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Abstract

The main goal of this thesis is to ex-
plore opportunities the artificial neural
networks could offer to the field of wireless
parameter estimation. We theoretically
and algebraically describe complex chan-
nel model that consists of multi-path com-
ponents, dense multi-path components
and additive white Gaussian noise. Chan-
nel impulse response simulator capable
of both correctly providing us artificial
channel impulse responses and respect-
ing limits of real measurement equipment
was implemented. We focus on estimating
time of arrival and parameters of dense
multi-path components. SAGE algorithm
is used as a state-of-the-art estimation per-
formance reference. We propose a method
based on a two stage artificial neural net-
work. The first stage roughly estimates de-
lay of multi-path components and power
delay profile. Then, the second stage pro-
vides fine estimation of delay based on the
rough estimates. Results are compared
with the estimates of reference SAGE al-
gorithm and Cramér-Rao lower bound.
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components, SAGE, Cramér-Rao lower
bound, time of arrival, artificial neural
network

Supervisor: Ing. Rostislav Karasek
Czech Technical University in Prague,
Department of Electromagnetic Field
and German Aerospace Center (DLR),
Institut fiir Kommunikation und
Navigation

vi

Abstrakt

Hlavnim cilem této prace je prozkoumat
moznosti umeélych neuronovych siti na
poli odhadovani parametrt radiového ka-
nalu. Teoreticky a algebraicky jsem po-
psal model bezdratového kanalu, vytvo-
il simuldtor impulsovych odezev, ktery
produkuje teoreticky presné vzorky, ale
zaroven respektuje omezeni redlnych méri-
cich zatizeni. Uvedeny a implementovany
SAGE algoritmus slouzi jako reference od-
hada. Predstavil jsem metodu zalozenou
na dvoutroviiovém zpracovani signalu po-
moci neuronovych sitich, které v prvni
fadé hrubé odhaduji ¢asové zpozdéni kom-
ponent vicecestného siteni spolu s vykono-
vymi profily Sumu tvoreného za hlavnimi
vrcholy. Tyto odhady jsou nasledné pou-
zity spolu s originalni impulzovou odezvou
jako vstup finalni neuronové sité, ktera
precizné odhaduje zpozdéni komponent
vicecestného siteni. Vysledky byly porov-
nany s odhady referen¢niho SAGE algo-
ritmu a teoretickou spodni mezi Cramér-
Rao lower bound.

Klicova slova: zpracovani signalt,
odhad parametrt radiového kanalu,
vicecestné §iteni, SAGE, Cramér-Rao
spodni limit, ¢asové zpozdéni, umélé
neurononové sité

Pfeklad nazvu: Odhad parametru
radiového kanalu s vyuzitim umélych
neuronovych siti
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Chapter 1

Introduction

. 1.1 Motivation

The modern positioning algorithms aim for precise position estimation in
environments that are challenging for the classical methods. One of the
most challenging problems is to estimate position indoors. Currently, the
most promising approach to this challenge is a technique known as multi-
path assisted positioning. The multi-path assisted positioning approach’s
accuracy is restricted by the precision of estimated wireless channel parameters.
Computational complexity of state-of-the-art methods are not allowing real-
time processing required for positioning.

One promising approach to solve the problem mentioned above is to utilize
recent advances in machine learning algorithms and artificial neural network
architectures.

B 1.2 Outline

The thesis aims to study and apply relevant machine learning techniques to
estimate the wireless channel parameters and compare this approach with the
state-of-the-art method and theoretical lower bound of parameter estimator
precision.



1. Introduction

For purposes of our theoretical research it is necessary to have datasets
containing channel impulse responses (CIRs) generated by our model given
set of parameters and their precise ground truth labels. It is not possible
to obtain such samples by real measurement because they are affected by
uncontrollable random processes. This implies need of a channel impulse
response simulator capable of both correctly providing synthetic artificial
channel measurements and respecting limits of measurement equipment in
order to obtain realistic signals.

We have developed CIR simulator that is based on derived algebraic com-
plex channel model that consists of multi-path components (MPCs), dense
multi-path components (DMCs) and additive white Gaussian noise (AWGN).
DMCs [21] consist of high number of scattered propagation paths associated
with particular MPC which can not be observed within resolution of measured
equipment and thus is modeled as a stochastic random signal with characteris-
tic power delay profile (PDP) [5], [20]. DMCs are observed as increased noise
following MPCs and exponentially decaying in time. These components are
often ignored, causing the performance of the channel parameter estimator
to be suboptimal. Channel analysis is based on channel measurements where
first a signal is transmitted. The signal propagates through the environment.
Then, the received signal is distorted by the environment. This distortion can
be described by a channel impulse response characterizing the wireless channel.
Measurements contain finite amount of information. Channel measurement
equipment is always of a finite bandwidth [22] but we could recover the in-
formation with infinite resolution under certain conditions [2], e.g., sufficient
separation of delays. Unfortunately in real world scenarios the received signal
is corrupted by noise and so we receive incomplete data [22],[14] from witch
we can not recover the information with perfectly.

The model has to satisfy at first glance two contradicting conditions on
the best level possible. It has to flawlessly balance in between correct descrip-
tion of a wireless channel on the one hand and respect level of observability
complexity that can be achieved on the other hand. It is important to respect
these limitations in order to keep the research work practical.

We focus on estimating time of arrival (ToA) of MPCs and power delay
profiles (PDPs) of DMCs. Complex amplitudes and phase shifts can be
estimated using best linear unbiased estimator (BLUE) [22], [14]. Phase
shifts are considered to be distributed uniformly throughout our work and
therefore carry no information about ToAs. Once ToAs are estimated, it is ele-
mentary to obtain the amplitudes by simply reading the value from the signal.

Theoretical limit on ToAs estimation broadly accepted and used [22],[8],
[25] is the Cramér-Rao Lower Bound (CRLB) first introduced in [3] and is
used throughout the thesis to evaluate estimator’s performance.



1.2. Outline

SAGE algorithm [6] as a state-of-the-art maximum likelihood estimator
is presented and implemented. It serve us as a performance reference algo-
rithm. A few drawbacks come with SAGE algorithm. Starting with its high
computational complexity, need of apriory knowledge of number of MPCs
and providing initial estimates. The main problem is however that SAGE
at is original form [6] ignores important component of the signal that are
DMCs, this results in a significant estimation performance drop. Additional
methods that address some of the mentioned drawbacks of SAGE algorithms
were proposed [13].

Inspired by [12] we propose method which is based on two-level process-
ing using artificial neural networks (ANNs) that first roughly estimates ToAs
of MPCs and PDP of DMCs using two ANNs and feed cropped (focused)
windows of these estimates as inputs into the second-level ANN which fine
estimates ToAs of MPCs. The performance of our methods is compared to
CRLB and to SAGE algorithm in terms of root mean square error (RMSE).
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Chapter 2

Wireless Channel Model

In this section the focus will be on description of mathematical framework of
an observation of wireless channel. First basic concepts and components will
be introduced following the algebraic model which is core of our work and is
being used throughout the entire thesis.

. 2.1 Channel Measurement

In order to investigate channel parameters we need to obtain channel mea-
surement. Although we don’t work with any real channel measurement data
in our work, we find it correct and useful for our readers to briefly describe
the measurement process. For purposes of our theoretical research it is
necessary to have datasetscontaining CIRs of desired parameters and their
precise ground truth labels.It is not possible to obtain such samples by real
measurement.

To work with a channel we first need to identify its parameters. Identifi-
cation of the channel parameters is usually done by measuring the channel
impulse response. It is very difficult process and there are a lot of approaches
which are summarized in applicable. We could use either time-domain
measurement techniques or frequency-domain measurement techniques while
considering the time-frequency duality concept [I]. The techniques could be
either passive or active, require various laboratory equipment and provide
diverse quality results. It is necessary to use high-end instruments that

7



2. Wireless Channel Model

consists of top-quality materials and parts and deploy robust and complex
signal processing hardware architectures and algorithms to obtain proper
results.

Majority of techniques are active and require to first send a reference
sounding signal into the environment and then listen for its response, they are
also referred as channel sounding techniques. State-of-the-art radio channel
sounding techniques are described in [24].

We would particularly mention channel impulse response estimation done
by means of frequency-domain wide-band sounding approach which utilizes
Vector Network Analyzer (VNA) [2§].

B 2.2 Basic concepts and components

In following section we will introduce the basic concepts that we work with
when constructing the wireless channel model. It is important for the reader
to gain all necessary information and background that we utilize in later
section when deriving algebraic channel model.

B 22.1 AWGN channel

The simplest form of a channel in our work is additive white Gaussian noise
channel where there is no contribution of transmitted signal to the received
one. We obtain a sample of AWGN channel by pure measuring the channel
and not transmitting anything.

World is full of electromagnetic noise which is an effect of many random
processes produced either by humans of by nature itself. We consider the
noise to have equal power among frequency spectrum. Noise parameters
are determined by the environment of signal propagation. Parameters of
electromagnetic noise are for example strongly dependant on temperature.
In our work broadly accepted and used concept of AWGN is used.

8



2.2. Basic concepts and components

B 2.2.2 Definition of a ray

The smallest entity in wireless channel that we utilize in our work is a ray.

ray in propagation medium
transmitter > receiver

Figure 2.1: Definition of a ray.

It is known that using ray-optical modelling it is possible to approximately
model complex wave propagating phenomena in continuum like reflection,
diffraction, and scattering. Ray-optical modelling comes with rays possessing
several parameters that describe their propagation through given environ-
ment. Such parameters might be for example transmit/receive azimuth,
transmit /receive elevation which are spatial angles of ray departure and
arrival. For the purposes of our work the main parameter of interest is ToA
T.

B 2.2.3 Definition of a propagation path

Using the elementary ray model is great base concept for many applications
but due to noisy and corrupted received signal is not applicable in real world
scenarios. We make use of model of propagation path that is essentially a
cluster of rays that are close to each other. The very same parametrization is
used while describing both rays and propagation paths - the parameter ToA
7 is applicable while describing the clustered rays.

propagation path

transmitter receiver

sparse ray area

Figure 2.2: Definition of a propagation path.



2. Wireless Channel Model

In figure rays represented as arrows are being propagated through
certain medium. They interact with surrounding environment and object
located in the environment while following geometric optics principles and
phenomena such as reflection, diffraction and scattering [27]. Rays following
same spatial and temporal propagation paths (eg.: reflected by the same
objects at same angles) will likely have their propagation paths affected in
a similar way and thus form a dominant propagation paths. Such rays are
colored in blue. Strongly diffracted and scattered rays will in general be part
of sparse ray areas and will not be part of any dominant path clusters. Such
rays are colored in red.

B 2.2.4 Definition of multi-path propagation

Multi-path propagation is phenomena in wireless channel signal propagation
where the signal reaches receiver by two and more paths. Because the
signal went through various transformations while travelling various paths it
possesses various parameters. We say that received signal is then composed
of multi-path components (MPC). Figure demonstrates this case. Their
presence brings interference which could be either constructive and destructive.
Each component brings new information to our measurement and we can
utilize it to improve our performance of algorithms. Unfortunately in case of
destructive interference the signal might be losing on its power and the carried
information might be fading out. It is important to be aware of these possible
situations and adjust our algorithms in order to achieve best performance.

propagation path 1

propagation path 2

transmitter receiver

propagation path 3

Figure 2.3: Definition of a multi-path propagation.

It can be in figure [2.3] seen that the received signal has reached receiver

10



2.2. Basic concepts and components

by three separate paths. The received signal consists of three multi-path
components.

B 2.2.5 Definition of dense multi-path components

When transmitted signal reaches some propagation media crossings, parts
of the signal can either continue travelling into the next medium or they
are reflect or scattered. It is much easier for the signal to be scattered
rather than reflected [22]. Reflection requires reflecting surface, sufficiently
large object and correct combination position of next reflector or receiver.
Despite the fact that it is hard for the signal to be reflected in such a way
that it reaches the receiver in the end, reflected signals usually dominates
the transmission [22]. On the other hand, scattered signals do not carry
significant amount of energy compared to the reflected ones but because of
their large number, the final contribution to the received signal can not be
ignored. Dense multi-path components are accompanying the components
produced by dominant propagation paths because a lot of scattering happens
as a side effect of propagation of the dominant components.

transmitter

receiver

Figure 2.4: Definition of a dense multi-path components.

In figure |2.4) blue arrows are representing rays composing the dominant
signal component (the MPC) which is reflected in the high reflection area
(inner black circle) and red arrows follows the same propagation paths but fall
into are of worse reflecting conditions (outer grey circle) and are not reflected
such cleanly as the blue arrows.

Big amount of low power DMCs can’t be observed and we can’t receive
complete information from the measured data. They are essentially detected
as increased level of noise following dominant components that decays in
time domain. DMCs are thus modelled as a stochastic process with normal
distribution with exponentially decaying power in time [21].

11



2. Wireless Channel Model

B 23 Algebraic Model

In this section the algebraic model for our wireless channel is derived and
defined. More specifically we provide channel impulse response algebraic
description combining both deterministic and stochastic components.

B 2.3.1 Complex function

The channel impulse response is a complex valued function thus the core of
our algebraic model is a complex function f: R — C

y = f(x) (2.1)

where z € R and y € C. We won’t go through elementary introduction to
complex numbers, we follow broadly accepted principles which could be found

in [23].
B 2.3.2 Impulse representation

Transmission of a single impulse in time 7 could be described using
x(t) =0(t —71) (2.2)

where z(t) : R — R and ¢ is Dirac impulse defined as

oo =0
d(x) {0 £ 40 (2.3)

which fulfills -
/ 0(z)dr = 1. (2.4)

Proper definition and description of Dirac impulse in [18].

Frequency domain image of Dirac impulse using Fourier transform is

A

5(F) = F{o(t —7)} = [ O:O §(z)e 2ty — o=2mfT. (2.5)

12



2.3. Algebraic Model

B 2.3.3 Multi-path component model

In our work we will utilize generally accepted multi-path component model
use for example in [24],[25] and [7].

Single component model in time domain with continuous time would be
h(t) = ae®s(t — 1) (2.6)

where t is time, 7 is time delay of the component, « is amplitude of the com-
ponent and 6 is phase of the component. Frequency domain with continuous
frequency model is defined as

H(f) = aefe 2T, (2.7)

where f is frequency and other parameters are very same as in (2.6) Transfer
to a model which consists of multiple components is done by simply summing
components together, for time-domain continuous time model the equation is

h(t) = i €St — 1) (2.8)
n=0

where parameters «, @ and T are vectors of amplitude, phase and time delay
such as in (2.6) and N is number of components.

Corresponding definition for frequency domain continuous frequency model
would be

N
H(f)= Z a0 e~ 27 (2.9)
n=0

where f is frequency and other parameters are very same as in (2.8).

Descrete time/frequency domain forms of equations (2.6), (2.7), (2.8) and
(2.9) are

(ki) = e[k — 7], (2.10)
H'[ks] = aele2mhsT (2.11)
N .
hlke] = ane’™ 8k — 7], (2.12)
n=0
N . .
Hikgl = > ane’me ks (2.13)
n=0

respectively, preserving meaning of parameters.

13



2. Wireless Channel Model

B 2.3.4 Noise model

Channel which consists of AWGN is in general modelled as
y=z+w (2.14)

where y is channel observation, & deterministic channel component and w
is the AWGN which is a identically and independently distributed random
vector. All w; (2.15)) are drawn from the same distribution and are mutually
independent.

w; ~ N (i1, 0%) (2.15)

1 1 rz—pN\2
— = 3(FH)
fe) = e

AWGN is based on Normal distribution with zero mean p and standard
deviation o (2.15)), (2.16).

(2.16)

Total energy and average power [18] of a signal 2:(¢) can be calculated using
continuous-time equations

E, = / () P, (2.17)

P, = l — dt 2.1
im 2T | (2.18)

and their discrete-time forms are

Bom > [olh, (2.19)
k=—00
& 2
Px—](lgnooﬁ ;: (k]| (2:20)

This is however only case for W; € R and our signal - channel impulse
response is a complex signal.

Let us define
y=x+=z2 (2.21)

which is based on (2.14]) unless the z; € C where z; = zi(l)+izz-(2) and zz-(1)+iz§2)

are independent random variables of (2.15). Then the distribution of Z; is

14



2.3. Algebraic Model

called to be Complex circular Normal distribution. Equations for signal
energy and power (2.17), (2.18), (2.17) and (2.20) still hold true for (2.21)
however it is important to remember that the noise is composed of its real
and imaginary component which together form a signal of desired power and

appropriately adjust variances o2.

B 2.3.5 Dense multi-path components model

Each DMC is associated with particular MPC. It has been mentioned that
the DMC is presented as a increased noise after the associated MPC, which
is exponentially decaying in time [21].

DMC signal is a stochastic complex signal with zero-mean of Complex
circular Normal distribution and it is characterized it by its power delay
profile (PDP) computed using (2.18]), (2.20]).

Time-domain model has been used in [22], [5] and [20]. It is essentially
stochastic approximation. This proposed model provides reasonably good
estimation of variance (power) as a function of time of dense multi-path
components.

0 ift <,
Un(t) =E{h()]*} = {83 if t =7, (2.22)
e Bl=m) ift> 7,

where t is time, 7. is time delay of associated MPC, £ is maximum variance
(power) of DMC and B is decay speed. The decay speed B could be bandwidth-
based on the coherence bandwidth which comes from Rayleigh distribution
of dense multi-path components such as in [22] but for purposes of our work
we generalize it to decay speed.

The model in time-domain (2.22)) is incomplete because it does ignore
correlation between DMCs at different time-delays and is not valid for charac-
terizing distribution of DMCs for real measurements. There exists bandwidth
limitations of real system [22] which are neglected by (2.22).

Power spectrum density, i.e., the Fourier transform of (2.22) is introduced
in [22] to overcome this limitation.

15



2. Wireless Channel Model

Vun(fi, fo) =VYu(fi— fo) =Yu(Af) = B+zﬁ27rAf LeTRTALE (2.23)

L denotes number of complex bins in the channel impulse response and other
parameters are very same as in [2.22)

Function (2.23)) describes a spectral correlation between components of the
channel transfer function having a distance Af = f1 — fo [22].

The covariance function of channel impulse response in time domain is

Yrn(t, t2) = Yu(te)d(t —t2) (2.24)

and after two Fourier transforms on (2.24)) we get
Vin(fi, f2) =vu(fi — f2). (2.25)
This should clarify the relationship of equations (2.23)) and (2.22]).

Later on in section about channel impulse simulator we utilize the covariance
matrix R € CI'*© [22]

U (0) Yy (—fo) Yy (—(L —1)fo)
5 Yu(—fo)
Yy ((L—1)fo) Uy (fo) U (0)

when generating signal featuring the dense multi-path components. This
approach using frequency domain respects the limitations of measurements
and generates realistic data featuring DMCs.

B 2.3.6 Complete channel model

Complete channel model consists of MPCs where each MPC has particular
DMC associated to it and AWGN representing channel’s background noise.
As we have already mentioned, channel is characterized by its channel impulse
response and in our work we refer to the channel model as the CIR. Algebraic
equation describing CIR in continuous-time time domain is
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2.3. Algebraic Model

N
B() = hnpe(t) + hame(t) + w(t) = 3 [AEL(8) + hG0(8)] +w(t)  (2.27)
n=0

where n iterates over the multi-path components, h&’f,lc is the contribution

of n'™ multi-path component, hggc is the contribution of dense multi-path
components associated to n® multi-path component and w is AWGN. The

frequency domain form of (2.27) is

h{E] = hupe K] + hame[k] + w(t) = i [P K] + h [K)] + wlk].  (2.28)
n=0
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Chapter 3

Cramér-Rao Lower Bound

When measuring performance of parameter estimation of a signal which
features a random components it would be highly welcomed to have a tool
that says how much information does a particular signal carries. By that
we mean a theoretical limit of parameter estimation. Then we are able to
compare our algorithms not only among them but also to the theoretical limit
and state how close their estimates can get.

Such a theoretical limit broadly accepted and used [22],[8], [25] is the
Cramér-Rao Lower Bound (CRLB) first introduced in [3] which expresses a
lower bound on the variance of an unbiased estimator. Estimator is unbiased
when

Elé-¢ =0 (3.1)

where & is vector of estimates and &€ are true value parameters.

CRLB states that the variance of an unbiased estimator is at least as high
as the inverse of its Fisher information. Fisher information matrix consists
of particular Fisher information entries which are values that describe how
much information about certain parameter £ is carried in a random variable
X that depends upon £. Given a f(X;&) as a probability density function
for X conditioned on &.

Partial derivative with respect to £ of log-likelihood function is called score.

score = E [ai log, (£(X:€)) ‘ f] (3.2)

19



3. Cramér-Rao Lower Bound

Variance of the score is then defined to be Fisher information.

0 sD - E[(ilegewm» )

o€
Formula computing CRLB of 7,, of n! propagation path for our use-case
is derived in [22] and is

2

Z(¢) = Var (El log,.(f(X;¢))

(3.3)

1 6
SNR,, (M2 —1)M
where M is number of samples. CRLB bounds the variance of estimated
parameter thus to compare it to RMSE of estimates we need to compute
square-root and normalize it to the CIR length M to get the comparable
dimension.

CRLBr7, = (3.4)

We introduce

. 1 6
CRLB7,* = M\/ SR (37T (3.5)

for purposes of comparison using RMSE of an estimation.

CRLB* of TOA T

0.8 4
—— CHIR of 64 samples
0.7 - CHIR of 128 samples
' —— CHIR of 256 samples
—— CHIR of 512 samples
061 —— CHIR of 1024 samples
0.5 +
Q
Z 0.4 1
L
0.3 1
0.2 1
0.1
0.0
-5 0 5 10 15 20
SNR [dB]

Figure 3.1: CRLB for various signal to noise ratios (SNRs) and various CIR
length.
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3. Cramér-Rao Lower Bound

In fig. [3.1] one can see plotted values of theoretical estimation lower bound
- CRLB7,* for various signal to noise ratios (SNRs) and various length of
CIRs.

That is a brief introduction which is not neither proper definition or
rigorous derivation of either Fisher information and CRLB. Our research aims
straightly at parameter estimation and we do not focus on theory background
of CRLB and thus we only utilize CRLB as a tool and theory can be found
in cited literature.
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Chapter 4

Channel impulse response simulator

In this chapter we introduce channel impulse response (CIR) simulator. It is
very important that the simulator is implemented correctly and is based on
correct algebraic equations. Both state-of-the-art method algorithm and our
proposed method to estimate channel parameters is fed with simulator gener-
ated CIRs. We need to follow real world conditions and physical principles in
order to obtain realistic channel impulse response but on the other hand we
need to respect limitations of measurement equipment.

The simulator is implemented in Python (version 3.6) using Jet Brain’s
PyCharm Professional (version 2020.1.3) integrated development environment
in Scientific mode. Among generally available Python packages we have
used NumPy (version 1.19.2) for complex mathematical calculations and
Matplotlib (version 3.3.2) visualisation. Structured and commented code is
available as in thesis’s attachment.

The tool is implemented in such a way that user provides a set of input
parameters that either strictly define or bound the properties of dataset and
generated samples of particular channel impulse response. Simulator generates
and saves the dataset in binary file using NumPy *.npy. These generated
datasets are then ready to easily use in further research in both state-of-
the-art method’s performance evaluation and neural network’s training and
testing because of its general format and included labels.
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4. Channel impulse response simulator

parameter

type

description

dataset_n

sample_1

mpc_n
mpc_snr_base
mpc_snr_var
dmc_trigger

dmc_power_base

dmc_power_var

dmc_len_base

dmc_len_var

awgn_trigger

int

int

int

float

float

boolean

float

float

float

float

boolean

number of channel impulse response sam-
ples in dataset

number of complex bins in one channel
impulse response sample / length of one
channel impulse response sample
number of multi-path components in one
channel impulse response sample

base value of SNR [dB] for multi-path
components

variance of SNR [dB] for multi-path com-
ponents

dense-multi-path components on/off trig-
ger

base value of relative power of dense-
multipath components to associated
multi-path component’s amplitude
variance of relative power of dense-
multipath components to associated
multi-path component’s amplitude

base value of length [number of complex-
bins] of contribution/effect of dense-
multipath components after associated
multi-path component

variance of length [number of complex-
bins] of contribution/effect of dense-
multipath components after associated
multi-path component

awgn on/off trigger

Table 4.1: List of channel impulse response simulator’s input parameters.

The parameters whose names match *_base and *_var notation set bound-
aries for random variables that they describe. It is necessary to generate
samples possessing random parameters and characteristics in order to simulate

effects of various real world environments of propagation.

In following sections we will describe how are particular parameters used
while generating the channel impulse response and how is the finite sample

composed.
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4.1. Generating multi-path components

B a1 Generating multi-path components

Generating MPCs in time-domain using would lead to limitation that
we could only produce peaks at certain bins and not anywhere in between
considering - discrete signal. That is not the case applicable for real measure-
ment simulation, where the peaks are located no matter discrete sampling
resolution.

Therefore we first generate N multi-path components in frequency domain

using (2.13)) where N equals to mpc_n in tab. and

o~ U(GNT, GNAX) (11)

0, ~ U(0,27) (4.2)

Tn ~ U(0,1) (4.3)

where oM = mpc_snr_base, aMAX = mpc_snr_base + mpc_snr_var and

| = sample_1 are parameters from tab. Function U denotes continues
uniform distribution. Then using inverse Fourier transform we obtain time-
domain based channel impulse response sample such as in fig.

The amplitudes a, in (4.1) are in absolute values while mpc_snr_base and
mpc_snr_var are in decibels. Conversions is done using following formulas

an[dB]
a, = 1070 (4.4)
and
n[dB] = 201og ;o (cwn). (4.5)

Description of complete contribution of MPCs in (4.7) compatible notation
is
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4. Channel impulse response simulator

hinpe[k] = FH{ Hynpe K]} = F~ 1{ZH [k} = F~ 1{Zan e 2Tk}
(4.6)

The complete flow diagram describing process of generating MPCs is in fig.
4.1l

compute random w0, —iznkry, | 1°'MPG in frequency
variables ae e domain
—> —_—
ap, 0, HY.
compute glandom Qupei® e 12Tk 2"d MPC in frequency v CHIR in time domain
variables domain F1 featuring MPCs
(2) " h
a, 0, Hpe A mpe
compute random 16, —iaekr, | M"MPC in frequency
variables ae e domain I
—
an, 6y, H,(,rg,c

Figure 4.1: Flow of generating MPCs.

By plugging (4.6) into (4.7) and constraining hgme[k] = 0 and w[k] =0V k
we get a CIR sample that only consists of MPCs

N
h[k] = Punpelk] + hame k] + w[t] = Banpe[k] = F Y apei®re 2™ (4.7)
n=0

Such a sample can be observed in fig. |4.2) as a continuous plot created by
interpolation in between discrete values for higher clarity.
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4.2. Generating dense multi-path components

real, imaginary part and power of complex signal h[k]

1
—~
)
Z o J‘lf
g o
_1 T T T T T
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time
1
5 A
-
Z 0 A y ﬁ#
=
E
_1 T T T T T
0 50 100 150 200 250
time
1.0
£ 05+
: M
0.0 \‘ T T T T T
0 50 100 150 200 250

time

Figure 4.2: Example of generated channel impulse response in time-domain
featuring only multi-path components.

B a2 Generating dense multi-path components

We have introduced two approaches both suitable for generating artificial
realistic DMCs. The first (stochastic one) is based on observation of PDP of
DMCs which has been proved to have exponential decay in time after the
main peak, unfortunately this approach does not respect the limitation in
measurement resolution and thus we make use of the second introduced ap-
proach that generates dense multi-path components as a noise with covariance
matrix R (2.206).

Generating covariance matrix R for n'" DMC associated to n'" MPC
consists of computing the matrix entries with (2.23)) where the parameters £,
B are specific to n** DMC and computed as
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4. Channel impulse response simulator

By ~UBNN, BYAX)

BMIN — dmc_power_base (4.8)

5};/IAX = dmc_power_base + dmc_power_var

with parameters from tab. 4.1

B, = ——5— (4.9)

We can not directly compute the decay speed of DMC B,, because it depends
on T which specifies the final expected power of DMC that it reaches after
L, complex bins. We set 7' = 0.01 which means that all DMCs decay to one
percent of their power after L,, complex bins which we consider to be such a
low value that it does not affect the signal anymore because the contribution is
completely lost in effects of channel random processes represented by AWGN.
L,, are generated as a random values of Uniform distribution

Dy ~ U, DY
DMIN — gmc_len_base (4.10)

D%AX = dmc_len_base 4+ dmc_len_var

with parameters from tab. 4.1 and 7,, as ToA of n** MPC.

By multiplying the covariance matrix R,, (2.26]) of particular DMC by
random vector r we get vector Hgme™ that is essentially image of signal
featuring DMC in frequency domain.

Hgpo™ = rTchol(R,,) (4.11)

where chol states for Cholesky decomposition.

The elements of random vector r are computed using Normal distribution
with zero mean and variance a2 so that it respects SNR of particular MPC.

re REXY | ]t ~ N(0, ) (4.12)
where L = sample_1 from tab. [4.1]
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4.2. Generating dense multi-path components

Each CIR of particular n*® DMC is using inverse Fourier transformation
(IFT) transformed into time domain. To obtain complete contribution of
DMCs in (4.7) compatible notation, we sum the separate DMCs

N N N
hame = Y hame™ =Y F H{Hame™} = > FH{rlchol(R,)}. (4.13)
n=0 n=0

n=0

Because IFT is linear, we make use of this fact

Rdme = g: FHrlchol(R,)} = f*l{gj rLchol(R,)} (4.14)
n=0

n=0

and lower computational complexity so we only need to compute Fourier
transformation (FT) once. This is how we compute DMCs but one could
alway utilize previous formula (4.13)) in need of obtaining each term describing
particular DMC in time domain separately.

We have derived hgme as a complex-valued vector in (4.14). In order to
utilize hgpme|k] notation such it is in (4.7) where we work with a discrete
complex-valued function, we feel responsible for following clarification.

hdmc S (C IxL (415>
N
hame[k] = [Rame], = |F D mhchol(Ry)} (4.16)
n=0 k

The complete flow diagram describing process of generating DMCs is:

compute covariance

matrix R¢ and DMC in frequency

DMC in time domain

generate random Tchhol(Rl) domain Fl
E— R — —
vector rq H(l) s h(l) h,(il,)nc
dme — { dmc}
T, R

compute covariance
matrix Ry and

DMC in frequency

DMC in time domain

) 4 CHIR in time domain

generatte random | T chol(Ry) domain -1 R featuring DMCs
— Rl
vector ry H(Q) _ A® ),1'(121)71c h
dme — { dmc} dmce
T2, Ry 1

compute covariance

matrix Rz and DMCdig r:;'zicrlluency DMC in time domain
generate random ’I'TChOl(R3)
vector r3 ———— ) () B
Hdmc = ]:{hdmc} dme
T3, Ry

Figure 4.3: Flow of generating DMCs.
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4. Channel impulse response simulator

By plugging (4.16) into (4.7) and constraining hmpc[k] = 0 and w[k] = 0
we get
N
h[k] = hupelk] + Pamelk] + w(t) = hame[k] = |F D vl chol(R,)}
n=0 k

(4.17)
which is a CIR sample that only consists of DMCs.

Such a sample can be observed in fig. as a continuous plot created by
interpolation in between discrete values for higher clarity.

real, imaginary part and power of complex signal h[k]
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=
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3
£ 0.5
%]
Q
©
OO T o T T T T
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Figure 4.4: Example of generated CIR in time-domain featuring multi-path
components and dense multi-path components.

B a3 Generating noise

We generate noise as a vector w € C of length L = sample_1 from tab.
4.1 To remain compatible with notation w(k] used in we need to
define following transition. Relationship between complex-valued vector and
complex discrete signal is as simple as

wy, = w(k] (4.18)
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4.4. Complete channel

To obtain w we utilize formulas introduced in previous chapter (2.14) and
(2.15]).

Riwi} ~ N (p,0?)
S{wi} ~ N (p,0?)

where we choose jt = 0 and 02 = % so the mean power of signal w equals to
1. This condition simplifies process of generating signal of certain SNR.

wg = §R{wk} + j%{’wk} (4.20)

By plugging (4.20) into (4.7) and constraining Ampc[k] = 0 and hgme[k] =0
we get a CIR sample that only consists of AWGNS.

BIK] = Panpelk] + RamelK] + wlk] = w]k] (4.21)

(4.19)

Such a sample can be observed in fig. as a continuous plot created by
interpolation in between discrete values for higher clarity.

real, imaginary part and power of complex signal h[k]

0 50 100 150 200 250
time

0 50 100 150 200 250
time

O N T T T T T
0 50 100 150 200 250
time

Figure 4.5: Example of generated channel impulse response in time-domain
featuring only additive white Gaussian noise.

B a4 Complete channel

Generating complete CIR featuring all MPCs, DMCs and AWGN is based on
complete CIR algebraic model for discrete signal described in (4.6)) where the
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4. Channel impulse response simulator

particular terms are generated according to (4.6)), (4.16) and (4.21) respec-
tively.

When we put these equations in the (4.7) we obtain:

N N
hlk) = F Y apefrem @™y 4 1 7S plchol(R,) | +wlk] (4.22)
n=0 n=0 k

Such a sample can be observed in fig. as a continuous plot created by
interpolation in between discrete values for higher clarity.

real, imaginary part and power of complex signal h[k]
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Figure 4.6: Example of generated channel impulse response in time-domain
featuring multi-path components and dense multi-path components and additive
white Gaussian noise.

We have mentioned that while generating AWGN we choose its parameters
so the mean power of the generated AWGN signal equals to 1. Nevertheless
one can see that in fig. the mean power of its AWGN component is equal
to by far less than 1. After the final signal is composed we normalize its real
and imaginary part in order to fit the values into the interval:

1 <R[k} <1V K

—1<3{hlk]} <1VE (4.23)
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4.5. Labels

We do not loose any information or lower resolution while normalizing the
signal. There is no downside in doing so when using conventional algorithms
to estimate channel parameters, on the other hand there is big advantage to
have signal normalized when feeding it as an input to a neural network.

B 4.5 Labels

Apart of only generating CIRs we also need information containing the correct
values of parameters such are for example ToAs in order to be able to measure
performanace of our estimation methods and train ANNs.

Exact forms of labels will be introduced when used in chapter about
parameter estimation using ANNs.
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Chapter 5

Channel parameter estimation

Complete generated CIR signal features parameters 7,, oy, # and N as
number of MPCs, DMCs. The focus of our work is on estimating parameters
ToAs 7 and parameters of DMCs. Amplitudes denoted by a and phase-shifts
6 are linear parameters and can be obtained by BLUE according to [22], [14].
In our case both a and 8 are uniformly distributed and not correlated. They
don’t carry any information about the channel but for purposes of estimating
T we need to remember and estimate them.

We introduce and describe SAGE algorithm which is proved [6] to follow
CRLB when there is appropriate spacing between peeks (MPCs) [3]. We
need to know the number of MPCs apriory and provide initial estimates for
SAGE. Two problems appear when using SAGE algorithm: first is that in real
world usage we wouldn’t know number of peaks apriory and second is that
iterations of SAGE algorithm estimating multiple T could converge to the
same peak [22]. This is a considerable downside of SAGE algorithm approach.
Later on we introduce our approach based on ANNs where we first roughly
estimate ToAs of MPCs and power delay profile of DMCs. Using these results
as augmented dataset together with original CIR we fine estimate ToAs 7.
Fine estimation is not done on complete sample of CIR but on a cropped
CIR - window surrounding the particular MPC. We thus bypass the problem
of knowning number of components apriory. When it comes to real-time
processing it is significant advantage of ANNs that they produce result in
constant time and are thus usable in such applications.
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Chapter 6

State-of-the-art method for channel
parameter estimation

In this chapter we introduce the SAGE algorithm which will serve us as
a performance reference algorithm when processing results of our ANNs
parameter estimation method. SAGE algorithms is proved to follow CRLB
so it is indeed the best reference estimator in matter of results. SAGE is an
iterative algorithm with high time complexity which comes as a downside if
considering real-time processing.

B 61 Em algorithm

The core of SAGE [6] algorithm lies in expectation—maximization (EM)
algorithm [4] so it is necessary to introduce the later first. EM is an iterative
method solving maximum likelihood (ML) estimation problems where part
of the information is missing, unknown or noised. EM estimates complete
unobserved data from incomplete observed data and consists of expectation
and maximization step.

There is discussion if the EM algorithm is an actual algorithm since it does
only provide a general approach and not particular solution.

The basic concept the EM algorithm relies on is that we have complete but
unobserved data and incomplete but observed data. Imagine you measured a
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6. State-of-the-art method for channel parameter estimation

CIR - that is the observed part and it is incomplete because the sample is
corrupted by finite resolution of measurement equipment, noised by various
random processes and therefore does not contain the complete information.
On the other hand we know the channel model perfectly (4.22) (channel
model is also an approximation but we consider it to be the true reference
for our signal) but can not measure such a CIR - that is the complete but
unobserved part.

Proper derivation of EM estimating channel parameters can be found in
[7].

B 6.2 SAGE algorithm

SAGE states for space-alternating generalized expectation-maximization.
The algorithm was first introduced in [6]. Each iteration of SAGE algorithm
is essentially a iteration no EM algorithm. SAGE comes with with great
complexity relief with rising number of estimating parameters of §; because it
decomposes the optimization problem into several less complex sub-problems.
When performing the maximization step of EM algorithm the likelihood
function might be very hard to optimize because of high dimensionality of
likelihood function which is given by the number of model parameters.

SAGE is given a rough estimation of é(o) for the zero'” iteration and its
performance is strongly determined on how sufficiently good these initial
estimates are [6]. This implies that we need to know the number of signal
components - MPCs which is not part of our research so we work with apriory
known value. Because we only estimate ToAs the vector £ is essentialy a
vector of particular time delays 7¢ ... T, with a length of N which is number
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6.2. SAGE algorithm

of MPCs in CIR.

Algorithm 1: SAGE algorithm

input : é(o)

- initial guess of parameters, y - CIR
n=0

output: é(u) - final estimation of parameters

H=HEND

p=0;
while not converged do
compute B based on é(u) (6.1);
for i as each n'* signal component do
Y =y;
for j as each n'" signal component do
if ¢ # j then
| Y;=Y; - B;j
end
end

compute maximum likelihood estimate (MLE) of égﬁl) as 1-D
minimization (6.4);

end
p=p+1
end

Pseudocode in alg. (1] describes SAGE. It takes CIR and initial guess of

parameters E(M) where p denotes iteration as an input. Then matrix B is

computed
BeRN*N| B, (r,)=h (6.1)

where B consists of n vectors B,, that are functions of 7,, representing n

separate expected CIRs h (2.12) (each containing only n'® MPC and associted
)

DMC) constructed using parameters of actual iteration é (u with one vector
being replaces with a CIR of 7 as the parameter of minimizing function. Then
parameters are optimized one by one. First Y is computed in a way that we
basically from given input y which we subtract from all particular expected

CIRs in B but the one we are optimizing. If our estimates é(ﬂ) are sufficiently

good, we should be left with a single MPC in Y upon which we obtain MLE

2(p+1

of & )as

é(/Hrl) _ argminé <YHR_1X B (YHR—IB) (BHR_lB)_l (BHR—IY)>
(6.2)
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6. State-of-the-art method for channel parameter estimation

according to [22] where R™! is inverse of covariance matrix of Y, which
fulfils R = oI because signal entries are not correlated R is diagonal. SAGE
algorithm ignores DMCs and pure AWGN of power equal to 1 is expected to
be in background and thus 0 =1 = R = I. Therefore we state that

E(MH) = argminé <YHY - <<YHB> (BHB)_I (BHY))> (6.3)
where gr(zuﬂ) = ﬁ(fﬁl) and

#) — argmin. (YHY - ((YHB(fn)) (B(TAn)HB(TAn))_l (B(fn)HY)>
(6.4

B 6.2.1 Performance

We have generated 52 separate dataset with parameters specified in tab. |6.1
where 26 of them are datasets with SNR € {—5, —4,...19,20}[dB] for both
cases: either containing and not containing DMCs.

parameter value
dataset_n 1000

sample_1 256

mpc_n 1

mpc_snr_base {-5, -4 ... 19, 20}
mpc_snr_var 0

dmc_trigger {False, True}

dmc_power_base 0.25
dmc_power_var 0.5
dmc_len_base 16
dmc_len_var 32
awgn_trigger True

Table 6.1: List of channel impulse response simulator input parameters used to
generate datasets for SAGE performance evaluation.
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6.2. SAGE algorithm

SAGE algorithm performance of ToA T estimation

--- CRLB
—— SAGE algorithm on dataset with DMCs
—— SAGE algorithm on dataset without DMCs

0.7 A

SNR [dB]

Figure 6.1: Sage performance on dataset of various SNRs when containing and
not not containing DMCs.

Results of comparison can bee seen in fig. 6.1 where one could see that
the performance on dataset without DMCs is asymptotically converging to
CRLB in space of higher SNRs but there is a estimation margin on dataset
with DMCs. If we knew the covariance matrix of input signal we could utilize
the information in (6.2) but unfortunately we do not know the information
apriori. Around SNR[dB] equal to 0 (where the signal is expected to have
same power as noise) both curves meet. Our interpretation is following: when
the noise power level is about the same power of actual MPCs it does not
really matter if there are any additional DMCs present. DMCs are modelled
as an increased noise and are totally lost in the AWGN.
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Chapter 7

Channel parameters estimation using
artificial neural networks

. 7.1 Introduction to ANNs

Let us briefly summarize history of ANNs [26]. It all begun in 1943 War-
ren McCulloch a neurophysiologist and Walter Pitts a young mathematics
described a mathematical model of how neuron could work [I7]. Very early
stage of research and developement work in this field has been done by Donald
Hebb, Nathanial Rochester and John von Neumann until the year 1958 when
the simplest neural network still used today called perceptron was introduced
by Frank Rosenblatt. A year later in 1959 researchers Bernard Widrow and
Marcian Hoff based in Sanford came up with two models ADALINE and
MADALINE - the very first neural networks applied on real world’s problems.
Then research somewhat halted, it didn’t bring up any significant progress
because of low complexity and performance of electronics. Computing power
and electronic’s compelxity got huge push forward in following years and
during these times the research was mostly done theoretically and practical
research could be done on only very simple ANNs. Conferences and meetings
about ANNSs started happening across the whole world from Japan to USA
as soon as in 1980s and researchers invented modern architerctures such as
convolution neural network (CNN) [9] by Fukushima, Kunihiko, Long Short-
Term Memory (LSTM) [10] by Sepp Hochreiter and Jiirgen Schmidhuber and
Gradient based learning by Yann LeCun [16].

Neural network is at its simplest and most general form is a function
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7. Channel parameters estimation using artificial neural networks

mapping space of inputs to the space of outputs. Where in our case space of
inputs might be CIRs and space of outputs might be the channel parameter
estimates &.

f@): X =Y (7.1)

where X is domain of inputs and Y is domain of outputs and f is a general
function. Because f is defined as general we do not know neither its structure
or its parameters 1.

For instance one could consider linear function
y=f(z)=azx+b (7.2)

as a very simple form of neural network where we have a and b as ANN’s
parameters. We would then aim to find sufficient set of a,b which makes f
work well for our application - we would perform a linear regression based on
given x,y.

Both, choosing the right structure of f which is commonly referred to as
ANN’s architecture and finding suitable set of function parameters ¥ which
is commonly referred to as ANN’s training is crutial for any application.

B 7.1.1 Architecture

B Layers

Today there is a broadly accepted concept of describing sequential ANN’s
architecture by its layers:

¢1(f1) ¢2(f2) ¢3(f3) Ce(fr)

f:X() X1 ,XQ XKZY (73)
where f are particular function in a layer of defined structure but not bound
in parameters in between them and X might be arbitrary tensors. The reason
why we need layers is the fact that sequential ANNs are often a combination
of mostly linear layer functions f and non-linear activation functions ¢ which
together create hugely complex non-linear functions that fit to particular
applications. If we stuck linear layers one by one right after the previous
linear layer we wouldn’t make the ANN any more complex because one can

substitute any combination of linear layers by one linear layer.
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7.1. Introduction to ANNs

This (7.3)) sequence of non-linear functions applied on the input creates a
complex non-linear function that with right parameters ¢ of f can be used
to solve a particular task such is image recognition, text classification and
much more. In our case it is a channel parameter estimation.

Apart of sequential models of ANN’s there exists others such are for example
recurrent neural network (RNN) introduced first in 1982 by John Hopfield in
[11].

In following text we will shortly introduce concept of dense layer and 1-D
convolution layer which we use for parameter estimation.

XK
X1 G (fr) x©
. X
X X
X, X
X, X
x

e
S, x ID{K

Figure 7.1: Dense layer of ANN.

y=((Az +b) (7.4)

Dense layer in fig|7.1| (also called fully connected layer) is a simple but
most complex linear layer where one particular element of a vector (matrix)
X i is computed as a sum of a affine functions f(x) = ax + b of independent
parameters a,b for each connection where = are all elements from a vector
(matrix) X g_1. The output of each affine function if fed as an input to a
non-linear activation function ¢ (7.4). Dense layer is very general form of
ANN’s layer and thus does not have any special applications.
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7. Channel parameters estimation using artificial neural networks

Convolution layer in fig. 7.2/ might be of arbitrary dimension (figure contains
2-D convolution) and is based on its kernel (blue area) which move all over
the input vector (matrix) X and computes output as an element of vector

(matrix) X gy1. In the example figure the element X %i)l is computed as.

X =C(e1n X3 400X 400 XY 400, X2Y) (75)

)

where ( is non-linear activation function and ci,j are kernel parameters
which are fixed for whole input. It is possible to create multiple kernels that
are applied to the input one by one separately and create new dimensions
(channels) of the data.

C1,1 C.l:g. ) (1,3) N
XK1 x (LD | x(12)
K K
C21 | C22 (23) | = s
; 2| xes e
R Y S N (21) | y(2,2)
Xy | Xk
(3,1) (3,2) (3,3)
X 1 X XK

Figure 7.2: Convolution layer of ANN.

The main application of CNNs nowadays is in image processing where
CNNs are performing well in pattern recognition.

B Activation functions

Activation functions are important part in between mostly linear layers.
They allow us to create very complex networks by combining big amounts
of non-linear functions in chains. Their structure is appropriate so they
can serve as activators of certain connections. There exist a lot of types of
activation functions which some serve better in a particular subspace of ANNs
applications and some worse. Two types that are frequently used these days
and we use in our research are rectified linear unit (ReLU), leaky rectified
linear unit (Leaky ReLU) and Sigmoid activation functions fig. |7.3l
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7.2. ANN training

Activation functions

—— Relu
1.0 --- Leaky Relu

—— Sigmoid
0.8 A
0.6 -

>
0.4 -
0.2 A
001 ————————==—===
-4 -2 0 2 4
X

Figure 7.3: Activation functions.

Algebraic forms of introduced activation functions are following:

for Sigmoid activation function,

R(z) = max(0, z)

for ReLU activation function and

ar x <0

LR(z) = {

x T >x

B 72 AnNN training
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(7.8)

for Leaky ReLU activation function where a is a parameter of a small value
e.g. a = 0.001 creating a very gentle negative slope which prevents gradients
to zero-out during network training which is a downside of ReLU activation
function.

We refer to training of an ANN as process of finding suitable set of parameters
of certain ANN %) (7.1). Suitable set of parameters is a set which makes the



7. Channel parameters estimation using artificial neural networks

ANN output expected values for given input. Finding 1) is a process when we
using given training dataset, which consists of ANN’s input and associated
desired outputs so called labels, extract information of how particular elements
of the v affect the ANN’s output and tune them in order to get obtain better
estimation.

B 73 AnN roughly estimating ToA of MPCs

In this section we introduce ANN which rougly estimates ToAs of MPCs. By
roughly we mean estimation within limits of CIR sample resolution. ANN
takes real, imaginary component and computed signal’s power as inputs.
These are vectors of a certain length and output is also a vector of the very
same length where its values indicate presence of peaks. Example in fig.
One can observe that true peaks that can be easily identified in signal power
are detected by the ANN and its output marks the peak location. Very tiny
noise in ANN’s output can be seen around values 55 and 140.

signal
1
— real
= imaginary
= 0 - *'""'wv-vn \
0 50 100 150 200 250
t
signal power
1.0
g_, 0.5 1

0.0 T T T T T T

0 50 100 150 200 250

t
10 estimating MPCs using ANN

label
—— ANN's estimate L

0.0 == A

0 50 100 150 200 250
t

output of ANN
o
(9,

Figure 7.4: Input-output example of ANN rougly estimating ToAs of MPCs.
The t is a number of ANN’s input-output which corresponds to time delay
normalized to sampling period.
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7.3. ANN roughly estimating ToA of MPCs

We can not say that the ouput of the ANN is probability of peak presence
because in case of multiple peaks the values would have to spread among
several peaks in order to remain probability property of summing to 1 but
considering one element of the output vector one could interpret its value as
a probability.

B 7.3.1 Architecture

Inspired by pattern recognition oriented ANNs, we constructed our ANN as a
sequential model containing several layers of 1-D convolutions together with
Leaky ReL.Us activation functions followed by one dense layer with Sigmoid
activation function at its output.

Conv 1D 32,32 Conv 1D 16,32 Conv 1D 8,32 Dense
LeakyRelu LeakyRelu LeakyRelu Sigmoid
E— E— E— E—
Input [256x3] . . " " " . *+ =+ | Output [256x1]
Conv 1D 16,32 Conv 1D 8,32 Conv 1D 8,32
LeakyRelu LeakyRelu LeakyRelu
Em— —> e

Figure 7.5: Architecture of ANN rougly estimating ToAs of MPCs.

B 7.3.2 Train and test dataset

We have generated train and test datasets specified in tab. and trained the
network using Adam optimizer [I5] which has been proven as a well working
complex optimizing method for training of broad field of ANNs and binary
cross-entropy as loss function.
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7. Channel parameters estimation using artificial neural networks

parameter value
dataset_n 100000 for train and 10000 for test
sample_1 256
mpc_n {1...3}
mpc_snr_base 0
mpc_snr_var 20
dmc_trigger True
dmc_power_base (.25
dmc_power_var 0.5
dmc_len_base 16
dmc_len_var 32
awgn_trigger True

Table 7.1: List of channel impulse response simulator’s input parameters used
to train ANN roughly estimating ToAs of MPCs.

B 7.3.3 Performance

loss (binary cross-entropy)

loss of ANN rougly estimating ToAs of MPCs

0.050 A

0.045 A

0.040 -

0.035 A

0.030 A

0.025 A

0.020 A

0.015 A

0.0

2.5

5.0 7.5 10.0 125 15.0 175 20.0
SNR [dB]

Figure 7.6: Loss of ANN rougly estimating ToAs of MPCs.
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7.3. ANN roughly estimating ToA of MPCs

Loss of the ANN showed in fig|7.6| does not say much information apart of the
fact that performance increase is significant in between 0 < SNR[dB] < 7.5,
then the performance gain is slowing down and by the time when SNR[dB] =
20 the curve is almost flat. This is behavior is expected - the less noisy CIR
as the input the better estimation.

loss of ANN rougly estimating ToAs of MPCs

0.12

0,10 - e e
>
s
< 0.08 1 Ny —— ANN trained on 1 MPC; estimating 1 MPC
3 N —==- ANN trained on 1 MPC; estimating 2 MPCs

-~ ‘. . . .
g N 5 I | EEEED ANN trained on 1 MPC; estimating 3 MPCs
3 \\‘\\\ —— ANN trained on 3 MPCs; estimating 1 MPC
§ 0.06 - \:\\ —-—- ANN trained on 3 MPCs; estimating 2 MPCs
~ .

8 SOISS, e ANN trained on 3 MPCs; estimating 3 MPCs
& S .,
o

0.04 A

0.02

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
SNR [dB]

Figure 7.7: Loss of ANN rougly estimating ToAs of MPCs.

To demonstrate performance of the introduced ANN when multiple MPC
are present we have trained the ANN using several datasets (still based on
parameters in tab. [7.1) which each possess static (inside of particular dataset)
number of MPCs but goes from 0 to 5. In fig. |[7.7] we present two trained
ANNS, first trained on dataset with 1 MPC (red) and second trained on
dataset with 3 MPCs (blue). Performance of these two ANNs shows that to
obtain best results one should train the network on a maximum expected
number of MPCs because it provides decent estimations even if the CIR has
less MPCs than the number it was trained on. On the other hand ANN’s
loss increases dramatically when estimating higher number of MPCs than the
number it was trained on.

The output of this ANN is mainly used as an input to ANN fine estimating
ToAs of MPCs introduced in later section but a standalone application could
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7. Channel parameters estimation using artificial neural networks

be providing initial estimates of ToAs of MPCs for example to the SAGE
algorithm introduced earlier. ANN is able to tell apart peaks which are pure
noise and peaks produced by MPCs even if the power of noise-peak is higher
than the power of MPC-peak, such a sample can be seen in fig. [7.8.

1
o o] dAdulah
<} — real
—— imaginary
_1 T 1 T T T T T
0 50 100 150 200 250
t
signal power
1.0
i 0.5 A
0.0 T T

0 50 100 150 200 250

t
estimating MPCs using ANN

1.0
label

—— ANN's estimate

0.0 - -~ A A — AA

0 50 100 150 200 250
t

output of ANN
o
(6]

Figure 7.8: ANN estimating ToA of MPC in high power noise. The t is a
number of ANN’s input-output which corresponds to time delay normalized to
sampling period.

It is not possilbe to esimate MPC’s location just by looking at the real,
imaginary part and signal’s noise in fig because the peak is completely
lost in surrounding AWGN which produces even higher peaks. Our proposed
ANN was however able to recognise the hidden MPC and mark it at its
output. Label is going up to value 1.0 when the ANN’s estimate is only half
of it but still it is the highest element of ANN’s output vector and thus usable
for estimation. Apart of this, there are several marked positions where a
MPC could according to ANN be, such position are rougly around 65 and
140.
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7.4. ANN roughly estimating DMCs

B 7.4 AnNN roughly estimating DMCs

In this section we introduce ANN which estimates power delay profile of dense
multi-path components. The ANN takes real and imaginary components as
inputs together with computed signal power . These are vectors of a
certain length and outputs vector of very same length where values indicate
presence of peaks. Input-output example of the ANN in fig. One can see
that our ANN is capable of locating DMCs and marking their PDP. If the
SNR is high enough such it is here, apart of location of DMC the values of
ANN output remain zero.

1 -
— real
= 0 —— imaginary
< 7 - N
T
0 50 100 150 200 250
t
signal power
1.0
i 0.5 A
0.0 T T T T T T
0 50 100 150 200 250

t
estimating power decay profile of DMCs using ANN

M

0-0 T T T T T T
0 50 100 150 200 250

t

1.0
label

—— ANN's estimate

output of ANN
o
(6]

Figure 7.9: Input-output example of ANN estimating PDP of DMCs. The ¢ is
a number of ANN’s input-output which corresponds to time delay normalized to
sampling period.

B 7.4.1 Architecture

The very same architecture as the one which we have introduced when roughly
estimating ToAs of MPCs (previous section) is used to estimate power delay
profile of DMCs. Architecture diagram in fig.
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7. Channel parameters estimation using artificial neural networks

Inspired by pattern recognition oriented ANNs, we constructed our ANN as
a sequential model containing several layers of 1-D convolutions together with
Leaky ReLU activation functions followed by one dense layer with Sigmoid
activation function at its output.

Conv 1D 32,32 Conv 1D 16,32 Conv 1D 8,32 Dense
LeakyRelu LeakyRelu LeakyRelu Sigmoid
E— e — > —_— >
Input [256x3] " " . - " " * ==+ | Output [256x1]
Conv 1D 16,32 Conv 1D 8,32 Conv 1D 8,32
LeakyRelu LeakyRelu LeakyRelu
— > _— > —_— >

Figure 7.10: ANN estimating DMCs.

B 7.4.2 Train and test dataset

We have generated train and test datasets specified in tab. and trained the
network using Adam optimizer [I5] which has been proven as a well working
complex optimizing method for training of broad field of ANNs and binary
cross-entropy as loss function.
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7.4. ANN roughly estimating DMCs

parameter value
dataset_n 100000 for train and 10000 for test
sample_1 256
mpc_n {1...3}
mpc_snr_base 0
mpc_snr_var 20
dmc_trigger True
dmc_power_base 0.25
dmc_power_var 0.5
dmc_len_base 16
dmc_len_var 32
awgn_trigger True

Table 7.2: List of channel impulse response simulator’s input parameters used
to train ANN estimating power decay profile of DMCs.

B 7.4.3 Performance

loss (binary cross-entropy)

loss of ANN estimating power decay profile of DMCs

0.070 A

0.065 1

0.060 -

o

o

o

o
1

0.050 -

0.0

2.5

5.0 7.5 10.0 12.5 15.0 17.5 20.0
SNR [dB]

Figure 7.11: Loss of ANN estimating power decay profile of DMCs.
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7. Channel parameters estimation using artificial neural networks

Loss showed in fig [7.11] does not say much information. Output of this ANN
is later fed in another ANN where the performance is measured. There is
no intuitive way of measure the performance of this ANN apart of its loss.
You can see that loss naturally decreases while SNR increases since the value
SNR[dB] ~ 3. The weird part is that the worst loss in not in location of
the lowest SNRs. Our interpretation of this local maximum of loss when
0 < SNRI[dB] < 3 is that it is so hard for the ANN to estimate PDPs of
DMCs since the noise is likely of higer power than DMCs that the output
converges to universal output values no matter the given input.

Because of the very same architecture as the one used while roughly
estimating ToAs of MPCs we assume the very same principle of performance
for various number of MPCs and DMCs hold true and is following: to achieve
the best performance on unknown number of MPCs and DMCs one should
train the ne

Because output of this ANN is mainly used as an input to ANN fine
estimating ToAs of MPCs introduced in later section.

B 75 ANN fine estimating ToAs

In this section we introduce ANN which fine estimates ToAs (7) of MPCs. The
ANN takes real and imaginary components as inputs together with computed
signal power (2.20) and outputs of ANNs used to roughly estimate ToAs of
MPCs and PDPs of DMCs. The output is a scalar number 72" normalized to

interval from 0 to 1 which is estimate of ToA of MPC. Input-output example
of the ANN in fig. [7.12|

We do not feed the whole CIR sample as an input. Using rough estimation
of peak position (ToA of MPC) by previously introduced ANN, we crop
a window of length 64 from the original CIR and two outputs of ANNs
estimating rough peak location and PDP of DMCs. We select the window
in such a way that the expected peak 7°"8" is located at random position
uniformly and fulfills 14 < 77°"8h < 18 - that means uniformly within two
samples of the one quarter of the selected window. One quarter because the
DMCs carry the valuable information of ToAs of MPCs and they are located
after the main peak. Samples before the main peak only carry information
about power of AWGN.
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7.5. ANN fine estimating ToAs
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Figure 7.12: Input-output example of ANN fine estimating ToA of MPC. The ¢
is a number of ANN’s input-output which corresponds to time delay normalized
to sampling period.

B 7.5.1 Architecture

Inspired by [12] we constructed our ANN as a sequential model containing
several layers of 1-D convolutions together with Leaky ReLU activation
functions followed by several dense layers with Sigmoid activation function at

their outputs.
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Conv 1D 8,4 Conv 1D 32,4 Dense
LeakyRelu LeakyRelu Sigmoid
e e e
[aV)
0 Dense
Sigmoid
L%
Q) >
o]
N
Input [64X5] .. .. .. .. .. .. .. .. Output [1X1]
Dense
Sigmoid
—_—>
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L L | Sigmoid
—>
Conv 1D 16,4 Conv 1D 64,4
LeakyRelu LeakyRelu
e _—>

Figure 7.13: ANN estimating fine ToA of MPCs.

B 7.5.2 Train and test dataset

We have generated train and test datasets specified in tab. [7.1/and trained the
network using Adam optimizer [I5] which has been proven as a well working
complex optimizing method for training of broad field of ANNs and binary
cross-entropy as loss function.

parameter value

dataset_n 100000 for train and 10000 for test
sample_1 256

mpc_n 1 - ANN focuses on one particular MPC
mpc_snr_base 0

mpc_snr_var 20

dmc_trigger True

dmc_power_base 0.25
dmc_power_var 0.5
dmc_len_base 16
dmc_len_var 32
awgn_trigger True

Table 7.3: List of channel impulse response simulator’s input parameters used
to train ANN fine estimating ToAs of DMCs.
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7.5. ANN fine estimating ToAs

B 7.5.3 Performance

Since the output of the ANN is an estimate of ToA of a particular MPC as
a scalar number, we can compare ANN’s performance in terms of RMSE to
the theoretical lower bound - CRLB and reference SAGE algorithm.

We present results of series of evaluation on datasets that posses various
SNRs in fig. [7.14l

It is clear that RMSE of both: our approach using ANN and reference
SAGE algorithm fall with rising SNR. Significant success of our approach
is that around the value SNR [db] &~ 7.5 performance of both are even and
since this point our proposed method perform better.

performance of ToA (T) estimation comparison

-—- CRLB
—— RMSE of SAGE algorithm
—— RMSE of fine estimation using our ANN

1.0 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
SNR [dB]

Figure 7.14: Performance of ToA (1) estimation comparison. 7 is normalized
to sampling period.

This ANN strongly relies on quality of outputs of previously introduced
ANNSs that serve us rough estimator of MPCs and PDP of DMCs. It is not
possible to provide good estimate of PDP of DMCs when the SNR is getting
close to 0 because power of AWGN tops the power of DMCs in majority of
samples.
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Chapter 8

Conclusion

The goal of our work was to explore opportunities the ANNs could offer to the
field of wireless parameter estimation. There is a need for a method capable
of real-time wireless channel identification in order to improve performance
of positioning algorithms that are restricted by the precision of estimated
wireless channel parameters. Computational complexity of state-of-the-art
methods are not allowing real-time processing required for positioning.

For purposes of our theoretical research it is necessary to have datasets
containing CIRs of desired parameters and their precise ground truth labels.
It is not possible to obtain such samples by real measurement. This implies
need of development of a CIR capable of both correctly providing synthetic
artificial channel measurements and respecting limits of measurement equip-
ment in order to obtain realistic signals at the same time. Testing on real
data is subject of future work. We first theoretically and algebraically de-
scribed channel model that consists of MPCs, DMCs and AWGN with all its
limitations and later developed the channel impulse response simulator based
on it.

CRLB was introduced as a theoretical lower bound on ToA estimation
together with SAGE algorithm as a ToA estimation performance reference. A
few drawbacks come with SAGE algorithm. Starting with its high computa-
tional complexity, need of apriory knowledge of number MPCs and providing
initial estimates. We introduce method to estimate DMC parameters using
ANN, utilizing these estimations to improve performance of reference SAGE
algorithm is subject of future work. Field of our research does not reach
beyond the original SAGE algorithm which we implemented, tested and used
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8. Conclusion

as reference algorithm. It is possible to recover peak’s ToA further than 3x
beyond the CIR’s resolution for SNR > 14 dB.

Our proposed method is based on two-level processing using ANNs when
we first roughly estimate ToA of MPCs and PDP of DMCs using two ANNs
and feed the cropped windows of these estimates as inputs into the second-
level ANN which fine estimates ToAs of MPCs. Our approach decomposes
estimation of several MPCs into a separate problems which are all done in
constant time (ANN evaluation) - suitable for real-time applications. It takes
up to 10 ms to fine esimate ToAs of MPCs using proposed ANN in comparison
to more than 250 ms using SAGE on mainstream laptop. We state that for
SNR > 7.5 dB our proposed method performs better estimations of ToAs of
MPCs (in terms of RMSE) that the reference SAGE algorithm.

To summarize our results: we have proposed ANN approach to fine estimate
ToAs of MPCs in discrete-sampled noised CIR. Our method not only outper-
forms reference SAGE algorithm for SNR > 7.5 dB in terms of estimation’s
RMSE but also addresses limitations and problems that come along with the
SAGE that are: initial guessing of number of MPCs and necessary initial
estimates of ToAs of MPCs. Additional application of estimating PDP of
DMC:s is to feed the information to state-of-the-art methods to improve their
performance.
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Appendix A

Acronyms

ANN artificial neural network
AWGN additive white Gaussian noise
BLUE best linear unbiased estimator
CIR channel impulse response

CNN convolution neural network
CRLB Cramér-Rao Lower Bound
DMC dense multi-path component
EM expectation—maximization

FT Fourier transformation

IFT inverse Fourier transformation
Leaky ReLU leaky rectified linear unit
LSTM Long Short-Term Memory
ML maximum likelihood

MLE maximum likelihood estimate
MPC multi-path component

PDP power delay profile

ReLU rectified linear unit
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A. Acronyms

RMSE root mean square error

RNN recurrent neural network

SAGE space-alternating generalized expectation-maximization
SNR signal to noise ratio

SNR signal to noise ratio

ToA time of arrival
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Appendix B

Contents of the attachment

® thesis/ - thesis in PDF format

B code/ - Python code needed to replicate our work
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