of this noise is normal with zero mean. Input-output relation
of AWGN channel is

y(t) = x(t) + w(t), (2.17)

where y(t) is received signal, x(t) is sent signal and w(t) is Additive White
Gaussian Noise.

Probability density function (PDF) of w is

pw(w) = 1
2πσ2

w

e
− w2

2σ2
w , (2.18)

where σ2
w is variance of w.
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Chapter 3
Statistical Signal Processing

One of the main topics of this thesis will be Statistical Signal Processing
(SSP). The main goal is to reconstruct the signal initially sent from the source
and find the channel’s properties.

3.1 Nuisance parameters

Nuisance parameter ω from

x = x(θ, ω), (3.1)

is parameter that is unnecessary for us, but has impact on observation.
Nuisance parameters can be eliminated from the observation

p(x|θ) =
∫
p(x|θ,ω)p(ω) dω (3.2)

p(x|θ) =
∫ ∏

k

p(xk|θ,ω)p(ω) dω (3.3)

p(x|θ) =
∏
i

∫
{ωi}

∏
AT (ωi)

p(xk|θ,ωi)p(ωi) dωi, (3.4)

where AT (ωi) is is set of indices k for which ωi affects xk, it is called Trace
set. Cardinality of Trace set is Trace length

Lt(ωi) = cardAT (ωi), (3.5)

Lt(ω) = maxiLt(ωi). (3.6)

ow we can use this to elimininate noise from WPNC channel from previous
chapter. We have channel in form

y = x+w, (3.7)

hence we can write
p(y|x,w) = δ(y − x−w). (3.8)

7



3. Statistical Signal Processing ..............................
Now we can eliminate noise

p(y|x) =
∫
{w}

p(y|x,w)pw(w) dw (3.9)

p(y|x) =
∫
{w}

δ(y − x−w)pw(w) dw. (3.10)

Thanks to the sampling property of Dirac delta we get

p(y|x) = pw(y − x) (3.11)

p(y|x) =
∏
k

1
2πσ2

w

e
− ‖y−x‖

2

2σ2
w = c e

− ‖y−x‖
2

2σ2
w . (3.12)

3.2 Cramer-Rao Lower Bound

Cramer-Rao Lower Bound is criterion that tells us, how good can be unbiased
estimator at the best in terms of stochastical parameters.
Theorem 3.2.1 (CRLB for scalar θ ∈ R). The regularity condition for the
observation is

E
[
∂ ln p(x|θ)

∂θ

]
= 0, (3.13)

if it holds, then variance of any unbiased estimator is

var[θ̂] ≥
(
−E

[
∂2 ln p(x|θ)

∂2θ

])−1

, (3.14)

or equivalently

var[θ̂] ≥
(
−E

[
∂ ln p(x|θ)

∂θ

]2)−1

.[5] (3.15)

Theorem 3.2.2 (CRLB for θ ∈ CN×1). The regularity condition for is

E
[
∂̃ ln p(x|θ)

∂̃θ∗

]
= 0, (3.16)

if it holds, then the error covariance matrix C = E
[
(θ̂ − θ)(θ̂ − θ)H

]
,

where H denotes the conjugate transpose, is

C ≥ J−1(θ), (3.17)

where J−1(θ) is Fisher information matrix

J(θ) = E

( ∂̃ ln p(x|θ)
∂̃θ∗

)(
∂̃ ln p(x|θ)

∂̃θ

)T
 .[5] (3.18)
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.................................. 3.3. Sufficient statistic

3.3 Sufficient statistic

Definition 3.3.1 (Statistic). Statistic is function y = T (x), that does not
depend on θ.[5]
Definition 3.3.2 (Sufficient Statistic). Sufficient statistic is statistic y = T (x),
that contains all available information necessary for estimator θ̂ such that

θ̂(x) = θ̂(T (x)).[5] (3.19)

3.4 Types of estimators

There are a couple of different estimators. We will provide some of the most
popular types of them.

3.4.1 Maximum likelihood

The goal of Maximum likelihood (ML) estimator is to find the most probable
input in input-output relation

θ̂ = arg max
θ̌

p(x|θ̌). (3.20)

ML estimator in linear AWGN model. Assume linear AWGN model
x = Hθ + w, where w is gaussian noise with covariance matrix C. Then the
ML estimation is

θ̂ = (HHC−1H)−1HHC−1x (3.21)
and Fisher information matrix is

J(θ) = HHC−1H. (3.22)

ML estimators are relatively straightforward and usually provide good per-
formance, but on the other hand we have to know stochastical properties of
observation.

3.4.2 Bayesian estimators

In Bayesian estimators we define Loss function L(θ, θ̌) representing price for
making error. Mean value of Loss function is called Bayesian risk

R(θ̌) = Ex,θ
[
L(θ, θ̌)

]
(3.23)

R(θ̌) =
∫
{x}

∫
{θ}
L(θ, θ̌)p(θ|x)p(x) dθ dx. (3.24)

Goal of Bayesian estimators is to minimize Bayesian risk. We can also define
Conditional Bayesian risk

R(θ̌|x) =
∫
{θ}
L(θ, θ̌)p(θ|x)dθ. (3.25)

p(θ|x) ≥ 0, so minimization of R(θ̌|x) minimizes R(θ̌) as well.

9



3. Statistical Signal Processing ..............................
MAP

There are couple of different Bayesian estimators, first of them is Maximum
A posteriori (MAP) estimator. Loss function of MAP estimator is

L(θ, θ̌) =
{ 0, ‖θ − θ̂‖ < ∆θ

1, ‖θ − θ̂‖ ≥ ∆θ
, ∆θ → 0+. (3.26)

Bayesian risk R(θ̌) in MAP is

R(θ̌) =
∫
{x}

∫
{θ}
L(θ, θ̌)p(θ|x)p(x)dθ dx (3.27)

R(θ̌) =
∫
{x}

(
1−

∫
{∆θ(θ̌)}

L(θ, θ̌)p(θ|x) dθ
)
p(x)dx. (3.28)

Now we can discuss inner integral

lim
∆θ→0+

∫
{∆θ(θ̌)}

L(θ, θ̌)p(θ|x) dθ = lim
∆θ→0+

∫
{∆θ(θ̌)}

L(θ, θ̌)dθp(θ̌|x), (3.29)

the integral of Loss function is non-negative function, so we can write this
expression as ap(θ̌|x), where a ≥ 0. Bayesian risk R(θ̌) is then minimized by
maximization of p(θ̌|x)

θ̂ = arg min
θ̌
R(θ̌) = arg max

θ̌
p(θ̌|x). (3.30)

MMSE

Another option is Minimal Mean Square Error (MMSE) estimator. Bayesian
loss function is square error

L(θ, θ̌) = ‖θ − θ̌‖2. (3.31)

As the name of this estimator suggests, Bayesian risk is minimal mean square
error

R(θ̌) =
∫
{x}

∫
{θ}
‖θ − θ̌‖2p(θ|x)p(x)dθ dx. (3.32)

Criterion of optimality does not depend on x, so

arg min
θ̌
R(θ̌) = arg min

θ̌

∫
{θ}
‖θ − θ̌‖2p(θ|x)dθ. (3.33)

The minimum of this function is at a stationary point ∂
∂θ̌

R(θ̌)|θ̌=θ̂ = 0, so at
first we take the derivative of R(θ̌) with respect to θ̌

∂

∂θ̌

∫
{θ}
‖θ − θ̌‖2p(θ|x)dθ =

∫
{θ}
−2(θ − θ̌)p(θ|x) dθ, (3.34)

and for θ̌ = θ̂ we have to find the solution of this equation at zero∫
{θ}
−2(θ − θ̂)p(θ|x)dθ = 0 (3.35)

θ̂ =
∫
{θ}
θp(θ|x)dθ = E[θ|x]. (3.36)

10



..................................3.4. Types of estimators

3.4.3 LS

A goal of Least Squares (LS) estimator is to minimize difference between re-
ceived signal and signal model. Unlike ML knowing of stochastical parameters
is not needed. Metric of LS estimator is

θ̂ = arg min
θ̌
‖x− s(θ̌)‖2, (3.37)

where s(θ) is signal model and x(s(θ)) is measured signal.
Assume linear signal model s = Hθ, LS estimation is then

θ̂ = arg min
θ̌
‖x−Hθ̌‖2. (3.38)

The solution of this equation is

θ̂ = (HHH)−1HHx. (3.39)

Expression (HHH)−1HH is called Pseudoiverse of H and its notation is H†.
Linear LS hence can be written in form

θ̂ = H†. (3.40)

Notice similarity with ML estimation of linear AWGN signal. LS is basically
ML with ignoring covariance C. If noise w in is independent and identically
distributed, then C = I, and hence ML=LS.
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Chapter 4
WPNC

4.1 The 2-way relay channel

We can show advantage of using WPNC in 2-way relay channel (2-WRC),
which is the simplest topology, in which WPNC can be used, consisting of 2
sources A and B and 1 relay R.

Figure 4.1: 2WPNC in traditional radio network

In traditional way, we need 4 phases to transmit data from A to B and
data from B to A. In first phase A transmits data ba to R, then R retransmits
it to B, in next 2 steps data bb from B are transmit from B to R and finally
from R to A.

Network-Layer Network Coding on the other hand needs only three phases,
first 2 phases are reserved for transmit data ba from A to R and data bb from
B to R, now we need to describe data br on R, which are function of both ba
and bb, such that br is exclusive OR (XOR) function of ba and bb,

br = ba ⊕ bb. (4.1)

In third phase R transmits br to both nodes A and B, where another XOR
function is needed, for node A we get

bb = br ⊕ ba = (ba ⊕ bb)⊕ ba = bb ⊕ (ba ⊕ ba) = ba ⊕ 0, (4.2)

and similarly for node B

ba = br ⊕ bb = ba ⊕ 0. (4.3)

In WPNC first 2 phases are joint into 1, so in the first phase data ba and
bb are sent to R, and then R transmits br simultaneously to both A and B,
and overall just 2 phases are needed.

13



4. WPNC .......................................

Figure 4.2: 2WPNC

4.2 Relay strategies

The simplest strategy is to directly store received signal and then retransmit
it, this strategy is called Amplify and Forward (AF). The disandvantage of
AF is fact, that noise at the receiver is also amplified.

The other option is to etimate received signal before retransmiting it to
another node, this strategy is known as Decode and Forward (DF) and has 2
basic ways, how to do it.

The first of them consists of decoding each source separately, computing
the network code and forwarding it, the commonly used name of this strategy
is Joint Decode and Forward (JDF).

The second one is the strategy described above, in which relay decodes
network code function of received signal and retransmit it without knowledge
of each source. We call this strategy Hierarchical Decode and Forward (HDF).

We need 2 stages to successfully transmit data from sources to destination,
at the first step, called Multiple Access Channel (MAC), sources transmit
information to neighboring relays, where are data from multiple sources are
processing and furthermore send to destination, at the second stage denoted
Broadcast Channel (BC).

Network coded symbol, transmited in BC phase, we denote Hierarchical
Information (HI). For succesful decoding destination needs also direct infor-
mation about some source, known as Hierarchical Side Information (HSI).
Note that HSI can me transmit to destination in MAC phase.

We can describe this on example of butterfly network, consists of 2 sources
Sa and Sb, 1 relay R and 2 destinations Dx and Dy. In MAC phase Sa
transmit data ba to destination Dx and relay R, simultaneously bb is send
from Sa to R, and Dy. Then in R function br = f(ba, bb) is computed and
furthermore, in BC phase, retransmit to destinations Dx and Dy.

4.3 BPSK hierarchical MAC

We assume two-source BPSK MAC channel with messages ba and bb. Codesym-
bols cA,n, cB,n ∈ {0, 1} use BPSK alphabet sA,n, sB,n ∈ {±1}. Observation
model is memoryless AWGN channel of length N

xn = sA,n(cA,n) + sB,n(cB,n) + wn, (4.4)

14



................................4.3. BPSK hierarchical MAC

where noise has variance σ2
w and probability density function

pw(w) = 1
2πσ2

w

exp(− w2

2σ2
w

). (4.5)

The hierarchical mapping function is XOR

cn = cA,n ⊕ cB,n. (4.6)

However, in real systems, messages contains fading, denoted hA, respectively
hB, observation function is then in the shape

xn = hA,nsA,n + hB,nsB,n + wn, (4.7)

note, that fading is complex function. We can define function un = f(sA, sB, ha, hB),
this function

uA,B,n = hA,nsA,n + hB,nsB,n. (4.8)

In the two-source channel we can also use relative fading h

hAsA + hBsB = hA(sA + hB
hA

sB), h = hB
hA

. (4.9)

For M-source MAC the function u is

un =
M∑
m=1

hm,nsm,n, (4.10)

where M denotes number of messages and n is length of codewords. Input-
output system for this channel is

xn =
M∑
m=1

hm,nsm,n + wn = un(cn) + wn. (4.11)

4.3.1 Hierarchical demodulator in Gaussian channel

As in chapter 2, we need some metric to decide, which symbol was send. The
goal is to find most probable code from set c = f(č). Probabilities for each
codesymbols in memoryless AWGN channel are

p(xn|čn) = pw(xn − un(čn)) = 1
2πσ2

w

exp(− 1
σ2 ‖xn − un(c̃n)‖2), (4.12)

This function is Gaussian, and hence it is maximized by minimization of
exponent, so we find the point from cn closest to x, this point is denoted
minimum hierarchical distance point. The metric used in this scenario is
Euclidian distance

ρ2
Hmin(x, cn) = min

čn:f(čn)=cn
‖xn − un(čn)‖2, (4.13)

note, that this metric is usable only for medium to high SNR. This metric is
called Hierarchical distance (H-distance) metric.
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Chapter 5
Two source network MAC phase
estimation with BPSK

This chapter aims to construct an estimator of MAC phase in the butterfly
network with eliminating noise, fading consisting of phase and amplitude
changes, and time delay. We will use the BPSK alphabet and a set of two
orthogonal signals.

Figure 5.1: Butterfly network

The signal received in relay is combination of messages from both sources
burdened by fading and time delay. The channel is AWGN with complex
noise

x(t) = hasa(ca, t− τa) + hbsb(cb, t− τb) + w(t), (5.1)

where hi = ηie
jϕi , ηi, ϕi ∈ R and sa(t), sb(t) are orthogonal signals originated

as combinations of modulation pulses g

si(t) =
∑
n

qig(t− nTs). (5.2)

However, if time delays τa, τb = 0, we can work on the level of constelation
space, where si = 1 for ci = 1 and si = −1 for c1 = 0, as we use BPSK
modulation. Hence we can rewrite equation 5.1 into the form

x = hasa(ca) + hbsb(cb) + w. (5.3)

17



5. Two source network MAC phase estimation with BPSK ..................
ba, bb sa, sb br = ba ⊕ bb sr
0,0 -1,-1 0 -1
0,1 -1,1 1 1
1,0 1,-1 1 1
1,1 1,1 0 -1

Table 5.1: Decoding table for two source BPSK channel

5.1 Hierarchical demodulator in two source
channel

We will start with the simplest case, the AWGN channel without any fading
and delay.

xr = sa + sb + w. (5.4)

Hierarchical demodulator for AWGN channel is as follows

p(x|sA, sb) = 1
2πσ2

w

exp (− 1
2σ2

w

(xR − (sa + sb))2). (5.5)

Useful function is
ur(cr) = sa + sb, (5.6)

where cr is sequence ba bb, it means that for example if the data cr = 10, so
ba = 1 and bb = 0. Minimal hierarchical distance of this channel is

ρ2
Hmin(xr, ur(cr)) = min

čr
‖xr − ur(čr)‖2. (5.7)

As br = 0 for ur(cr) = ±2, and br = 1 for ur(cr) = 0, we can write

b̂r = 1 for |R[xr]| ≤ 1 (5.8)
b̂r = 0 for |R[xr]| > 1. (5.9)

18



.............................. 5.2. AWGN channel with fading
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Figure 5.2: Decision regions for ha = hb = 1

And for message retransmit to the receiver holds

sr = 2(b̂r −
1
2). (5.10)

5.2 AWGN channel with fading

The channel model for AWGN channel with fading, but without any delay, is

x = hasa + hbsb + w. (5.11)

Function ur(cr) = hasa + hbsb, that means, that hierarchical PDF is

p(xn|hasa,n, hbsb,n) = 1
2πσ2

w

exp (− 1
2σ2

w

‖xn − (hasa,n + hbsb,n)‖2), (5.12)

p(x|hasa, hbsb) =
N∑
n=1

1
2πσ2

w

exp (− 1
2σ2

w

‖xn − (hasa,n + hbsb,n)‖2), (5.13)

where N is dimension of messages. Hierarchical demodulator is then

p(x|haŝa, hbŝb) = arg min
ša ,̌sb

∑
n

1
2πσ2

w

exp (− 1
2σ2

w

‖xn − (hasa,n + hbsb,n)‖2),

(5.14)
and appropriate hierarchical distance

ρ2
Hmin(xn, [hasa,n, hbsb,n]) =

∑
n

min
ša,n,šb,n

‖xn − (haša,n + hbšb,n)‖2. (5.15)

Now please let us look at this function forming Euclidian metric in equation
5.15. We assume the properties of noise are unknown. We will hence use
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5. Two source network MAC phase estimation with BPSK ..................
that metric for the rest of this section. Note that this is the Least Squares
estimator mentioned above

ρ2(xn, [ha, hb, sa,n, sb,n]) = ‖xn‖2 + ‖hasa,n‖2 + ‖hbsb,n‖2 + 2R[< hasa,n;hbsb,n >]
−2R[< xn;hasa,n >]− 2R[< xn;hbsb,n >].

(5.16)

ejϕa , ejϕb lies on unity circle and sa,n, sb,n = ±1, > ‖ejϕasa, n‖2, respectively
‖ejϕbsb, n‖2 is then equals to 1 and hence can be discarded

ρ2(xn, [ha, hb, sa,n, sb,n]) = ‖xn‖2 + ‖ηa‖2 + ‖ηb‖2 + 2R[ηaηbsa,ns∗bej(ϕa−ϕb)]
−2R[|xn|ejϕx,nηas∗a,ne−jϕa ]− 2R[|xn|ejϕx,nηbs∗b,ne−jϕb ].

(5.17)

Assuming sa, sb are real, we can write this equation in the shape

ρ2(xn, [ha, hb, sa,n, sb,n]) = ‖xn‖2 + ‖ηa‖2 + ‖ηb‖2 + 2ηaηbsa,ns∗b,n cos(ϕa − ϕb)
−2|xn|ηas∗a,n cos(ϕx,n − ϕa)− 2|xn|ηbs∗b,n cos(ϕx,n − ϕb),

(5.18)

and if in addition sa, sb are orthogonal, we can furthermore simplify the
expression by discarding the term of both sa and sb

ρ2(xn, [ha, hb, sa,n, sb,n])2 = ‖xn‖2 + ‖ηa‖2 + ‖ηb‖2

−2|xn|ηas∗a,n cos(ϕx,n − ϕa)− 2|xn|ηbs∗b,n cos(ϕx,n − ϕb).
(5.19)

Hierarchical distance for the whole sequence is sum of all components

ρ2(x, [ha, hb, sa, sb]) =
∑
n

‖x‖2 + ‖ηa‖2 + ‖ηb‖2 + 2ηaηbsa, sb
∗ cos(ϕa − ϕb)

−2|x|ηasa
∗ cos(ϕx − ϕa)− 2|x|ηbs∗b,n cos(ϕx − ϕb),

(5.20)

respectively

ρ2(x, [ha, hb, sa, sb]) =
∑
n

‖x‖2 + ‖ηa‖2 + ‖ηb‖2 + 2ηaηbsa, sb
∗ cos(ϕa − ϕb)

−2|x|ηasa
∗ cos(ϕx − ϕa)− 2|x|ηbs∗b,n cos(ϕx − ϕb),

(5.21)

if the signals are orthogonal.

5.2.1 Estimation of real fading

We will at first discuss the case of the known phase shift. Without loss
of generality, we assume that phase shift of both signals are equal to zero,
ϕa = ϕb = 0, 0 < ηa, ηb ≤ 1. The signal received in relay is

x = ηasa + ηbsb + w. (5.22)
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.............................. 5.2. AWGN channel with fading

For PDF in channel with real fading holds

p(x|ηasa, ηbsb) =
∑
n

1
2πσ2

w

exp (− 1
2σ2

w

‖xn − (ηasa,n + ηbsb,n)‖2), (5.23)

Hierarchical distance metric is modification of equation 5.20 for ϕa = ϕb = 0

ρ2(x, [ηasa, ηbsb]) =
∑
n

(
‖xn‖2 + ‖ηa‖2 + ‖ηb‖2 + 2ηaηbsa,ns∗b,n

−2R[xn]ηas∗a,n − 2R[xn]ηbs∗b,n
)
.

(5.24)

Now our goal is to find the minimum of this function [η̂a, η̂b] = arg minη̌a,η̌b ρ2.
We will do it be derivating the function ρ2 with respect to ηa and ηb and set
it equal to zero. These derivates are

∂ρ2(x, [ηasa, ηbsb])
∂ηa

=
∑
n

(2ηa + 2ηbsa,ns∗b,n − 2R[xn]s∗a,n) (5.25)

∂ρ2(x, [ηasa, ηbsb])
∂ηb

=
∑
n

(2ηb + 2ηasa,ns∗b,n − 2R[xn]s∗b,n), (5.26)

and for ηi = η̂i holds

η̂a = 1
n

∑
n

(R[xn]s∗a,n − η̂bsa,ns∗b,n) (5.27)

η̂b = 1
n

∑
n

(R[xn]s∗b,n − η̂asa,ns∗b,n). (5.28)

CRLB

For minimal variance of fading parameter ηa, ηb in this channel holds

var(η̂a) ≥
(
−E

[
∂2 ln p(x|ηa, ηb)

∂η̂2
a

])−1

(5.29)

var(η̂b) ≥
(
−E

[
∂2 ln p(x|ηa, ηb)

∂η̂2
b

])−1

, (5.30)

where − ln p(x|ηa, ηb) = 1
σ2
w
ρ2. ρ2 is already known and was mentioned in

equation 5.24. First derivatives are

∂ ln p(x|ηa, ηb)
∂η̂a

= − 1
σ2
w

∑
n

(2ηa + 2ηbsa,ns∗b,n − 2R[xn]s∗a,n) (5.31)

∂ ln p(x|ηa, ηb)
∂η̂b

= − 1
σ2
w

∑
n

(2ηb + 2ηbsa,ns∗a,n − 2R[xn]s∗b,n). (5.32)

Second derivatives are straightforward

∂2 ln p(x|ηa, ηb)
∂η̂2

a

= − 1
σ2
w

∑
n

2 = −2N
σ2
w

(5.33)

21



5. Two source network MAC phase estimation with BPSK ..................
∂2 ln p(x|ηa, ηb)

∂η̂2
b

= − 1
σ2
w

∑
n

2 = −2N
σ2
w

. (5.34)

Fisher information matrices are

Jηa,ηa =
(
−E

[
∂2 ln p(x|ηa, ηb)

∂η̂2
a

])
= 2N
σ2
w

(5.35)

Jηb,ηb =
(
−E

[
∂2 ln p(x|ηa, ηb)

∂η̂2
b

])
= 2N
σ2
w

. (5.36)

And according to CRLB for variances holds

var(η̂a) ≥
σ2
w

2N (5.37)

var(η̂b) ≥
σ2
w

2N . (5.38)

Example

Assume set of two orthogonal signals given by matrix G

G =
[
1 1
1 −1

]
, (5.39)

where the first column represents signal sa and the second one signal sb. It
means, that sa,1, sa,2 are equal to 1 for ca = 1, and to -1 for ca = 0. For cb = 1
we get sb,1 = 1, sb,2 = −1 and for cb = 0 sb,1 = −1, respectively sb,2 = 1. We
can write the matrix S of signals sa, sb as

S =
[
1 1
1 −1

] [
d1
d2

]
, (5.40)

where di = 1 for ci = 1 and d1 = −1 for ci = 0. The signal x can be written
in the matrix form at the shape

X =
[
ha hb
ha −hb

] [
d1
d2

]
+
[
w1
w2

]
(5.41)

respectively

X =
[
ηa ηb
ηa −ηb

] [
d1
d2

]
+
[
w1
w2

]
. (5.42)

And in the equation form

x = hasa,1 + hbsb,1 + w1 + hasa,2 + hbsb,2 + w2 (5.43)

x = ηasa,1 + ηbsb,1 + w1 + ηasa,2 + ηbsb,2 + w2. (5.44)

First step is to decode signals sa and sb. We will use hierarchical distance
metric approximation, so |R[xn]| < 1 is decoded as a symbol 0, R[xn] < −1
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.............................. 5.2. AWGN channel with fading

x1 x2 ĉa d̂a ĉb d̂b

0 2 1 1 0 -1
0 -2 0 -1 1 1
2 0 1 1 1 1
-2 0 0 -1 0 -1

Table 5.2: Decoding table for channel with real fading

as a symbol -2 and R[xn] > 1 as a 2. It is not an optimal demodulator and
does not work well for low SNR and significant fading, but it is the best
option if both fading and SNR are unknown. The following table shows, how
ca, cb, respectively da, db are decoded.

From d̂a and d̂b we can now easily get ŝa and ŝb

Ŝ =
[
1 1
1 −1

] [
d̂1
d̂2

]
. (5.45)

Hierarchical distance metric is in this case

ρ2(x, [ηaŝa, ηbŝb]) =
2∑

n=1

(
‖xn‖2 + ‖ηa‖2 + ‖ηb‖2 + 2ηaηbŝa,nŝb,n

−2R[xn]ηaŝa,n − 2R[xn]ηbŝb,n
)
,

(5.46)

and its derivations are

∂ρ2(x, [ηaŝa, ηbŝb])
∂ηa

= 4ηa + 2ηbŝa,1ŝb,1 − 2R[x1]ŝa,1

+2ηbŝa,2ŝb,2 − 2R[x2]ŝa,2
(5.47)

∂ρ2(x, [ηaŝa, ηbŝb])
∂ηb

= 4ηb + 2ηaŝa,1ŝb,1 − 2R[x1]ŝb,1

+2ηaŝa,2ŝb,2 − 2R[x2]ŝb,2.
(5.48)

From the properties of sa sb holds ŝa,1 = ŝa,2, ŝb,1 = −ŝb,2, hence terms with
both ŝa and ŝb will be deducted, and for η̂a, η̂b holds

η̂a = 1
2(R[x1]ŝa,1 + R[x2]ŝa,2) (5.49)

η̂b = 1
2(R[x1]ŝb,1 + R[x2]ŝb,2). (5.50)

CRLB in this two sources example give us

var(η̂a) ≥
σ2
w

4 (5.51)

var(η̂a) ≥
σ2
w

4 . (5.52)
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5. Two source network MAC phase estimation with BPSK ..................
5.2.2 Estimation of complex fading

Now let us consider channel with complex fading hi = ηie
jϕi . Model of this

channel with two sources is

x = ηasae
jϕa + ηbsbe

jϕb + w. (5.53)

The hierarchical distance metric for this case was already mentioned above

ρ2(xn, [hasa,n, hbsb,n]) = ‖xn‖2 + ‖ηa‖2 + ‖ηb‖2 + 2ηaηbsa,ns∗b,n cos(ϕa − ϕb)
−2|xn|ηas∗a,n cos(ϕx,n − ϕa)− 2|xn|ηbs∗b,n cos(ϕx,n − ϕb)

(5.54)

ρ2(x, [hasa, hbsb]) =
∑
n

(
‖xn‖2 + ‖ηa‖2 + ‖ηb‖2 + 2ηaηbsa,ns∗b,n cos(ϕa − ϕb)

−2|xn|ηas∗a,n cos(ϕx,n − ϕa)− 2|xn|ηbs∗b,n cos(ϕx,n − ϕb)
)

(5.55)

Minimization of amplitude and phase fading is given by the following equations

∂ρ2(xn, [ĥasa,n, ĥbsb,n])
∂η̂a

=
∑
n

(
2η̂a + 2η̂bsa,ns∗b,n cos(ϕ̂a − ϕ̂b)

−2|R|[xn]s∗a,n cos(ϕx,n − ϕ̂a)
)

= 0
(5.56)

∂ρ2(xn, [ĥasa,n, ĥbsb,n])
∂η̂b

=
∑
n

(
2η̂b + 2η̂asa,ns∗b,n cos(ϕ̂a − ϕ̂b)

−2|R|[xn]s∗b,n cos(ϕx,n − ϕ̂b)
)

= 0
(5.57)

∂ρ2(xn, [ĥasa,n, ĥbsb,n])
∂ϕ̂a

=
∑
n

(
− 2η̂aη̂bsa,1s∗b,1 sin(ϕ̂a − ϕ̂b)

−2|xn|ηas∗a,2 sin(ϕx,n − ϕ̂a)
)

= 0
(5.58)

∂ρ2(xn, [ĥasa,n, ĥbsb,n])
∂ϕ̂b

=
∑
n

(
2η̂aη̂bsa,1s∗b,1 sin(ϕ̂a − ϕ̂b)

−2|xn|η̂bs∗b,2 sin(ϕx,n − ϕ̂b)
)

= 0.
(5.59)

CRLB

The results for CRLB of η̂a, η̂b will be the same as in the previous section.
We can then write

var(η̂a) ≥
σ2
w

2N (5.60)

var(η̂b) ≥
σ2
w

2N . (5.61)
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.............................. 5.2. AWGN channel with fading

First derivatives with respect to ϕa, respectively ϕb are

∂ ln p(x|ηa, ηb)
∂η̂a

= − 1
σ2
w

∑
n

(
− 2η̂aη̂bsa,1s∗b,1 sin(ϕ̂a − ϕ̂b)

−2|xn|ηas∗a,2 sin(ϕx,n − ϕ̂a)
) (5.62)

∂ ln p(x|ηa, ηb)
∂η̂b

= − 1
σ2
w

∑
n

(
2η̂aη̂bsa,1s∗b,1 sin(ϕ̂a − ϕ̂b)

−2|xn|η̂bs∗b,2 sin(ϕx,n − ϕ̂b)
)
.

(5.63)

And for second derivatives holds

∂2 ln p(x|ηa, ηb)
∂η̂2

a

= − 1
σ2
w

∑
n

(
− 2η̂aη̂bsa,1s∗b,1 cos(ϕ̂a − ϕ̂b)

+2|xn|ηas∗a,2 cos(ϕx,n − ϕ̂a)
) (5.64)

∂2 ln p(x|ηa, ηb)
∂η̂2

b

= − 1
σ2
w

∑
n

(
− 2η̂aη̂bsa,1s∗b,1 cos(ϕ̂a − ϕ̂b)

+2|xn|η̂bs∗b,2 cos(ϕx,n − ϕ̂b)
)
.

(5.65)

If signals sa, sb are orthogonal, this equations are reduced to forms

∂2 ln p(x|ηa, ηb)
∂η̂2

a

= − 1
σ2
w

∑
n

2|xn|ηas∗a,2 cos(ϕx,n − ϕ̂a) (5.66)

∂2 ln p(x|ηa, ηb)
∂η̂2

b

= − 1
σ2
w

∑
n

2|xn|η̂bs∗b,2 cos(ϕx,n − ϕ̂b). (5.67)

And lover bounds of variance of ϕa and ϕb are

var(ϕ̂a) ≥
σ2
w∑

n

(
− 2η̂aη̂bsa,1s∗b,1 cos(ϕ̂a − ϕ̂b) + 2|xn|ηas∗a,2 cos(ϕx,n − ϕ̂a)

)
(5.68)

var(ϕ̂b) ≥
σ2
w∑

n

(
− 2η̂aη̂bsa,1s∗b,1 cos(ϕ̂a − ϕ̂b) + 2|xn|η̂bs∗b,2 cos(ϕx,n − ϕ̂b)

) ,
(5.69)

and for orthogonal signals

var(ϕ̂a) ≥
σ2
w∑

n 2|xn|ηas∗a,2 cos(ϕx,n − ϕ̂a)
(5.70)

var(ϕ̂b) ≥
σ2
w∑

n 2|xn|η̂bs∗b,2 cos(ϕx,n − ϕ̂b)
. (5.71)
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Example

Consider the same set of orthogonal signals as in previous section, given by
matrices

S =
[
1 1
1 −1

] [
d1
d2

]
(5.72)

X =
[
ha hb
ha −hb

] [
d1
d2

]
+
[
w1
w2

]
. (5.73)

The equation form of the channel model is then

x = hasa,1 + hbsb,1 + w1 + hasa,2 + hbsb,2 + w2 (5.74)

x = ηae
jϕasa,1 + ηbe

jϕbsb,1 + w1 + ηae
jϕasa,2 + ηbe

jϕbsb,2 + w2. (5.75)

The demodulator again uses hierarchical distance metric, where decision
regions are bounden by lines R = ±1. The following table shows, how ca and
cb are decoded. And thence we can easily get ŝa,n, ŝb,n, which will be used

x1 x2 ĉa d̂a ĉb d̂b

0 2 1 1 0 -1
0 -2 0 -1 1 1
2 0 1 1 1 1
-2 0 0 -1 0 -1

Table 5.3: Decoding table for channel with complex fading

in minimization of parameters of fading. The hierarchical distance in this
channel is

ρ2(x, [haŝa, hbŝb]) =
2∑

n=1

(
‖x‖2 + ‖ηa‖2 + ‖ηb‖2 + 2ηaηbŝa,nŝb,n cos(ϕa − ϕb)

−2|xn|ηaŝa,n cos(ϕx − ϕa)− 2|xn|ηbŝb,n cos(ϕx − ϕb)
)
.

(5.76)

For derivations holds

∂ρ2(xn, [ĥaŝa,n, ĥbŝb,n])
∂η̂a

=
∑
n

(
2η̂a + 2η̂bŝa,nŝb,n cos(ϕ̂a − ϕ̂b)

−2|xn|ŝa,n cos(ϕx,n − ϕ̂a)
)

= 0
(5.77)

∂ρ2(xn, [ĥaŝa,n, ĥbŝb,n])
∂η̂b

=
∑
n

(
2η̂b + 2η̂aŝa,nŝb,n cos(ϕ̂a − ϕ̂b)

−2|xn|ŝb,n cos(ϕx,n − ϕ̂b)
)

= 0
(5.78)

∂ρ2(xn, [ĥaŝa,n, ĥbŝb,n])
∂ϕ̂a

=
∑
n

(
− 2η̂aη̂bŝa,1ŝb,1 sin(ϕ̂a − ϕ̂b)

−2|xn|ηaŝa,2 sin(ϕx,n − ϕ̂a)
)

= 0
(5.79)
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∂ρ2(xn, [ĥaŝa,n, ĥbŝb,n])
∂ϕ̂b

=
∑
n

(
2η̂aη̂bŝa,1ŝb,1 sin(ϕ̂a − ϕ̂b)

−2|xn|η̂bŝb,2 sin(ϕx,n − ϕ̂b)
)

= 0.
(5.80)

Thanks to the orthogonality of ŝa and ŝb (regardless of c), terms with both ŝa
and ŝb are zero, and these equations are a function of the only ha, respectively
hb, and this system is easily solvable. From first two equations we found out,
that η̂a, η̂b holds

η̂a = 1
2
(
|x1|ŝa,1 cos(ϕx,1 − ϕ̂a) + |x2|ŝa,2 cos(ϕx,2 − ϕ̂a)

)
(5.81)

η̂b = 1
2
(
|x1|ŝb,1 cos(ϕx,1 − ϕ̂b) + |x2|ŝb,2 cos(ϕx,2 − ϕ̂b)

)
(5.82)

We will get the third and fourth equation, by substituting ηi and multiplication
by -1, to the form

sin(ϕx,1 − ϕ̂a) cos(ϕx,1 − ϕ̂a)|x1|2ŝ2
a,1 + sin(ϕx,2 − ϕa) cos(ϕx,2 − ϕ̂a)|x2|2ŝ2

a,2

+2|x1||x2|ŝa,1ŝa,2
(

sin(ϕx,1 − ϕ̂a) cos(ϕx,2 − ϕ̂a) + sin(ϕx,2 − ϕ̂a) cos(ϕx,1 − ϕ̂a)
)

= 0
(5.83)

sin(ϕx,1 − ϕ̂b) cos(ϕx,1 − ϕ̂b)|x1|2ŝ2
b,1 + sin(ϕx,2 − ϕ̂b) cos(ϕx,2 − ϕ̂b)|x2|2ŝ2

b,2

+2|x1||x2|ŝb,1ŝb,2
(

sin(ϕx,1 − ϕ̂b) cos(ϕx,2 − ϕ̂b) + sin(ϕx,2 − ϕ̂b) cos(ϕx,1 − ϕ̂b) = 0.
(5.84)

We know, that |ŝi,n| = 1, i = a, b, n = 1, 2 and also ŝa,1 = ŝa,2, ŝb,2 = −ŝb,2
hence these equations can be simplified. After some manipulations, including
using of trigonometric identity cos(a) sin(a) = 1

2 sin(2a), we get the final
expressions

1
2 sin(2ϕx,1−2ϕ̂a)|x1|2+1

2 sin(2ϕx,2−2ϕ̂a)|x2|2+sin(ϕx,1+ϕx,2−2ϕ̂a)|x1||x2| = 0
(5.85)

1
2 sin(2ϕx,1−2ϕ̂b)|x1|2+1

2 sin(2ϕx,2−2ϕ̂b)|x2|2−sin(ϕx,1+ϕx,2−2ϕ̂b)|x1||x2| = 0.
(5.86)

And lover bounds of parameters provided by CRLB are

var(η̂a) ≥
σ2
w

4 (5.87)

var(η̂a) ≥
σ2
w

4 . (5.88)

var(ϕ̂a) ≥
σ2
w∑2

n=1 2|xn|ηas∗a,2 cos(ϕx,n − ϕ̂a)
(5.89)

var(ϕ̂b) ≥
σ2
w∑2

n=1 2|xn|η̂bs∗b,2 cos(ϕx,n − ϕ̂b)
. (5.90)
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5.2.3 Estimation of delay

However, the situation in a channel with time delays is more complex because
signals are not orthogonal anymore. In addition, we cannot use constellation
space representation, as function x is a function of time. Also, finding the
maximum by differentiating with respect to delay can be problematic, as
these derivatives are for some pulses discontinuous. Model of this channel is

x(t) = hasb(ca, t− τa) + hasb(cb, t− τb) + w(t). (5.91)

PDF for x(t) in this channel is given by the equation 5.92

p(x(t)|u(t)) = 1
2πσ2

w

exp (− 1
2σ2

w

‖x− (hasa(ca, t− τa) + hbsb(cb, t− τb))‖2),

(5.92)
and by dropping the properties of noise, we will get the hierarchical metric
distance

ρ2(x(t), u(t)) = ‖x− (hasa(ca, t− τa) + hbsb(cb, t− τb))‖2. (5.93)

Probability for whole signal x is given by integral with respect to time
throughout all time

p(x|u) =
∫ ∞
−∞

1
2πσ2

w

exp (− 1
2σ2

w

‖x− (hasa(ca, t− τa) + hbsb(cb, t− τb))‖2)dt,

(5.94)
and similarly for hierarchical distance

ρ2(x, u) =
∫ ∞
−∞
‖x− (hasa(ca, t− τa) + hbsb(cb, t− τb))‖2 dt. (5.95)

Assume signals sa(ca, t), sb(cb, t) are combinations of rectangular pulses

Π(t) =
{

1, if− 1
2 ≤ t ≤

1
2

0, else, and Π(t− 1) =
{

1, if1
2 ≤ t ≤

3
2

0, else, such that

sa(1, t) =
{

1, if− 1
2 ≤ t ≤

3
2

0, else (5.96)

sa(0, t) =
{
−1, if− 1

2 ≤ t ≤
3
2

0, else (5.97)

sb(1, t) =


1, if− 1

2 ≤ t ≤
1
2

−1, if1
2 < t ≤ 3

2
0, else

(5.98)

sb(0, t) =


−1, if− 1

2 ≤ t ≤
1
2

1, if1
2 < t ≤ 3

2
0, else.

(5.99)
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.............................. 5.2. AWGN channel with fading
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Figure 5.3: Signals possibly sent from source A
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Figure 5.4: Signals possibly sent from source B

However, in our simulation, the relay does not know the exact continuous
course, but only its samples. The model of the channel hence can be rewritten
to the shape

x(kTn) = h1s1(c, (k − τa)Tn) + h2s2((k − τb)Tn) + w(t), (5.100)

where Tn is step between two neighboring samples. Probabilities from equa-
tions 5.93 and 5.94 then will not be given by integrals but by the sums

p(x|u) =
∞∑

k=−∞

1
2πσ2

w

exp (− 1
2σ2

w

‖x− (hasb(ca, (k − τa)Tn) + hbsb(cb, (k − τb)Tn))‖2)

(5.101)

ρ2(x, u) =
∞∑

k=−∞
‖x− (has(ca, (k − τa)Tn) + hbs(cb, (k − τb)Tn))‖2. (5.102)

As mentioned above, finding analytic expressions is tricky for this problem,
so our goal is to find the numerical solver for this particular example. The
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5. Two source network MAC phase estimation with BPSK ..................
sum from equation 5.102 is meaningful only for samples, for which at least
one of the pair sa(ca, t− τa), sb(cb, t− τb) is non-zero, however it is not useful,
if we do not know the time delays, hence our first step will be estimation of
delays. For properties used in simulation (ηa, ηb ∈ (0.8, 1), φa, φb ∈ (−π

2 ,
π
2 ),

τa, τb ∈ (0, 1
2)) the best way seems to be examine real part of x(t), respectively

its differentiate. If absolute value of differentiate is greater than 0.5, this
sample is investigate as possible point of leading edge of signal sa(t − τa),
respectively sb(t− τb). And as lengths of signals, distance between its changes
and also time, in which signals without fading start, are known, we can
estimate delays τa and τb.
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Figure 5.5: Example of real part of x and its differentiate

As we have estimations τ̂a and τ̂b, we can use it in demodulation of sa(ca),
respectively sb(cb) according to expression

ρ2(x, [sa(ca), sb(cb)]) = arg min
ča,čb

kmax∑
kmin

‖x−(sa(ča, (k−τ̂a)Tn)+sb(čb, (k−τ̂b)Tn))‖2,

(5.103)
where kmin lays in −1

2 + min(τ̂a, τ̂b), and kmax in 3
2 + max(τ̂a, τ̂b). And the

last step is estimating the fading ha, hb

ρ2(x, u) = arg min
η̌a,ϕ̌a,η̌b,ϕ̌b

kmax∑
kmin

‖x−(η̌aϕ̌asa(ĉa, (k−τ̂a)Tn)+η̌b, ϕ̌bsb(ĉb, (k−τ̂b)Tn))‖2.

(5.104)
However, due the noise is impossible to find exact solution of this equation,
so it is solved numerically by comparing each options within regions (0.8,1),
respectively (−π

4 ,
π
4 ), with given step between them, simulation uses step 0.01

for η̂a, η̂b and 0.05 for ϕ̂a, ϕ̂b.

Note. This algorithm is not robust and does not work for low SNR, in which
estimation of delays fails.
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Chapter 6
Conclusion

This thesis provides algorithms for estimating channel parameters (amplitude,
phase and delay) in H-MAC of WPNC. In the beginning, fundamentals
of digital communication and statistical signal processing are introduced.
The next chapter describes the principles of AWGN on the example of
simple topologies. The main part is focused on BPSK modulated two source
H-MAC channel, for which we created Least squares estimator for channel
parameters using data decoded from Hierarchical demodulator. For estimation
of amplitude and phase, analytical expressions were founded, and for the
estimation of delay, numerical algorithms were used. For cases without delay,
limits were established by CRLB. These results were accompanied by Matlab
simulations for simple examples.

Further work could focus on more complicated topologies and modulations.
Also, algorithms for non-orthogonal pilot signals could be provided.
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Matlab files

decision_regions.m
example_realfading.m
example_complexfading.m
signals.m
example_delay.m
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