Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Visual 3D Terrain Mapping by a Robotic
Helicopter

Tomas Tichy

Supervisor: Ing. Jan Chudoba
May 2021

ii

S BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
e N
Student's name: Tichy Tomas Personal ID number: 474617

Faculty / Institute: ~ Faculty of Electrical Engineering

Department / Institute: Department of Cybernetics

L Study program: Cybernetics and Robotics

Il. Bachelor’s thesis details

Bachelor’s thesis title in English:

Visual 3D Terrain Mapping by a Robotic Helicopter

Bachelor’s thesis title in Czech:

Vizualni 3D mapovani terénu robotickou helikoptérou

Guidelines:

The thesis topic aims to application of visual 3D terrain mapping ,structure from motion“ methods for purpose of robotic
multi-rotor helicopter navigation. The result of the work should be a system able to

« create map of unknown environment in a convenient representation,

« geo-reference the map to global coordinate system (GNSS provided position) and

« plan safe low-altitude trajectory to an arbitrary chosen destination position.

Existing available methods may be used for 3D map reconstruction. The results will be experimentally evaluated either in
simulated or real environment.

Detailed tasks include

« do a research of existing available 3D mapping methods and choose suitable candidates for implementation,

» make yourself familiar with basics of multi-rotor UAV navigation,

» make a design of the mapping and navigation planning system, and do the necessary implementations,

« experimentally evaluate system performance and precision in a simulator or using real helicopter data.

Bibliography / sources:

[1] J. Zienkiewicz, A. Tsiotsios, A. Davison and S. Leutenegger, "Monocular, Real-Time Surface Reconstruction Using
Dynamic Level of Detail," 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, 2016, pp. 37-46, doi:
10.1109/3DV.2016.82.

[2] L. Doitsidis, A. Renzaglia, S. Weiss, E. Kosmatopoulos, D. Scaramuzza and R. Siegwart, "3D surveillance coverage
using maps extracted by a monocular SLAM algorithm," 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, San Francisco, CA, 2011, pp. 1661-1667, doi: 10.1109/IROS.2011.6094460.

[3] T. Suzuki, Y. Amano, T. Hashizume, and <. Suzuki, “3D Terrain Reconstruction by Small Unmanned Aerial Vehicle
Using SIFT-Based Monocular SLAM,” J. Robot. Mechatron., Vol.23, No.2, pp. 292-301, 2011.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Chudoba, Intelligent and Mobile Robotics, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 15.09.2020 Deadline for bachelor thesis submission: 21.05.2021

Assignment valid until: 19.02.2022

Ing. Jan Chudoba prof. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my supervisor Ing.
Jan Chudoba for his patience and indis-
pensable advising. I am also grateful for
the support my parents, along with my
significant other provided throughout my
whole studies.

Declaration

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, 16. May 2021

signature

Abstract

The subject of this thesis is the visual 3D
reconstruction of terrain using a robotic
helicopter for the purpose of navigation.
Publicly available programs are used to
recover 3D data from images generated
with the AirSim simulator. The data
is processed into a more convenient 2D
heightmap and occupancy grid. The nav-
igation is executed by the Theta* algo-
rithm. Subsequently, an experiment is
conducted to compare three open-source
photogrammetry programs. The best can-
didate is used to construct a navigation
system, whose performance is experimen-
tally evaluated with satisfactory results.

Keywords: photogrammetry, terrain
mapping, UAV navigation, AirSim

Supervisor: Ing. Jan Chudoba
CIIRC,

Jugoslavskych partyzant 3,
Praha 6

vi

Abstrakt

Predmétem této prace je vizualni 3D re-
konstrukce terénu s vyuzitim robotické
helikoptéry za ticelem navigace. Jsou pou-
zity verejné dostupné programy k ziskani
3D dat z fotografii vygenerovanych za po-
moci AirSim simulatoru. Tato data jsou
nasledné zpracovana do vhodnéjsi repre-
zentace pro navigaci v podobé 2D vyskové
mapy a miizky obsazenosti. Navigace je
provedena pomoci algoritmu Theta*. Dale
jsou porovnany tii verejné dostupné im-
plementace fotogrammetrie. Vybrany pro-
gram je pouzit pro sestaveni navigac¢niho
systému, jehoz Gicinnost je experimentalné
ovérena s uspokojivymi vysledky.

Klicova slova: fotogrammetrie,
mapovani terénu, navigace UAV, AirSim

Pteklad nazvu: Vizudlni 3D mapovani
terénu robotickou helikoptérou

Contents

1 Introduction 1]

1.1 Context

1.2 Specification

2 The theory behind

photogrammetry 3

2.1 Mathematical apparatus
2.1.1 Notation 3
2.1.2 Transformation of coordinates 3
2.1.3 Homogeneous coordinates
2.1.4 Vector product
2.1.5 Convolution on matrices 5

2.2 Modeling the camera
2.2.1 Pinhole camera model
2.2.2 Normalized image coordinates

2.2.3 Lens distortion @
2.3 Depth estimation
2.3.1 Stereo depth estimation.
2.3.2 Triangulation..............
2.4 Challenges
2.4.1 Camera calibration......... 12|
2.4.2 Correspondence problem
2.4.3 Pose estimation [14]
2.5 Photogrammetry pipeline
2.5.1 Structure-from-Motion. 15
2.5.2 Multi-view Stereo
3 Geographic coordinate systems [17
B1ECEF 17
B2WGS. ...
B3ENU ... 17
4 Used software 19
4.1 External libraries
4.1.1 OpenDroneMap............
4.1.2 openMVG + openMVS
413 COLMAP................. 211
4.2 Simulator 21]
4.2.1 AirSim L.
4.2.2 Unreal Engine
5 Implementation 27
5.1 AirSim interface
5.1.1 airsim_env.py 27|
5.1.2 Point cloud from AirSim
5.1.3 Simulating lens distortion . . .

5.2 Photogrammetry data processing

52.1 COLMAP................. 31
5.2.2 OpenDroneMap............

vii

5.2.3 openMVG + openMVS
5.3 Preprocessing for path planning
5.3.1 Heightmap generation
5.3.2 Occupancy grid generation . .
5.4 Path planning
5.4.1 Theta* 36]
6 Experiments 139
6.1 Comparison of methods

6.1.1 Experiment without distortion

6.1.2 Experiment with distortion . .
6.1.3 Comparison discussion. 49
6.2 Final navigation system
6.2.1 Performance evaluation 50l
7 Conclusions B3
7.1 Summary
7.2 Future work
A Bibliography 55|
B DVD content 57|

Figures
2.1 Coordinate frame transformation [

2.2 Pinhole camera at the origin
2.3 General pinhole camera.........

2.4 Stereo depth estimation
2.5 Epipolar geometry
3.1 Geographic coordinate systems .
4.1 AirSim simulation
5.1 Point cloud from AirSim....... 30/

5.2 Heightmap and its grown version

5.3 Absolute height occupancy
5.4 Gradient magnitudes and
corresponding occupancy grid
5.5 Combined occupancy and its
grOWN VErSion 136
5.6 Path generated by Theta*
5.7 Theta* pseudo-code

5.8 Update node method pseudocode

6.1 Error histogram without

distortion [41]
6.2 Error distribution without

distortion 42|
6.3 Heightmaps without distortion .
6.4 Error map without distortion. . .
6.5 Error histogram with distortion.

6.6 Error distribution with distortion

6.7 Heightmaps with distortion
6.8 Error map with distortion
6.9 Navigation system scheme
6.10 Generated heightmap
6.11 Generated path between two

points il b1
B.1 DVD content 57

viii

Tables

2.1 Used symbolic notation.........
4.1 OpenDroneMap binary calls in

Order . ..o 20)
4.2 COLMAP binary calls in order .
4.3 Unreal Engine LOD disabling

commands
5.1 Coordinate frames used by the

photogrammetry implementations .
5.2 PDAL Pipeline arguments
6.1 Model aligner parameters
6.2 Heuristics without distortion ... [41]

6.3 Error statistics without distortion [41]
6.4 Heuristics with distortion 45|
6.5 Error statistics with distortion.. 45|

Chapter 1

Introduction

. 1.1 Context

Robotics are becoming a cheaper and more effective tool for all sectors of
economy. Major part of presently employed robotic systems are stationary
machines in factories performing repetitive tasks. With recent advancement
and increased accessibility of electronics, software and artificial intelligence,
mobile robotics are becoming more prevalent most notably in the form of
drones (robotic helicopters). These have great potential for use in many
fields of profession including agriculture, civil engineering, archeology, law
enforcement or entertainment. Their use however often requires a human
supervisor, which somewhat restricts their efficiency. Making drones navigate
autonomously is therefore highly desirable in order to enable their adoption
by all industries that could use them.

To navigate through the environment, a model of the surrounding obstacles
has to be first obtained, in which a collision-free path can be searched for using
path finding algorithms. To construct this model, various sensor types can be
used in practice such as LIDAR or an ordinary RGB camera. The camera is a
popular choice for this task thanks to its low cost, low weight, small footprint
and large range. However, whereas LIDAR can measure distance to obstacles
directly, the camera provides only 2D images of the scene. From these images,
the 3D information needs to be recovered using 3D reconstruction algorithms.
There are in general two approaches to solving this problem: simultaneous
localisation and mapping (SLAM) and photogrammetry. Both SLAM and
photogrammetry have undergone vast advancement in the past 20 years due
to rising accessibility of digital cameras and computing power. Whereas
SLAM focuses on processing the data from the camera in real-time and
providing a sparse and often inaccurate representation of the surroundings,
photogrammetry focuses on dense and accurate reconstruction at the expense
of processing rate.

1. Introduction

. W) Specification

The subject of this thesis is the use of visual terrain 3D reconstruction
methods for drone navigation purposes. The scene is captured utilizing an
RGB camera mounted on an aerial vehicle with precisely known position.
An accurate and complete dense map of the environment is desired, making
photogrammetry techniques preferable over less accurate SLAM. There are
several publicly available photogrammetry implementations demanding an
experimental comparison of suitable candidates to be conducted in order to
select the best option. An appropriate method for processing the 3D model
produced by the photogrammetry software must be devised to transform it
into a convenient representation for latter navigation. Finally a navigation
system will be implemented to enable save low-altitude flight above the
mapped terrain. Performance of the whole system will be experimentally
evaluated using a photo-realistic drone simulator.

Chapter 2
The theory behind photogrammetry

B 2.1 Mathematical apparatus

B 2.1.1 Notation

Unless otherwise stated, the notation described in table |2.1]is used throughout
this thesis. One exception is the X symbol used to designate a 3D object point
(instead of a matrix) in sections and This notation was adopted
from [I] and is commonly used in computer vision. This small exception to
the otherwise standard notation (in table improves readability.

Symbol Meaning
x, X scalar
0O; coordinate frame ¢ or its origin depend-

ing on context

column vector

row vector

x with respect to O;

matrix A

inverse matrix

matrix transpose

matrix inverse transpose

= A; renaming the A; matrix for readability

(1,2) element of A on the first row and sec-
ond column

Table 2.1: Used symbolic notation

B 2.1.2 Transformation of coordinates

Suppose we have two coordinate system O;, O; and a vector x with coordinates
x) € R3 as illustrated in figure The relative pose of O; with respect to O;
can be described using a rotation matrix R := R/ € R3*3 and a translation
vector t := t;- e R3.

The transformation of the vector coordinates x’ from O; to O; can than

3

2. The theory behind photogrammetry

Figure 2.1: Coordinate frame transformation

be written as:

x' =Rx/ + t. (2.1)

B 2.1.3 Homogeneous coordinates

The expression (2.1) can be simplified if we introduce homogeneous coordi-
nates. The notation X is used to denote the homogeneous coordinates of vector
x. Let x = [z,9,2]T € R3, then X = [wx, wy, wz, w]T, where w € R\ {0} and
is commonly chosen to be w = 1. We can use following relations to transform
between homogeneous and non-homogeneous coordinates of vectors in R3:

x x
x x/w
y| — ZZ/ Zz/ — |y/w (2.2)
z 1 w z/w

and similarly for vectors in R?:
u Y Y u/w
[] — |v v| — [] . (2.3)
v v/w
1 w

From this follows, that two homogeneous representations of a vector that
differ up to scale x; = Axa, A € R\ {0} can be considered equivalent and
represent the same non-homogeneous coordinates. This fact is denoted using

4

2.2. Modeling the camera

the notation: X; ~ X2. Using homogeneous coordinates, we can rewrite (2.1))
as:

X' =T/, (2.4)
where
. |RY Ot
L— J J
T; [0 1] (2.5)

is called homogeneous transformation matrix. In this way homogeneous
coordinates allow us expressing a change of coordinate frame using a simple
matrix multiplication.

B 2.1.4 Vector product

The vector product of two vectors x = [z1, 2, 23]7, ¥ = [y1, %2, y3]? in R? is
defined as:

ToYy3 — T3Y2
XXy= |z3y1 —21Y3] , (2.6)
T1Y2 — X2Y1

the same result can also be achieved by left-multiplying y by the following
skew-symmetric (anti-symmetric) matrix:

0 —XI3 X9
Xx=|23 0 -z (2.7)
—X9 I 0

Il 2.1.5 Convolution on matrices

The two dimensional convolution on two matrices A € R™*" and B € RF*!

where m < k An <[is defined as a new matrix C € R(m—k+1)x(n—1+1) whoge
elements are obtained as follows:
m n
Clu,v) => Y A(i,j)B(r+c—1c+j—1). (2.8)
i=1j=1

This discrete version of convolution on matrices is commonly used in computer
vision for image processing, where the matrix A is often referred to as the
kernel, B is the input image matrix and C is the output image matrix.

B 22 Modeling the camera

In this section the basics of the pinhole camera model and how the image is
formed will be covered.

2. The theory behind photogrammetry

O. [X7Y72]T
i .

\fy

Figure 2.2: Pinhole camera at the origin

B 2.2.1 Pinhole camera model

Pinhole camera model is the simplest way to model the projection of 3D
points into the so called image plane. The image points will be represented
by the two-dimensional coordinates [u,v]” unless stated otherwise. These
coordinates are any real numbers in theory, but in practice are restricted to
whole numbers and represent pixel coordinates in an image. A camera is
always associated with a coordinate frame, with which it shares its center
and the image plane lies in the zy-plane of this coordinate frame.

B Camera at the origin

Suppose we have a pinhole camera C' with its center at the origin and a point
X = [X,Y, Z]T as depicted in figure 2.2. The image coordinates x = [u, v]”
(the image point) of the projection of X are obtained as follows:

X Y
u:fmf_‘_uo: 'U:fyg“‘voa (29)

where f, and f, are the focal lengths for x and y axis respectively. The
[ug, vo]T represent the coordinates of the principal point. The equation

6

2.2. Modeling the camera

(2.9) can be written in terms of homogeneous coordinates of the image point
as:

fe 0 wo| | X

u
v~ 10 fy, wl||Y], (2.10)
1 0 0 1 A

—_——

K

where K is known as the camera intrinsic matrix or as the calibration
matrix. Sometimes the image coordinate axes are not perfectly square and
that can be modelled by adding a skew term s to the intrinsic matrix:

fz s up
K=|0 f, w|, (2.11)
0 0 1

though the term s is usually zero in modern cameras and is thus omitted.
Moreover the focal lengths f, and f, tend to be equal in magnitude and the
principal point [ug, vp]” is often in the center of the image. These facts then
justify the most commonly used form of the intrinsic matrix:

f 0 w/2
K=[0 f h/2|, (2.12)
0 0 1

where the f is called the focal length and w and h denote the width and
height of the image respectively. Unless stated otherwise, the intrinsic matrix
of the form [2.12 will be considered.

B General camera orientation

Suppose we have a 3D point X* = [X,Y, Z]T, with O, being the world
coordinate system and a camera C' with its orientation defined by a rotation
matrix RS, € R33 and its center ¢ = [cz, ¢y, c;|T as illustrated in figure 2.3,
We need to first transform the coordinates of X* into the cameras coordinate
frame and then apply the pinhole camera model (2.10)):

U f 0 w
vl ~ |0 f w|(R,XY-R;cY). (2.13)
1 0 0 1
We can again simplify the equation (2.13) by using homogeneous coordinates
X" and by introducing a new vector t¢, = —RSc" that represents the
coordinates of world origin in the camera’s coordinate frame:
U f 0 wf (1l 00 O R ¢ ‘;(
vl ~10 f wvw| |0 1 0O [0“’ i"} 7| (2.14)
1 00 1[]0 0 1 0 1
TC
w

2. The theory behind photogrammetry

y Yy [wo, vo] "

Figure 2.3: General pinhole camera

where T%, is called the extrinsic camera matrix. The three matrices in
equation (2.14) can be multiplied together to form a so-called camera matrix:

P=K|[l 0|T;, (2.15)

which finally enables us to formulate the pinhole camera model as a simple
linear transformation between homogeneous coordinates of the image point x
and the 3D point X"

< W

M
Il
!

(2.16)

B 2.2.2 Normalized image coordinates

Suppose we have a point X! seen by two cameras C; and Cs, with the first
camera at origin and the second camera’s pose described by a homogeneous
transformation matrix T?. Suppose that the cameras have intrinsic matrices
K; and K, respectively. Then the image coordinates X1 = [ug, vy, 1]T and
Xo = [ug, vz, 1]T of point X! captured by cameras C; and Cy respectively can
be obtained using (2.10) and (2.13)) as follows:

%1 ~ K X!,

%y ~ Ky (RIX! +¢2) . (2:17)

2.2. Modeling the camera

We then define the homogeneous normalized image coordinates of X; and Xs
as:

Yy, = K_lil)

V1 to (2.18)

Y, =K Xxo.
The normalized coordinates represent how the cameras would see the point
X!, if both cameras had intrinsic matrices equal to unity i.e. unit focal length
and the principal point at [0,0]7. In fact substituting (2.17) into (2.18)) yields:

g1~ X, (2.19)
¥ ~ (RIX! +¢2) . ‘

The equation (2.9)) can be rewritten using the normalized coordinates (sub-
stituting f, = f, = f = 1 and [ug, vo]? = 0) as follows:

BRI
y=—|Y|==X, (2.20)
Z\,| z

where y are the homogeneous normalized image coordinates and X =
[X,Y, Z]T are the 3D point coordinates in the cameras reference frame.

B 2.2.3 Lens distortion

For real-world cameras the pinhole camera model is often not accurate enough,
because in reality cameras use lenses that are not infinitely small as the pinhole
model assumes. These lenses distort the image, which can be accounted for
and corrected in software using the Brown-Conrady [2] model'. Suppose that
Y4 = [ug,vq)T are the normalized image coordinates in the distorted image
and y = [u,v]? are the normalized image coordinates in the undistorted
image corresponding to the same 3D object point. That the lens distortion
can be modelled as follows:

ug =u+ (u — UC)(K1T2 + K2r4)—|—
+ [PLr? 4 200 = ue)?) + 2Py (u = ue) (v —ve)|

(2.21)
Vg =V + (U — UC)(K1T2 + K27”4)+
+ {2P1(u —ue) (v —ve) + Pa(r? +2(v — UC)Q)} ,
with 72 = u? + v?
where y. = [uc,v.] is the distortion center. The parameters K; and Kj

are referred to as radial distortion coefficients and P; and P, are called
tangential distortion coefficient. Using the equation (2.21)) it is possible
to re-sample a distorted image into an image that would be captured by an
ideal pinhole camera. This process is referred to as image undistortion.

'Higher order approximation than (2.21)) can be used and thus a more accurate model
can be obtained, but two coefficient usually suffice for practical applications.

9

2. The theory behind photogrammetry
B Intrinsic parameters

The distortion coefficients together with the parameters in the intrinsic matrix
K are called the intrinsic parameters of the camera and if known, the
camera is said to be calibrated.

B 23 Depth estimation

Depth estimation refers to the process of determining the depth of a 3D
point, whose image we have captured. For depth estimation to work, it is
necessary for the point to be seen by at least two cameras with non-zero
relative translation.

B 2.3.1 Stereo depth estimation

Suppose we have two cameras (] and Cy that share a common orientation,
focal length f and are only translated with respect to one another by distance
B as illustrated in figure . Let x1 = [u1,v1]7, Xo = [ug,v2]T denote the
image coordinates of projections of point X into the image planes of C', and
(5, then we define the disparity d of X as:

d= Ul — ug. (2.22)

The distance of point X from the zy-plane of the two cameras can be obtained
using similarity of triangles shown on figure 2.4 as follows:

7z ==, (2.23)

where Z is depth of the point X. With known depth the X and Y coordinates
in the C coordinate frame can be deduced:

X
X w . y_,m_Bu
Z f f d
(2.24)
Z—ﬂ — Y—Zﬂ—%
Z f T Ffd

10

2.3. Depth estimation

AT "
: \/ D, & SR N
fo o !
[Fa !
[9 I
v : . |
> . I
Up L
_U/Q Z A ANZ |
|
: Z
"" "o !
0 i o !
| A '
| N |
f | AN I
| |
I : I
V... . & 5 . R N 5
Cy r L (y x’
— e
s U1 —UuU2
- - = S >
B
Figure 2.4: Stereco depth estimation
B 2.3.2 Triangulation
B General camera configuration
Consider the situation from section with:
r t
R2 t2 1
T2 = "1 ., RI=|r¥|, t2= |ty
0o 1 T

Then we can express the us coordinate of y, using (2.20):

X+t oy +4/z

Uy = = : 2.25
2 rgxl + 13 I’g}N’l +t3/Z ()
Rearranging this expression:
usr3 Y t3/Z =viy, +t1/Z
oT3y1 +usls/Z =11y, +41/7, (
1 ~ ~ 2.26)
— - (uats —t1) = 1y, — uar3yi,
which after solving for the Z coordinate of X':
7 _tels—h (2.27)

r{y, —uordy,’
enables us to recover the original 3D point X! coordinates using (2.20) as:
X! =Zy,. (2.28)

11

2. The theory behind photogrammetry

B Rectified camera pair

If we consider the so called rectified camera configuration where:

1 00 —-B
RZ=10 1 0|, t*=]0|. (2.29)
0 01 0
the equation (2.27) has a particularly simple form:
B
7 ==, 2.30
- (230)

that we have already seen in section [2.3.1l This rectified configuration is
typical for stereo camera rigs. The formula (2.30) can be used even when
the original cameras are not in this rectified configuration. Assuming the
relative pose of the cameras is known, it is possible to warp the images into
the rectified form in a process called camera rectification. The details of
this technique are beyond the scope of this work.

B 2.4 Challenges

What enabled the recovery of a 3D point seen by the camera in section [2.3.2
were known intrinsic and extrinsic parameters of both cameras. Furthermore
the corresponding image points X2 and X; belonging to the same 3D point
were assumed to be known. These conditions are however usually not fulfilled
in the real world and present the main problem for photogrammetry.

B 2.4.1 Camera calibration

The intrinsic parameters are usually obtained using camera calibration tech-
niques. This is commonly done by capturing several images of 3D points
with known location while varying the camera’s pose. Using non-linear
optimization it is then possible to solve for the camera’s intrinsic parameters.

Bl 2.4.2 Correspondence problem

Suppose we have two cameras C7 and Cy with camera matrices P; and Py
respectively and we wish to find the image coordinates X5 for given image
coordinates X7 such that:

X1 = Plfiw VAN X9 = ngw R (2.31)

where X" are homogeneous coordinates of some 3D point satisfying this
relation. This is known as the correspondence problem and is the key challenge
in computer vision. It is usually solved by comparing small patches of the
two images and finding ones which look similar enough. Though it seems
like we have to search through the whole image to find Xs, this problem
can actually be reduced to a line search in the second image using epipolar
geometry constraints.

12

2.4. Challenges

B Epipolar geometry

Suppose two cameras C; and Cy with relative pose defined by R := R4 and
t:= t% as depicted in figure 2.5l The vectors X := X!, X’ := X2 and t lie in
the same plane in 3D space, which can be expressed as:

txX)' (RX' +t)=0. (2.32)
Now using skew-symmetric matrix to reformulate the vector product we gain:
([t]xX)" (RX' +t) = XT[t]LRX' = 0. (2.33)

We can rewrite this using the normalized image coordinates y and y’ repre-
senting the projections of X and X' respectively using the relation (2.20):

y'Ey =0, (2.34)

where the matrix E = [t|LR € R3*3 is called the Essential matrix and the
equation (2.34) represents the so called epipolar constraint for normalized
coordinates. Suppose the cameras C; and Cy have intrinsic matrices K; and
K respectively, then using (2.18) we can express this equation for the image
coordinates X and X’ as follows:

T
(Ki'x) E(K;'x) =0
(2.35)
— x"K;"EK;'% =0,
which we can rewrite as

xTFx' =0, (2.36)

where the matrix F = K{?EK;' € R>3 is called the Fundamental
matrix and the equation (2.36) represents the epipolar constraint for image
coordinates. Let ¥ = [u,v,1]7 represent a fixed point in the first camera’s
image. Then denoting 17 := y7E in the equation (2.34) yields:

1y = [b] |v| =hu+lv+15=0 (2.37)

—_

for the normalized image coordinates (or similarly for 17 .= xTF in 2.36)).
The equation (2.37) constraints the location of the corresponding image point
¥’ (X) to a line in the second image. Such a line is called the epipolar line.

13

2. The theory behind photogrammetry

Figure 2.5: Epipolar geometry

B 2.4.3 Pose estimation

Without diving too deep into the pose estimation problem, we will provide
an outline of a method of recovering relative pose of the two cameras C and
C5. First at least some correspondences need to be established between the
images (usually 8). At this point, the epipolar geometry can not be exploited,
because the pose is unknown. This is why the search often is reduced to only
features - interesting, well distinguishable points in the image, where we can
robustly estimate the correspondences. With the corresponding points we
can estimate the epipolar or the fundamental matrix depending on whether
the cameras are calibrated or not. From the epipolar or fundamental matrix,
it is then possible to extract the relative orientation of the two cameras up to
scale. A more in-depth explanation can be found in [3} [I].

. 2.5 Photogrammetry pipeline

Photogrammetry is the process of taking a set of unordered images and creat-
ing a 3D model of the captured scene. Most of the available implementations
output this 3D model in the form of a point cloud, i.e. a set of 3D points
that represent the real world scene being captured. Nearly all of the present
state-of-the art methods can be divided into two separate stages: Structure-
from-Motion (SfM) and Multi-View Stereo (M'VS). Sometimes there

14

2.5. Photogrammetry pipeline

is also a third stage that deals with creating a possibly textured triangular
mesh from this point cloud as a post-processing step. However as we are
only interested in the generated point cloud, this stage will not be considered
further.

B 2.5.1 Structure-from-Motion

Structure from motion tries to estimate mainly the intrinsic and extrinsic
parameters of cameras in the scene. In the process it also reconstruct a sparse
point cloud of the environment, which is however often too sparse for the
desired application. It can be divided into a sequence of three steps:

1. Feature detection and description

First of all, every image is searched for features - groups of pixels that
are well distinguishable from other parts of the image. For each of these
features a so called descriptor is computed, which serves as a signature
of the feature, so it can later be found in other images and is stored
together with the feature coordinates. In the present the most popular
method for selecting good features is SIFT [4].

2. Feature matching and filtering

In this step the features are matched against the features in other images
to form correspondences based on some similarity measure of their
descriptors. After the correspondences are established, the outliers are
usually filtered out using RANSAC (random sample consensus) [5]
scheme, where the largest set of features satisfying an epipolar constraint
(Sec. [2.4.2)) is searched for in the corresponding image pair and the rest
is discarded. The result are geometrically consistent pairs of features in
the images, which are likely to correspond to the same 3D points.

3. Solving for SfM model and bundle adjustment

In this step the relative poses of all the cameras are estimated along with
the intrinsic parameters and are then iteratively improved in a process
called bundle adjustment?. The most popular approach for this step is
called Incremental SfM, where first an initial image pair is selected
and its pose estimated, than more images are incrementally added to
the reconstruction and bundle adjusted one by one.

B 2.5.2 Multi-view Stereo

The MVS stage takes in the images together with their cameras’ poses and
intrinsics and outputs a dense point cloud representation of the scene. MVS
is usually a lot slower than the SfM stage and accounts for most of the
processing time. In the MVS stage, using the intrinsics estimated in SfM, the

2Non-linear optimization problem that is usually solved using sparse Levenberg-
Marquardt algorithm

15

2. The theory behind photogrammetry

distortion (Sec. 2.2.3) is removed from the images. On the undistorted images
it then runs a dense correspondence algorithm i.e. correspondence search for
every pixel in the image. The correspondence problem can be reduced into a
line search problem thanks to the epipolar constraint (Sec. 2.4.2)) since the
pose is already known. The images can also be pairwise rectified into the
stereo configuration (Sec. [2.3.1)) in order to exploit a more memory-efficient
horizontal line search in the images. Using the correspondence it is then
possible to triangulate (Sec. 2.3.2) the points in the image.

16

Chapter 3

Geographic coordinate systems

This section is a brief introduction to coordinate systems commonly used for
expressing the geographic position (position on Earth).

B 3.1 ECEF

ECEF (Earth Centered Earth Fixed) refers to a cartesian coordinate system
with its origin at the Earth’s center of mass. The z axis coincides with the
Earth’s geodetic north, the z axis intersects the Earth at its equator and
prime meridian. The y axis completes a right-handed cartesian coordinate
system.

B 32 was

The WGS (World Geodetic System) is a spherical coordinate system with
its origin at the Earth’s center of mass. The three coordinates longitude,
latitude and altitude define position with respect to a reference ellipsoid that
approximates shape of the Earth. Latitude denotes the angle between a point
and the Earth’s equator, longitude denotes the angle between a point and
the Earth’s prime meridian and altitude is the distance from Earth’s surface.
This coordinate system is used for example by the GPS system.

B 33 EnU

The ENU (East North Up) is a cartesian coordinate system with its origin
at the Earth’s surface, the x axis pointing to the east, y axis pointing to the
north and the z axis pointing upwards. It is a useful coordinate frame for
small areas, where the Earth’s curvature does not have much of an effect and
is commonly used for example in aviation. Note that to describe the ENU
coordinates one must first specify where is the origin on the Earth’s surface.
This origin can be described using the ECEF or WGS coordinates.

17

3. Geographic coordinate systems

B lllustration

The figure depicts the ENU, ECEF and WGS coordinate systems as
situated on the Earth. The x, vy, z axes belong to the ECEF, the lon and lat
angles denote the longitude and latitude of the WGS system and the East,
North, Up axes denote the ENU coordinate system. The altitude coordinate
of the WGS system is the same as the Up coordinate in the ENU.

g
.8
<
o
=
=
O
£
—
A,

=
e
I~
>
o~
o
S

Figure 3.1: Geographic coordinate systems

18

Chapter 4

Used software

B 4.1 External libraries

As there are many open-source implementations of photogrammetry software
available, it is difficult to select one over the others, since it is not clear which
one is most suitable for the task of terrain mapping. Therefore three of the
most popular libraries in photogrammetry community [6] [7] were selected for
latter comparison.

Bl 4.1.1 OpenDroneMap

B About

OpenDroneMap [§] (ODM) is a popular photogrammetry tool designed specif-
ically for terrain mapping using a UAV equipped with a camera. After
creating the 3D reconstruction, it also by default creates a textured mesh,
orthophoto, digital elevation model and can even geo-reference thesem using
GPS data from the drone. These functions can be useful for creating maps of
the environment, but we will utilize only the generated point cloud. ODM is
written in Python which is mostly used here as a scripting language and the
computationally expensive tasks are performed by external programs that
are mainly written in faster C++.

B Usage

Once the external libraries are compiled, the main Python script run.py that
takes care of the whole reconstruction process can be run. User only has to
specify the project path, where the images are stored and the output will be
saved. It also offers many options to customize the reconstruction process,
the most important are shown in table

The coordinate system relation to GPS coordinates is stored along with the data.

19

4. Used software

Argument Function
determines the project directory, which must in-
--project-path clude a directory "images" with the images for
reconstruction
--feature-quality determines feature extraction quality
. determines by how much are the images scaled
~pe-quality down for the MVS stage
enables using a JSON? file containing camera in-
—eameras trinsics
--geo enables using a text file storing GPS data
_split enables splitting the images into groups before

reconstruction to save memory

how many nearest cameras (with respect to GPS

--matcher-neighb . .
PAtEher-nelgabours coordinates) to use for feature pre-matching

Table 4.1: OpenDroneMap binary calls in order

B 4.1.2 openMVG + openMVS

B About

Open Multi-View Stereo (OpenMVS) [9] is one of the most popular photogram-
metry implementations available to public, thanks to its great performance
and speed. Besides the point cloud generation it also includes the functionality
of textured mesh generation. It however includes only the MVS stage of
photogrammetry and needs a full SfM reconstruction completed by a different
program. A popular choice in the community for its SfM complement is the
OpenMVG [10] library, which is what we are going to use. Both OpenMVG
and OpenMVS are written in C++.

B Usage

Once compiled, both of these libraries can be used via convenient binaries, one
for each step of the reconstruction pipeline. This provides users great flexibility
to tailor the program for their needs. The most important OpenMVG binaries
are:

1. openMVG__main_ SfMInit_ ImageListing

Takes care of loading the images database and camera intrinsics.

2. openMVG_ main__ ComputeFeatures

Computes features and descriptors.

3. openMVG__main_ ComputeMatches

Creates a list of corresponding matches.

4. openMVG__main_ IncrementalSfM

Reconstructs the cameras’ poses incrementally.

20

4.2. Simulator

5. openMVG_ main_ ChangeLocalOrigin

Changes the scale and origin of the SfM reconstruction, so that it is
better handled by the MVS stage.

6. openMVG__main_ geodesy_ registration_ to_ gps_ position

Outputs transformation parameters from the SfM coordinates into the
specified GPS coordinates. This can be later used to georeference the
MVS output.

7. openMVG__main_openMVG2openMVS
Exports the SfM reconstruction into a format OpenMVS can use.

From the OpenMVS library, only one binary will be used and that is
DensifyPointCloud. The most important argument of this binary is
--resolution-level, which determines how much the images are scaled down
before the reconstruction process.

B 4.1.3 COLMAP

B About

COLMAP [11, 12] is one of two most popular open-source photogrammetry
programs, that make use of a GPU?|to accelerate the reconstruction process.
The other such program being MeshRoom [I3], which however does not as
of yet enable the use of GPS coordinates to make the terrain map usable
for navigation purposes. This library is written in C+4 and CUDA. Once
compiled, there is a single main binary, through which Colmap can be used.
It can be accessed via a graphical user interface, which however does not
enable automation of the process, and via a command line interface (CLI).

B Usage

The CLI can be used in two ways, the first option is calling it with the
automatic__reconstructor argument which handles the full reconstruction by
itself. It however is not very flexible and does not enable specifying known
intrinsic parameters or the camera positions. The second option, which we
are going to use, is manually running COLMAP via the CLI for each stage of
the photogrammetry process separately. This approach enables fine-tuning
of parameters and most importantly specifying the intrinsic parameters and
poses of the cameras easily. The individual calls one has to make for the
complete reconstruction are shown on table 4.2 in order of execution.

. 4.2 Simulator

The performance of selected photogrammetry implementations will be evalu-
ated using artificial dataset generated inside a simulator. Although simulation

3QGraphics processing unit

21

4. Used software

Argument Function
feature_ extractor feature extraction and description

exhaustive__matcher | feature matching

mapper incremental SfM

model_ aligner align sparse model with xyz coordinates
image_ undistorter | removing distortion
patch__match_stereo | depth map reconstruction
stereo__fusion fusion of depth maps

Table 4.2: COLMAP binary calls in order

can never fully replace real-life experiments, with present technology it comes
close and offers many advantages. Experiments can be done at any time
and any place independent of the weather outside, or the current pandemic
related restrictions. Also real-life drones have limited battery charge and
can get damaged if things go wrong. Using simulation instead (if feasible)
alleviates all these troubles and thus accelerates research and development.

B 4.2.1 AirSim

AirSim [14] (Aerial Informatics and Robotics Simulation) is an open-source
simulator intended for robotics and Al research. It is not a standalone
program but rather a plugin for Unreal Engine [15], which is a 3D rendering
engine. Together they form a photorealistic simulation platform, which is
particularly useful for visually based AI and robotics research. A screenshot
from the simulation can be seen in figure

Figure 4.1: AirSim simulation

The AirSim project enables taking any virtual world made in the Unreal
Engine and spawning a vehicle (car or a drone and more to be added) inside
it. It is possible to control this vehicle and retrieve sensor data through
Python or C++ API. The vehicle’s movement is simulated using a physically
based model independent of the visual simulation in order to be maintain

22

4.2. Simulator

steady response rate. Many types of sensor can be attached to the vehicle
including accelerometer, barometer, GPS, cameras®| and LIDAR. To provide
realistic behaviour of the sensors, AirSim uses a physics based model for some
of them.

B Usage

After building the AirSim library, a plugin folder is simply moved into any
Unreal Engine project, which then needs to be recompiled. That is all it
takes to set up the simulation. After launching the AirSim simulator for the
first time, a settings.json file is generated, in which the basic parameters for
the simulation are set. These setting determine which type of vehicle is used,
what sensors are simulated, camera intrinsic parameters, camera noise levels
and more. The simulated drone can be controlled using both low-level and
high-level commands ranging from control of individual motor voltages to
setting desired location of the vehicle and letting the in-built AirSim flight
controller to do the rest of the work.

B 4.2.2 Unreal Engine

The Unreal Engine (UE) is a free-to-use rendering engine, whose primary
purpose was to provide a development platform for computer games, but
today is used in many industries thanks to its photo-realistic visuals and ease
of use. As it is primarily focused on gaming and entertainment industry, its
use for computer vision research comes with some caveats. In this chapter,
some basic concepts of UE are covered along with some of the issues that
were encountered and how they were handled.

B Actors

The basic elements of every environment in UE are actors. Each actor
corresponds to an object (e.g. drone, terrain, lights, vegetation), that can be
placed inside the environment, move around and generate collision events with
other actors. Most actors have an associated 3D triangular mesh together
with a 2D texture that define the actor’s shape and appearance.

B Camera actor

To get a visual output from the environment, a camera actor is placed
inside the world, which captures images as modelled by the pinhole camera
model. The camera in UE comes with many adjustable parameters, the
most important being width and height of an image and focal length. More
advanced settings such as motion blur, lens flares, or auto-exposure can be
also used to mimic a real-life camera’s behaviour. It does not unfortunately
provide lens distortion simulation (Sec. [2.2.3)), which needs to be added to
the images manually.

4AirSim provides RGB, depth and infrared cameras.

23

4. Used software

B Lighting

Lighting (and thus shadows) is unsurprisingly an important concept when
it comes to producing a realistic looking virtual world. A light in UE is an
actor used to illuminate the scene. There are many types of lights available in
UE made for different purposes such as a point light source, directional light
source, etc. During our experiments we use two types of lights: directional
light to mimic direct sunshine and skylight to mimic the light coming from
the sky. Atmospheric fog is also being used to simulate how light scatters in
the atmosphere.
Every light needs to be configured to one of three light mobility modes:

® Static

Uses precomputed lighting, which does not enable lighting changes during
gameplay and is therefore not optimal when dealing with moving objects
in the scene. The light building also takes a long time to complete
and has to be redone every time the scene changes. The advantage is
that precomputed lighting is more efficient during the simulation and
increases frame rate.

® Movable

Generates completely dynamic lighting and shadows, that however slow
down the scene rendering especially for large scale environments. The
advantage is that moving objects effect the lighting during the simulation,
which enables moving objects having dynamic shadows, daytime changes
during the simulation and simulating cloud shadows.

B Stationary

This is a hybrid between the static and movable lighting enabling partially
precomputed and partially dynamic lighting and shadows. It enables
using more efficient static lighting for immovable objects and scene
illumination, and use dynamic shadows for moving objects such as the
vehicle, vegetation, or the clouds. It is however a bit more complicated
to set up than the movable or static variants.

Stationary lighting is used in the experiments as the precomputed lighting
looks more realistic in the static parts of the environment and the dynamic
lighting and shadows can be useful for moving vegetation and clouds, which
often complicate visual terrain reconstruction in real-life scenarios.

B Level of detail

By default, many actors that represent 3D objects inside UE come with a
built-in level of detail (LOD) system. An actor with LOD has more than one
3D mesh and texture associated with it, each with different level of detail -
hence the name. When the camera is near the actor, the most detailed mesh
and texture are used and as the camera moves further, the mesh and texture

24

4.2. Simulator

are replaced by a less detailed one in order to decrease the computational load.
This is a useful feature for real-time use cases, where faraway objects take
up little space on screen and the extra rendering speed is welcome. However
for visual fidelity, an object changing its geometry during the simulation is
not optimal. The LOD system needs to be therefore disabled, which can be
achieved by passing in few commands (table |4.3) into the UE command line.

Command Function

forces the highest detail mesh to be used for
object rendering

forces the highest detail mesh to be used for
shadow casting

r.forceLOD 0

r.forceLODShadow 0

forces the highest detail mesh to be used for

foliage.forceLOD 0 foliage rendering

Table 4.3: Unreal Engine LOD disabling commands

Bl Constraints

The Unreal Engine is well suited for creation of realistic looking environments.
However, it has some limitations that need to be taken into account when
using this tool, which somewhat restricts how we can use it.

8 Transparent materials

Transparent materials such as glass or water surfaces are not seen by the
AirSim’s depth camera. These materials need to be set to be opaque or
removed entirely from the scene to assure consistency of the recovered
depth maps and images.

® Level loading

When moving the camera too fast through the environment, sometimes
the level does not load fast enough and as a result corrupt data can be
obtained from the rgb and depth camera.

® Shadow distance

Dynamic shadows disappear when flying too far or too high with the
drone as a result of underlying optimization in UE. One reason for this
is the capped shadow draw distance, which can be increased up to 200
meters. The other is that if an object takes too little space on the screen,
its dynamic shadow will not be drawn.

To mitigate these problems in our experiments, transparent materials are
avoided and the drone moves slowly at relatively low altitude. Additionally
dynamic shadows are disabled for small actors to avoid shadow flickering.

25

26

Chapter 5

Implementation

The implemented code is described in this chapter. The programming lan-
guage of choice is Python because it is versatile and enables fast development.
One instance, where Python would limit usability was the path searching
algorithm, which was therefore rewritten in Cythorﬂ to gain two orders of
magnitude faster execution time when compared to plain Python implemen-
tation.

. 5.1 AirSim interface

B 5.1.1 airsim_env.py

The airsim__env.py file contains the interface to the AirSim simulator in the
form of three classes AirSimBase, AirSimCV and AirSimUAV.

B AirSimBase

The first implemented class is the AirSimBase, which wraps the most basic
and general methods such as:
[] init
Pulls camera intrinsics from the AirSim simulator and computes the Q
reprojection matrix (section (/5.2)).
B get_ rgb

Returns an RGB image taken from camera on the UAV.

B get_ disp

Returns a 2D floating point number matrix representing the disparities
of individual pixels.

m disable_ lods

Disables the Unreal Engines level of detail system for higher consistency
of subsequent photos.

! An extension of Python that enables typed variables and compilation into faster C
code.

27

5. Implementation

B AirSimCV

The second class AirSimCV is intended for use with the AirSim Computer
Vision mode. This mode does not simulate a vehicle and instead creates a
weightless camera in the environment. This camera can be moved around
to capture images without having to deal with the vehicle’s dynamics. The
AirSimCV class inherits all of the methods from the AirSimBase class and
has some in addition such as:

B set_ pose
Takes 3D coordinates and pitch, roll and yaw? angles and uses these to
set the camera pose.

B get_ cloud

Takes a list of camera poses and an output file path. It then loops through
these poses and at each one, reconstructs the 3D scene seen by the camera
and registers it into the world coordinate frame. The reconstructions
from all the poses are saved into a point cloud file. Detailed description
of this method follows in section [5.1.2.

B save_ rgbs_ gps

Takes a list of poses of the camera and at each one captures an image
along with GPS coordinates generated using an artificial WGS coordinate
System.

B AirSimuAv

The third class AirSimUAYV is intended for use with the AirSim multirotor
mode. As the name suggests, it enables the control of a UAV in the simulation.
Some of the implemented methods are:

B get_ collision__info

Returns whether a collision has occurred since the start of the simulation.

® move__to
Moves the drone to a specified location using AirSim’s in-built flight
controller.

B get_ xyz

Returns the current position of the drone.

B get_ gps

Returns the latitude, longitude and altitude GPS coordinates with respect
to set GPS coordinates of the world origin.

2Yaw, pitch and roll are used to represent the subsequent rotation about x,y and z axes
respectively.

28

5.1. AirSim interface

® move__on__path

Takes a list of 3D waypoints and flies through them using the AirSims
in-build flight controller.

B survey

Flies the drone through a list of 3D waypoints while taking pictures at
each one and saves them into a folder together with their GPS coordinates.

B 5.1.2 Point cloud from AirSim

To get the ground-truth 3D point cloud of the to-be reconstructed 3D scene
from photos, the disparity camera provided by AirSim API is used via the get
disp method. This method returns a disparity matrix, where each pixels stores
the disparity of the corresponding pixel seen by the camera. We have already
discussed how the point location can be obtained from disparity information
in [2.3.1. 'We however do not need to implement this functionality as it is
already included in the optimized open-source C++ library for computer
vision OpenCV [16] in the form of method reprojectImage To3D. This method
accepts a matrix (Q and a 2D matrix of disparities and returns a 2D matrix
of 3D points. It actually performs just a simple matrix multiplication:

X x
i _ Y
zZ| @ disparity(z,y)| (5-1)
W 1

To obtain the results as discussed in (2.23) and (2.24)) the) matrix needs to
be constructed as follows:

10 0 -—w?
o1 0 —h2
00 1B 0

where w and h are the images’ width and height, f is the cameras focal length
and B is the baseline, which in AirSim is natively set to 0.25 [cm]. But we
can exploit this method further by left-multiplying the) matrix with the
homogeneous transform T{ that encodes the coordinate transform from the
camera reference frame to world reference frame:

Qnew = TZ)Q . (53)

Now this method can be used to directly acquire an accurate 3D point
cloud ground-truth data from the AirSim environment. This functionality
is implemented in the airsim__env.py file as the get cloud method. The
resultant point cloud representation of the environment can be seen in figure
5.11

29

5. Implementation

Figure 5.1: Point cloud from AirSim

B 5.1.3 Simulating lens distortion

Since most real world cameras can not be modelled by a simple pinhole camera,
it is useful to have lens distorted images generated from the simulation. To
distort the ideal pinhole images from the simulation, the brown camera model
(Sec. can be used. However the equations only allow us to
calculate, where a specific ideal image point is mapped into the distorted
image. We, on the other hand, need to know where a specific distorted image
point has its pre-image in the pinhole camera image. Therefore we need
an inverse relationship to (2.21), for which no analytical form is known. It
is therefore necessary to invert this formula for each pixel on the distorted
image individually using non-linear optimization. The resulting ideal image
points’ coordinates can then be used to resample the ideal image into the
distorted one using interpolation.

Luckily, the OpenCV library already provides this functionality in the
undistortPointslter method. This method accepts the intrinsic matrix, distor-
tion coefficients and the distorted image points list. It then outputs a list of
corresponding ideal image points, which can be used to create a map (look-up
table) that can be supplied to the OpenCV remap method along with the
ideal image. This method performs the resampling and finally outputs the
distorted image. Note that as a result of the interpolation, some detail in the
images can be lost. A solution to this would be implementing the distortion
directly in the Unreal Engine. The distortion functionality is implemented in
the distortion.py file via the Distorter class.

B 5.2 Photogrammetry data processing

While the used photogrammetry software is implemented in ready-to-use
external libraries, the data that goes in and comes out of them needs to
be correctly handled. Since resultant 3D models are used for navigation,
it is necessary to geo-reference them, that is, they need to be related with

30

5.2. Photogrammetry data processing

the coordinate system used for navigation. The implementations offer this
functionality assuming the cameras’ coordinates are provided. Unfortunately,
they are not completely consistent in the format they use for the input cameras’
coordinates or the output 3D models’ coordinates. Coordinate systems used
by the individual pipelines are listed in table [5.1L Since our simulated world
already comes with its own cartesian coordinate system, it is natural to
use this coordinate system for navigation as well. The simulation origin is
assigned with some arbitrary point in the WGS coordinate system, which
enables transforming the simulation x, ¥y, z coordinates into the geographic
coordinate frames used by the implementations.

Method Input coordinates | Output coordinates
COLMAP ENU ENU
ODM WGS ENU
OpenMVG + OpenMVS WGS ECEF

Table 5.1: Coordinate frames used by the photogrammetry implementations

B 521 COLMAP

COLMAP accepts the camera poses as a simple text file with rows containing
the image names and their z,y, 2 coordinates with respect to some cartesian
coordinate frame. The extraction of these coordinates from the simulator is
implemented in the airsim__env.py file. In a real-life scenario sometimes only
the WGS latitude, longitude and altitude coordinates are available and need
to be transformed into an ENU coordinate system first in order to be used by
COLMAP. This functionality is implemented in the file geo.py borrowed from
another open-source SfM project OpenSfM [I7]. The COLMAP pipeline is
executed using the Python script colmap__pipeline.py. It simply executes each
stage of the photogrammetry pipeline (table 4.2). Most of the parameters
are set on default values. The intrinsic parameters can be easily specified in
the first stage of the pipeline by two arguments for the camera model used
and its parameters. When done processing, COLMAP outputs a point cloud
which is referenced in the same cartesian coordinate frame as the cameras
and can be then directly used for further processing.

B 5.2.2 OpenDroneMap

ODM automatically searches the images’” EXIF?| tags for GPS data in the
WGS format and if found, uses those to align the resultant point cloud with the
GPS coordinate system. To transform z,y, z coordinates from the simulation
into GPS coordinates, the method topocentric_from__lla in the geo.py file
is used. The insertion of GPS data in the WGS format into the EXIF tags
is implemented in the save image gps method in data__extraction.py file.

SEXIF (Exchangeable image file format) is the metadata inserted directly into images.
It can store information about the GPS coordinates, date or camera settings.

31

5. Implementation

The output point cloud of ODM is already in a the desired ENU format, but
its origin is located at the mean coordinates of all the cameras at 0 altitude.
It needs to be shifted in order to align it with our worlds ENU coordinate
frame. This can be easily done by applying a homogeneous transform to the
point cloud.

B 5.2.3 openMVG + openMVS

The openM VG, just like ODM, automatically searches for GPS coordinates
in the WGS format in the EXIF tags of the supplied images. The output
point cloud is however created in the ECEF coordinate system. To transform
between the ECEF and ENU frames, a simple homogeneous transformation
can be used. The ecef from__topocentric__transformmethod in geo.py com-
putes the matrix for opposite transformation, so we only need to invert it
and apply to the output point cloud to align it with our ENU frame.

B 53 Preprocessing for path planning

It is possible to use the acquired point cloud directly for path planning,
though it would be very computationally expensive and would be feasible
only for small scale environments. The 3D data structure is also redundant,
since we capture the scene using a camera from far above and thus can only
recover the surface of the environment. It is therefore preferable to use a
simpler two dimensional heightmap®.

B 5.3.1 Heightmap generation

A suitable library for heightmap generation is the Point Data Abstraction
Library (PDAL) [I§]. PDAL is written in C++ and we are going to access
its functionality through the Python API it offers. We are going to exploit
the PDAL. Pipeline class which is capable of creating a raster (grid of pixels)
from a point cloud file. All it requires is the location of the input point cloud
file and parameters for the raster generation (shown in table 5.2). It works by
dividing the point cloud into a grid of cells with respect to the specified axis.
Then for each cell it computes its value based upon which type of output
is chosen. All these values are then stored into an output TIFF image file,
which enables storing floating point numbers with minimal loss of precision.
We will use the max raster, which for each grid cell takes the maximum height
value of all the points inside it. This approach avoids underestimating the
terrain height during navigation, which could lead to a collision.

B Growing the heightmap

If only the elevation directly below the drone would be taken into account,
there would be a risk of the drone crashing due to its non-zero dimensions.

“Heightmap is a grid of height values usually in the form of a 2D floating point array.

32

5.3. Preprocessing for path planning

Argument Function

determines how the value for the raster is obtained
output__type .
(e.g. min, max, average,...)

resolution determines the tile size
origin_x & origin_y | determine the raster’s origin world coordinates
height & width ;i;estfgnine the number of rows and columns of the

Table 5.2: PDAL Pipeline arguments

(a) : Original heightmap (b) : Grown heightmap

Figure 5.2: Heightmap and its grown version

Therefore neighbouring values some well chosen radius 7 need to be considered
during the path planning. We can easily incorporate this right into the
heightmap by iterating over the tiles and for each one, assigning the maximum
value of its neighbours in the given radius r into its new value. While planning
on this "grown" heightmap, we can consider the drone to be of zero size. The
footprint of the drone we use in our simulation is a square with side length
of 1 meter. A good radius to choose for heightmap growing is therefore
r = /0.5 meters as this is the radius of a circumscribed circle of this square.
To convert this radius into tile radius, we divide it by the resolution of the
heightmap. Since the point cloud obtained with photogrammetry tends to be
noisy, a larger value can be used in order to suppress noise at the cost of lost
information. An example of a heightmap and its grown version is shown in

figure 5.2l

B 5.3.2 Occupancy grid generation

Using the heightmap we could in theory navigate across the terrain very easily
using a straight line between two points in the xy-plane and simply fly higher
than all the obstacles in the way. However there can be some constraints to
the path we want to take. The information about where the agent can or
cannot go is commonly encoded in so called occupancy grid. Occupancy
grid is a 2D or 3D binary grid, which represents a map of obstacles in the
navigated environment. For our purpose it will be a 2D raster of the same
size as the heightmap and will have a value of 1, where there is an obstacle
and a value of 0, where there is not. This functionality is implemented in the
file dem__handling.py.

33

5. Implementation

0‘ '.. ‘s ‘ [|

50 1

w® 8 Be s
) - &

150 .‘:“. " “

200 - L]

250 ..’?’ | J .“ o

300 4 : Y w ."

350-\‘.‘. '

4004 k4

“le 98 g & I

0 100 200 300 400 500 600

Figure 5.3: Absolute height occupancy

B Absolute height restriction

The most basic method to build the occupancy grid is to specify a minimum
and a maximum possible terrain elevation, that we want the UAV to have
access to. Our obstacle grid has value 1 for every position on the grid where
the elevation is not inside these bounds. En example of such occupancy grid
is shown in the figure 5.3, where the obstacles are shown in black. When
comparing this occupancy grid to the heightmap on figure [5.2, we can see
that the obstacles are generated at the highest points of the terrain, which in
this example are trees that are taller then the chosen threshold.

B Relative height restriction

Another criterion that can be used for the occupancy grid generation is
relative height difference between adjacent cells of the grid. Obstacles are
placed where the terrain changes too rapidly to avoid large jumps in the
terrain. To generate the relative height information we can approximate the
gradient of the terrain height with respect to u, | coordinates using the Sobel
filter [19]. To implement it, we first need to construct two normalized Sobel
kernels for the v and v direction:

R L[-2 -
Ky=g|-2 02, Ky=g|0 0 0}, (5.4)
-1 0 1 1 2 1

These two kernels can than be used to compute the horizontal and vertical
gradient components using 2D convolution with the heightmap:

G, =K, *I,

(5.5)

G, =K, *1,
where I denotes our heightmap image, here treated as a matrix. G, and G,
denote the matrices that store the horizontal and vertical components of the
gradient for each image point respectively. The magnitude of the gradient

Sright and down respectively as per the image coordinate convention

34

5.4. Path planning

100 &
’ 150) @%
4 200 “v"f)
B 250 @
300 .
2 @
350 Q)Q@@ %
* 400 G o °@) @@ i
N s AP ER O
° 0 100 200 300 400 500 600
(a) : Gradient magnitude (b) : Relative height occupancy

Figure 5.4: Gradient magnitudes and corresponding occupancy grid

vector at position (u,v) on the heightmap can be computed as follows:

VI(u,v)] = /G2(u,0) + GZ(u,v), (5.6)

where the notation VI(u,v) denotes the gradient approximation of the
heightmap I at the coordinates (u,v). Note that since the kernels (5.4)
are 3 by 3 matrices, we cannot compute the gradient values at the edges of
our heightmap and we need to fill these in with zeros so we get a matrix of the
same size as the heightmap. Once we have this gradient magnitude matrix
computed, we can create another occupancy grid, where we put the value 1
(an obstacle) wherever the gradients magnitude exceeds specified threshold.
The resultant gradient magnitudes and the generated occupancy map are
shown in figure [5.4.

B Combined occupancy

The absolute and relative thresholds need to be empirically set to some
reasonable values and the resultant occupancies can them be combined
together by a position-wise OR. It is possible to avoid using these occupancy
grids in the path planning, but they are useful in that they can help us
impose some restrictions into the path taken by the drone and speed up the
navigation process. The resultant occupancy grid obstacles should also be
grown similarly to [5.3.1| to enable neglecting the drone’s size. We use the
same radius for growing occupancy grid as for the heightmap. The combined
occupancy grid and its grown version are shown in figure [5.5.

B 54 Path planning

The path is planned using the heightmap and occupancy grids, where only the
positions at the centres of the tiles are considered. The planning algorithm
takes the goal and start tiles as arguments and returns a set of coordinates
of tiles through which the found path leads. These tile coordinates along
with corresponding heightmap values can be easily transformed into world
3D point coordinates, which can be used for flight.

35

5. Implementation

%. ‘!' :

400 . O B Q ‘ ‘

0 100 200 300 400 500

(a) : Combined Occupancy (b) : Grown combined occupancy

Figure 5.5: Combined occupancy and its grown version

Figure 5.6: Path generated by Theta*

B 54.1 Theta*

Theta* [20] is an A*-based any-angle grid search algorithm. Any-angle
meaning the final path is not restricted to the 45° angle increments as
a typical A* on a grid would be. Instead it produces piece-wise straight
trajectory through the environment, which is shorter, simpler and thus better
suited for aerial vehicles. The Python pseudo-code |5.7| depicts the used
Theta* algorithm implemented in the thetastar.pyx file. An example of a
path generated by this algorithm between two points is shown in the figure
5.6l

36

5.4. Path planning

def thetastar(Start, Goal):
if Start == Goal:
return None
minheap.push(Start, 0) # push onto the heap
while minheap is not empty > O:
current = minheap.pop()
current.closed = True # final vistt
if current == Goal:
return path(current) # goal has been reached
for neighbour in neighbours(current):
if neighbour.closed: # skip
continue
if neighbour not in minheap:
neighbour.gscore = Inf
update_node(current, neighbour)

Figure 5.7: Theta* pseudo-code

The node objects used in this pseudo-code (Start, Goal, current and neigh-
bour) represent the nodes of the search graph, or in our case tiles on a grid.
Each node contains information about the smallest found cost (distance from
start) gscore, the parent node (node from which this node was reached with
the smallest cost) and whether it is closed (the cost is final). The minheap
object is a binary min heap , with push method adding the specified node
onto the heap with specified value and pop method returning the node with
the smallest value and removing it from the heap. The neighbours method
returns a list of neighbouring nodes of the specified node (8 neighbours in
our case).

At first glance, the algorithm 5.7/ looks just like regular A*, but the main
difference lies in the update mnode method which first checks for line of sight
between the current node’s parent and the neighbour node. If there is line
of sight, than the algorithm moves on a straight line between the neighbour
node and the parent of the current node. In this way, Theta®™ avoids moving
in a zig-zag pattern on the grid as would be the case with regular A*, making
the trajectory piece-wise straight. The pseudo-code of this function is shown
in figure [5.8.

37

5. Implementation

def update_node(c, n):
if line_of_sight(c.parent, n):
new_gscore = c.parent.gscore + cost(c.parent, n)
if new_gscore >= n.gscore:
return None
n.parent = c.parent
else:
new_gscore = c.gscore + cost(c, n)
if new_gscore >= n.gscore:
return None
n.parent = ¢
n.gscore = new_gscore
fscore = new_gscore + heuristic(n) # final score
if neighbour in minheap:
minheap.remove (n)
minheap.push(n, fscore)

Figure 5.8: Update node method pseudocode

B Line of sight

The line_of sight method works by constructing a line connecting two points
slightly above the two tiles on the heightmap (e.g. 1 meter above the ground).
It then checks each heightmap tile between these two nodes for collision,
which occurs if the tile is above the line, or if there is an obstacle at the tile
(in the occupancy grid). A line slightly above the ground has to be considered,
because otherwise there would be an intersection every time. Which tiles to
check between the two boundary nodes is selected using the Bresenham line
rasterisation algorithm [21I]. If there are no collisions found, the line of sight
between these nodes exists. This method can also be easily configured to
restrict the maximum altitude above the terrain detecting if the line is too
high above the heightmap.

B Cost and heuristic functions

Both the cost and heuristic methods return the 3D euclidean distance between
the two tiles in the heightmap. In the cost function, if the height difference
between these two tiles exceeds specified threshold, it is additionally multiplied
by some factor before calculating the distance. In this way, the algorithm will
avoid large altitude changes between tiles i.e. steep terrain, but if necessary,
will not be restricted from taking these paths.

38

Chapter 6

Experiments

The chosen implementations are first compared in two experiments on virtual
datasets obtained through the AirSim simulator, where an accurate ground
truth point cloud is available. The first experiment was done without any
distortion, considering only a simple pinhole camera model with precisely
known parameters and camera positions. This experiment allows us to see
how the software performs under ideal conditions. For the second experiment,
in order to assess the robustness of selected implementations, simulated real
world disturbances are introduced. The best implementation is combined
with the path planning algorithm into a complete navigation system.

B 61 Comparison of methods

B Hardware

All experiments were conducted on a Laptop PC equipped with an Intel Core
i7-8750H (6x 2.20 GHz), 24 GB RAM and an Nvidia GTX 1050 Ti.

| Comparison criteria

Since our goal is to navigate through terrain without crashing into it, accu-
racy is the most important criterion. For accuracy evaluation, the absolute
difference between the output heightmaps and the ground truth heightmap
is considered. The distribution of this absolute difference is described using
its maximum, mean, median and 95th percentile. To take into account the
coverage of the heightmaps the missing data percentage shows, how many
tiles lack height information due to poor reconstruction.

The number of points of the generated point clouds together with total
runtime of the methods are also mentioned. Although these two metrics
do not reveal much about the accuracy, the number of points expresses the
ability to recover data from the images and runtime has practical significance.
Let these two numbers serve as a heuristic measure where the error statistics
are not sufficient to decide which method to prefer over the others. Note that
the runtime is only meaningful to compare between ODM and OpenMVG

39

6. Experiments

+ OpenMVS (OMVG + OMVS), since these both run exclusively on CPU,
whereas Colmap utilizes GPU.

B Graphs

The error is visualised using histograms and distributions of the absolute
error. These graphs were constructed while dividing the shown 1.5 meter
error range into 300 bins. The heightmaps are visualised using colors to
give an idea of how the heightmaps look and how they differ between the
implementations.

The white color in these heightmaps represents missing data, that the
algortihms failed to recover from the photos. The big white square seen
on all the heightmaps including the ground truth was purposely omitted,
because the area was too hard to reconstruct for all the implementations and
needlessly distorted the experiments’ results. Finally the error maps visualise
how the absolute error is distributed throughout the map.

B Parameters

Most parameters of the implementations are left on default values. The only
non-default parameters are the settings of the Colmap model aligner method
which have to be specified to enable georeferencing and were set as shown in
table 16.1.

parameter value

--robust__alignment 1

--robust_ alignment_ max_ error | 0.001

Table 6.1: Model aligner parameters

For both experiments, the photos are acquired at an altitude of 40 meters
above the ground level due to constraints dictated by the Unreal Engine
platform. Overlap of 80 % and sidelap of 70 % between images (measured at 0
meters altitude) was used as recommended in [22]. The area of interest is 150
meters wide and 350 meters long and is determined by the size of the virtual
environment. The sampling resolution for the heightmap generation is set to
0.3 meters, which results in a 500x1166 heightmap. This value of resolution
was determined heuristically, because it simply works well for navigation and
does not take too long to compute.

B 6.1.1 Experiment without distortion

The first experiment was done using the AirSimCV class and uses precisely
set positions of cameras. No distortion or noise were simulated and only a
pinhole camera with exactly known parameters is used.

A total of 264 images of the terrain were captured and used in this ex-
periment. The heuristic metrics and the statistics are shown in tables (6.2,
resp. [6.3. The figures [6.1] and [6.2 show the absolute error histogram and

40

6.1. Comparison of methods

distribution respectively. The figure shows the generated heightmaps and
the figure visualizes the heightmaps’ absolute error.

software runtime [minutes] | points [millions|
Colmap 95 4.155
ODM 55 18.760
OMVG + OMVS 36 19.287

Table 6.2: Heuristics without distortion

software missing max mean | median Pys
Colmap 6.7 % | 1829 m | 0.71 m | 0.22 m | 0.87 m
ODM 621 % | 145m | 1.04m | 0.23m | 2.36 m
OMVG + OMVS | 4.79% | 14.44m | 0.83m | 0.23 m | 1.19m

Table 6.3: Error statistics without distortion

1.40% 1

1.20% A

1.00% 4

0.80% -

0.60% -

percentage of tiles

0.40% -

0.20% A

0.00% A

—— Colmap
—— ODM
—— OpenMVG + OpenMVS

0.0 0.2

0.4

0.8
error [m]

0.6

1.0

1.2

Figure 6.1: Error histogram without distortion

41

1.4

6. Experiments

—— Colmap
—— ODM
80% —— OpenMVG + OpenMVS
b
4 60% 1
G
()
o
8
@ 40% -
=
[
o
20% A
0% A
0.0 0.2 0.4 0.6 0.8 1.0 1.2
error [m]

Figure 6.2: Error distribution without distortion

42

tile row

tile row

tile row

tile row

6.1. Comparison of methods

tile height [m]

£

-t L | = -
0 200 400 600 800 1000
tile column

Figure 6.3: Heightmaps without distortion

43

6. Experiments

100 1KY

200

tile row

300

400

tile row

tile row

400 600 800 1000
tile column

Figure 6.4: Error map without distortion

44

tile error [m]

6.1. Comparison of methods

Bl 6.1.2 Experiment with distortion

The first experiment was done using the AirSimUAV class and so the trajectory
was flown by the drone inside simulation autonomously with some uncertainty.
In this experiment motion blur, clouds, random camera sensor noise and
camera lens distortion were enabled.

A total of 259 images of the terrain were captured and used in this ex-
periment. The camera parameters were for realistic results obtained using
a simulated calibration with virtual checkerboard pattern. The resultant
parameters are then directly fed into the mapping software together with
the images and their coordinates. The Colmap implementation is missing
from this part of the experiment, since it failed to produce any result. The
heuristic metrics and the statistics from this experiment are shown in tables
resp. The figures 6.5 and [6.6] show the absolute error histogram and
distribution respectively. The figure [6.7 shows the generated heightmaps and
the figure visualizes the generated heightmaps’ absolute error.

software runtime [minutes| | points [millions|
Colmap - -
ODM 42 16.996
OMVG + OMVS 29 15.658

Table 6.4: Heuristics with distortion

software missing max mean | median Pos
Colmap - - = = =
ODM 12.74 % | 14.49 m | 0.76 m | 0.13 m | 0.86 m
OMVG + OMVS | 1757 % | 1468 m | 0.78 m | 0.18 m | 0.81 m

Table 6.5: Error statistics with distortion

45

6. Experiments

2.50% A —— ODM
—— OpenMVG + OpenMVS

2.00% A
%]
Q@
= 1.50% 1
k]
(]
()]
8
o
© 1.00% A
(]
o

0.50% 1

0.00% A

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
error [m]
Figure 6.5: Error histogram with distortion

80% 1
E 60% A
=
-
o
(]
()]
3
é 40%
[
Q

20% A

—— ODM
0% —— OpenMVG + OpenMVS
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

error [m]

Figure 6.6: Error distribution with distortion

tile row

tile row

tile row

6.1. Comparison of methods

tile height [m]

9 |
s]

- Py L] =
0 200 400 600 800 1000
tile column

Figure 6.7: Heightmaps with distortion

47

6. Experiments

r10

400 600 800 1000
tile column

Figure 6.8: Error map with distortion

48

tile error [m]

6.2. Final navigation system

B 6.1.3 Comparison discussion

In the ideal conditions Colmap performed the best in terms of raw accuracy
of the data points it provided. However, it produced far less data points than
the other methods, which could be unfavourable in certain applications, where
dense covering is beneficial. For our navigation purposes, the amount of data
is sufficient and accuracy is way more important and thus Colmap would be
the software of choice if we operated in ideal conditions. Unfortunately, in
simulated real life conditions, Colmap failed to produce any result. ODM
and OMVG + OMVS produced similar amounts of data in both experiments,
though ODM was about 50% slower. In the ideal conditions, ODM had
less coverage and slightly worse 95th percentile of error. Under simulated
distortion, ODM had far better coverage and negligibly better accuracy than
OMVG 4+ OMVS. Although ODM generated more data, OMVG + OMVS
seems to be the best choice for its high accuracy in both experiments and
also faster runtime compared to ODM.

What is worth mentioning are the large missing areas on all of the
heightmaps generated with photogrammetry, especially in the second ex-
periment. Photogrammetry is notorious for having problems with shadows,
movement and thin, small objects. Majority of the missing values in the first
experiment are due to the trees’ thin branches, which are hard to reconstruct
due to all three of these effects. These tree branches are also higher up and
thus were captured in fewer images - again complicating the reconstruction.
In the second experiment, the clouds’ shadows confused the photogrammetry
even more resulting in larger spots of missing data. The error maps in both
experiments show that the areas with the highest error are also concentrated
around the trees. This again has to do with the fine details of the branches
that are hard to recover from the photos. This is why it is recommended to
capture the images under uniform lighting, without wind and large enough
overlap between the images for best results in practice. Also two passes of
the drone above the terrain are preferably done at different altitudes with
a slightly tilted camera in the second pass [22] for more accurate results.
However this was not possible, due to limited computational power used.

B 6.2 Final navigation system

The OpenMVG + OpenMVS pipeline together with the appropriate pre-
processing for planning as discussed in 5.3 can be accessed through the
preprocess.py script. It takes in a folder with georeferenced images and
outputs the grown heightmap together with the corresponding occupancy
grid needed for navigation. The navigation stage as discussed in 5.4 can
be accessed using the navigate.py script, which takes start and goal world
x,y coordinates as arguments and outputs shortest path found. The whole
navigation system diagram is illustrated in figure [6.9]

49

6. Experiments

heightmap + occupancy
—-—

GPS +

m—p | PIEPIOCESS. DY | mummlp

= | navigate.py |-

start + goal

Figure 6.9: Navigation system scheme

B 6.2.1 Performance evaluation

Images from the distortion experiment were used for the following experiment
together with the same parameters. The resulting heightmap from prepro-
cessing stage can be seen in figure and the generated grown heightmap
and occupancy grid together with and example of a path are shown in figure
In order to evaluate the system’s performance in terms of navigation, a
pair of points (start and goal) on the map was generated randomly and the
system was used to generate a path between them. This path was then used
to navigate the drone inside AirSim simulator between these points to check
for collisions with the terrain. To fly on the path the method move_on_ path
from the AirSimUAV class was used. This procedure was repeated 500 times
out of which only 20 flights (4 %) ended in a collision. After investigation,
most of the collisions were caused by running into small obstacles like tree
branches, which are notoriously hard for photogrammetry to reconstruct.

50

6.2. Final navigation system

17.5

15.0

125

10.0

7.5

tile height [m]

5.0

2.5

0.0

-2.5

600 800 1000
tile column

Figure 6.10: Generated heightmap

0 200 400 600 800 1000 1200
tile column

tile column

Figure 6.11: Generated path between two points

o1

52

Chapter 7

Conclusions

. A Summary

In this thesis the use of photogrammetry methods for terrain mapping and
low-altitude flight navigation was explored. First, the basic mathematical
principles behind the camera model and 3D reconstruction were introduced
together with a basic outline of how a common photogrammetry pipeline
works. Then three suitable photogrammetry pipelines Colmap, Open Drone
Map and OpenMVG + OpenMVS were selected for further comparison. As
the development relied on a simulator AirSim, its capabilities, limitations
and details about working with the underlying Unreal Engine were discussed.

In the practical part, the AirSim simulator interface was implemented, which
enabled easier employment of the simulator as well as precise ground truth
point cloud and distorted image acquisition. The steps that had to be taken
to properly handle the data both for and from the photogrammetry software
were mentioned. As the point clouds generated by the used photogrammetry
implementations are not suitable for path planning purposes, a post-processing
method was devised to transform them into an appropriate form. Since the
terrain is mostly flat and only its surface is relevant, 2D heightmaps were
chosen as the best solution to this problem. To enable the use for path planning
algorithms, further processing steps were introduced. Two methods to define
obstacles were implemented, one using the absolute height and the second
using the height gradient of the terrain. Finally a path planning algorithm
with desirable properties for drone navigation Theta* was implemented.

In the experiments, the photogrammetry implementations were compared
using the simulated data. First experiment showed how the programs per-
formed under ideal conditions. The second experiment was aimed at testing
the robustness of these programs under simulated distortion such as moving
cloud shadows and camera noise. Open Drone Map and OpenMVG + Open-
MVS performed very similarly during the experiments, still the OpenMVG
+ OpenMVS was selected due to its faster runtime. This implementation
was combined with the processing steps and path planning algorithm to form
a complete navigation system, whose functionality has been tested using
randomly generated paths through the environment. The system was found
to be quite effective, with only a minority of generated trajectories ending in

53

7. Conclusions

a collision with the terrain.

. 7.2 Future work

AirSim proved to be a versatile tool for visually oriented robotics development.
However, the Unreal Engine is capable of much more and the fidelity of
the simulation could be perfected given more time. Better quality assets,
fine tuned lighting and more detailed environment could make it a more
faithful representation of the real world and thus increase the value of the
experiments.

o4

Appendix A
Bibliography

[1] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2 edition, 2003.

[2] Duane C. Brown. Close-range camera calibration. PHOTOGRAMMET-
RIC ENGINEERING, 37(8):855-866, 1971.

[3] Richard Szeliski. Computer vision algorithms and applications. Springer,
London; New York, 2011.

[4] David G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60(2):91-110.

[5] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381-395.

[6] OpenMVG contributors. Awesome 3D reconstruction list.
lgithub.com/openMVG/awesome_3DReconstruction_list| 2020.

[7] Peter Falkingham. free and commercial photogrammetry soft-
ware review 2020. |https://peterfalkingham.com/2020/07/10/
|free-and-commercial-photogrammetry-software-review—2020/|
2020.

[8] ODM Authors. OpenDroneMap [Computer software]. https://github|
|com/OpenDroneMap/0DM, 2017.

[9] Dan Cernea. OpenMVS: Multi-view stereo reconstruction library. 2020.

[10] Pierre Moulon, Pascal Monasse, Romuald Perrot, and Renaud Marlet.
Openmvg: Open multiple view geometry. In International Workshop
on Reproducible Research in Pattern Recognition, pages 60-74. Springer,
2016.

[11] Johannes Lutz Schénberger and Jan-Michael Frahm. Structure-from-

motion revisited. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

55

https://github.com/openMVG/awesome_3DReconstruction_list
https://github.com/openMVG/awesome_3DReconstruction_list
https://peterfalkingham.com/2020/07/10/free-and-commercial-photogrammetry-software-review-2020/
https://peterfalkingham.com/2020/07/10/free-and-commercial-photogrammetry-software-review-2020/
https://github.com/OpenDroneMap/ODM
https://github.com/OpenDroneMap/ODM

A. Bibliography

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

Johannes Lutz Schonberger, Enliang Zheng, Marc Pollefeys, and Jan-
Michael Frahm. Pixelwise view selection for unstructured multi-view
stereo. In European Conference on Computer Vision (ECCV), 2016.

AliceVision. Meshroom [Computer software]. https://github.com/
alicevision/meshroom, 2018.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim:
High-fidelity visual and physical simulation for autonomous vehicles. In
Field and Service Robotics, 2017.

Epic Games [Computer software]. Unreal engine. https://wuwl
unrealengine.com, 2020.

OpenCV. Open source computer vision library, 2015.

mapillary. OpenSfM [Computer software]. https://github.com/
mapillary/OpenS£fM, 2020.

PDAL Contributors. Pdal point data abstraction library. https://doi|
org/10.5281/zenodo. 2556738, November 2018.

Irwin Sobel. An isotropic 3x3 image gradient operator. Presentation at
Stanford A.I. Project 1968, 02 2014.

Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*:
Any-angle path planning on grids. J. Artif. Intell. Res. (JAIR), 39, 01
2014.

J. E. Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems Journal, 4(1):25-30, 1965.

ODM Authors. OpenDroneMap tutorial. https://docs.opendronemap}
org/tutorials.html#flight-pattern, 2020.

56

https://github.com/alicevision/meshroom
https://github.com/alicevision/meshroom
https://www.unrealengine.com
https://www.unrealengine.com
https://github.com/mapillary/OpenSfM
https://github.com/mapillary/OpenSfM
https://doi.org/10.5281/zenodo.2556738
https://doi.org/10.5281/zenodo.2556738
https://docs.opendronemap.org/tutorials.html#flight-pattern
https://docs.opendronemap.org/tutorials.html#flight-pattern

Appendix B
DVD content

The contents of supplied DVD are shown in figure

DVD

README .md

navigation_system

ﬁ calibrate.py

L") preprocess.py

ﬁ navigate.py

ﬁ sensor_width_camera_database.txt
ﬁ RunDocker.cmd

ﬁ Dockerfile

-E tools

ﬁ __init__.py

ﬁ airsim_env.py

ﬁ data_extraction.py
ﬁ dem_handling.py
ﬁ distortion.py

ﬁ geo.py

7] cython files
ﬁ setup.py
ﬁ heap.pyx
ﬁ heap.pxd

—E thetastar.pyx

Figure B.1: DVD content

o7

	Introduction
	Context
	Specification

	The theory behind photogrammetry
	Mathematical apparatus
	Notation
	Transformation of coordinates
	Homogeneous coordinates
	Vector product
	Convolution on matrices

	Modeling the camera
	Pinhole camera model
	Normalized image coordinates
	Lens distortion

	Depth estimation
	Stereo depth estimation
	Triangulation

	Challenges
	Camera calibration
	Correspondence problem
	Pose estimation

	Photogrammetry pipeline
	Structure-from-Motion
	Multi-view Stereo

	Geographic coordinate systems
	ECEF
	WGS
	ENU

	Used software
	External libraries
	OpenDroneMap
	openMVG + openMVS
	COLMAP

	Simulator
	AirSim
	Unreal Engine

	Implementation
	AirSim interface
	airsim_env.py
	Point cloud from AirSim
	Simulating lens distortion

	Photogrammetry data processing
	COLMAP
	OpenDroneMap
	openMVG + openMVS

	Preprocessing for path planning
	Heightmap generation
	Occupancy grid generation

	Path planning
	Theta*

	Experiments
	Comparison of methods
	Experiment without distortion
	Experiment with distortion
	Comparison discussion

	Final navigation system
	Performance evaluation

	Conclusions
	Summary
	Future work

	Bibliography
	DVD content

