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Abstract

This thesis deals with chosen topics from
the aeroacoustics of periodic structures.
A critical analysis of the application of
the frequency-domain linearized Navier-
Stokes equations on the case of sound
transmission above a corrugated plate
with non-zero airflow was conducted. It
was found out that the correspondence
with the experiment is very limited in
this case due to problems with the lin-
earization of the hydrodynamical per-
turbations. An extension and clarifi-
cation of the previously proposed phe-
nomenological model for sound genera-
tion in corrugated pipes were given and
the model was tested against the experi-
mental data. In order to assess the influ-
ence of finite-amplitude sound propaga-
tion on the source-resonance coupling, a
weakly-nonlinear model was proposed as
an extension to the linear one. Next, it
was investigated how the periodic arrange-
ment of heat exchanger coolant tubes af-
fects the sound propagation and whether
it can be described as a sonic crystal. It
was shown that even for finite structures
consisting of four rows of coolant tubes
the theory of wave propagation through
periodic media is applicable and proves
to be in accordance with the experiment.
The noise generated by the unsteady flow
through the tube array was investigated
by numerical simulations. It was demon-
strated that the radiated sound intensity
is proportional to the previously derived
dependence valid for a single cylinder and
the Strouhal law governs the fundamental
frequency.

Keywords: aeroacoustics, unsteady
flows, periodic structures, sonic crystals,
numerical simulations, corrugated pipe

Supervisor: doc. Dr. Ing. Michal
Bednarik

Abstrakt

Tématem této dizertace je studium vybra-
nych pripadt z oblasti aeroakustiky pe-
riodickych struktur. Kritickd analyza po-
uzitelnosti linearizovanych Navierovych-
Stokesovych rovnic ve frekvenc¢ni oblasti
na problém prenosu zvuku nad vroubko-
vanou deskou s proudénim ukazala, ze
aplikace tohoto vypocetniho schématu od-
povidé experimentu jen v hrubych rysech
kvili problémim s linearizaci hydrody-
namickych poruch. Dyive navrzeny feno-
menologicky model generovani zvuku ve
vroubkovanych trubicich byl rozsifen a né-
které jeho aspekty byly blize fyzikalné
objasnény. Fenomenologicky model byl
srovnan s experimentalnimi daty a bylo
navrzeno jeho dalsi rozsiteni s ohledem
na Sireni slabé nelinedrnich vin koneénych
amplitud. V dalsi ¢asti prace byly studo-
vany vlivy periodicity usporadani trubic
tepelného vymeéniku na siteni akustickych
vln a moznost jejich popisu pomoci teorie
sonickych krystal. Ta se podle srovnani
s experimentem ukézala byt relevantni uz
pro struktury o ¢tyfech fadach trubic. Ge-
nerovani sumu kvuli obtékani trubic bylo
zkouméno pomoci numerickych simulaci.
Ukazalo se, Ze intenzita vyzareného zvuku
odpovida tendencim odvozenym pro gene-
rovani zvuku nestacionarnim proudénim
kolem valce a zdkladni frekvence vyzaro-
vaného zvuku se 1idi Strouhalovym zako-
nem.

Klicova slova: aeroakustika,
nestacionarni proudéni, periodické
struktury, sonické krystaly, numerické
simulace, vroubkované trubice
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Chapter 1

Introduction

In this thesis, two major branches of acoustic research meet: interaction
of sound waves with periodic structures and the flow-acoustic interactions,
commonly known as aeroacoustics. Their interweaving and distinct specifics
form a thread running through the following, paragraphs, chapters and
sections.

Although both aforementioned fields of study undertake different develop-
ment and walked diverse paths through their evolution, the origins of both
can be traced back to the last decades of the 19th century. In 1878, a Czech
physicists Cenék Strouhal, residing in Wiirzburg by that time, published a
landmarking article Uber eine besondere Art der Tonerregung (On an unusual
way of sound excitation, [I]), in which he described specifics of the sound
generated by unsteady flow past a cylinder. Despite the fact that the article
consists predominantly of a description of the underlying experiments and
their results, its clear and precise argumentation made it a cornerstone in
the research of the sound generated by vortical flows. Soon after, in 1887,
Lord Rayleigh published a work dealing with sound propagation through a
medium exhibiting a periodic structure [2], in which the existence of band
gaps were revealed.

The physics of waves propagating through periodic structures were mainly
and widely studied in the field of solid-state physics and optics (see e.g.,
[3]). In analogy, the central concept of the acoustic waves scattering by
specifically designed periodic structure is called sonic crystal (although it is
disputable, sometimes this term is used even for one-dimensional structures,
see e.g., [4]). The founding articles due to Kushwaha [5] and Sigalas and
Economou [6] considered elastic waves in solid medium with solid inclusions.
Its employment in acoustics considering a gas as the host medium gradually
took place approximately from the mid-1990s (see e.g., [7, 8, [9]).

Conversely, the historical development of aeroacoustics was less interdis-
ciplinary. If we disregard the omnipresent issue of drawing the borderlines
dividing aeroacoustics, general fluid dynamics and applied mathematics, which
is merely terminological, any overlaps with distinctly different fields of physics
were rather rare — at least until recent developments in analogue gravity (see
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1. Introduction

e.g., [10]).

One of the main sources of motivation for the research in aeroacoustics
was the rapid development of flight engines and applied turbomachinery in
general, which took place in the second half of the 20th century. A symbolic
cornerstone of modern aeroacoustics was laid in the 1950s in Lighthill’s articles
dealing with the aerodynamically generated sound [11} 12]. Since then, the
theory was repeatedly generalized and reformulated (e.g. for the presence of
moving bodies within the flow by Ffowces Williams and Hawkings [13] to give
just one notable example). It is not so straightforward to name the indubitable
"epoch-making" texts in the field of duct acoustics with nonzero mean flow.
However, one can point at the first edition of the first summarizing and
subject-defining monography: the Munjal’s Acoustics of Ducts and Mufflers
With Application to Exhaust and Ventilation System Design issued in 1987
[14].

Both branches of research — the acoustics of periodic media and the aeroa-
coustics — are bound by several practical applications. Employment of corru-
gated pipes in various systems dealing with gas transport, benefiting from
their local flexibility and global rigidity, presents a suitable example of a
locally periodic structure with the nonzero mean flow (see e.g., [I5]). The cor-
rugated tube is often successfully described only as a (quasi-)one-dimensional
system. To introduce another example with a more complex flow field, con-
sider the periodic structure of heat exchanger tubes. In order to improve
the exchange of heat, the thermoviscous boundary layer on the surface of
the tubes is washed away with a flow set into motion by some type of fan.
Hence, an exquisite example of the aeroacoustics of periodic structures is
obtained: a mutual interaction of a sonic crystal with turbomachinery. Both
given applications are studied in the sections below.

. 1.1 Current state of the art

As it has been pointed out, both "parental branches" relevant for this thesis
are by no means new. Hence, there are numerous excellent textbooks or
compendia on the aeroacoustics [16}, 17, I8 19, 20] as well as on the acoustics
of periodic structures [21), 22 23] covering the fundamental theory, most
common workflows and specific computational frameworks.

Exact analytical solutions of the aeroacoustical problems without lineariza-
tion often rely on the knowledge of the tailored Green’s function belonging
to the studied scenario (see e.g., [I8]). Naturally, the amount of problems
accessible by this approach is rather limited. As a consequence, compu-
tational aeroacoustics (CAA) became one of the most sublime disciplines
of computational fluid dynamics. Lighthill himself claimed, that the nu-
merical approaches shall form "the second golden age of aeroacoustics" [24].
Nevertheless, the development and validation of large-scale computational
techniques (see e.g., the review [25]) are not within the scope of this work.

2



1.2. Aims of this thesis

A long-standing problem — that is addressed in this thesis as well — is the
disparity of length, velocity and time scales between hydrodynamical and
acoustical phenomena (see e.g., [26] for a recent review or Sec. 2.4.3 here for
some examples). In general, the framework of Reynolds averaging (RANS)
gradually withers and the Large Eddy Simulation (LES) grows in importance
(see e.g., [27]).

Currently, the acoustics of periodic structures, especially the design of the
sonic crystals, had mastered the basic set of properties of bandgap formation
along with other interesting effects such as effective negative refraction, self-
collimation or beam formation (see e.g., [22] or the reviews [28] 29, 30, 31}, [32]).
Therefore, the focus can be turned to advanced and applied topics such as
finite-amplitude nonlinear waves propagation (see e.g., [33]) or optimization
of the structure properties by evolutionary algorithms (see e.g., [34]). The
approach of significant importance for attenuation in the low-frequency range
involves the combination of the periodic structure with local resonance (see
e.g., [35] for an example of a specific design).

The aeroacoustics of the periodic structures is a topical theme. A recent
review [36] describes the discipline as "still in its infancy"'. However, some
industrial applications are already at hand (see e.g., [37]). When the flow
through, past or along the periodic structure is present, some of the problems
can be converted to the stagnant ones by means of Prandtl-Glauert or Taylor
transform (see e.g., [38]). However, the number of specific applications
regarding periodic structures that can be treated this way is very limited. As
it is customary, many terms and techniques are transferred from solid-state
physics and quantum mechanics. The Floquet-Bloch technique has been
employed to study the wave propagation in waveguides with flow and periodic
wall treatment (see e.g., [39, 40]). Generally, the presence of flow results in
different transmission properties in the upstream and downstream directions.
One of the possible approaches consists of introducing the so-called effective
medium by means of homogenization (see e.g., [41] for the waveguide linings
with flow or [42] 43| 44] for slow sound and acoustic black hole effects when
the flow is present).

. 1.2 Aims of this thesis

Generally, this thesis is concerned with the acoustics of periodic media with
nonzero mean flow. As it follows from the preceding paragraphs, the aeroa-
coustics of periodic structures can employ a wide variety of theoretical and
numerical approaches. The goal is to choose appropriate ones while main-
taining possibly elegant ways without unsuitable computational effort (such
as direct numerical simulations of the compressible Navier-Stokes equations).

From the very broad topic, three specific scenarios with high application
relevance were chosen to be closely studied. First, the sound transmission
above a corrugated plate is treated (Sec. |3.1). The main question here is the

3



1. Introduction

applicability of the linearized equations in the numerical simulations of sound
propagation.

Subsequently, the possibility to formulate the problem of the corrugated
pipes’ whistling utilizing a phenomenological model is discussed and com-
pared with experimental data (Sec. 3.2). A proposition of finite-amplitude
propagation model is given as well (Sec. 3.2.5).

The third studied case is concerned with the opportunity to block some
of the noise generated by axial fan by specifically designing the periodic
arrangement of the heat exchanger tubes. The main aim of this section
is to check that the calculation procedures derived for the infinite periodic
structures (such as sonic crystals) apply here as well. The results are verified
by comparison with experimental data (Sec. 4)).

B 1.3 Noteon terminology

Although the terminology is either well-known or defined as it goes along
the course of the work, two general concepts should be mentioned before
any further treatment. Terms such as "nonlinear" and "nonlinearity" are
used in their broad mathematical sense. Any relation among the dynamic
quantities that are not based on linear operations is labeled as nonlinear.
Effects connected to the finite-amplitude nonlinearities are strictly introduced
as such. Second, the word "acoustic" denotes the quantities and processes
directly involving the compressibility of the fluid. Specifically, it denotes
the compressibility phenomena connected to the wave motion (and it is
commented below that no other are within the scope of this work). Somehow
complementary to the acoustical effects are the "hydrodynamical" ones. It
might seem odd, but this terminus is not necessarily associated with a medium
but rather with its capability to be compressed (water is almost incompressible
and hence the prefix "hydro-").

It is often tacitly assumed that the fluctuations are not driven by the
unsteady heat fluxes, because no scenario of that nature is studied below.
Therefore statements like "acoustic or hydrodynamic perturbations" cover
all the possibilities (although they would not be universal enough in a very
general case).



Chapter 2

Governing equations

Re-deriving the basic aeroacoustic equations does not belong among the goals
of this thesis. However, it is convenient to briefly review some aeroacoustics
and vortex sound theory elements to be referred to in the chapters below.
Keeping in mind brevity and clear arrangement, only the most straightforward
way is followed that leads from the very general equations governing the
motion of compressible fluid to their specific approximations employed in
the course of the thesis. A wide variety of other forms, different approaches
and further comments might be found in fine textbooks on the subject, such
as [45, [16], 18, 20]. Among the officially unpublished materials, the valuable
textbooks by Avraham Hirschberg and Sjoerd Rienstra and especially
Jan Delfs [47] are worth mentioning.

Vector and tensor notation is preferred throughout the text. Its relation to

the component-based form summarizes the Appendix Al (see p. .

. 2.1 Medium and its constitutive relations

In the spirit of the just delimited aim, the first substantial reduction of
generality is in place: the only medium considered is the air. Moreover, all
introduced applications allow for the assumption of a perfect gas in local
thermodynamic equilibrium. Therefore the following relations are conveniently
at hand.

Pressure p, density p and (thermodynamic) temperature 1" are related by
the ideal gas law

pRT
= 2.1
Mm ? ( )
with M,, and R denoting the molar mass and ideal gas constant, respectively.
Changes of the specific internal energy e are directly related to the temperature
changes by de = ¢y dT, where cy is the specific heat capacity for the constant
volume of the fluid. The validity of de = T'6s — (p/p?)dp is assumed, where

5



2. Governing equations

s is the specific entropy and § denotes a change of thermodynamic variable
when following a fluid particle. The equation of state can be expressed as

P 9
5p = <a§) 5p + (({:) 5s | (2.2)
s p

where the subscript after the brackets denotes the derivative at constant
entropy and pressure, respectively. The derivatives could be evaluated making
use of the ideal gas properties:

1 1
op=—S0p+ —ds, ¢ =—, (2.3)
c p P

where ¢, is the specific heat capacity at constant pressure and v = ¢,/cy.
Strictly speaking, at this point, c is just a convenient shorthand with physical
dimensions of velocity.

Three important assumptions about the fluid’s thermoviscous behavior
consist of the validity of Fourier’s heat law, the fluid being Newtonian, and
the application of the Stokes hypothesis on the vanishing bulk viscosity. Apart
from the special case of turbulent viscosity introduced below, all material
parameters are assumed constant in time and space, independent of pressure
and temperature. See e.g., [48] [49] 50] for more detailed discussion.

In the equations introduced below, the validity of the laws and relations
introduced here are assumed without mentioning them explicitly.

B 22 Equations of motion of a compressible fluid

There is no need to re-derive and extensively comment on the Navier-Stokes
equations for a compressible fluid. For the purposes of further manipulations,
only two forms out of the many are introduced. Namely, it is the conservative
form of the equations (that presents a convenient starting point to aeroacoustic
analogies — see p. [18) and the form showing the time-evolution experienced
by a fluid particle in motion (which comes in handy when dealing with
linearization and transmission problems).

Although this point is not entirely free of controversy as some authors
plead for a predominance of Newton’s laws of motion (see e.g., [50]), here
the conservation laws imposed on a control volume serve as the fundamental
assumptions for further manipulations. Notably, but not exclusively, this
approach is known from the books of Batchelor [48] in general fluid dynamics
and Blackstock [49] in acoustics. Only the differential (local) form of the
conservation laws is employed below.



2.2. Equations of motion of a compressible fluid

B 2.2.1 Continuity equation

The fact that the change of the amount of mass inside the control volume
must be balanced by the mass flux through the surface of the control volume
(provided that there are no mass sources) is transformed to the local expression
by the Gauss theorem yielding

%+V~(pu):0, (24)
ot

where u denotes the fluid velocity. It is useful to note that the mass flux pu
is in fact the momentum density as well. By expanding the second term and
introducing the material derivative an expression for the density of a fluid
particle is obtained:

D = —pV -u (2.5)

B 2.2.2 Momentum equation

In the same manner as in previous section, the momentum conservation might
be expressed in terms of momentum density pu. For the following chapters it
is convenient to show the effect of non-zero net volume force f. The equation
characterizing the balance reads:

gt(pu)+V-(puu+p]I—T):f, (2.6)

where p and I denote pressure and identity matrix, respectively. The viscous
stresses tensor 7 is defined employing Stokes’ hypothesis as

2
T=pU Vu—i—(Vu)T—i—g]IV-u ) (2.7)

with 2 denoting the shear (dynamic) viscosity and (-)T the matrix transpose.

By expanding the second term in Eq. (2.6) and utilizing the continuity
equation (2.4) the governing equation for the fluid particle velocity is obtained:

D
pD—q;:—Vp+V~T+f. (2.8)

Bl 2.2.3 Energy equation

Equation describing the energy conservation in compressible fluid dynamics
exists in a rich variety of forms. For the sake of brevity, the only form that is
employed in the course of this work is introduced here. A domain without

7



2. Governing equations

heat and mass sources is considered. Making use of the constitutive relations
given in Section 2.1| (p. |5) the specific internal energy and the heat flux are
replaced by the already introduced dynamic variables and the temperature
T. Finally, a governing equation for a pressure acting on a fluid particle is
obtained:

2

%]; +c2pV - = CZ—T (7‘ : Vu — HVQT) , (2.9)
where ¢, and x denote the specific heat capacity at constant pressure and
thermal conductivity, respectively. Note that for inviscid, thermally non-
conducting fluid the right-hand-side of the equation vanishes. Then utilizing
the continuity equation an useful relation between time-evolution of pressure
and density is found (see e.g., [47]):

Dp 2 Dp
— == 2.1

Dt Dt (2.10)
Another useful statement of the energy equation might be derived in the

form containing the material derivative of the temperature [50]:

pchD—f - DD—]; = kV?T +7:Vu, (2.11)
which reflects the time-evolution of temperature and pressure acting on a
fluid particle more conveniently for some applications, such as discussing the
boudary conditions. The relation (2.10) is again obtained for inviscid and
thermally non-conducting fluid upon substitution from the ideal gas law to
the material derivative of temperature.

B 2.3 Nondimensional form of the equations

One of the most significant issues that is inherently present in virtually every
aeroacoustic scenario is getting a proper scaling of variables involved in order
to assess their physical interpretation and overall influence. In fact, it is the
only thing that separates aeroacoustics from the general study of compressible
flow dynamics.

B 2.3.1 Conditions of the flow incompressibility

It follows from Eq. (2.10) that for the isentropic (inviscid and thermally
nonconductive) flow the density and pressure changes are proportional. Let
the characteristic flow velocity be U and the characteristic length scale
L, further assuming that L is small compared to the characteristic sound
wavelength. The time scale is then set by U/L. If the reference value of
the density is P, then the Bernoulli’s theorem suggests that the pressure

8



2.3. Nondimensional form of the equations

variations caused by accelerating a fluid particle to the velocity U are of order
PU?. Formally:

u=Uu", t:%t*, p = PU%p* , (2.12)

x=Lx", p=Pp*, (2.13)

where the star (-)* denotes a nondimensional quantity. Substituting these
relations into Eq. (2.10) the following expression is obtained after some
manipulations (see e.g., [48]):

Dp* o Dp* U
=M Ma = — 2.14
Dt* D T (2.14)

where the so called Mach number is introduced in the second expression.
Therefore, when Ma? < 1, the density changes of the fluid particle are
negligible:

Dp

=0 2.15
L =0, (2.15)

which according to Eq. (2.5) puts a constraint to the velocity field to be
purely solenoidal (divergence-free):

V-ou=0 (2.16)

Although this derivation was not without a loss of generality due to the
assumption of isentropic flow, it could be shown by the perturbation techniques
introduced below that for the domain without external heat sources, the
thermoviscous contributions to the balance expressed by Eq. (2.10) are small.

B 2.3.2 Strouhal and Reynolds number

Suppose that the flow is incompressible. The divergence of the viscous
stress tensor defined in Eq. (2.7) then simplifies just to V2w and the fluid
density is a constant denoted by pg. Similar to the previous case, the scaling
is introduced in order to investigate the effects of flow unsteadiness and
viscosity. Assume that the characteristic length scale of flow variations is L,
the characteristic velocity U and the characteristic angular frequency of flow
instabilities w. Then the scaling of the dynamic variables is as follows

2

u="Uu", t= T (2.17)
w

x=Lx", p = poU?p* . (2.18)
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Substituting these into Eq. (2.8) the scaled momentum equation is obtained
after some manipulations:

1 Ou® 1 1.
L . * N VAT N2, % 21
S o + (u-VHu pOVp +Rev u*, (2.19)
wlL poUL
_ _ 2.2
Sr 5l Re o (2.20)

where Sr and Re denote the Strouhal and the Reynolds number, respectively.

The Strouhal number reflects the influence of flow instabilities on the overall
flow dynamics. Clearly, fast but slowly varying flows have a low Strouhal
number and vice versa. As it is apparent from Eq. (2.19) the Strouhal number
is directly related to the ratio of the local and the convective acceleration
(the first and the second term in Eq. (2.19), respectively).

In the Reynolds number, the effect of momentum transport due to viscosity
(as compared to convection and temporal instabilities) is reflected. Flows
of low Reynolds number are governed by viscosity (the so-called Stokes’
approximation), while, on the other hand, the viscous effects are relatively
unimportant in the high Reynolds number limit.

There is no general law relating a specific value of Reynolds number to the
outburst of turbulence within a fluid volume. On the other hand, as a rule
of thumb (that has to be detailed for a specific scenario), the chance that a
small flow perturbation will be attenuated by the viscosity decreases with
increasing Reynolds number. In some cases, the so-called critical Reynolds
number is known. For the flow speeds above the critical Reynolds number,
any infinitesimal flow perturbation grows (see e.g., [51]). Therefore, although
it is theoretically possible to have an unperturbed flow above the critical
Reynolds number, it is highly unlikely to achieve such a state in experimental
practice as well as in the time-domain simulations of the fluid dynamics.

Let this section be concluded with a specific example. Unsteady fluid flow
through a corrugated pipe may result in its "singing" or "whistling". Typical
wavelengths are related to the length of the whole pipe and therefore are
much longer than the dimensions of one corrugation. Since the flow speeds
in the piping are usually of low Mach number, it is reasonable to treat the
fluid as effectively incompressible when investigating the flow details within a
single corrugation or even a group of them.

To be even more specific, a corrugation pitch of 10 mm and the mean
free-stream flow speed of 25 m - s~! is considered. Then the Reynolds number
connected to the flow instabilities evolving over the corrugation pitch is ca.
15 000, making the corresponding term in Eq. (2.19)) very small. The typical
Strouhal numbers are known for specific scenarios. Usually, a value of Sr =~ 0.4
is given for the corrugated pipe whistling (see e.g., [52]). Therefore the local
acceleration is ca. twice as big in magnitude compared to the convective one.

10



2.4. Linearization of the governing equations

B 2.3.3 Comments on characteristic lengths in periodic
structures

Characteristic lengths of periodic structures are naturally associated with the
proportions of a single cell (i.e. an elementary unit of a repeating structure).
Acoustic wavelengths for which the effects of the medium periodicity is most
distinct might be of the same order. However, actually, a significant amount
of effort has been spent in order to turn this feature. First and foremost, one
of the ultimate goals of the metamaterials research is designing structures
modifying the sound at subwavelength scales (see, e.g., [23]). A representative
case is given here as well in Sec. 4.1.3.

Second, considering the scenarios with the flow, there is still the issue of
scales disparity between the hydrodynamic and acoustic perturbations (see
e.g., [26]). Quite often, it is only a relatively small component of the single
cell that plays a role of the decisive geometrical proportion regarding the
unsteady flow. To give some examples: the trailing edge radius of the single
corrugation takes part on the Strouhal number definition (see Sec. ; the
diameter of the heat exchanger tube governs the frequency of vortex shedding
even when the tube occupies only a few percent of the unit cell volume (see

Sec. 4.2.3).
. 2.4 Linearization of the governing equations

Equations (2.5)), (2.8)), (2.11)) together with the ideal gas law (2.1]) constitute

a closed set describing the motion of fluid particles:

Dp

= - . 2.21
D = PV U, (2.21)
Du
DT Dp
pcpﬁ — ﬁ = K/VQT + 7 VU 5 (223)
pRT
= —. 2.24
M,, ( )

This set is known as the compressible Navier-Stokes equations. KEven
numerical solutions to the complete set is highly demanding. In order to get
insight into specific problems, some simplification is needed and a conveniently
chosen linearization is one of the most employed approaches.

B 2.4.1 Fundamental assumptions of linearization for
aeroacoustical problems

It is assumed that the dynamic variables might be decomposed to a sum
of their mean values (denoted by a subscript 0) and departures from these

11



2. Governing equations

values (denoted by a prime) as follows

where ¢ is a small dimensionless parameter. Note that the mean values are
constant in time but not necessarily in space. Generally, it is possible to allow
for more terms in the expansion, which is usually called the weakly-nonlinear
case (see, e.g., [53]). However, within this work, all terms of order O (52) are
considered negligible (the only exception being the Kuznetsov equation, see
p. [58)).

The classic acoustics of stagnant media relies on the assumption of constant
po and pg and completely vanishing ug. Here, the assumption is somewhat
relaxed: the mean quantities shall satisfy the incompressible steady mean
flow equations without any sources (i.e. fo = 0). In the scenarios studied in
this work the mean temperature field Tj is constant in space (i.e. there are
no hot gas exhausts, heated walls etc.). Therefore the mean flow quatntities
must obey the following (see e.g., [47]):

Ty = const. , (2.30)
Vv - (poUo) =0 (2.31)
o (’u() -V)up=—-Vpy+V -1, (2.32)

where 7y is the viscous stress tensor defined in terms of uy (and similar
notation is employed below for its perturbations). The energy equation for
the incompressible mean flow with uniform temperature distribution reduces
to:

70 - VUQ =0. (233)

B 2.4.2 Linearized Navier-Stokes equations in time domain

Substituting the relations from the previous section to Egs. (2.21)—(2.24) one
obtains after some manipulations (see, e.g., [47, 54]):

12
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/

9p'

e +poV -u' = —ug-Vy' (2.34)
/
PO—— 5 +Vp —V -7 =—pug- Vug — pou' - Vug — poug - Vu' (2.35)
op o1’ -V

(97]; - pOcpﬁ + KV2T = POCHUQ vT — UOTOPOT' —ugp-Vp —u - Vpg

(2.36)

where
/ / nT 2 /
T = p[(V) + (V) ]—gu(V-u)]I (2.37)

and the linearized viscous dissipation function has been omitted as small (see
e.g., [47)).

The four quantities (o, u/, p’, T') are governed by three equations. The
necessary closure is provided by linearization of the ideal gas law:

L I (2.38)

However, special attention must be given to the fulfillment of the linearity,
along with the right interpretation of the perturbation quantities in specific
cases. The following three subsections are dedicated to this problem.

Bl 2.4.3 Nature of perturbation quantities

A deeper understanding and physical intuition should be supplied to Egs.
(2.34)—(2.36) or their frequency domain equivalents. As mentioned in the
Introduction, the "acoustic quantity” means the "quantity directly responsible
for the propagation of the wave-like density perturbations'. From the theory
review up to this point it follows, that for a low Mach number flow and
uniform 7Ty distribution, it actually means any density perturbation. Provided
with the above-introduced equations, the verbal description with appropriate
formal representation is given now.

First, assume that uy = 0, the fluid is inviscid and thermally non-
conducting. For simplicity, let pg and pg be constant in space. In that
case, it is possible to derive the classic (d’Alembertian) wave equation for the
pressure or density perturbations:

1
V3 — 2 —V-f’, (2.39)
€
2y i —1V ! 2.4
Vip — 2~ 2 - (2.40)
i)
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2. Governing equations

Clearly, the quantity cop = \/ypo/po represents the phase velocity of sound
propagation. It is also clear that any solenoidal (divergence-free) force field
does not interact with the acoustic field.

Problems arise, when the wave equation is derived for the velocity pertur-
bations. Still under assumption of ug = 0, it is straightforward to rearrange
the first order equations and eliminate quantities to obtain:

1 0%/ 1 of

2,1 !

V xV - = 2.41
Vu' +V XV xu 2 o T ( )

Nevertheless, two traits separate the last expression from the wave equations
given above. First, the left-hand-side operator contains the term V x V x u/.
Second, any unsteady force field may act as an effective source (even the
solenoidal one).

In order to give this discrepancy a physical interpretation, recall, that the
velocity field can be described by means of Helmholtz decomposition:

u=Vo+VxW¥, (2.42)

where ¢ and ¥ denote the scalar velocity potential and the vector potential
respectively.

Taking the divergence of Eq. (2.42) recalling that V - (V x A) = 0 for any
smooth vector field A one obtains:

1D
V~u:V%:;B§, (2.43)

where the last equality follows from the continuity equation (e.g. Eq. (2.21)).
Similarly, V x (Vh) = 0 for any smooth scalar field h, which is empoyed to
obtain:

Vxu=VxVx¥=-VU¥=w, (2.44)

where the constraint V - ¥ = 0 was assumed in the last equalities and
w =V X u is the flow vorticity.

Two important facts follow from the last paragraphs. The scalar velocity
potential is the only part of the decomposition that can be held responsible
for the velocities connected to the density changes. On the other hand, the
flow vorticity is associated solely with the hydrodynamic instabilities. Hence
the definition of acoustic perturbation velocity ). in terms of the scalar
velocity potential perturbations ¢':

u,. =V, (2.45)
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while keeping track of the vorticity development as the key to understanding
the hydrodynamics of the process.

Equation (2.41) might be transformed to describe purely acoustical inter-
actions by substituting the scalar velocity potential and requiring that the
imposed force field undergoes the same treatment (i.e. that it shall be split
into curl-free and divergence-free parts).

It is not necessary to continue such an analysis of the 2nd order wave
equations here. However, it is of great importance to emphasize that in
principle, one cannot be a priori sure of the true nature of the velocity field in
Egs. (2.34)-(2.36). Note that it is possible to have (at least locally) nonzero
u’ while maintaining unchanged p'.

Moreover, almost the same issues emerge when interpreting the pressure
field perturbations p’. Similarly, there are pressure instabilities that do
not change the density field. Clearly, it is possible to satisfy Eq. (2.35)
while keeping p’ = 0 and yet allowing for nonzero pressure and velocity
perturbations. As far as they are incompressible, the linearized continuity
(2.34)) and energy equations (2.36) are fulfilled as well. Therefore, a careful
discussion is needed before a velocity or pressure perturbation might be
labeled as an acoustical one.

Egs. (2.34)—(2.36)) are arranged to show the flow-acoustic interactions. The
left-hand-sides would be present unchanged if the classic acoustics of the
non-moving medium was considered. The right-hand-sides contain terms due
to the nonzero mean flow ug. Some of them can act as the sources to the p’
field. However, it would be necessary to closely determine the source behavior
due to the unsteady flow below.

To conclude, the inherent nonlinearity of the Navier-Stokes equations for a
compressible fluid has been bypassed by means of linearization. Therefore, lots
of techniques known from the acoustics of the non-moving media are readily
at hand and the first order of the flow-acoustic interaction is present. On the
other hand, questions of the perturbations’ nature come along as the trade-off.
Intuitively, there is also a question of the nonlinear flow-acoustic interactions.
The latter two are partially solved within the theory of aeroacoustic analogies
below.

B 2.4.4 Convected wave equation

Suppose that the fluid is inviscid and thermally non-conducting, there are no
external force fields and only the plane waves in the x direction can propagate
in a uniform flow ug = Upe; (with Uy and e; denoting the mean velocity
magnitude and the unit vector in = direction respectively). Such conditions
are well-suited for the low-frequency wave propagation through a uniform
duct with the flow if the mean flow profile can be replaced by the constant
Up (the so-called plug flow).

Under these assumptions, a second order wave equation, called the con-
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2. Governing equations

vected wave equation can be derived by eliminating among Eqgs. (2.34)—(2.36):

D2pl 282]9/ B 82])/ 82]?/ ( ) 2) 82]9

Dz~ gz = gz T g 0 U) 55 =0 (2.46)

An important solution to this equation is a superposition of the downstream
and upstream running waves:
iwt—ikix

p'(x,t) = p*exp +p~ expiHih-T (2.47)

where p™ and p~ denote the amplitudes of the downstream and upstream
propagating pressure waves respectively and

w
ki = 2.48
+ () + U() ( )

or

ko

“Tim M=

oo “ (2.49)
Co

Convected wave equation of the same form might be formulated for the
acoustic velocity u’ (note that the above given discussion about the nature of
the velocity perturbation is considerably simplified in 1D case). Therefore
a solution similar to Eq. (2.47) is relevant for the plane waves of acoustic

velocity:

u'(x,t) _ u—f— eXpiwt—ik+:c 4 expiwt-i—ik,a; , (2‘50)

where again the u™ and u~ denote the amplitudes of the downstream and
upstream propagating velocity waves, respectively.

For the case of uniform Uy the acoustic pressure and velocity are bound by
the linearized momentum equation in the form:

— Uy = ———. (2.51)

Upon substitution from Egs. (2.47) and (2.50) it is clear that the absolute
values of propagating pressure and velocity waves’ amplitudes are coupled by
an (impedance) relation:

P’ = pocou’ , (2.52)

which is the same result that is known from the classic acoustics of non-moving
medium. This is very useful when determining the transmission coefficients
of a duct with the flow (see Sec. [3.1). However, note that this is only a
particular case, its simplicity owing to the uniform nature of Uy. Otherwise,
more complicated relations take place.
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2.4. Linearization of the governing equations
B 2.4.5 Limitations of the linearized Navier-Stokes equations

It follows from the classical textbook analysis concerning the linear acoustics
of stagnant media (see e.g., [49]) that the small density perturbations p’ < pg
correspond to the acoustic velocities small compared to the adiabatic speed
of sound:

Uae K Cp (2.53)

and, in turn, the pressures connected to the acoustic density changes are
small compared to the quantity poc3. It follows that the linearized approach
covers a vast field of applications.

However, from the preceding section, it is clear that the fluctuations of
acoustical nature constitute only a part of the (general) velocity and pressure
perturbations. As a rule of thumb, it is a lot easier to satisfy the linearization
assumptions for the acoustical part than the hydrodynamical one. As it has
been pointed out above, the velocity and pressure are scaled differently for
acoustical and hydrodynamical purposes. Therefore, the single linearization
for both kinds of instabilities could be questionable.

Several hydrodynamical phenomena are essentially nonlinear. From the
point of the linearized equations, they appear as exponentially growing
perturbations. Usually, they are constrained by some nonlinear saturation
mechanism that does not take part within the linearized framework. Among
the most well-known cases, there are perturbations of a thin shear layer
leading to its roll-up into discreet vortices (the so-called Kelvin-Helmholtz
instability) and the boundary layer separation past the cylindrical objects
forming characteristic alternating vortex pattern (the so-called von Kérmén
vortex street).

The mentioned phenomena are beyond description by the linearized Navier-
Stokes equations due to a lack of nonlinear saturation. The possibility of their
triggering potentially endangers the application of the linearized approach.
Therefore different approaches were derived, splitting the compressible and
incompressible parts of the whole system. They retain the linearity of the
acoustical perturbations but allow for the coupling with the nonlinear formu-
lation of the incompressible flow (see e.g., [55] 56]).

The major drawback is that this approach effectively prevents the acoustical
equations from being transformed into the frequency domain. Since most
of the techniques of solving wave propagation problems in periodic media
are derived based on the time-harmonic framework, this is a severe obstacle.
Therefore the linearization in the hydrodynamical part is sometimes assumed
in order to employ specific techniques (such as the Floquet-Bloch approach,
see e.g., [39]).
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. 2.5 Aeroacoustic analogies

Fundamental ideas behind the so-called aecroacoustical analogies are quite
different compared to the linearization considerations presented above. The
main point is to show that there is a class of wave equations with sources
arising from the fluid motions without any a priori prescribed forcing. Hence,
all the conservation equations are considered without right-hand-sides.

B 2.5.1 Lighthill's analogy

The mass flux pu in the continuity equation is formally identical to the
momentum density in the momentum equation. Eliminating this term by
taking the time derivative of Eq. (2.6) and divergence of Eq. (2.4) the
following expression is obtained

0?p
— =V .V -(puu+Ip—r71) . (2.54)
ot?
Now a term c3V2p is subtracted from both sides, which results in an
expression formally resembling the wave equation

0?p B

g GV =V V. lpuu+1(p—cip) — 7|, (2.55)

where the quantity in the square brackets is often called the Lighthill’s stress
tensor. Note that at this point it is not necessary for ¢y to have any physical
meaning other than it has to have dimensions of velocity. Provided that pg
and pg are some density and pressure values that are constant in time and
space, it is even possible to re-write the last equation in a form in which the
(d’Alembertian) wave operator acts on the density perturbations:

2
% (p = p0)=V2 (p = po) = V-V-{ pua + 1| (p — po) — & (p — po)| — 7} .
(2.56)

This expression suggests that the key to the motions of a compressible
fluid is the wave equation with this special right-hand-side. Moreover, the
equation is exact because no approximations have been imposed so far and
therefore, it contains all nonlinear effects. However, there are some severe
issues.

The single equation is still expressed in terms of the full set of variables.
At this point of derivation, Eq. (2.56) is often (and rightfully) labeled only as
a re-arrangement of the Navier-Stokes equations rather than their solution.
The physical interpretation is not clear as well (there is no estimation of the
perturbation magnitude; it is not clear what ¢y shall represent etc.).
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Provided that the pressure and density perturbations are small, ¢g is the
adiabatic speed of sound and the flow is isentropic, the middle term in the
right-hand-side of Eq. (2.56)) that represents entropy fluctuations vanishes. If
the characteristic length of flow variations is small compared to the typical
sound wavelength, then the argumentation from Sec. 2.3.1| (p. [§)) applies
here as well and for the low Mach numbers the source flow is effectively
incompressible. The remainder of the Lighthill’s stress tensor might be scaled
the same way as in Sec. [2.3.2 (p. [9)) to obtain:

1
_ 2 * ok * %k * o\ T
pouu — 7 = poU {u u - e [V u* + (V'u™) }} . (2.57)

It follows that the term pguwu governs the dynamics for the high Reynolds
numbers. Moreover, it is not the viscous stress tensor that acts as a source in
Eq. (2.56), but its spatial variations. These are usually considered unimpor-
tant compared to the rapid evolution of flow instabilities. The term pouu is
called the Reynolds stress because of its resemblance with the term arising
from the Reynolds averaging of the Navier-Stokes equations (see Sec. [2.6.1}
p. 25).

Therefore, in the low Mach and high Reynolds number limit the wave
equation for the density perturbations generated by an unsteady flow reads
(see e.g., [18]):

52 p/
ot2

It is straightforward to show that the same equation holds for the pressure
perturbations as well, but the identity only holds in the low Mach number limit.
Otherwise, the term of fluctuating entropy is subject to a different operator
of a different multipole expansion order [46]. That causes a controversy
regarding Lighthill’s analogy in hot flows, but that stays beyond the scope of
this work.

+ V% =V -V - (poun) . (2.58)

In a broader context, what has been done in the last equations is transform-
ing the problem of sound generated within the unsteady flow to an analogous
non-moving medium (hence the term "analogy"). However artful it appears,
there are two major drawbacks. First, not only the "acoustic sources per se"
(meaning the actual sources supplying power to the field) but various other
effects of kinematic nature due to sound field convection are described as
"sources" (e.g. Doppler shifts, refraction at shear or boundary layers). Second,
it is not rare that the turbulent fluctuations in the source domain are, to some
extent, governed by the flow-acoustic interactions. Then the right-hand-sides
of Egs. (2.56) or (2.58)) cannot be thought of as an independent source, but
only as one of the constituents of a complex feedback-loop system.

On the other hand, the particular simplicity of Eq. (2.56) allows for the
immediate application of theoretical tools known from classic acoustics of
stagnant media, such as the Green’s function solution. This will be discussed
in the following section.
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Regardless of the approximation, the right-hand-side of Lighthill’s analogy
for the density consists of the double divergence of a tensor. In terms of
the multipole expansion, it means that the source is of quadrupolar order
and therefore radiates relatively weakly to the far-field (see Appendix C).
By further reasoning (not necessary to be detailed here), it is found that
the mechanical efficiency of converting turbulent kinetic energy into sound
is proportional to Ma® in the low Mach number limit (see e.g., [I8]). This
explains why it is often possible and well-justified to entirely neglect the
aeroacoustic effects when the hydrodynamics of free-space turbulence is
concerned.

B 25.2 Curle’s analogy

The situation is different when solid bodies are present within the region
of turbulence. There is a formal solution to Lighthill’s analogy for the
case of a non-moving body by Samuel Newby Curle, published shortly after
Lighthill’s constituting articles [57]. A further generalization for bodies of
arbitrary motion, motivated by the problems of turbines and propellers, was
found by Shon Eirwyn Ffowes Williams and David Hawkings [13]. Only the
former is required by the following chapters. The latter is mentioned because,
ahistorically, Curle’s analogy is, in fact, the Ffowcs Williams-Hawkings analogy
for non-moving bodies and sometimes it is referenced as such.

The key step is defining an auxiliary function f(x) that is positive outside
the rigid body and negative inside it (see Fig. [2.1). Subsequently, the
Heaviside function H[f(x)] is introduced (see Appendix B, p. [99)). It follows
that it equals 0 for a point inside the body and 1 everywhere else. Let us
suppose the low Mach and high Reynolds number limit, that the body is rigid
and the no-slip condition applies on its surface. The wave equation for the
density perturbations then takes the form [I8] [57]

2
9 (HY') — &V? (HY') = V - [V - (Hppuu)] — V - [(p'T + poun) - VH] .

ot
(2.59)

Apart from the Heaviside function, the first term on the right-hand-side is
the same as in the preceding case (Eq. (2.58)) and it is of quadrupolar nature.
The second one represents the reaction of the body surface to the turbulent
motions and by order, it is a dipole. It can be shown that the latter term
is dominating for the low Mach numbers [I8] and its efficiency of turning
turbulent kinetic energy into sound scales with Ma3, which is a significant
intensification compared to the free-space turbulence.

An integral analogue of Eq. (2.59) is obtained by means of the three-
dimensional free-space Green’s function (see Appendix B, p. 99):
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Vv

S

Figure 2.1: Illustration for the introduction of the Heaviside step function.

V(f layl
(HeEp') = -V #g %n dS(y) | (2.60)

where n is the (outer) normal vector to the surface S. In the far field
(Fraunhofer) approximation (|z| — oo, p’ = c2p’) it reads [18]

oty O (|l m‘y>
Ve~ s #Sp (t + n dS(y) . (2.61)

o colx

Note that the integral represents an unsteady lift force:

> n dS(y) . (2.62)

B 2.5.3 Vortex sound theory

Despite the elegance of Lighthill’s theory (counting in the Curle’s solution),
an important question still remains unresolved: what is the local fluid flow
behavior that gives rise to the aeroacoustical sources? There is not much
physical intuition on "the double divergence of the dyadic product of the
velocity vector with itself". The issues with Curle’s analogy are rather similar.
The unsteady lift force is the dominant cause of sound production from the
flow past the solid bodies. However, what is the typical condition under

21



2. Governing equations

which the flow exerts an unsteady lift force? This section is dedicated to a
very condensed and limited review of the efforts to resolve such matters.

An often quoted statement, originally due to Ernst-August Miiller and
Frank Obermeier [58], says that "the vortices are the voice of the flow". The
exceptional role of vortex motion in sound generation and the subsequent
designation "the vortex sound theory" begins with the article of the same
name by Alan Powell [59]. The first justification for such terms is given by
expanding the source term in the Lighthill’s wave equation (2.58):

1
V V- (pouu) = poV - (w x u) + §p0v2u2 : (2.63)

where w = V x w is the vorticity and u = |ul. If the sound-producing flow
has a finite extent, the second term vanishes faster with the distance from the
source than the first one (see [58] or Appendix C here). Hence, the second
term is sometimes labeled as the "non-radiating source" (e.g., [58]).

There are well-established aeroacoustic analogies that build on the source
terms explicitly containing the vorticity. Probably, a worldwide most renowned
one is the analogy due to Michael Howe (e.g. [18]), while the central Euro-
pean authors often refer to the work of Wilhelm Moéhring (e.g. [60]). In the
following, Howe’s approach is preferred, although M&hring’s one would be
possible as well after some manipulations.

The key underlying aspect is introducing a new aeroacoustic variable, the
(specific) total enthalpy B:

1 1
B:i+§u2:e+§+§u2, (2.64)

with i = e + p/p denoting the specific enthalpy. This definition suggests
that the total enthalpy consists of the enthalpy (as the heat content) and
the kinetic energy of the macroscopic motion superimposed on the molecular
motions governed by the Maxwell-Boltzman distribution.

Assuming the homentropic flow the wave equation for the total enthalpy
fluctuations in the low Mach number limit is derived in the form [61]:

1 DgB’ 2 !
— -V*B' =V 2.65
T (wxu) (265)
where
DygB’ 0B’
Doot =~ + Ve VB, (2.66)
p/
B = +uy . (2.67)
PO
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2.5. Aeroacoustic analogies

It follows that according to Howe’s analogy, the listener is allowed to be
placed in an irrotational mean flow rather than in the fluid at rest, which would
be the Lighthill’s case. In the far-field with vanishing mean flow velocity, the
relation of the total enthalpy fluctuations to the acoustic pressure is simple:

p = poB’. (2.68)

The quantity pg (w x u) has the dimensions of force (more specifically, the
volume density of a force, but the "density of" is often dropped for simplicity).
It resembles the relation known from the theory of fictitious forces (not only)
in rotating fluids (see e.g., [50]). Therefore, some authors call pg (w x u) the
Coriolis force. It provides an useful insight into the nature of the source term.

The "compressible behavior" of the w x u field is responsible for the
generation (or dissipation) of the acoustic perturbations. Consequently, only
the domains of nonvanishing vorticity has to be focused (in low Mach number
flow). These are usually much less spatially extended compared to the domains
of nonvanishing flow velocity, for which the Lighthill’s stress tensor generally
should be investigated. An illustrative example is given in Fig. 2.2 A flow
issues from an inlet channel into free-space passing through a periodic lattice
of a heat exchanger. Only in the vicinity of the coolant tubes and (to some
extent) in their wake the vorticity is of importance.

The link with the pressure instabilities (as required by the Curle’s analogy)
is not complicated to be shown now. Considering the motion of incompress-
ible, inviscid fluid, the Poisson equation for pressure might be derived by
taking the divergence of the momentum equation (2.8) and employing the
incompressibility constraint (V - u = 0):

1
Vi =—pV-(u-Vu) = —ip()VQu2 —poV - (wxu), (2.69)

where the identity (u-V)u = w x u + %Vuz was employed in the last step.
It follows from the no-slip boundary condition for velocity that an appropriate
boundary condition for the pressure equation at the rigid wall is V  p =0,
where V| p is the gradient in the direction normall to the wall. Therefore,
the pressure exerted by the fluid to the rigid body strongly depends on the
value of V - (w x u) close to the wall.

Two remarks are given for the sake of completeness. There is a more general
enthalpy-based analogy by Philip E. Doak [62], that allows for relaxing of
some of the assumptions (such as nonconstant compressibility or nonvanishing
vorticity and entropy gradients outside the source domain). The theory of
analogies is rounded off by the concept of generalized acoustic analogy by
Marvin E. Goldstein [63] showing the correspondence between the Navier-
Stokes equations and the Euler equations with appropriately formulated
sources, linearized around a well-chosen mean flow. The generality of neither
is necessary in the following.
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domains of nonvanishing

- velocity

)

72\
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Figure 2.2: Schematic representation of the flow issuing from an inlet channel
through a heat exchanger grille into a free-space. The domains of nonvanishing
velocity (blue) and vorticity (red) are marked.

B 2.5.4 Howe's energy corollary

The last findings are conveniently expressed by the formula that is called
the Howe’s energy corollary (at least within this work — the terminology is
not settled). It follows from the nature of the source in Egs. (2.63)) or (2.65)
that the power imposed on the acoustic field might be evaluated utilizing the
well-known relation that the instantaneous power (density) is calculated as
J - uac. Let © denote a domain of nonvanishing vorticity. Then substituting
the Coriolis-force-like term into the last expression the mean acoustic power
(P) supplied to the field (or dissipated from it) is given as [64) [46]:

(P) = </Q —(w x u)-ul, dQ> : (2.70)

where (...) denotes an appropriate time averaging (e.g. over a period of the
fundamental frequency of the unsteady base flow).

This formula is very important from multiple points of view. First, it is
shown again that only the regions with nonvanishing vorticity contribute
to the aeroacoustical sound generation and dissipation. Second, there is
feedback between the acoustic field and the generating flow. Third, based
on the orientation and phase relations among w, v and u}, the flow might
be acoustically generative as well as dissipative. Fourth, the locations of the
most pronounced sound generation or dissipation in a standing wave coincide
with the acoustic velocity anti-nodes (not the pressure ones).

This is vital to the formulation of the phenomenological considerations
introduced below (p. [44).
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2.6. Equations related to turbulence in an incompressible fluid

B 26 Equations related to turbulence in an
incompressible fluid

Specific properties of turbulent motions in fluids are often considered one of
the most challenging fluid dynamics topics in its theoretical, experimental
and computational forms. Consistently adhering to the aim of this governing
equations summary, only a very narrow sector of the turbulence modeling is
reviewed.

Details of the theory and its applications to the numerical simulations
might be found in various excellent textbooks (see e.g., [65] [66]). A regularly
updated source listing the variety of models and their alterations along with
validation cases is provided by NASA [67].

In this work, the mean flow velocities are of low Mach numbers and the
length scale of hydrodynamic perturbations is small compared to the typical
sound wavelengths, so that the fluid compressibility might be neglected for
the turbulent flow modeling (see Sec. [2.3.1). Consequently, the Navier—Stokes
equations are expressed as follows

V.ou=0, (2.71)
ou 9
poa-ﬂ)o (u-V)u=-Vp+uV-u. (2.72)

This form is simpler than the full set of compressible equations (2.21)) —
. Nevertheless, the coupled equations , are still nonlinear
and there are some significant issues connected to the smallest spatial scale
that must be resolved in order to get plausible results. Generally, a three-
dimensional computational mesh should have a number of discrete points
proportional to Ref [50] shall all the major qualitative phenomena taking
part in the turbulence dynamics be resolved. Therefore it is a matter of
eminent application relevance to have a suitable approximate framework and
to be aware of its strengths and weaknesses.

A simple and efficient solution to this issue consists of neglecting practically
irrelevant scales by an appropriate averaging or filtering. From the two major
approaches, RANS (see below p. and LES (standing for the Large Eddy
Simulations — see e.g., [68, 27]), only the former is employed within this work.

B 2.6.1 Reynolds-averaged Navier-Stokes equations

The key idea (dating back to Osborne Reynolds) is to get the mean flow field
of turbulent flow by decomposing the instantaneous velocity and pressure
fields to their mainstream and fluctuating values
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2. Governing equations

u(x,t) = u(x,t) +u'(x,t), (2.73)
p(x,t) =p(x, t) + p'(x, 1), (2.74)

where the (Reynolds’) averaging operator is defined as follows:

T
u(x,t) = 1/ u(x,t+s) ds (2.75)
T Jo

where T denotes time span much longer than the typical fluctuation periods.
The operation is similar for pressure or any other quantity. A more rigorous
approach is built on argumentation replacing the somehow ill-defined time-
averaging in Eq. (2.75) by the ensemble-averaging in a different sense (see
e.g., [68]).

Note that nothing has been assumed about the orders of magnitude. There
are cases (e.g. the wake behind a single tube of the heat exchanger — see
Sec. 4) in which the fluctuation of the quantity is of the same order as its
mainstream value. Therefore, it is necessary not to limit the magnitude of
the fluctuations in a way that is common when linearizing the equations.

The governing equations for the turbulent mainstream are derived by
substituting Eqgs. (2.73)—(2.74) to the incompressible Navier-Stokes equations
(2.21)) — (2.23) and applying the averaging operator (2.75)). After the outlined
manipulations, the equations are obtained in the form:

V.-u=0, (2.76)
po%? +p0(@- V)T = -Vp+ pV?a— V- (poun) . (2.77)
So the averaged quantities are governed by the same equations (called the
Reynolds-averaged Navier-Stokes equations — RANS) as the original system,
apart from the last term in the averaged momentum equation (2.77). It
couples the mainstream and the fluctuation field. There is no rigorous way of
obtaining its value from the averaged quantities. A straightforward attempt
to employ the governing equations for fluctuations to use their solution for
evaluation of w/u/ only shows the persistence of the issue: a third-rank tensor
u'u'u’ emerges as a vital part of the system. Similarly, it is possible to
compose the next order of equations only to find out that a fourth-rank tensor
is required and so on. This is the well-known problem of RANS closure.

The additional term in Eq. (2.77) is the so-called Reynolds stress and it
has been encountered in this work before because its double divergence occurs
at the right-hand-side of the Lighthill’s wave equation (2.58). The definitions
given here and in Sec. 2.5.1 does not match perfectly due to different context.
In order to fully identify both Reynolds stress terms, a thorough discussion
regarding the averaging time duration compared to the typical sound period
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2.6. Equations related to turbulence in an incompressible fluid

etc. would be needed. However, it is common in aeroacoustic literature to
label the source term of the Lighthill’s equation as the Reynolds stress tensor
(see e.g., [18]) even though the Reynolds averaging does not belong among
the steps of the Lighthill’s analogy derivation.

B 2.6.2 Boussinesq assumption and Menter’s k-w SST model

The Reynolds stress is responsible for the mainstream momentum diffusion
due to fluctuations. That it is indeed an another stress imposed on a fluid
particle is more apparent by a slight re-arrangement of the right-hand-side of
Eq. (2.77):

Vi uVE -V - <p0W> —Vv. {—p]l o [Vu + (Vu)T} - pOW}
(2.78)

The key idea is that since the turbulent fluctuations act on the mainstream
properties as a factor contributing to the momentum diffusion, they might be
phenomenologically replaced by some sort of effective viscosity. This approach
is called the Boussinesq assumption (see [69] for the original article). Unlike
the viscosity arising from the material properties, the turbulent eddy viscosity
pr(zx,t) is a true field (non-constant in space and time), because it reflects
the local changes to the effective stress tensor (the right-hand-side of Eq.
(2.78)) due to turbulent motions. Formally it is introduced as a part of the
Reynolds stress tensor expansion:

N 2
— pou'u’ = pupS — gpokﬂ , (2.79)
where
|y — T
S=3 va+(va)'| (2.80)
1—
k= iu’ -ul (2.81)

with S and k denoting the (averaged) strain-rate tensor and the turbulent
kinetic energy, respectively.

Hence, the problem of RANS closure is transposed to finding equations
governing the right-hand-side of Eq. (2.79). There are many different models
attempting to solve this issue. Their overview might be found e.g. in [67].
In this work, only one of them is employed, the so-called k-w shear stress
transport (SST) model, originally designed by Florian Menter [70].

The full statement of the model equations is lengthy, but it is not necessary
here because their coefficients nor any other part were edited in the following
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2. Governing equations

sections. Implementation according to [71] is employed without changes.
Therefore, only the main ideas are presented here in short.

The turbulent eddy viscosity in this model is proportional to pok/w, where
w is the specific dissipation rate of the modeled turbulent motions (hence the
k-w in the name of this model). Menter’s approach blends two older models:
k-w, suitable near the wall and k-e, suitable in the free stream. Coefficients in
the governing equations for w and k change with the distance from the wall.
Hence, it is possible to maintain a dedicated description of the boundary
layers as well as the flow patterns in the free stream, which is important in
the sections below.
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Chapter 3

Sound transmission and generation along
the corrugated surfaces

Surfaces with corrugations — regardless of whether they form a tube or a
plate — are important in many industrial applications such as lining or piping.
They can be found in a vast variety of machinery and devices: flexible risers,
air-conditioners (e.g. [15]) or turbofan engine nacelles (e.g. [72]), to name
some examples. Consequently, investigation of the acoustic waves traveling
along such surfaces is of high practical relevance. The nature of the mentioned
practical applications demands the presence of a nonzero mean flow within
a studied device. Therefore, it is necessary to deal with the simultaneous
presence of both the acoustical and hydrodynamical perturbations and their
coupling.

Relevance for this thesis is apparent from the fact that the geometrical
dimensions of a single corrugation are typically small compared to the size of
the whole device. Hence, depending on the typical wavelengths investigated,
the corrugated surfaces can form an effective one-dimensional locally periodic
medium. It calls for exploiting the periodicity to simplify the description.

In the first part of this section, the possibility to linearize the governing
equations describing the sound transmission above the corrugated plate is
analyzed. Subsequently, the phenomenological model for the sound generation
in a corrugated pipe is proposed.

B 31 Corrugated plate: Simulation of linear
transmission

As it was shown above in the section dedicated to the aeroacoustic analo-
gies, the equations describing complex flow-acoustic phenomena are generally
nonlinear. However, the problems concerning sound transmission are often
successfully described within the linearized framework (see, e.g., the com-
ments in [41]). Frequently, the (quasi-)plane waves (defined by their angular
frequencies, wave vectors, complex amplitudes etc.) are employed. It opens a
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3. Sound transmission and generation along the corrugated surfaces

convenient possibility to exploit tools of the applied mathematics defined in
the frequency domain (see, e.g., the textbook by Tam [73]). Moreover, many
very useful and common acoustic quantities are defined only in the frequency
domain (e.g., impedance or transmission coefficient).

Hence, it is natural to use the linearized frequency domain approach not
only in theoretical considerations or experimental data processing but for
numerical simulations as well — see e.g., the (presumably) founding article of
Kierkegaard et al. [74]. Considering the aeroacoustics of periodic structures,
there would be an appealing opportunity to exploit the framework known
from the solid-state physics (see e.g., [3]): it shall be possible to reduce the
description of the system to a single building block (the so-called unit cell)
and employ the Floquet-Bloch theory to derive the features of the whole
system. In a semi-analytical approach, it has been introduced to the field of
aeroacoustics by Dai and Aurégan [39, 40]. However, the necessary condition
for employing such an approach in the numerical simulations is, that the
linearization is justified in the entire volume of the unit cell. As we shall see
in the following paragraphs, this might be questionable.

This section is organized as follows: First, an experiment concerning sound
transmission above the corrugated plate is introduced. Subsequently, the
computational framework is proposed to obtain comparable transmission
coefficients. The rest of the section is dedicated to a comparison of the
experimental and numerical results, along with a discussion of the apparent
discrepancies. The section is concluded with an evaluation of the Floquet-
Bloch theory applicability.

B 3.1.1 Underlying experiment

The underlying experiment was described in detail in [75] (see Fig. 3.2). A
rectangular channel with a mean flow of 24 m - s~! and inner dimensions 40
mm by 50 mm has a corrugated wall. The 16 identical corrugations are 4 mm
in width and depth. Their trailing edges are rounded with a 1 mm curvature
radius. The length of a corrugation segment is 12 mm. See Fig. 3.1l

The main focus is the transmission coefficients of sound waves propagating
downstream and upstream, respectively denoted as T, T~. The experiments
show (see [75]) that there are spectral bands exhibiting both lower and higher
values of transmission coefficient compared to the one without flow (see
Fig.3.11 below). Besides, the Laser Doppler Velocimetry (LDV) measurement
took place providing information about the unsteady flow at the corrugation.

B 3.1.2 Linearized Navier-Stokes equations in the frequency
domain

Either by substituting p/(x,t) = p'(x)e*! (and similarly for the otehr quan-

tites) or replacing the perturbation in Eq. (2.27) by
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3.1. Corrugated plate: Simulation of linear transmission

40 mm
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Figure 3.1: Geometry of the corrugated segment.

I i€Z0eleotyie

Micr,
h”“hhullv\
Soy
Urces (

Up l)m\nxlrmml

TT— TRMi.
| \ll\rnphnncx

p(x,t) = po(x) + p'(x)e™" (3.1)
u(z,t) = uo(x) + 4/ (x)e™" | (3.2)
p(x,t) = po + p'(x)e“" | (3.3)
T(x,t) =Ty + T (x)e“" (3.4)
the frequency domain counterpart of Eqs. (2.34)—(2.36) is obtained:
iwp +poV -t = —ug - V' (3.5)

iwpet + VP —V -+ = —p'ug - Vug — pott - Vug — poug - V' (3.6)

uo - Vpo .«
0 pOT/_UO‘Vﬁ/_'a/'VpO

(3.7)

iwp’ — iwpocpT' + kV2T = PoCpUQ * \vd/ -
0

Note that in order to contain the amplitude as well as the phase information
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3. Sound transmission and generation along the corrugated surfaces

p(x)" € C, so the relation between the time-domain and frequency-domain
perturbations is

p(z,t) = Re [p'(x)eiwt} , (3.8)

for given w.

Note that the generality of the time-domain equations (2.34)—(2.36) is still
contained in their frequency-domain version by Fourier’s theory owing to the
fact that all the equations concerned are linear.

The mean flow quantities (ug, pg) must be provided by an appropriate
simulation of the steady incompressible flow (see below). Mean temperature
To = 293.15 K is assumed constant (see Sec. 2.3.1).

B 3.1.3 Set-up of the numerical simulations

Due to the high computational demands, only a 2D slice of the experimental
set-up is simulated.

The workflow of the numerical simulations follows an already established
procedure (see e.g., [54, [76]), which is summarized in Fig. 3.3l The com-
putations are set within the environment of Comsol Multiphysics 5.5 (and
the results of the mean flow values were also verified by the finite-volume
solver Ansys Fluent). First, the mean flow quantities are calculated assuming
the incompressible flow with k-w SST model. Before the mean pressure and
velocity can be supplemented to the numerical evaluation of the linearized
Navier-Stokes equations, it is necessary to map the mean quantities between
the mesh appropriate for the turbulent flow calculation and the one designed
to capture the acoustic features.

Although it is not that interesting from the aeroacoustical point of view, it
is necessary to provide enough length downstream for the turbulent profile
development (see Fig. 3.4). The inlet with prescribed velocity is therefore
placed far from the domain of interest (about 40 channel diameters — which
was checked as sufficient by evaluation of the centerline velocity). The outlet
boundary condition is set as usual by considering zero (over-)pressure. The
no-slip condition is imposed on the walls.

Simulations of the linearized Navier-Stokes equations (LNSE) take place
in a smaller domain (because the prolonged inlet channel is not important
in this case, see Fig. 3.5). A plane wave enters the system through a
subdomain either upstream or downstream of the corrugations by prescribed
superposition of the field quantities p’, w’, 7" and the plane wave ones (in
Comsol, this is called the background acoustic field - BAF):
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Figure 3.3: Workflow of the numerical simulations.
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Figure 3.4: Geometry employed for the computation of the mean flow quantities.

P = P+ ppare™” (3.9)
1 0 ;

Al Al I N ikt

] — U fops O (pBAFe ) , (3.10)
T T (3.11)
. . T .

N L LR (3.12)

PoCp

where ppar is the pressure plane wave amplitude and u1 2 denote the acoustic
velocity components along the duct axis and perpendicular to it, respectvely.
Note that as long as the system is linear, the transmission parameters are
independent of its value. See p. for definition of the convected wavenum-
bers k4.

Perfectly matched layers [54] are set at both sides of the domain to attenuate
the propagating and reflected waves. At the walls, the no-slip isothermal
condition is imposed, i.e.:

W = 0, Ty =0. (3.13)

The mean flow of 24 m-s~! corresponds to Ma = 0.07. The demand
for transmission coefficients (along with the possibility of Floquet-Bloch
approach) suggests that only the low-frequency limit allowing for quasi-plane
wave propagation inside the duct stays in focus. Therefore the (first) cut-off
frequency for the mentioned duct (ca. 3500 Hz) provides an upper frequency
limit to the considerations.

There are multiple characteristic lengths to be taken into account when
designing the computational meshes. First, the turbulent mean flow is
considered. It is necessary to resolve the laminar viscous sublayer near the
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Figure 3.5: Geometry employed for the linearized Navier-Stokes equations
computation.

walls. Its approximate extent is given by the dimensionless wall distance
yT <5 [50], where:

, Up = ) (3.14)

with the so-called friction velocity wu, derived from the shear stress 7yan
exerted by the fluid to the wall. The value of the latter is unknown in general
prior to the simulation. In order to get some insight, approximate relations
are available. First, the wall shear stress is related to the free-stream fluid

velocity U, (see e.g., [50])

1
Twall = C'f (2p0U020> , (3.15)

where the proportionality constant C is called the skin (or Fanning) friction
coefficient (or factor). There are multiple approximate ways of obtaining its
value. Since here only the basic estimation is in place it is not necessary to
discuss subtle differences. The so-called Prandtl’s universal law of friction for
smooth pipes is employed (see e.g., [50]):

1
ek 210g1q (/CyRe) — 0.8, (3.16)
which must be solved numerically. For the studied scenario C; ~ 0.0194
and subsequently the friction velocity u, ~ 2.5m - s~!. The laminar viscous
sublayer thickness (y* =~ 5) is then assessed as 30pm (see Fig. for
comparison with the simulated profile). Hence, the element closest to the
wall was chosen to have a thickness of 12 pm (the elements were of the 2nd
order for the velocity and the 1st order for the pressure). The element size
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Figure 3.6: Mean flow profile upstream of the corrugated section. The viscous
sublayer as well as the log-layer (see e.g., [50]) are clearly recognizable.

was allowed to grow up to 1.5 mm around the center of the flow profile, where
the spatial variations almost cease.

Similarly, it is necessary to resolve the boundary layer mesh in the LNSE
simulation. Estimation of the thermoviscous boundary layer thickness for
the acoustic plane wave propagating above a plate with no-slip isothermal
boundary condition (ul,; =0, Ty = 0) is given by (see e.g., [49]):

21
= _ .1
oy 1/,00 , (3.17)

where w and p denote the angular frequency and the shear viscosity, respec-
tively. For the highest below investigated frequency (3.5 kHz) §, ~ 37 pm
and consequently, the size of the element closest to the wall was chosen to be
10pm (~ 6,/4). The mesh density cannot decrease too fast with the distance
from the wall as there are multiple phenomena connected to the acoustically
excited shear waves above the wall (see e.g., [61]) and the shear layer above
the corrugation volume must be resolved as well. Therefore, the maximum
size of the element was again 1.5 mm, which corresponds to ca. 61 elements
per shortest wavelength investigated. Quadratic lagrangian elements were
employed for all three perturbation quantities thus yielding a problem with
1,650,000 degrees of freedom.

In order to check that the results are indeed independent of the mesh
parameters choice, the number of the elements above the corrugations, where
most of the flow-acoustic phenomena take place, were doubled (see Fig. [3.7).
Differences in the transmission coefficient values between the cases with and
without mesh refinement were under 2 %.
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Figure 3.7: Illustration of the mesh refinement in order to verify independence

of the results on the mesh parameters choice.

B 3.1.4 Results of the simulations

First, the mean flow results shall be reviewed in brief (see Figs. 3.10).
Inside every corrugation, a vortex is formed similarly to the textbook bench-

marking example of the lid-driven cavity flow (see e.g., [77]).
separation takes place at the trailing edge (see detail in Fig.

The flow
3.10) thus

forming a shear layer above the corrugation volume. It follows from the

given theory, that such locations with strong velocity gradients are of
special interest for the aeroacoustics — most of the flow-acoustic phenomena

take place there.

above

Subsequently, the focus shall be turned to the LNSE simulations. Ampli-
tudes of the upstream and downstream propagating acoustic pressure waves
are obtained employing the values of p/(z,w) and u/(z,w) averaged over the

channel height and making use of the formulae arising from equations in Sec.

2.4.4

(3.18)

9

(p" + pocotd))

(3.19)
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flow direction

44 mm

Figure 3.8: Mean flow in the channel with one corrugated wall. For clarity, only
a part of the whole length is depicted. The visualization is made by the line
integral convolution technique (LIC) (see e.g., [78]), the color scale reflects the
velocity magnitude.

The plane wave transmission properties of the corrugated section might be
described by the scattering matrix:

pél_own — T Rdown ﬁ‘i—p (320)
Pup Rp T7 | [P ’

A(;OWH
where p, T, R denote the amplitude of the pressure, transmission coefficient
and reflection coefficient, respectively (generally, all the values are complex),
while the subscripts up/down denote the evaluation upstream and downstream
from the corrugated segment and superscripts + mark the downstream and
upstream propagation. For illustration, ﬁjp denotes the pressure amplitude

of the downstream propagating wave evaluated upstream of the corrugation
segment.

Generally, evaluation of both upstream and downstream wave propagation
are required to obtain the scattering matrix components leading to a set of
four coupled algebraic equations for T*, T~, Ry, and Rgown. However, the
efficiency of the perfectly matched layers proves to be so good that the wave
reflections from them are negligible. Therefore, the transmission coefficient
calculation might be simplified:

+
T+ ~ pd(jrwn , T = —pup . (3.21)
Pup
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3. Sound transmission and generation along the corrugated surfaces

flow direction

4 mm

Figure 3.9: Detail of the mean flow inside a corrugation. The color scale reflects
the velocity magnitude.

Results of the TT, T~ computations are depicted in Fig. Compared
to the case without flow, there is a dip in the transmission around 1 kHz for
both propagation directions. This feature qualitatively agrees well with the
experimental results. Conversely, based on the experiment, there shall be a
"gain" compared to the no-flow case at ca. 2 kHz. In the simulated curve we
see an increase, but the value of |T*| does not exceed the scenario without
flow (it is rather aligned with it).

It follows from the above-given figures that the acoustic boundary layer
is always thicker than the viscous sublayer of the mean flow, which means
(see e.g., [19]) that there is an influence between the acoustic and turbulent
attenuation and a non-negligible difference between downstream and upstream
acoustic transmission shall be expected. This is in accordance with the results
of the simulations.

The slope of the transmission coefficient without flow is different between
the experiment and the simulation. This is due to the "missing walls" in the
simulation set-up (the side walls of the channel are left out in 2D simulations
along with their thermoviscous boundary layers).

Generally, the overall shape of the simulated transmission curves qualita-
tively corresponds to the experimental ones, but the absolute values of the
transmission coefficient are different. The transmission minimum around
1 kHz should be deeper and the transmission maximum around 2 kHz should
be much higher. Moreover, there is a slight shift in the frequency of the
transmission maximum between the simulation and the experiment.

Before the analysis of the discrepancies between the experiment and the
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3.1. Corrugated plate: Simulation of linear transmission

flow direction

1.3 mm

Figure 3.10: Flow separation at the trailing edge of the corrugation. The color
scale reflects the velocity magnitude.

simulation proceeds, it is useful to investigate the tendencies in the trans-
mission coefficient changes with variation of the mean flow parameters. Two
parameters were altered: the mean flow velocity (Ma = 0.06,0.07,0.08) and
the trailing edge radii (r = 0.5mm, 1 mm, 1.5mm). Resulting T" coefficients
are depicted in Fig. First, TT is given as a function of frequency. Evi-
dently, the positions of the transmission maxima and minima are dependent
both on the mean flow velocity and the trailing edge radii. To reveal the
mentioned dependence, it is beneficial to use the Strouhal number as the
independent variable (i.e. to scale the frequency):

fW +r)

Sr —
' coMa,

(3.22)

where W and r denote the corrugation width and the trailing edge radius,
respectively. The choice of W +r as the characteristic length is often justified
(see e.g., [62]) by the fact that the rounding of the trailing edge shifts the
point at which the flow separation takes place, thus enabling a longer path
for the vorticity shed at the edge.

The transmission curves align in minimum at Sr = 0.2 and this value is
in agreement with the experimental results [75]. The minimum is deeper for
higher flow speeds or sharper trailing edges and vice versa. The transmission
maximum is located between Sr =~ 0.33 — 0.38, which is a lower value than
reported from the experiment (maximum at Sr &~ 0.4 was found [75]). Again,
the slope from the minimum to the maximum is steeper for higher flow speeds
or sharper trailing edges and vice versa. However, one could intuitively expect
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Figure 3.11: Top: Measured transmission coefficient above the corrugated
plate [75]. T*, T~ and T without flow in red, blue and black respectively (the
dashed black with a reversed source-receiver configuration). Bottom: Simulated
transmission coefficients.

bigger differences among the transmission curves given the ca. 15% variation
of the Mach number.

Significant differences are found by investigating the perturbation velocity
field at a single corrugation (specifically the 15th corrugation in the experiment
as well as in the simulations, see Fig. . The frequency of 1800 Hz was used
(i.e. the one closest to the transmission maximum). Velocity perturbations
from the LNSE simulations (i.e. acoustic and hydrodynamic parts summed
up) form a shear wave above the cavity extended over many corrugations.
For comparison, the time-domain simulation of the incompressible unsteady
RANS (URANS) equations in the time domain was conducted (with the inflow
boundary condition perturbed with the same frequency as investigated in
LNSE). In Fig. [3.13|the difference between the mean flow and an instantaneous
velocity distribution (i.e. thy hydrodynamical perturbations) is depicted.
Evidently, these are qualitatively different from the perturbation velocities
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Figure 3.12: Transmission coefficients in the downstream direction for various
flow speeds and radii of the corrugation trailing edges. Top: Transmission
coefficient as a function of frequency. Bottom: Transmission coefficient as a
function of Strouhal number.

predicted by LNSE: there are vortical structures with a very different typical
length convected above the corrugation. Finally, the experimental results
from the LDV measurements are given [75]. Clearly, they are much closer to
the (nonlinear) URANS than to the linearized equations.

At this point, it is clear that some of the aspects of the numerical simulation
results are in decent correspondence with the experimental data. Nevertheless,
the impact of the flow on the transmission properties is generally weaker
than expected and the local distribution of the perturbation velocities is
qualitatively different from the experiments and URANS simulations.

It is assumed that the problem is the linearization of the hydrodynamical
part of the equations. Although the convective nonlinearity of the acoustic
velocities V' is negligible for small density perturbations, an analogous
constraint for the hydrodynamical perturbations V x ¥’ is not at hand.
Further note that the perturbations resembling the boundary layer separation
(see Fig. 3.13) shall be governed by the (essentially nonlinear) Prandtl’s
equations (see e.g., [50]).

It follows that it is questionable to unconditionally maintain the single
linearization for all perturbation quantities in the entire domain. On the
other hand, the mentioned issue loses its significance with the distance
from the non-planar boundary. It explains why the linearization of the
conservation equations in the frequency domain can be successful despite
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3. Sound transmission and generation along the corrugated surfaces

Figure 3.13: Three instantaneous perturbation flow fields under the same mean
flow velocity (Ma = 0.07) and imposed frequency (1800 Hz). Top left: Linearized
Navier-Stokes equations. Top right: URANS. Bottom: Experiment [75] (vertical
velocity component only).

the just given reservations. For instance, if the geometrical discontinuities
are effectively removed from the system by employing artificial impedance
boundary condition obtained by homogenization (see e.g., [40]) or when the
frequency domain approach serves as a basis for general reasoning (see e.g.,
[42]) or experimental data evaluation (see e.g., [41]), but not for simulations
valid in each point in the domain.

In an influential article of Kierkegaard et al. [74], in which the frequency
domain LNSE simulations are introduced, a slightly different scenario is stud-
ied in terms of material parameters of the fluid: due to high speeds even the
mean flow is weakly compressible, but the isentropic relation between density
and pressure is assumed (for the perturbation quantities as well). Moreover,
it could be hypothesized that the discrepancies between the experimental
and numerical results are significantly smaller for a single obstacle with a
low amount of problematic regions (such as an orifice in the waveguide [74]
or sudden duct expansion [80]) than for the periodic structure, in which the
problematic locations are repeated and their mutual influence cannot be a
priori excluded.

Note, that these considerations are of great influence for applicability of
the Floquet-Bloch theory in the LNSE numerical simulations, as the periodic
boundary conditions suggest that the problematic locations are repeated
infinitely many times. Moreover, there is a technical issue connected to the
finite element formulation: with non-zero mean velocities the equations yield
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3.1. Corrugated plate: Simulation of linear transmission

a non-Hermitian operator for the eigenvalue problem [81I]. Therefore, the
operator spectrum is continuous and extraction of the physically relevant
eigenvalues is highly complicated.
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3. Sound transmission and generation along the corrugated surfaces

B 32 Phenomenological model for the sound
generation in corrugated pipes

The last sections dealt with the sound transmission properties in the linear
regime. Therefore, the sound wave might be attenuated or reinforced by the
flow-acoustic coupling, yet the wave itself is imposed on the system externally.
However, it is possible that the sound might be generated from the unsteady
flow without external driving. This is particularly well-known as the ’singing’
or 'whistling’ of the corrugated pipes (see e.g., the review [15]).

This inherently nonlinear phenomenon has been in focus of many articles
dealing with the subject from the experimental point of view ([82, [83], 84 [85),
80, [87, 88, [89]) as well as the theoretical one ranging from simplified analytical
formulations ([52], 86, [90]) to costly numerical simulations ([91], 92} 93]). In
order to bypass solving the compressible Navier-Stokes equations retaining
at least some of their nonlinearities, the motivation here is to find a suitable
phenomenological formulation. It is known that the (quasi-)periodic shear
layer instabilities might be phenomenologically replaced by the nonlinear
oscillators of the van der Pol type. This way was widely employed by the
authors dealing with the vortex-induced vibrations (|94} 95} 96, 97, 98|, [99])
or in the field of general nonlinear mechanics as well (see, e.g., [100] 101l 102,
103], 104]).

This approach has already been proposed in the acoustics of flow excited
resonators such as corrugated pipes ([105) 106]). The task here is to revisite
its design in order to capture the key traits and incorporate them into the
phenomenological model with subsequent testing against the experimental
data.

B 3.2.1 Nature of the sources

Before proposing the specific form of the phenomenological equations, it
is necessary to take a look at the qualitative behavior of the compressible
fluid dynamics inside the corrugated pipe. Namely, to the process of the
flow-acoustic coupling.

The root of the operation principle is the feedback-loop depicted in Fig.
3.14. Similarly to the case studied above, the hydrodynamic instabilities
lead to vorticity shedding past the corrugation trailing edge. The convected
vorticity acts as the sound source reinforcing the standing acoustic wave inside
the pipe. In turn, due to the unstable flows sensitivity, the hydrodynamic
instabilities are synchronized with the acoustic field, which leads to periodic
behavior of the flow-acoustic perturbation field throughout the pipe.

The Howe’s energy corollary (2.70) provides a suitable starting point for
further considerations. In a standing wave, as prevails in the resonator,
the sound is generated or dissipated at the acoustic velocity anti-nodes.
Conversely, at the acoustic velocity nodes, the flow-acoustic interactions are
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3.2. Phenomenological model for the sound generation in corrugated pipes

weaker. This behavior was confirmed by the experiments as well as the
numerical simulations (see e.g., [92] [52]). The flow can produce as well as
dissipate the sound based on the interplay between factors in Eq. (2.70) (i.e.,
regarding the phase and direction of the velocities and the vorticity).

The surface between the flow along the pipe axis and the fluid inside the
corrugation constitutes an unstable shear layer. Hydrodynamic instabilities
grow along the path over the corrugation. However, the nonlinear saturation
phenomenon takes place as the flow perturbations do not grow infinitely. It
occurs when the vorticity ascribed to the unstable shear layer rolls up to a
flow pattern that resembles a point vortex (in planar cross-section along the
pipe axis).

Let U denote a free-stream mean flow velocity in the bulk of the pipe and
Uae the acoustic velocity amplitude. The nonlinear saturation effects might
appear already for the magnitudes ratio u../U ~ 1072. The oscillations
exhibiting a good stability were found for u,./U ~ 107! (see e.g., [52, 107]).

Schematically, there are two mechanisms of the perturbations’ generation.
In an initial state, when the fluid is not yet insonified, the unconditional
instability of the shear layer at the boundary of the corrugation volume must
be considered. Practically, there is no possibility for the flow to be ideally
steady and uniform. From inevitable flow instabilities the first very weak sound
sources emerge. From these weak sources the sound field inside the pipe builds
up and eventually the resonances corresponding to the pipe eigenfrequencies
come along. Finally, the shedding of vorticity at the corrugation’s trailing
edge (synchronized with the acoustic velocity) constitutes the main sound
source [52].

To sum up, a suitable phenomenological model is needed that would explain
the sound generation in the corrugation segment. It follows from the review of
aeroacoustic analogies (see p. |18) as well as from Eq. (2.70) that the nature
of the sound source corresponds to a force driving. Taking into account the
instability of the shear layer, a model shall be chosen that posses the ability
to start up just from small random fluctuations around the equilibrium values.
On the other hand, the nonlinear saturation mechanism has to be present.
When the corrugation segment is much smaller than the wavelength (which
is the usual case), the description could be simplified by considering the
segment a point sound source. As it follows from the Howe’s energy corollary,
the feedback-loop between the source and acoustic field is governed by the
acoustic velocity. Hence, the van der Pol-like oscillator ascribed to the point
source with a right-hand-side proportional to local acoustic velocity fulfills
the requested features. See Appendix D (p. [105)) where the basic analysis of
the van der Pol equation supports some of these claims.

Assume that the pipe diameter is much smaller compared to the pipe length.
Therefore, the corrugated pipe is treated as an "open—open" one-dimensional
resonator. It is apparent from the following how the equations could be
derived for the "closed—open" case (e.g. a tube downstream of a choked valve).
However, only the former is considered in the following.
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Figure 3.14: Schematic illustration of the feedback-loop mechanism.
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Figure 3.15: Schematic diagram of the quantities introduced to describe the
corrugated segment.

B 3.2.2 Model equations

Suppose that the mean flow U is uniform and steady along the corrugated
pipe of length L. The z axis is oriented along the centerline of the pipe.
Elementary phenomenological acoustic pressure sources P,, are modeled by
the van der Pol equation with a nontrivial right-hand-side. For a source P,
located at the n-th corrugation at x,, the following phenomenological equation

can be defined (see e.g., [105, 106])

d?p, P, \? dp, op'
—r 1A n —1] == 2p, = C— =1,..,.N
dt? +Aws [(BpoU2> ] dt s O@m P T e

T=Tn

(3.23)

wg is the Strouhal (angular) frequency, A, B and C are parameters of the
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Figure 3.16: Diagram of the simplified phenomenological model for the sources
inside the corrugated pipe.

source described below, pg is the constant mean air density and N represents
the number of corrugations. Note that the spatial derivative of the acoustic
pressure p’ is proportional to the local acoustic acceleration. The Strouhal
angular frequency wg is defined as

wsg = 27rSrg . (3.24)

A
The characteristic length A is defined in the same manner as above: it is
the width of the corrugation augmented by the trailing edge radius (see e.g.,
[52]). Here, the Strouhal number is considered to be a cheracteristic constant
of the given system. Naturally, when the Strouhal number is obtained from
the experimental data, it slightly varies due to mode-locking, hysteresis, etc.

(see e.g., [89]).

It follows from the analysis in [Appendix D] as well as from the previous
works on the related subjects (see e.g., [95]) that the nonlinearity parameter A

may be and shall be small. Moreover, it is shown below that small variations
of its precise value does not affect the system behavior significantly. The
coefficient of coupling C' has the dimension of acceleration. It reflects events
linked locally to the single corrugation, its vorticity shedding frequency, and
the sound field. The latter is represented by the (angular) frequency of the
fundamental axial mode mcy/L. Therefore the scaling is proposed in the form

C = —%WSAF : (3.25)

where I' is a nondimensional coefficient responsible for coupling. The minus
sign reflects the fact that the acceleration is proportional to the negative
pressure gradient in the momentum equations. The remaining parameter B
is shown below to be governing the limit cycle size.

The highest values of vorticity are found at the trailing and leading edges
of the corrugation. Therefore, the sound generation and dissipation due to
the unsteady flow occurs predominantly in these regions. This feature is
captured by assigning a van der Pol-like source to every corrugation. From
the aeroacustic analogies (see p. |18)) and the multipole expansion (see p.
follow that the nature of the source correspond to the dipole term resembling
the external force distribution f’. Therefore, a suitable form of the wave
equation for the acoustic pressure p’ reads (see Eq. above):
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The phenomenological force distribution is obtained as a sum of individual
contributions from the sound sources P, located at points z,,:

(3.26)

N
= Pis(z—a), (3.27)
n=1
where § denote the Dirac delta function (see Fig. |3.16 for schematic illustration
and Appendix B on p. (99| for the generalized functions properties).

For the time being, the thermoviscous and radiation losses are neglected.
Hence, assuming that both of the open ends are ideal pressure release surfaces,
the sound field inside the pipe can be expressed as the sum of orthogonal
modes:

mmx

L

M
p(z,t) = Z gm (%) sin (3.28)
m=1
Theoretically, the value of M shall approach infinity. However, for a
practical case it is possible to truncate it at some finite integer without losing
the decisive features. To further support this claim, note that the whole 1D
considerations are limited by the low-frequency assumption.

Now, the orthogonality of the modes is utilized. Eq. (3.28)) is substituted
in Egs. (3.23)) and (3.26). Both sides of the wave equation are with spatial
mode of consecutively changing mode number and integrated along the pipe
length L. A set of M + N ordinary differential equations is obtained for M
modal amplitudes g, and N phenomenological sources P,:

2 2 N
. mmcy _ 2mmcg mnx,
Gm ~+ ( i3 > Im =73 nEZI P, cos T (3.29)

.. P, 2 . 9 7'('260 M MmmTy
P, + Awg [(BPOUQ) —1| P, +wih, = 72 wgAT’ mZ:1 MGy, COS 7
(3.30)

where the dot denotes the derivative with respect to the time t.

At this point, the proposed system of equations is not realistic. Neglecting
all losses would inevitably lead to infinite values of ¢, for most cases. Hence,
it is necessary to introduce losses and some other corrections into the idealized
framework. These features supplement the previous attempts in [105] [106]
and allows for to betterer assesment of the limits of the model.

First, the presence of the corrugations affects the local speed of sound,
because the waveguide is not uniform. To account for the compliance of
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3.2. Phenomenological model for the sound generation in corrugated pipes

the corrugations, the effective speed of sound in the low-frequency limit is
introduced [10§]:

1 -
* g

where V', S, and £ denote the corrugation volume, the cross-sectional area of
the pipe, and corrugation pitch respectively. Obviously, the effective sound
speed c is always lower than the adiabatic speed of sound in the free-field cy.
The effective value ¢ is employed henceforth.

Next, the length-correction due to nonzero radiation impedance is consid-
ered, taking into account the nonzero mean flow. There are multiple models
describing this feature (see e.g., [109]). It is interesting to point out that
this question has not been fully resolved for general flow parameters yet.
Nevertheless, in all considered cases, the length correction is smaller than
the tube radius r;. Hence, if r; < L, the importance of the end correction is
negligible to the proposed phenomenological approach.

In order to discuss the introduction of losses, consider the formula due to
Ingard and Singhal [110] for eigenfrequencies wy, of the "open-open" duct
with flow. Employing a slightly different notation for convenience and using
the effective quantities introduced here it reads:

mmc

Wm = (1 - Maz) —1i (5tv + 5turb + (5end) ) (332)
where by, dpurb and deng denote the (coefficients of) thermovisous losses,
turbulent attenuation and end losses due to the convection respectively. The
specific formula for the turbulent losses is disregarded here. The approximate
relations are known for the smooth pipe, but for the corrugated one numerical
calculations would be necessary. Finiteness of the van der Pol equation’s
limit cycle partially emulates these losses. Moreover, the search for the
model parameters below shows that it is not necessary to artificially augment
the other losses to compensate in order to maintain the desired qualitative
behavior.

Now the task is to examine the relative magnitude of the remaining atten-
uation coefficients in the low Mach and high Reynolds number limit. The
coefficients for a circular duct with r; < L are found as follows [110]

1 Wm b ( Y- 1>
S = — 14 , 3.33
’ 2r; ' 2po VPr ( )

2(1-Ma%)e  /14M
( ) ln( i a), (3.34)
3L 1 — Ma

dend =
where p, v and Pr denote the (shear) viscosity, the adiabatic exponent (the

heat capacity ratio) and the Prandtl number respectively. In the low Mach
number limit, Eq. (3.34) is expanded retaining only the leading terms:
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4c 3

gpMa+0 (Ma®) . (3.35)
The term in brackets in Eq. (3.33) is approximately ~ 3/2. If the small

frequency shifts due to the thermoviscous losses and nonvanishing flow are

neglected, one obtains:

5end =

Otv 92 [ mrpulL vm
6end - 32 ’I”?Cl\/.[a2 10 ’

(3.36)

where the pipe radius in the order of centimeters, its length of meters and the
Mach number ~ 1072 were assumed in the last expression. Hence, the end
losses outweigh the thermoviscous ones even for relatively high frequencies.
In the spirit of this estimation, the eigenfrequencies may be approximated

mme . 4c

Now, the modal equations (3.29)) are altered by introducing a damping
term that produces the same imaginary part as it would correspond to the
last relation. Omitting again the terms of O (MaQ), the governing equations
assume the form:

] 2 2 2 N
q'm + <CM3) Qm + (mﬂ-c> dm = LZC Z Pn COS Mren s (338)
L L L
2

P, \? :
<Bp0nU2) — 1] P, + w?an =72 wsAF Z MGy, COS

m=1

mmcn

(3.39)

It is useful to scale the equations and so the dimensionless quantities are
introduced:

T mct
_ T _ et 4
o=7, T T (3.40)
= P, - In
= 3.41
n Bp()U2 b Qn Bp0U2 b ( )
A
£ =0y (3.42)
c
and hence
SMa\ . 2m &
qm+< gy )qm—i—m qm—7§:: cos moy, , (3.43)
}én + Av (}53 — 1) 15n + 2P, = —¢v Z MGy COSMT, | (3.44)
m=1
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where the dot denotes the derivative with respect to 7 now and v = wgL/(mc)
is the reduced driving frequency. The coefficients A, £, along with the Strouhal
number Sr constitute the fitting parameters of the phenomenological system.
It is clear that the coefficient B only scales the P,s and ¢,s and the system
does not depend on it qualitatively.

The ad hoc added damping (the second term in Eq. (3.43)) is at least
two orders smaller compared to m?. Although any precise dependence is
not known, it follows from the results below that the value of the coupling
parameter £ decreases with the number of corrugations.

B 3.2.3 Analysis of the equations

In order to analyze the proposed set of governing equations more closely,
two standard techniques are employed. First, the linear stability analysis
shows that the system is indeed capable of building up the oscillations from
infinitesimal fluctuations. Next, the multiple scales perturbation method is
utilized to show some of the nonlinear features. Both approaches are direct
generalization of the techniques from the Appendix D (p. |105).

For clarity and simplicity, only a system consisting of one corrugation and
one acoustic eigenmode (i.e. M = N = 1) is considered. This leads to a set
of two coupled ordinary differential equations:

. SM . 2 -
q+( a>q+q:P, (3.45)
3 T
P+ Av(P?=1) P+ v*P = -v&q . (3.46)

Despite the simplification, the set (3.45)—(3.46|) is nonplanar and conse-
quently the Poincaré-Bendixson theorem cannot be used to prove that there
is a limit cycle [I11]. Hence it is necessary to rely on the numerical results
presented below.

Procedure of the linear stability analysis is well-known (see e.g., [I11], 51] or
Appendix D here), so only its outline is sufficient at this point. The dynamical
system (13.45)—(3.46) is recasted as a set of four coupled differential equations
of the 1st order:

X =FX), X=][rs4qP], (3.47)

where r = § and s = P. The sole equilibrium point is the origin itself (i.e.
there is only for origin the equality F(Xy) = 0 holds). It is straightforward
to show that adding more eigenmodes or corrugations (M > 1, N > 1) does
not change that.

Next, small perturbations around the equilibrium values are introduced
as X = Xy + X'. Substituting this to the original system the following is
obtained:
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X =X +0 (X’2) , (3.48)

where £ is the Jacobian £ = g)féi_
J

X, Solution to the last problem is sought

in the form X’ = Xe*". Therefore, the characteristc polynomial for A reads:

M4(C— Av) NP4 (12 — AQw +1) A2+ (¢ — Av) >\—|—%—y2 =0, (3.49)

where ( is a substitution for 8Ma /3.

Applying the Routh-Hurwitz criterion (see e.g., [I12]), at least one of the
roots has a positive real part for any physically reasonable choice of the pa-
rameters. Therefore, the origin always repells the infinitesimal perturbations,
which corresponds to the feature of building up the oscillations from the
infinitesimal fluctuations. Numerical experiments on the values of A were
conducted for v € [0.5,1.5], A € [1073,1072], £ € [107°,107!]. The resulting
roots always exhibit a combination of stable and unstable focus (see e.g.,
[1111, [51] for the terminology).

Next, a small nondimensional parameter ¢ is introduced in the following
manner:

8Ma

A=
0 T3

ne (3.50)

where 1 ~ 1. It follows that the damping term in (3.45)) is of O(e) as well.

Subsequently, to the order of €” the following set of equations is obtained,
that corresponds to two coupled linear harmonic oscillators in quantities P
and ¢ (the tildes are dropped henceforth for the sake of clarity):

P+12P=—véq, (3.51)
2
j+q=—-P. (3.52)
0
Next, the linear tranformation is applied in order to decouple the equations:

by e

where y, z are auxiliary variables and

b= (1 - U2) + \/(1 —12)* 72 — 8wk . (3.54)
Apart from the transformation the multiple scales expansion is employed:
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T=T0+€ET+ ..o, (3.55)
x=x0+ex] + .00 | (3.56)
y=yo+eyr+ ... . (3.57)

Very long expression are obtained after substitution of the last expressions

to the original equations (3.45)—(3.46). Hence, for clarity only the equations

containing the terms of order £°:

0yy  b*? — 3nv€ + 8bué 1

org b2 — 8wvé Yo =0 (8 ) ’ (3.58)
0z b? — 8mu3¢ — 8bu¢ 1
52 7 osme =0 (<) - (3.59)

When the terms of ¢! and higher are neglected, the eigenfrequencies Wy
and w, are given as a square root of the respective linear term coeflicients.
Moreover, it follows from the full form of the equations that conditions for
removing the ¢! secular terms does not alter the wy, W, in this case. After
some algebraic manipulations the expressions for the eqigenfrequencies are
obtained:

wy:\/12?\/7T(V2+1)—\/(1—V2)27r—8y§, (3.60)

wZ:\/12?\/7r(1/2+1)+\/(1—1/2)27r—81/§. (3.61)

Classic perturbation methods might not be sufficient to capture the mode-
locked regions where the strong nonlinear effects take place. Note that rapid
changes occur both in slow in fast substystems (see e.g., [113]). In the
simplified case (M = N = 1), it is the solution in the neighborhood of v = 1.

The analytical values of w, exhibit good correspondence with the numerical
solutions well below v = 1. At the certain threshold vy, the eigenfrequencies
w, and wy begin to be complex-valued (and conversely start to be real-valued
again at Vmax). The domain v € (Vin, Vmax) agrees very well with the mode
locked-region identified in numerical solutions (see Fig. 13.17)).

The frequencies are complex-valued when

(1- V2)2 T—8uE <0 . (3.62)

The quartic inequality is analytically solvable for given coupling parameter
£. However, the results are very unwieldy and numerical solution is preferable.

53



3. Sound transmission and generation along the corrugated surfaces
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Figure 3.17: The dots corresponds to the steady-state angular frequencies of
the internal sound pressure for given driving frequency v and coupling coefficient
£ obtained by numerical solution of the Eqgs. 7. The marked domain
corresponds to the solution of Eq.

The behavior illustrated above is shown in Fig. The dots represent
steady-state frequencies of ¢ from the numerical solution of Egs. f
for the driving frequency v, the feedback coupling £ and Ma = 0.05.
The red marked domain corresponds to the complex-valued eigenfrequencies
according to the relation . It is clearly demonstrated that when the
eigenfrequencies are complex, the solution is mode-locked.

B 3.2.4 Numerical examples and model parameters

Numerical solution to the whole set of equations f is required
in order to get closer to the experimental practice. The equations were
solved employing the Python library SciPy [114]. Specifically, the adaptive
fourth-order Runge-Kutta scheme ("rk45") was utilized.

The frequency of whistling grows with the velocity of the free-stream flow,
so presumably (according to the Strouhal law) the phenomenological driving
frequency increase as well (as in Eq. (3.24)). Two simulations presented
below rely on such gradual variation of the driving frequency v due to the
changing flow speed U. Generally, because the scaling in Eqgs. depends
on U, the time dependency U(7) shall bring some new terms to the governing
equations f. Such terms are small enough to neglect them if the
flow velocity U varies slowly

' ! (3.63)

73| >

XL
U3 dr

and the simulations are set accordingly.
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3.2. Phenomenological model for the sound generation in corrugated pipes

Comparison with the experimental data is necessary to validate the model
and find the fitting parameters. The experiments of Rudenko [87] were used
for the validation. They were measured on a 350 mm long pipe, with 60 mm
inlet and outlet tube smooth. The total of 53 corrugations spans over 230
mm of the corrugated section. The difference between the effective speed of
sound ¢ in the corrugated section and ¢g in the smooth part is less than 2%
and is disregarded in the calculations (only the effective value ¢ is employed).

The fitting parameters A, Sr, £ shall be found from experimental data. As
we cannot evaluate any derivatives in the fitting parameter space, some of
the gradient-free optimization methods must be employed (sometimes refered
to as "the zeroth order methods"). The genetic optimization was chosen as a
well-tried option (see e.g., [115]).

Individuals were determined by three genes: the values of A, Sr and £. The
fitness function was defined as the difference between the whisting frequency
for given flow speed in experiment and the corresponding one one obtained
from the numerical evaluation of the model equations (thus forming a single
objective problem). The individuals chosen for breeding the next generation
were picked based on the stochastic universal sampling [116].

The obtained parameter values are A = 0.005, Sr = 0.25, £ = 0.0023. The
results of the simulated velocity sweep are depicted in Fig. 3.18 (the Fourier-
transformed data from the numerical simulations in the form of a spectrogram
are given). The phenomenon of mode-locking is clearly observable at the pipe
resonances. Such behavior is well-known from many experimental works (see
e.g., [52, 82 84], 85]). Hence, its appearance supports the model validity.

In order to get a broader perspective, the experimenta data of Lim and
Razi [89] were employed for comparison with our model as well. Results with
the tube lengths of 0.45 m and 0.55 m and the number of corrugations 54 and
76 are plotted in Fig. [3.19. The characteristic length A = 0.003 m was the
same for both cases. The fitting parameters were found from the experimental
data employing genetic optimization. The nonlinearity parameter A = 0.005
was the same in both set-ups. The coupling parameters £ equal to 0.0012 and
0.0009, as well as the Strouhal numbers Sr 0.37 and 0.35, were found for the
shorter and the longer tube respectively.

The second numerical experiment consists of subjecting the studied system
to a gaussian shaped velocity pulse (see Fig. 3.20). The geometry variables and
fitting parameters were taken from the first case above (based on experiments
by Rudenko [87], the velocity sweep in Fig. 3.18). The most striking here
is the asymmetry caused by hysteresis, which has been reported to be one
of the typical features of the corrugated pipes sound generation [52, [82] [83].
The system remains in the achieved state longer that it would correspond
to the simple linear relations to the input parameters. Although there are
experimental data showing the effects of hysteresis in whistling of corrugated
pipes (e.g. [117]), we are adding this pure numerical, yet uncomplicated
example for the sake of simplicity in order to show that the proposed model
is capable of containing this phenomenon as well.
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Figure 3.18: Spectrogram of the (scaled) acoustic velocity at the corrugated
pipe’s open end during a linear mean flow velocity sweep. The color scale is
linear and therefore arbitrarily scalable by B. The circles mark the experimental
values as read from [87] and subsequently scaled.

To complete the numerical treatment, some practical recommendations are
given regarding the fitting the model to the experimental data. A good match
can be found within a few generations of the genetic oprimization when the
initial estimations of A, £, and Sr are well-chosen. It is straightforward to
assess the initial Strouhal number from experimental data. The nonlinearity
parameter A is approximately ~ 1073 and the solution is not very sensitive
to its value. Often, it is sufficient to pass A = 0.005 as a constant and leave
it out of the optimization process. On the contrary, the coupling parameter
& alters the solution significantly. Its value decreases with the number of
corrugations and generally £ < 1 for most practical cases.

Finding the scaling parameter B from the sound amplitude is straight-
forward (see Eq. [3.41)). Obtaining its value from experiments is not the
optimization in the true sense of the word. However, it is worth to note,
that the proposed model gives the estimation of the internal pressure field.
Often, the experimental data are rather available for the radiated pressure
and details of the radiation process (such as terminating impedance, flanged
vs. unflanged opening etc.) must be taken into account. Based on the internal
field measurements of Rudenko et al. [87], the value B ~ 10~* is obtained.

To conclude this section, note, that there are some discrepancies regarding
the losses. First, Ingard and Singhal [110] considered a slighthly dissimilar
experimental set-up when deriving their eigenfrequencies formula. Second, the
role of turbulent losses might be of more importance. Hence, the coefficient of
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Figure 3.19: Spectrogram of the (scaled) acoustic velocity at the corrugated
pipe’s open end during a linear mean flow velocity sweep. The color scale is
linear and therefore arbitrarily scalable by B. The crosses mark the experimental
values as read from [89] and subsequently scaled. Top: tube length 0.45 m with
54 corrugations. Bottom: tube length 0.55 m with 76 corrugations.

the imaginary part in Eq. might be different. In order to test that, it
was allowed that the losses might be ad hoc multiplied by a constant during
the optimization process. The obtained results always exhibit this constant
~ 1, so the model of the losses appears to be correct.

o7
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Figure 3.20: Spectrogram of the scaled acoustic velocity at the corrugated pipe’s
open end when subjected to a gaussian shaped velocity pulse. The color scale
is linear and therefore arbitrarily scalable by B. The dashed line shows the
instantaneous driving frequency v.

B 3.2.5 Finite-amplitude weakly-nonlinear formulation

It follows from the experimental data (see e.g., [87]) that the acoustic quan-
tities inside the corrugated pipes may reach amplitudes for which the weak
finite-amplitude nonlinear formulation would be in place. As a supplement
to the previous sections an example of such treatment is incorporated here as
described in [118]. The framework from the cited article is meant to serve as a
phenomenological model of the self-sustained sources in the 1D resonator with
finite-amplitude waves in general. Therefore, the notation and some details
are not identical to the small-signal case above. However, the correspondence
is self-evident. The main difference is employing the velocity potential as the
acoustic variable.

The effect of finite amplitudes to the sound propagations might be captured
by various formulations of the wave equations (see e.g., [I19]). Here, the
one-dimensional Kuznetsov equation is employed, because it retains the
d’Alebertian form of the operator (on the left-hand-side) and therefore the
differences with regard to the previous infinitesimal amplitude case are clearly
demonstrated:

83 90/

.64
0z20t’ (3.64)

ot a2 S

Do T o2 ot

82/ 82/ o 8/2 8/82
207 ¢ ((;;) by e

where ¢’ are the perturbations of the velocity potential and ¢ is the sound
diffusivity coefficient. The equation is missing an integro-differential term
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3.2. Phenomenological model for the sound generation in corrugated pipes

responsible for the thermoviscous losses in the acoustic boundary layer. How-
ever, considering the quasi-plane wave propagation, it can be ommitted and
the diffusivity ¢ shall be increased instead (see e.g., [120]).

Considering the velocity potential formulation a source term corresponding
to the (volume density of) force distribution f which might be supplemented
to Eq. (3.64) should take the form:

2

5 (3.65)

As above, we assume that the source is represented by an array of point-like
sources and therefore:

t) = ng(t)5 (1' - xm) . (3'66)

where z,, is the location of the m-th source and §(x) denotes the Dirac
function and g,,(t) is the instantaneous value of the m-th oscillating force
term. The last expression (3.66) may be integrated according to (3.65) and
substituted to (3.64) to obtain the the first of the model equations:

LA

0oz2 " orr

0 (0p D 0%¢ 8gm

P <8>+(v 1)32?83:2 332825 Z H(z —z,) . (3.67)

where H denotes the Heaviside step function.

The acoustic velocity u’ and the pressure p’ are calculated from the velocity
potential as

¢
, —_— —
YT o (3.68)
9 I Po
/ - = —
P=mhg T <3t> Cg;QmH (T —2m) (3.69)

where pg is the ambient density and a small term due to dissipation was
omitted in the pressure equation.

An analogue to Eq. (3.23)) is proposed in the form:

). 2 dp

Gm + Aw(a?g?, — D) gm + w’gm = w5 , (3.70)
T=Tm

where the dot denotes the derivative with respect to ¢ and A, w, 1 denote
a coeflicient of nonlinearity, an eigenfrequency and the feedback coeflicient

respectively. The parameter o governs the limit cycle size.
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3. Sound transmission and generation along the corrugated surfaces

Next we introduce dimensionless quantities

L L
t=—r1, x= Lo, QO:—COCD

TCo ™
9= oG, p = wpocg P

and recast the governing equations as

10 920 0 (8(1))2 ( 1)a<1>a2<1>
w2 002 012  Or \Oo Ot Oo?
3P
0o201

. 1 G

) L 0D

Gm +ev(B2G2, — )G + V3G = v B , (3.72)

o=0m

where v = wL /¢y is the normalized frequency, 8 = apocd and 7%, ¢* denote
the modified feedback and attenuation coefficients respectively and the dot
represents the time derivative with respect to 7 now.

To show the principal new phenomena the following scenario was simulated.
Five point sources were placed equidistantly in the waveguide. Their frequen-
cies were slowly growing (a linear sweep), starting slightly below the 2nd
resonance frequency and ranging towards the 3rd one. Remaining parameters
were chosen as follows: ¥* = 0.05, ¢* = 5-107%, A = 0.005, B = 10~*.
The open ends of the tube are considered ideal pressure release surfaces and
therefore the boundary conditions pgpen_end = 0 are employed.

Solution to Egs. (3.71)—(3.72) are found numerically. In space the finite
difference discretization is introduced, which effectively transforms the system
into a large set of ordinary differential equations in time. The 4th order central
finite difference scheme in space is introduced. The boundary conditions are
taken into account by the ghost points (see e.g., [12I]). The time domain
equations are solved by the adaptive scheme using the Python library SciPy
[114] (scipy.integrate.odeint based on FORTRAN odepack [122]).

Results of the numerical evaluation of Eqgs. (3.71)—(3.72) are depicted in
Fig. 3.21} Again, the nonlinear synchronization (mode-locking) occurs near
the resonance frequency although not matching it perfectly.

In the mode-locked states a strong sound field due to the resonance is
observed. The number of harmonics grows (the so-called wave steepening —
see e.g., [53]) but the clear shockwaves are not formed because of the above
mentioned detuning. As the driving moves further out of resonance the higher
harmonics vanish. When the driving frequency gets close enough to the next
resonance a sudden shift of the sounding frequency takes place.
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Figure 3.21: Spectrogram of the velocity (and therefore the driving frequency)
sweep. Note the non-smooth change of the fundamental frequency due to mode-
locking and the generation of higher harmonics when the system is close to
resonance.

A weakspot of the combination Kuznetsov equation — van der Pol equation
is the odd harmonic spectrum of the van der Pol oscillator. It is possible
that the textbook case of successive harmonics build-up towards the shock
formation is disrupted due to this feature.
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Chapter 4

Heat exchangers as the sonic crystals

Heat exchangers are employed in a wide range of systems (computers, cars,
power plants, air conditioners, ventilation systems etc.). In order to ease the
thermal energy exchange by advective cooling, the heat exchangers are often
used in combinations with fans. Hence, the problem of sound transmission
through the periodic structure with flow arises. The generation of noise due
to the unsteady flow through the coolant tube array might play a role as well.

In practical applications, the fans are the predominant sources of the sound.
Their spectrum (see e.g., Fig. consists of low-frequency tone-like compo-
nents corresponding to the blade passing frequency and its harmonics along
with the broadband contributions due to turbulence. The relative importance
of the broadband noise is increased when the rotating machinery ingests an
already disrupted flow [123] — such as the one taking place downstream of
the heat exchanger (see Fig. . As depicted, the coolant tubes are often
set to a staggered arrangement in order to provide the maximum flux around
the tubes. Such structure is referred to as the hexagonal lattice in terms of
sonic crystals. For the sake of unambiguity, note, that no other arrangement
is studied below. Only the flow-acoustic interactions are considered in the
following (there is no heat flux from the coolant tubes).

The section is organized as follows. First, the interactions of incoming
acoustic waves with the periodic structure are estimated from dispersion
diagrams (Sec. and subsequently verified by the experimental data (Sec.
. To conclude this subpart, an extension of the heat exchanger with the
locally resonant structures is given as a case intended for future research (Sec.
. Second, the sound generation from an unsteady flow past the heat
exchanger tubes is dealt with by means of numerical simulations (Sec. .
Dependence of the radiated intensity on the varying flow speed is given in
Sec.

B 4.1 Effects of the coolant tubes periodicity

The main goal of this section is to provide evidence that the heat exchanger
(without flow) presents a valid example of a sonic crystal. The effects of flow
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Figure 4.1: Two examples of axial fan spectra (from [124]). Aerodynamical
details of the fan blades skew (see e.g., [125]) are not important here.

are discussed in Sec. 4.2.2 below.

Let us begin with the basic description of the hexagonal lattice as it
is usually given in the field of acoustics of periodic structures (see e.g.,
[3, 21), 22 23]). Tubes of the heat exchanger form a hexagonal (triangular)
lattice with primitive vectors a1, as. The reciprocal lattice has the hexagonal
structure as well (only rotated by 7/6) with primitive vectors given by [3]:

(4.1)

where €;;;, is the Levi-Civita symbol. In 2D, the remaining vector is treated
just as a unit vector perpendicular to both a; and as.

Wigner-Seitz cell is a primitive cell obtained by Voronoi tesselation (see
e.g., [3]). When this construction is conducted in the reciprocal space, it
results in the so-called (first) Brillouin zone. Owing to the symmetries, the
first Brillouin zone can be further reduced to the irreducible Brillouin zone.

For simple crystal lattices (free of defects, locally resonant elements etc.)
a rough estimation of the frequencies that are likely to be prevented from
propagation can be made based on Bragg’s diffraction law (see e.g., [3]). The
condition of the maximal constructive interference between a plane wave
impinging on the crystal and the one reflected from the successive crystal
planes reads

nA =2dsinf, neN, (4.2)
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Figure 4.2: Schematic sketch of the heat exchanger arrangement with axial fan

(from [124]).

where A, d and 6 denote wavelength of an impinging monofrequency plane
wave, distance between crystallographic planes and angle measured between
the wave propagation direction and the crystallographic plane, respectively,
see Fig. For normal incidence (6 — m/2) we obtain the first (n = 1)
Bragg frequency fp:

IB (4.3)

\@a ’
where a is the lattice constant, cy the adiabatic speed of sound and d = v/3a/2
for a hexagonal lattice.

An essential parameter of a sonic crystal lattice, its filling factor ff, is
defined as the ratio of the insertion area to a whole unit cell area. Hence, for
hexagonal lattice with lattice constant a and tube radius r:

2712

="

(4.4)

B 4.1.1 Dispersion diagrams and bandgaps

A more detailed prediction of the bandgap structure is obtained from a disper-
sion diagram. Traditionally, the dispersion diagrams are obtained employing
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Figure 4.3: Illustration of direct and reciprocal lattices.The cooling tubes of a
heat exchanger are indicated as black circles. The cooling tubes form a hexagonal
lattice due to their staggered arrangement.

the plane wave expansion method (PWE) or its extensions. However, there
are some doubts about its application in the fluid-solid sonic crystals due
to convergence of the truncated Fourier series for high impedance contrast
between the materials and the occurence of fictitious modes arising for the
same reason (see [23, 22]). Hence, we retain the theoretical foundations,
but the bandgap structure calculation is carried out with the finite element
method (in Comsol Multiphysics 5.5).

By the Floquet-Bloch theory, the solution of the wave propagation phe-
nomenon inside the (infinite) crystal lattice can be constructed from the basis
of eigenfunctions obtained by solving the eigenvalue problem within the prim-
itive cell with periodic boundary conditions (see Fig. 4.5 and refs. [3] 22| 23]):

P(ro) = pro+ri)e * . (4.5)

where k is the (Bloch) wave vector and r; the distance between respective
boundaries. The time-harmonic behavior of the governing quantities is
assumed with e“? sign convention, where w is the angular frequency and
i=+/—1

Due to symmetry, the irreducible Brillouin zone contains the only unique
(Bloch) wave vectors and just the wave vectors pointing from the zone center
to the contours of the irreducible Brillouin zone shall be investigated.

Frequency (in Hz) of a propagating mode is calculated from the angular
eigenfrequencies obtained as the eigenvalues for a given Bloch wave vector
k. The resulting dispersion diagram (see e.g., Fig. 4.6) shows, that for some
frequency bands there are no propagating modes. These are called complete
bandgaps if they span over the whole irreducible Brillouin zone, or pseudo-
bandgaps if they prevent the propagation in only one direction. The wave
vectors are described employing the high-symmetry points of the reciprocal
lattice (see the insets in the respective figures and see e.g., [22] 23]).
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Figure 4.4: Schematic diagram of Bragg diffraction in a hexagonal lattice.

The dispersion relations w = w(k) are acquired numerically, the hexagonal
vicinity of a single cooling tube being the unit cell. For now, the air is assumed
quiescent, inviscid and thermally nonconducting. Therefore, the Helmholtz
equation is solved inside the unit cell:

V% + k=0 (4.6)

and the Neumann boundary condition for acoustic pressure is prescribed on
the surface of the tubes (0p/0n = 0, with n denoting the surface’s outer unit
normal). The hats are dropped henceforth for simplicity. The simulations
were conducted in Comsol Multiphysics 5.5 (Pressure Acoustics Interface,
Frequency Domain) with the mesh parameters set for 12 elements per the
shortest investigated wavelength (corresponding to 20 kHz).

Results of the two-dimensional calculations (assuming no variations of
acoustic pressure along the coolant tubes) are given in Fig. |4.6| for two specific
geometries: @ = 40 mm with » = 6 mm, (ff = 8%) and ¢ = 25 mm with
r =4.76 mm, (ff ~ 13%). These configurations are chosen for the posssibility
of comparison with experimental data given below. They correspond to
commercialy available heat exchangers.

First, notice that the rough approximation of the characteristic frequency
of the bandgap by Bragg’s law is valid. However, the filling factor is too low
for the complete bandgap to open around the first Bragg frequency. Therefore,
only a pseudo-bandgap in the I'-M direction occurs and there is only a very
narrow complete bandgap around 9 kHz and 15 kHz respectively. It is clear
that the configuration with a higher filling factor exhibits wider bandgaps.

Naturally, the real device is three-dimensional and moreover, it is equipped
with thin cooling fins extended across the coolant tubes with 2.2 mm spacing
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Figure 4.5: Periodic boundary conditions in a hexagonal unit cell.

for each geometry (see Fig. 4.8). For the sake of completeness, one shall
investigate the three-dimensional unit cell in the shape of a hexagonal prism
(which again results in the same shape of the Brillouin zone but scaled and
rotated, see Fig. 4.7c).

As expected, the third dimension does not alter the composition of bandgaps
(in the frequency region of interest), because the cut-off frequency of the
transversal ("fin-to-fin") modes is slightly above 70 kHz. One sees from the
dispersion diagram in Fig. 4.7a that the group velocity along the coolant
tubes is zero.

On the other hand, the fins present closely spaced surfaces on which the
thermoviscous losses take place. In order to capture this effect, another
three-dimensional simulation over the wavevectors along I' - M — K — I" was
conducted. Now, with the complete set of linearized Navier-Stokes equations
(without flow) and the no-slip isothermal boundary conditions on the surface
of the fins and the coolant tube. The same treatment of boundary layer mesh
as given in Sec. [3.1.3| was employed.

The eigenfrequencies obtained in this setup are complex (the real and
imaginary parts depicted in Fig. 4.7a and b, respectively). Comparison
with the two-dimensional simulation without losses exhibits barely observable
deviations of the real parts. Therefore, the bandgap structure is almost
unaffected by the presence of the fins. This is not surprising, because the
fin spacing (2.2 mm) is still much wider than the thermoviscous penetration
depth (ca. 0.03 mm at 5 kHz, see Eq. (3.17)) above).
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Figure 4.6: Dispersion diagrams for the hexagonal lattices with lattice constants
40 mm and 25 mm with tube radii 4.76 mm and 6 mm on the top and bottom
respectively. Bragg frequency is marked by the red dashed line. The red fields
show the pseudogap in the I' — M direction and the narrow complete bandgap.

B 4.1.2 Comparison with experimental data

The results of the previous section were obtained with assumption of the
periodic medium with infinite extent — this is embodied in the application
of the periodic boundary conditions. Therefore, it is necessary to verify
that these results are applicable in the real-world case of a heat exchanger
consisting of four rows of coolant tubes.

The experiment is described in detail in [I124]. In order to control the input
signal, the axial fan was replaced by the loudspeaker and various signals
were employed to assure that the experimental results are independent of the
specific excitation (two fan noises, the log-sine chirp and the white noise were
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Figure 4.7: Dispersion diagrams (a,b), the Brillouin zone (c¢) and the irredcible
Brillouin zone (green volume in c¢) for the three-dimensional case taking the
presence of cooling fins into account. The lattice constant a = 40 mm and
the tube radii 7 = 6 mm. The blue curves are obtained from the simulations
without losses and the red ones from the solution of the linearized Navier-Stokes
equations. From [124].

employed). The key measured quantity was the insertion loss: the difference
between the sound powers obtained for the same excitation with empty heat
exchanger housing and the housing with coolant tubes and fins. The length
of the coolant tubes inside the heat exchanger housing is 0.8 m. The housing
profile is a square 0.8 m x 0.8 m.

The numerical simulations were conducted again but now for the 2D slice
of the experimental setup (see Fig. [4.9). As it was commented above,
the two-dimensional, inviscid and thermally non-conducting approach shall
suffice. Hence, the Helmholtz equation was employed. A plane wave entering
the system was prescribed and the perfectly matched layers (PMLs) were
employed to mimic the anechoic room, in which the real experiment took place
[124]. The walls of the housing as well as the walls of the inlet were considered
perfectly rigid. The mesh had 12 second-order elements per the shortest
investigated wavelength. The transmitted sound power was calculated from
the intensity evaluated at the semi-circle surrounding the heat exchanger
(see Fig. |4.9). Due to demanding requirements on the computational mesh
density, the simulations are restricted by the upper limit of 10 kHz.
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Figure 4.8: Sketch of the heat exchanger housing with coolant tubes and cooling

fins (from [124]).

Comparison of numerical and experimental results is given in Fig.
The bandgaps calculated in the preceding section are marked by colored
areas. Clearly, the experimental results match well with the simulations of
the 2D slice of the experimental setup. The deviations are attributable to
the neglected viscosity and thermal conductivity. They are ~ 1 dB almost
everywhere, so their effect is merely small. There is seeming amplification
of the transmitted sound at ca. 400 Hz for both geometries. This is due to
the resonance of the heat exchanger housing [124]. When the housing is filled
with coolant tubes (and structurally reinforced by them), the resonance is
slightly modified, which shifts the reference transmission of the housing and
results in the amplification — naturally only a seeming one.

But first of all, the predicted bandgaps are well-observable on the experi-
mental data as well. This finding is of great practical importance because it
opens a way towards a computationally advantageous approach applicable in
the heat exchanger design. For illustration, note, that the calculations of the
2D dispersion diagrams as given above is approximately 50times faster than
the simulation of the 2D slice of the experiment.

Bl 4.1.3 Locally resonant structures

In the preceding section a computationally feasible framework for the acoustic
design of the heat exchanger arrangement was introduced: knowing the
characteristic frequency to be blocked one can estimate the lattice constant
from the Bragg’s law (Eq. (4.3)) and then tune the bandgap properties based
on the 2D dispersion relations. Nevertheless, this approach yields impractical
results when a low frequency shall be prevented from propagation — the basic
scaling would return an unworkably vast heat exchanger. Therefore, it is not
straightforward to block e.g. the blade passing frequency of the fan, which is
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evaluation of intensity

prescribed
plane wave

heat exchanger housing and tubes

Figure 4.9: Computational setup of the simulation of the 2D experimental setup

slice (from [124]).

usually well below 1 kHz for the heat exchangers from the experiment [124].

In order to reach the low frequencies, the locally resonant structures might
be exploited, which benefit from coiling the space up to a "packed" resonator
(see e.g., [126, 23]). A pilot example of such an approach for the heat
exchangers is given now.

Another row is added to the heat exchanger (keeping the same lattice
constant), yet now the scatterers are not the coolant tubes, but coiled metal
sheets (see Fig. . The coiled-up structure acts as a quarter-wavelength
resonator, which is capable of interacting with frequencies much lower than
the Bragg frequency of the crystal.

To demonstrate the effect of adding the local resonances, the simulation of
a 2D slice of the experiment was conducted with the presence of the coiled-up
resonators. The computational setup was similar to the one given in Fig.
However, there were some alterations due to the geometry of the coils. As the
spacing between the coiled sheets (2.4 mm) is quite narrow, the thermoviscous
behavior might affect the local resonance. The thermoviscous penetration
depth is ca. 0.1 mm at 500 Hz, so up to ~ 10% of the coiled waveguide cross
section is occupied by the boundary layers. Hence, the linearized Navier-
Stokes equations (with the resolved boundary layer mesh) were solved inside
the resonators and coupled to the Helmholtz equation governing the rest of
the domain.

Results of the computations are given in Fig. Apart from the imprint
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Figure 4.10: Comparison of the experimentally measured insertion loss (the red
curve) with the numerical simulations (from [124]).

of the pseudo-bandgap in the I'-M direction known from the previous sections,
there are minima resembling a notch filter due to the resonances of the coils.
Note that it is possible to tune and optimize the shape of the resonator so it
reaches the blade passing frequency. This enables designing an optimized fan
— exchanger couple emitting a significantly lower amount of noise.
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Figure 4.11: A detail from the geometry consisting of the heat exchanger
investigated above (see Fig. |4.9)) with added row of coiled up resonators.

B 42 Sound generation from unsteady flow through
the heat exchanger

Until now the flow through the heat exchanger has been neglected. Due
to similar reasoning, as it was given above for the transmission above the
corrugated plate, it is not possible to linearize the hydrodynamic part of
the governing equations. Consequently, there is no straightforward and
indubitable way to incorporate the effect of the flow to the calculation of
dispersion relations given above.

On the other hand, some useful insight might be obtained from the scaling
considerations backed with the pilot numerical simulations. First, it is shown
that the bandgap around the first Bragg frequency is very unlikely to overlap
with the whistling frequency of the structure. Next, the sound radiation from
the heat exchanger tube array is estimated in order to verify the applicability
of previously known scaling.

B 4.2.1 Characteristic scales

Unsteady flow through the array of the heat exchanger tubes results in forming
flow shapes that might be seen as the inception of the von Karman vortex
street, which however is never properly constituted due to the limited space
(see Fig. 4.13)). Nevertheless, the flow separation and occurrence of unsteady
trailing wakes are evident. Assume that the vortex shedding (and therefore
the peak whistling) frequency fg is estimated by the Strouhal law
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Figure 4.12: Insertion loss calculated for the coolant tube lattice (a = 40 mm,
r = 6.5 mm) combined with the locally resonant coils (see Fig. 4.11).

fs= Srﬂ ) (4.7)

where Sr, Uy and 2r denote the Strouhal number, the characteristic velocity
of the airflow far from the heat exchanger and the cooling tube diameter,
respectively. The ratio of the Strouhal and Bragg (Eq. (4.3)) frequencies
yields:

fs V3 a

== = —SrMa— 4.

o 5 Sr a, (4.8)
where Ma = U/cp is the Mach number. Substituting from the definition of
the filling factor ff for the hexagonal lattice (Eq. (4.4)) the following relation
is obtained:

fs _ of3mSMa (4.9)
fB 4
By preliminary numerical experiments [I18] it was found that an appropri-
ate Strouhal number for the flow instabilities within the hexagonal lattice
is ca. 0.2. Hence, the Strouhal and Bragg frequencies are separated by no
less than one order of magnitude for low Mach number flows (two orders
separation being presumably a more realistic typical case). It follows that the
above-given reasoning considering the bandgap structure shall be relevant at
least as a good approximation even for the case when a mild airflow through
the heat exchanger takes place.
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Figure 4.13: Qualitative example of the flow details past the heat exchanger
cylinders.

It follows from the Strouhal law (Eq. (4.7)) that for low Uy the radiated
wavelengths will be much longer than the size of the whole heat exchanger tube
array. We exploit this trait below for simplifying the numerical simulations:
although the source domain is finite for the incompressible flow simulations,
only a plane wave may propagate from it in the low frequency approximation
(see e.g., [18, 127]) and the source region may be shrinked to a point for the
considerations regarding the long wavelengths propagation.

There are many possible heat exchanger arrangements as well as their
context (probably being only a part of a larger device). For definiteness,
the same housing geometry with one of the previously introduced lattice
arrangements is studied (¢ = 40 mm, r = 6 mm, 19 tubes in 4 rows).
For simplicity and in order to avoid complicated discussion about specific
reflections and wavefront spreading, it is assumed that the coolant tube array
is placed within an infinite duct with the square cross section of the same
dimensions as the housing (0.8 m x 0.8 m).

Only the two-dimensional simulations are conducted and it is assumed that
their results are invariant along the coolant tube. Hence, for the purposes of
calculating the values of the governing quantities on the faces of the tubes
only the knowledge of 2D transversal slice is sufficient. This is an obvious
simplification. It is reasonable as long as we can presume that the flow is
synchronized along the tubes. Note that this is the case of the maximal sound
radiation, so in other words, we are simulating the worst-case scenario, which
is a valid engineering procedure.
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B 4.2.2 Numerical simulations

It follows from Curle’s analogy above (Sec. [2.5.2)), that the reaction force to
the unsteady hydrodynamical pressure presents the main source of the sound
excitation for the low Mach number flow past rigid boundaries. Moreover,
it follows from the preceding section that the whole heat exchanger is small
compared to the characteristic wavelength radiated from the tube array.
Hence, we simplify the treatment to the two-step simulations (as it is usual
in the hybrid methods — see e.g., [26]).

First, the evolution of the unsteady flow through the tube array is simulated
employing the URANS equations. Again, the & — w SST turbulence model
was employed with the same requirements on the computational mesh as
given above (Sec. |3.1.3)) The velocity was prescribed at the inlet, while zero
(over-)pressure was imposed at the outlet of the computational domain.

From the URANS results the net unsteady force on a surface of the tube is
obtained:

F(t) = ﬁg p(.t) — po(w)|m dS(y) | (4.10)

where p, po, n denote the instantaneous hydrodynamic pressure, the (spatially
non-constant) mean hydrodynamic pressure and the unit normal of the tube’s
surface, respectively. An equivalent point force is obtained by summation of
the results of Eq. (4.10) for every coolant tube.

Only the component directed along the waveguide (say x) radiates to the
far-field in the low frequency approximation. Subsequently, we obtain the
inhomogeneous wave equation for the acoustic pressure perturbations far
from the heat exchanger (see Eq. (2.39)) above):

1 82]9/ 82p/ afx

ch ox2  Ox

where f, is the x-component of the force density field, which can be expressed
by the equivalent point force F, located at x = 0 as [I8]:

F.(t)o(z
fule,ty = 2O (4.12)
where A is the waveguide cross-sectional surface and § denotes the Dirac
function. The solution to the equation (4.11) is obtained employing the
Green’s function for the plane waves propagating from a point source inside

a duct in the direction of positive z (see e.g., [18]):

G@f%ﬂ:;mHO—r—x_€>, (4.13)

€o

where H is the Heaviside step function.
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Hence,

t )
Pz, 1) = /_ /_ G(x,am)ggfg(&m) dedr =

—o [ [Tu (-8 SR acr -

o0 J =00

=l (4.14)

The only requirement on the size of x is that it shall be big enough for the
hydrodynamical instabilities past the tube array to cease. Then p/(x,t) can
be interpreted as the acoustic pressure.

The integration in Eq. (4.10) was conducted in Comsol and the subsequent
uncomplicated data treatment in GNU Octave.

The sound radiation from a single cylinder in a free field resembles a
dipole with the radiation lobes perpendicular to the Uy direction (see e.g.,
[16, 18]) and the same behavior was confirmed for their array [128]. It follows
that in a narrow waveguide a significant portion of the emitted sound does
not propagate. As a direct consequence, the fundamental frequency is not
dominating the spectrum in many cases presented below.

B 4.2.3 Effect of varying flow velocity

For the purposes of noise control, it is illustrative to evaluate the intensity I
of propagating plane wave:

I l To+T p/Q(t)
T Jr, Poco

dt (4.15)

where T, 1" denote time instant where the part of the investigated signal
begins and T its length. The starting time Ty was set to the beginning of
the (quasi-)steady state of the radiated pressure signal and 7" = 0.55 s in the
below-given cases.

In order to check the basic tendencies, seven values of Uy were considered
with the lattice parameters ¢ = 40 mm, » = 6 mm. More precisely, the volume
velocity 0.8 — 1.4 m3 - s~! were considered for the channel of 0.8 m x 0.8 m.
The values were chosen to correspond with the volume velocity reported for
the practical appplication of the investigated heat exchanger arrangement
[124].

As expected, the fundamental frequency grew with Uy (from 29 Hz to
48 Hz), but the Strouhal number remained constant: Sr = 0.27. Note that
even the wavelength connected to the 2nd harmonics of these fundamentals
are still larger than the heat exchanger array, so the above-stated assumption
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Figure 4.14: Spectra of the radiated sound pressure for Uy = 1.4 m - s~ (left)
and Uy = 1.9 m - s~ L. Note that 0.06 Pa ~ 67 dB.

of compactness is valid. Examples of radiated sound pressure spectra are
in Fig. 4.14l Amplitudes of the radiated sound pressure increase and the
dominance of the 2nd harmonic becomes more pronounced with increasing

Uo.

The sound intensity emitted from a single cylinder shall scale [16]

I ~ poUdMa3Sr? . (4.16)

Hence, it is reasonable to fit this dependence to the numerically obtained
values. For clarity (the U$Ma® dependence is hard to be checked visually)
and for the noise control applicability the results are expressed in terms of
sound intensity level L; rather than the intensity itself:

I
Ly = 10logy o Ihy=10"2W.m™2. (4.17)

The results are depicted in Fig. 4.15. Evidently, the scaling derived
for a single cylinder (Eq. 4.15) applies to the array as well. It is highly
probable that the deviations from the ideal curve are not due to a qualitatively
new phenomenon but simply due to some degree of randomness in the
signal, that would require much longer timespans to be studied by means
of signal processing techniques. It should be taken into account, that the
investigated signal consists of ca. 20 periods of the fundamental frequency
and it is computationally demanding to calculate much longer ranges. The
proportionality constant (found to be 90.2 here) is expected smaller than one
for a single cylinder [16]. Note, however, that the presented scenario consists
of 76 cylinders and that the coolant tubes inside the exchanger see much
more perturbed flow than a solitary cylinder would (see Fig. 4.16), which in
turn results in significantly higher pressure perturbations taking place near
the coolant tubes’ surfaces.
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Figure 4.15: Sound intensity level radiated from the tube array (red circles),
fitted theoretical prediction (blue dashed line) and the values of the radiated
intensity in dB[A] (i.e. with the A weighting filter — numbers above the circles).

One shall take caution when interpreting the intensity level of the emitted
noise. For noise control purposes, it is worth noting that the emitted frequen-
cies are quite low and hence the A filtering presents a significant change to
the data (see e.g., [129]). Therefore, the values of sound intensity level in
dBJ[A] are given in Fig. 4.15 as well.

It was confirmed that the scaling of the radiated intensity ~ poUsMa3Sr?
is relevant. Such an information provides an useful insight that might be
supplemented to the heat exchanger design.
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Figure 4.16: Instantaneous flow field through the coolant tubes array with
Up = 1.9 m-s~!. The color scale reflects the velocity magnitude.
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Chapter 5

Conclusions

This thesis dealt with chosen topics from the aeroacoustics of periodic struc-
tures. The current state of the art is summarized in the Introduction along
with the specific aims of this work.

A critical analysis of the application of the frequency-domain linearized
Navier-Stokes equations on the case of sound transmission above a corrugated
plate with non-zero airflow was conducted (Sec. 3.1)). It was found out that
the correspondence with the experiment is very limited in this case. It was
shown that the explanation points at the questionable linearization of the
hydrodynamical perturbations.

An extension and clarification of the previously proposed phenomenological
model for sound generation in corrugated pipes were given (Sec. |3.2)). Using
optimization methods the model constants were found resulting in a good
match with experiments. In order to assess the influence of finite-amplitude
sound propagation on the source-resonance coupling, a weakly-nonlinear
model was proposed as an extension to the linear one (Sec. 3.2.5). It was
demonstrated that the higher harmonics are generated in the mode-locked
states.

In Sec. |4]it was investigated how the periodic arrangement of heat exchanger
coolant tubes can be described as a sonic crystal. It was shown that even
for finite structures consisting of four rows of coolant tubes the theory of
wave propagation through periodic media is applicable and proves to be
in accordance with the experiment. Further, it was demonstrated that the
thermoviscous losses do not alter the bandgap structure of the crystal, so
they can be safely omitted in the preliminary design of the heat exchanger
geometry (even with the presence of cooling fins). A pilot case of heat
exchanger design exploiting the local resonance to block some of the low
frequencies is given (Sec. 4.1.3)). Finally, the noise generated by the unsteady
flow through the tube array was investigated by numerical simulations (Sec.
4.2). It was demonstrated that the radiated sound intensity is proportional to
the previously derived dependence valid for a single cylinder and the Strouhal
law governs the fundamental frequency with Sr = 0.27.

Specific aims of the thesis were fulfilled. The results were published (or sent
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for publication — see below) as well as discussed at the international conferences
(FCAC 2018, ICA 2019), seminars and workshops (meetings of COST Action
DENORMS, DGLR Workshop Stréomungsschall in Luftfahrt, Fahrzeug- und
Anlagentechnik). Some of the results were obtained in cooperation with foreign
organizations (Laboratory of Acoustics of Le Mans Université, Institute of
Process Machinery and Systems Engineering, Friedrich-Alexander-University
Erlangen-Nuernberg).

In the future, the investigation of the sound transmission above the corru-
gated plate can be re-expressed in terms of the governing equations linearized
for the acoustic perturbations while retaining the nonlinearity of the hydro-
dynamical ones (see, e.g., [I30} [56]) in order to avoid the discrepancies taking
place with the fully linearized formulation. In the phenomenological model of
sound generation in corrugated tubes, the influence of the radiation boundary
conditions shall be studied to bring the model closer to the experimental
results. Treatment of the periodic heat exchanger arrangements shall include
the effects of inhomogeneous temperature field, as it would be for the working
device, and experimental investigation of flow-acoustic interactions shall take
place.
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Appendices

[ Appendices

B Appendix A — Notational conventions

Since there is only a low risk of confusion, no special notation is introduced
to distinguish between vector and tensor variables.

Dyadic product ab and nabla operator V

Within this work the dyadic product of two vectors is not denoted by any
special mark and it is put simply as ab, where

albl albz albg
ab = a2b1 agbg agbg . (51)
agbl a3b2 a3b3

In the same manner, the nabla operator on the vector field Va results in
the second-rank tensor field:

Jar O ay
8.%'1 8902 &%3
Va— Oay  Oaz  Oaz (5.2)
8331 6952 8.%3
ag Dag Oag
8331 61‘2 8{[}3

Conversely, the divergence of a second-rank tensor field ¢ = ¢;; is a vector
field given as:

Oci1  Ocia  Oci3
8.731 83:2 8%3

Ve | e Oon  Ocas | (5.3)
M
031_|_ 032+ C33

6:131 8.21?2 (9.%'3

Double-dot product a : b

The double-dot product of two tensors a, b is defined as follows
a:b="Tr (a . b) = Zaijbji N (5.4)
ij

where Tr denotes a trace of a matrix.
Material derivative D/Dt

The material (substantial, Lagrangian etc.) derivative of a scalar quantity
a(zx,t) defined within the fluid flow of velocity w is given as
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Da Oa da oa
thaﬂtu-Va:EJr;uia—%, (5.5)

where the last expression holds for components in Cartesian coordinates.

For a vector quantity b(x,t) the definition is analogous, but some attention
shall be given to the second term:

8b1 8[)1 8171

Ul ~— U —~—— Us—~——
Db 9b b Qv Or2 Om
Dt "ot T VT e T M, T e, T B, | (5:6)
Oby Oby by
s

92y +U267$2 +U387$3

and again, the last expression employs components in Cartesian coordinates.
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B Appendix B — Generalized functions

Concepts utilizing generalized functions, well-known also from the classic
acoustics of stagnant media, have found many useful applications in the field
of aeroacoustics. The following paragraphs aim for listing their definitions
and most handy properties, not for rigorously deriving them. A more detailed
treatment for the purpose of aeroacoustics could be found e.g. in [16, [I8] [47,
16).

Dirac delta function ¢

The Dirac delta function 6(x) is defined by fulfilling the following three
properties:

Sz £0) =0, (5.7)
5(0) = oo, (5.8)
/_Oo Sz)=1. (5.9)

Seemingly unnatural behavior is expounded by realising that these condi-
tions can be reconstructed by considering the Gaussian curve of finite width,
that is made narrower while retaining the surface under the curve (see Fig.
5.1)). Formally:

1 a2

5(.%') - (lli% W@ o2 . (510)

An important property of the Dirac delta function involves integrating a
product of the Dirac function with some classical "well-behaved" function
g(z), which results in the well-known sampling property:

/OO g(x)o(x — x0) = g(zo) - (5.11)

Generalization to higher dimensions is straightforward. For @ = (21, x9, x3):
d(x) = 0(z1)0(x2)0(x3) . (5.12)

Heaviside step function H

The Heaviside step function H is defined simply as
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Figure 5.1: Illustration of the limit in Eq. (5.10).

Its relation to the Dirac delta function is not complicated. The Heaviside
step function could be found by integrating the Dirac delta function:

He) = [ " 5 dy (5.15)

and vice versa

5(z) = — . (5.16)

Free-space Green’s function

The Green’s function solution to the wave propagation problems is a very
well-known topic, so the main purpose of the following lines is merely to
set the terminology, provide some supplementary comments and prepare the
ground for Appendix C dealing with the multipole expansion.

As the Lighthill’s (2.56)) and Curle’s (2.59) equations consist of the d’Alembertian
left-hand-side and source terms on the right-hand-side, it is possible to define
the free-field Green’s function G as the solution to the problem:

1 0°G
V3G — 55 =0(x—&)0(t—7) . 5.17
2 =i -9t -7) (517
Hence, the free-field Green’s function G is a solution to the inhomogenous
wave equation driven by a point source at & that was active only at a singular
time instant 7 (see e.g., [18]):

S

Il G
G(wvt’€77—) - 47T|$ _ £|

(5.18)
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Making use of the last expression and the properties of Dirac delta function
a solution to the inhomogenous wave equation with force density on the
right-hand-side (Eq. (2.39)) may be written:

(z,t) = V - // Fl=lz=¢&l/c) e (5.19)

Amr|x — &

where () is a source domain of finite extent. It useful to consider the far-field
behavior of the solution. Provided that || < |x|, the above relation might
be simplified (see e.g., [18]):

471'00 |:z:|2 ' Bt/// ( |m+|:f,) d¢ . (5.20)

Sometimes this manipulation is known as the Fraunhofer approximation.

p(z,t) ~

Now the transition between the Curle’s analogy in differential form (Eq.
(2.59)) and its integral forms (Egs. (2.60)), (2.61)) can be completed. The last
missing piece is converting the volume integral from Eq. (5.19) to the surface
ones in Egs. (2.60), (2.61). The use is made an identity for the Heaviside
function as introduced above (see p. [21)) [18]:

///Vq:VH dvz%[é@-nds, (5.21)

where ® is an arbitrary function defined in V' and on S and n is the (outer)
normal vector to the surface S.

Generally, the Green’s function for the convective wave equation (e.g. Eq.
(2.46)) might be necessary in problems that include non-zero mean flow.
For arbitrary Mach numbers the complexity of treatment significantly grows.
However, for subsonic case all terms due to mean flow are of O (Maz) (see e.g.,
[47]), so their influence on the specific scenarios presented within this work is
negligibly low. Moreover, as pointed out above (Sec. 2.5.1)), the Lighthill’s
analogy virtually transposes the problem to an analogous non-moving medium,
so the convected Green’s function is not required.
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B Appendix C — Multipole expansion of aeroacoustical sources

Let Q(x,t) denote an arbitrary source term of the wave equation (in the
d’Alembertian form):

—- V¥ =Q (5.22)

In fact, Q(x, t) might be (and practically very often is) a spatially varying
field. An useful insight into its nature and defining traits is obtained by
analyzing it by the so-called multipole expansion. The cornerstone of the
method is the spatial Taylor expansion of the Green’s function. Note that
only the free-field Green’s function is used in the course of this work. Let
the finite source domain §2(§) be centered around some point &y. Then the
Taylor expansion of the Green’s function reads

G = Go+ (VeG)y- (€ — &) +(VeVeG)y: (€~ &0)(€ — &)+ (5.23)

where the subscript ()o denote the evaluation at &y and the subscript V¢ is a
reminder that the operation is taken with respect to &.

Inserting the free-field Green’s function (5.18) into Eq. (5.23) the following
solution to the inhomogenous wave equation Eq. (5.22)) might be obtained
after some manipulations (see e.g., [47]):

& o oititk miix(70)
/ x,t) = 1 i+j+k ' ‘ [ (¥ :| 7 5.94
p(@t) i,j,zk:_()( ) Oz} 00k Lmlx — &o (5:24)

with

miji(T0) = ///Q Z,]l,k, (&1 — &10)" (&2 — €20) (&3 — €30)" Q(€,70) A, (5.25)

where & = (£1,£2,&3) and 79 = t — |x — &p|/co is the retarded time. Note that
it is defined with respect to the fixed £y and therefore it is independent of
§. The quantity m;ji is called the multipole moment of order 2iti+k where
i = j = k = 0 stands for monopole term, i + j + k = 1 for dipole terms,
i+ j + k = 2 for quadrupole terms and so on.

Very useful expression is obtained employing the far-field (Fraunhofer)
approximation:

, 1 0 1 ; i L oititk
p(x,t) ~ yEr—N ij%{) cé+j+k cos’ 61 cos’ 05 cos GBWmijk(TO) ,

(5.26)
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where cos 6 2 3 are the direction cosines with respect to axes z123 (cosf) =
O|lx — &o|/0z1). Note that Eq. (5.20) is just a special case of this general
form with known multipole order and source kind.

It follows that the capability of the source to efficiently radiate into the
far-field significantly decrease and radiation pattern grows in complexity with
the multipole order. Such estimation is convenient for assessing the relative
importance of source terms.

The multipole orders of the source terms arising from the aeroacoustic
analogies (p. [18) are now determined. For brevity, only two cases are
discussed in detail. The rest follows from the analogous treatment of respective
differential operators. The two most important cases are:

QL =V -V - (puu) , (5.27)
Qu =poV - (wxu), (5.28)

where Qr,, Qg denote the source terms according to the Lighthill’s and Howe’s
analogy respectively (for low Mach number flow).

When the source domain €2 is finite, then the monopole terms of both are
zero. To show that, the monopole moments are calculated:

mgoo(QL) = //Q VvV-V. (pguu) dQ = - Vv - (pouu) -n dS s (5.29)

mooo(Qu) = ///QPOV (wxu) dQ = ﬁgg po(wxwu)-ndS.  (5.30)

But since the source domain is finite (there are no contribution from the
external field), both surface integrals yield zero. Therefore both source terms
radiate less efficiently than a monopole (say, a rigid radially vibrating sphere).

Before calculating the dipolar moments, consider following manipulations:

av-f=v-(&af)-f-va=v-(&r) - fi, (5.31)
V-V (uu) =V - [V (vu)] - (V&) - [V - (uu)] ZV-[&V'(W(L)—)el'W] :
5.32

From the same considerations about the source domain finiteness it follows
that:

mio0(Qu) = ///Qﬂo&V (wxu) dQ = - ///QPO (wxu)- e d2, (5.33)

mioo(Qr) = ///onflv -V (uu) dQ = ﬁgg 61V - (uu) — e - (uu)]-n dS =0
(5.34)
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and similarly for mg19 and mgp1. So the Howe’s source term has the nonzero
dipole moment, while the Lighthill’s one has the first nontrivial multipole
moment at the quadrupolar order. This is one of the decisive points in favor
of "vortices are the voice of the flow".

Note that mi0o(Q ) yields in fact an averaged value of the force component
over the source domain. Therefore, the quadrupole and higher terms in Qg
are necessary to capture the details of the force distribution within the source
domain. An analogous argumentation would be in place considering the
quadrupolar terms of QJr. Strictly speaking, the source term Qg should
be labeled "no less than dipolar' and similarly the term @ "no less than
quadrupolar". Such accuracy is usually omitted for the sake of simplicity, be-
cause the decisive trait is the leading order in the multipole expansion. Simply
put, when it comes to the far-field radiation "dipole beats the quadrupole'.
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B Appendix D - Basic analysis of the van der Pol equation

A detailed analysis of the homogenous van der Pol equation is not given above
for the sake of brevity. Instead, some of its basic properties are summarized
here. Namely the linear stability analysis and solution in the weakly non-linear
approximation.

The van der Pol equation in terms of an arbitrary variable u might be
expressed

2
(;T;L—I—sw (u2—1>%+w2u:0, (5.35)
where € > 0 is the non-dimensional non-linearity parameter. If the variable t is
time (in seconds), then the variable w is the angular frequency (in radians per
second). Eq. (5.35) describes a harmonic oscillator with non-linear damping
supplemented by the second term. It may be equivalently expressed as two
fisrt-order ordinary differential equations

du

— = 5.36
_y, (5.36)
dv 9 9

i (u — 1) v—wu . (5.37)

First, the system (5.36)—(5.37) is investigated by means of linear stability
analysis (see e.g., [51l 111]). The only fixed point (sometimes equilibrium
point or stationary point, i.e. the point at which the right-hand-sides of
(5.36)—(5.37) are zero) is u = v = 0. Around this point a linearization
u=0+u'+ O («?) and similarly for v is employed. It follows that

d /

di; _— (5.38)
/

(ii—l; = ewv’ — W' . (5.39)

Solution is sought in the form v’ = uye®, v’ = v(e*. Substituting this to

Egs. (5.38)-(5.39) the condition for « is obtained after some manipulations
as the second order polynomial equation:

o —ewa+wr=0. (5.40)

Two possible roots are:

o192 = . (5.41)
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Therefore, the origin is linearly unstable due to positive real part of a1 .
For small €, the other term is imaginary, which means that the trajectory
in the (u’,v") phase plane will spiral around the origin. Hence, the origin is
called an unstable (repelling) focus (see [51], [I11] for more details). It follows
that the van der Pol equation (5.35) yields oscillating solution of growing
amplitude that starts from infinitesimal fluctuations.

Intuitively, when u is not small any more in Eq. (5.35)), the sign of the
second term changes and consequently the negative damping turns to be
positive. Such behavior leads to existence of the limit cycle around the origin,
which may be formally proven by the Liénard or Poincaré-Bendixson theorem
(see e.g. [o1l [IT1]).

In the case of weak nonlinearity (¢ < 1), an approximate analytical solution
to Eq. (5.35) might be found by the method of averaging or the method of
multiple scales (see e.g., [51]). The latter, which belongs among the wide
family of perturbation techniques, is outlined here.

For the sake of simplicity, let w = 1 and the whole system nondimensional.

This could be done without loss of generality by scaling the time variable.
The expansion of ¢t and w is introduced in the form:

u=ug+up +us + ... = ug + cug + 2ug + ... , (5.42)
t:to—i-tl—l-tg—i-...:t0+€t0—|—€2t0+... . (5.43)

Therefore, the time-scale t; = ety measures events that are slow compared
to the (fast) main mechanism. Similarly, the quantity u; = eug provides a
small first-order correction to the robust ug. By substitution of the multiple
scales expansion into Eq. [5.35 and collecting the terms of the same order one
obtains two equations for the lowest orders:

82u0
ot3
82u1 2 811,() 8211,()
— =(1—-uj)— — :
oz " (1= u0) 5~ 2ar00n

+uyg=0 R (5.44)

(5.45)

It is straightforward to solve the first equation, but it is vital to keep in
mind that the integration constants might depend on the higher terms of the
expansion:

uy = A(tl,tQ,...)COS [t+¢(t1,t2,...)] . (5.46)

In order to find appropriate conditions for A and ¢, note that the equation
(5.45) governing the first-order corrections, shall not contain terms on the
right-hand-side that would be in resonance with the left-hand-side. Such case
would give rise to the so-called secular terms infinitely growing in time (see
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e.g., [61l 111]). Inserting the solution (5.46) into the left hand side of Eq.
(5.45) one finds the conditions for removing the resonances:

oo

2A— = A
0A A?
2— =A|1—-— 4

which yields a solution valid to the first order of the expansion in the form:

2 t
u= M , ¢, ¢1 = const. . (5.49)
Vicre—et +1

For ¢t — 0o the denominator is 1 and the amplitude of oscillations is equal
to 2 independently of the initial conditions. This is the consequence of the
stable limit cycle as commented above. Note that the amplitude of 2 is
reached for any initial conditions allowing for ¢; > 0, which is consistent with
the existence of the stable limit cycle.

Profound analysis of the forced van der Pol equation is beyond the scope
of this work (see e.g., [I31] for more details).
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B Appendix E - List of symbols and abbreviations

LES Large Eddy Simulations
LNSE Linearized Navier-Stokes equations
RANS Reynolds-averaged Navier-Stokes equations
URANS Unsteady Reynolds-averaged Navier-Stokes equations

C
N
R

E T4 W e g TITQAQ-o

set of complex numbers
set of natural numbers
set of real numbers

Mach number
Prandtl number
Reynolds number
Strouhal number

lattice constant

primitive vector of the direct lattice
primitive vector of the reciprocal lattice
specific total enthalpy, model coefficient
adiabatic speed of sound

specific heat capacity at constant pressure
specific heat capacity at constant volume
specific internal energy

force

frequency, force density

force density field

Green’s function

Heaviside function

specific enthalpy

wavenumber, turbulent kinetic energy
wave vector

characteristic pressure, equivalent pressure source
pressure

dimensionless pressure

radius

reflection coefficient

(control) surface

specific entropy

thermodynamic termeprature, time interval
transmission coefficient

time

characteristic flow velocity

velocity
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ratio of specific heat capacities

Dirac function

thermoviscous penetration depth

small nondimensional parameter, turbulence dissipation rate
sound diffusivity

thermal conductivity

shear viscosity

kinematic viscosity, dimensionless frequency
coupling coefficient

auxilliary radius vector

characteristic density

density

dimensionless time, retarded time

shear stress tensor

(scalar) velocity potential

vector potential

angular frequency, specific turbulence dissipation
vorticity
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