
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Monitoring simulation and automated regulation of
parameters of hydroponic system solution

Bachelor thesis

Nikita Bondarev

Faculty: Faculty of Electrical Engineering
Study programme: Software engineering
Supervisor: Ing. David Kadleček, Ph.D.

Prague, 2021

ii

Thesis Supervisor:
Ing. David Kadleček, Ph.D.
Center for Knowledge Management
Faculty of Electrical Engineering
Czech Technical University in Prague
Technická 2
160 00 Prague 6
Czech Republic

Copyright © 2021 Nikita Bondarev

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

469810Osobní číslo:NikitaJméno:BondarevPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Simulace monitoringu a automatizovaná regulace parametrů roztoku hydroponického systému

Název bakalářské práce anglicky:

Monitoring simulation and automated regulation of parameters of hydroponic system

Pokyny pro vypracování:
Vytvořte simulaci monitoringu a automatizované regulace parametrů
roztoku hydroponického systému.
Monitorované parametry:
- Úroveň PH (potenciál vodíku)
- Elektrická vodivost
- Teplota
- Objem (výška hladiny)
Automatizace regulace:
- Peristaltická pumpa s nádržemi na PH +- a hnojiva
- Topení
- Chlazení
- Přívodní ventil na vodu a odpusť
Výstup:
- Navrh komponent a jejich integrace
- Prototyp formou počítačové simulace nebo fyzického nasazení

Seznam doporučené literatury:
[1] William Texier – Hydroponie pro každého. ISBN: 978-2-84594-161-8
[2] Stuart Russell / Peter Norvig – Artificial Intelligence: A Modern Approach. ISBN: 9781292153964

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. David Kadleček, Ph.D., Centrum znalostního managementu FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 21.05.2021Datum zadání bakalářské práce: 21.02.2021

Platnost zadání bakalářské práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. David Kadleček, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

iii

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

iv

Declaration

I hereby declare I have written this bachelor thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis. Moreover, I state that this thesis has neither
been submitted nor accepted for any other degree.

In Prague, 2021

..
Nikita Bondarev

v

vi

Abstract

This bachelor thesis is aimed at automatization of work with a hydroponic system’s
nutrient solution, i.e. monitoring and regulating its parameters depending on a plants’
growth phase or a gardener’s will. Nowadays the topic is very important since the hy-
droponics market grows from year to year and sown areas do not. The work contains the
study about hydroponics, full hardware, software and technologies analysis, implementa-
tion and evaluation.

Keywords: Hydroponics, Automated Hydroponic System, Microservices, Regula-
tion, Sensors.

Tato bakalářská práce je zaměřena na automatizaci práce s živným roztokem hydro-
ponického systému, tj. monitorováńı a regulaci jeho parametr̊u v závislosti na fázi r̊ustu
rostlin nebo v̊uli zahradńıka. V dnešńı době je toto téma velmi d̊uležité, protože trh hy-
droponie roste, ale oseté plochy se zmenšuj́ı. Práce obsahuje teorii o hydroponii, úplnou
hardwarovou a softwarovou analýzu, analýzu použitých technologíı, implementaci a zhod-
noceńı.

Keywords: Hydroponie, Automatizovaný hydroponický systém, Mikroslužby, Regu-
lace, Senzory.

vii

viii

Acknowledgements

I would like to thank Ing. David Kadleček, Ph.D. for being the project’s supervisor.
Also would like to thank Pavel Wimmer, Jakub Szasz, Adam Kučera and Jǐŕı Šebek for
the support during the project.

ix

x

List of Tables

3.1 Summarizing computer devices . 16
3.2 Required sensors . 16
3.3 Required actuators . 18

4.1 Comparison of SQL and No-SQL databases 21
4.2 Summarizing programming languages . 24
4.3 Comparison of Microservice and Monolith architectures 26

5.1 Functional requirements . 32

xi

xii LIST OF TABLES

List of Figures

2.1 DWS system scheme . 4
2.2 NFT system scheme . 5
2.3 Dutch bucket system scheme . 6
2.4 Pebble substrate . 7
2.5 Ceramsite substrate . 8
2.6 Perlite substrate . 8
2.7 Rockwool substrate . 9

3.1 Entire system’s general scratch scheme . 13
3.2 Arduino Uno microcontroller . 14
3.3 RaspberryPi microcomputer . 15
3.4 System communication scratch scheme . 19

4.1 Microservice architecture scratch scheme 25
4.2 Monolith architecture scratch scheme . 25

5.1 Communication using channels . 33
5.2 Arduino application sequential diagram . 34
5.3 Local persistence service sequential diagram 35
5.4 AWS persistence service sequential diagram 36
5.5 Regulation servce sequential diagram . 37
5.6 System communication scratch scheme . 38

6.1 Device configuration format . 39
6.2 Sensor data message format . 41
6.3 Command message format . 41
6.4 Regulation coefficients . 46
6.5 Regulation rules . 46

7.1 Local persistence service log . 49
7.2 AWS persistence service log . 49
7.3 AWS DynamoDB console . 50
7.4 Low temperature log . 50
7.5 Temperature is back to normal log . 50
7.6 Low water level log . 51
7.7 Water level is back to normal log . 51
7.8 Wrong pH log . 51
7.9 Wrong pH log . 51

xiii

xiv LIST OF FIGURES

Contents

Abstract vii

Acknowledgements ix

List of Tables xi

List of Figures xiii

1 Introduction 1

2 Introduction to hydroponics 3
2.1 Back to history . 3
2.2 Types of hydroponic systems . 3

2.2.1 Deep Water Culture (DWS) . 4
2.2.2 Nutrient film technique (NFT) . 4
2.2.3 Dutch Bucket . 5

2.3 Substrates . 6
2.3.1 Stones and pebbles . 6
2.3.2 Expanded clay (ceramsite) . 7
2.3.3 Perlite and Rockwool . 8

2.4 Required parameters . 9
2.4.1 pH Level . 9
2.4.2 Electrical conductivity (EC) . 9
2.4.3 Water temperature . 10
2.4.4 Air temperature . 10
2.4.5 Air humidity . 10
2.4.6 Lighting . 10
2.4.7 CO2 level . 11

3 Hardware analysis 13
3.1 General scheme . 13
3.2 Required components . 14

3.2.1 Computing power . 14
3.2.1.1 Arduino Uno . 14
3.2.1.2 Raspberry Pi . 15
3.2.1.3 Summarizing . 15

3.2.2 Sensors . 16
3.2.3 Actuators . 18

3.3 Communication . 19

xv

xvi CONTENTS

4 Used technologies 21
4.1 Data storage . 21

4.1.1 SQL vs NoSQL . 21
4.1.2 Dynamo Database . 22
4.1.3 Redis Database . 22

4.2 Programming languages . 23
4.2.1 Arduino . 23
4.2.2 Python . 23
4.2.3 Summarize . 24

4.3 Microservice Architecture . 24
4.4 Communication protocols . 26

4.4.1 I2C . 26
4.4.2 UART Protocol . 27

5 Software analysis 29
5.1 AS-IS state . 29
5.2 Strategic intent . 29
5.3 Business intent . 30
5.4 5F analysis . 30
5.5 PEST analysis . 31
5.6 Functional requirements . 32
5.7 Non-functional requirements . 32
5.8 Communication between Services . 32
5.9 Sequential diagrams . 33

5.9.1 Arduino application . 33
5.9.2 Raspberry Pi Local Persistence Service 34
5.9.3 Raspberry Pi AWS Persistence Service 36
5.9.4 Raspberry Pi Regulation Application 37

5.10 Deployment diagram . 38

6 Implementation 39
6.1 Arduino Uno Application . 39
6.2 Local persistence service . 42
6.3 AWS Persistence Service . 44
6.4 Regulation Service . 45

6.4.1 Parameters regulation . 46

7 Testing and Evaluation 49
7.1 Storing the data . 49
7.2 Parameters regulation . 50

8 Conclusion 53

A List of Abbreviations 55

B Source code 57

Bibliography 59

1. Introduction

Hydroponics is a long time known method of cultivating plants without any kind of

soil by using a solution which contains dissolved nutrients.

Even when hydroponics is one of the most effective methods, which allows gaining

both quality and quantity, nowadays it is still less preferred than traditional cultivation

methods. There are many reasons for this: starting with still great possibilities to grow

plants the old way, finishing with a fear of something new.

According to the UN’s message about population increasing, the number of people on

the planet will reach up to 10 billion in the next 30 years, which will affect the increase

in food demand and reduction of acreage of sown areas.[1]

I believe that this is our common problem now and in the future, and that’s why I

have chosen it as a theme for my bachelor thesis.

Hydroponics is a complex method. It requires monitoring and regulation of many

parameters, which can be automated.

The goal of this project is to create a system that allows automation of the work with

a hydroponic system solution. The thesis will cover all the project sides: from hydropon-

ics study up to hardware analysis and software implementation.

The project is a part of a larger one. Another part was managed by my colleague

Akhmadov Ali and covers the environment of hydroponic systems. Both parts are inte-

grated into one automated system.[2]

1

2 CHAPTER 1. INTRODUCTION

2. Introduction to hydroponics

2.1 Back to history

As outlined in the introduction, hydroponics has been known for a long time. It is

not known who started cultivating plants without using any soil, but first written confir-

mations of people growing them using something like the hydroponic method are found

in medieval Southern America. Aztecs and others used to create “artificial islands” with

a frame made of a tied reed, filled with soil and placed them on a surface of lakes rich in

dissolved salts. That allowed the roots to get nutrients from the water. Such “islands”

were found in China and in other parts of the world.

In a year of 1699 English naturalist and historian, John Woodward conducted the

first experiment proving that plants get nutrients from water and soil. The experiment

also proved that plants can be cultivated using only water. The problem was that people

didn’t know what exactly plants needed to grow.

New discoveries and experiments followed in the next 200 years. Were determined

parameters and nutrient formulas for plant growth.

William Gericke was another important person, who introduced the term “Hydropon-

ics” in the early 1920s. He was the first who began cultivating plants without using soil

but with special nutrient solutions industrially. [3]

To this day, hydroponics constantly changes, adapting to new realities, and rapidly

grows.

2.2 Types of hydroponic systems

When it comes to choosing a particular system, there are many different types and

options. Some of them work better and more effectively than others depending on the

plant we want to grow and the space we have. In this section I will go through the most

common of them.

3

4 CHAPTER 2. INTRODUCTION TO HYDROPONICS

2.2.1 Deep Water Culture (DWS)

The most common and cheapest type of hydroponic system, which can be made even

from a usual plastic bucket in every home.

In such hydroponic systems, the container is almost completely filled with a nutrient

solution, and the plants’ roots are completely immersed in it. Oxygen is provided to them

with an air stone connected to an air pump.

The system is suitable for almost all plants but is especially effective for large ones

with large root systems.

The main disadvantage of DWS is that the system is passive, therefore, the solution

doesn’t flow and requires renewals, which is a complex task. [3]

Figure 2.1: DWS system scheme

2.2.2 Nutrient film technique (NFT)

One of the most famous types of systems. This is because it’s very productive, since

it is suitable for fast-growing plants and is easy to set up to grow more of them at once.

The nutrient solution in such systems is being pumped to channels that hold plants.

It flows through them over the plant’s roots.

The system is easy to automate.

Disadvantages are unsuitability for large root plants and risk of water pump break-

down, which can cause the death of all plants within a couple of hours. [4]

2.2. TYPES OF HYDROPONIC SYSTEMS 5

Figure 2.2: NFT system scheme

2.2.3 Dutch Bucket

The system is similar to NFT but cancels its disadvantage of unsuitability for large

plants.

The plants are being located in separate pots. There is a water line running from the

container with a nutrient solution, which has drip hoses at each plant. The solution flows

over their roots and exits a drain, which leads back to the solution container.

The system still has the disadvantage of risk of water pump breakdown and also has

a new risk of clogging of an increased amount of pipes and hoses. [5]

Chilli pepper was chosen as a plant, which will be grown during this project. Since

its root system is large and we would like to grow as much as possible, the Dutch bucket

hydroponic system is the most suitable one for the purpose of the project.

6 CHAPTER 2. INTRODUCTION TO HYDROPONICS

Figure 2.3: Dutch bucket system scheme

2.3 Substrates

Although there is no soil in hydroponic systems, we still need something to keep and

hold the plant tight in the pot or any other container depending on the chosen system.

This role is played by substrates, which will be covered in this section.

2.3.1 Stones and pebbles

Starting with a substrate which can be found literally on the ground.

Obviously, this is not the best solution since the hygroscopicity of stones is very low.

So the nutrient solution must be fed from above.

It will not be enough to just wash the stones or pebbles found on the ground. [6] The

substrate needs to be specially prepared, which I will talk about later.

2.3. SUBSTRATES 7

Figure 2.4: Pebble substrate

2.3.2 Expanded clay (ceramsite)

Material that is almost completely free of dust and dirt. There are types that are

specifically developed for hydroponics. Despite all of this, it still needs to be prepared.

Expanded clay is not neutral, i.e., it can affect pH level in the nutrient solution. [6]

The preparation (neutralization) process is:

• Wash and boil expanded clay

• Soak in distilled water for 2 days

• Measure pH level

• Repeat, if pH > 6

8 CHAPTER 2. INTRODUCTION TO HYDROPONICS

Figure 2.5: Ceramsite substrate

2.3.3 Perlite and Rockwool

Perlite and rockwool are initially neutral materials that don’t affect the pH level of

nutrient solution. Both have high hygroscopicity. Due to their qualities, they are the

most common substrate types. [6]

It is worth noticing that perlite should be carefully cleaned from dust before use.

Figure 2.6: Perlite substrate

2.4. REQUIRED PARAMETERS 9

Figure 2.7: Rockwool substrate

2.4 Required parameters

Cultivating plants using a hydroponic method is a very complex process. It requires

measuring and adjusting many parameters for plants to grow actively and healthy. Start-

ing with parameters of the nutrient solutions (ph level, EC, solution temperature), which

I will cover in detail in this section, and finishing with the whole environment (air tem-

perature, humidity, lighting and CO2 level), which will be mentioned too.

2.4.1 pH Level

pH itself represents an acid-base balance of water. pH level always decreases and

increases as a result of the life activity of bacteria. The more H+ particles, the more the

acid. Otherwise, the more OH-, the more alkaline concentration in water. Neutral pH

level is 7.0.

pH is required for nutrient assimilation. Incorrect Ph level will reduce or completely

lock out the amount of nutrients the plants can absorb.

A suitable level of pH: 5.5 - 6.2. It can be adjusted by adding “pH-Down” (phosphoric

or nitric acid) in case of higher level or by adding “pH-Up” (any base) in case of a lower

one. [3]

2.4.2 Electrical conductivity (EC)

Electrical conductivity (EC) is the most common measure of salinity, which shows

the total amount of dissolved salts.

10 CHAPTER 2. INTRODUCTION TO HYDROPONICS

Pure water without salt impurities has almost infinite electrical resistance. The more

salt dissolved in water, the less is its resistance; therefore, by measuring EC, we can have

an idea of the amount of salts.

EC affects plants’ morphology and the result quality and quantity. The more EC, the

more nutrients will plants absorb. Measured in millisiemens [mS].

EC should be around 0.5 - 1.0 mS for sprouts, 0.8 - 1.2 for plants in the active

vegetation phase and 1.2 - 1.8 for plants in the flowering phase.

EC can be adjusted by adding pure water in case of higher EC values or by adding

fertilizers in case of lower values. [7]

2.4.3 Water temperature

The temperature at the root zone plays a crucial role. It impacts plants’ growing

speed by affecting the amount of oxygen in the solution. The higher the temperature, the

more oxygen there will be.

The problem is, that the higher the temperature is, the more oxygen plants will need;

therefore, it is necessary to determine the optimal temperature, which is 18 - 22*C.

A little lower or higher temperature doesn’t mean that plants will die, but their growth

will slow down massively. [3]

2.4.4 Air temperature

Here I start talking about other parameters associated with the whole environment

and won’t go into details.

Air temperature adjusts the rate of photosynthesis, breathing and other physiological

and biochemical processes.

The optimal value is 22-27*C for a day and 18-22*C for a night. [2]

2.4.5 Air humidity

Air humidity affects plants’ final size. The optimal value is around 65 - 75%, depending

on the growth phase. [2]

2.4.6 Lighting

Plants are the only organisms that can feed by sunlight, so-called photosynthesis.

Therefore common lamps won’t be suitable, but lamps, which produce sufficient PAR(Photosynthetically

Active Radiation). [2]

2.4. REQUIRED PARAMETERS 11

2.4.7 CO2 level

CO2 is also an element that is needed for plant feeding, since it is a part of photosyn-

thesis. [2]

12 CHAPTER 2. INTRODUCTION TO HYDROPONICS

3. Hardware analysis

This chapter is devoted to analyzing and describing all the devices and hardware

used in the project. Communication between them will also be mentioned.

3.1 General scheme

Figure 3.1: Entire system’s general scratch scheme

1. Arduino Uno - microcontroller responsible for communication with RaspberryPi,

gathering sensors data and sending commands to actuators.

2. RaspberryPi - microcomputer responsible for data processing and storing them to

the databases.

3. Water temperature sensor - measuring temperature in ◦C.

4. EC sensor - measures electrical conductivity in milisiemens.

5. pH sensor - measures pH level.

6. Water level sensor - floating sensors that indicate if they are touched by water.

13

14 CHAPTER 3. HARDWARE ANALYSIS

7. Feeding pump - pump circulating the solution around the system.

8. Dosing pumps - doses fertilizers,ph-Ups/ph-Downs and pure water into the solu-

tion while turned on.

9. Water cooler - reduces water temperature.

10. Containers - contain fertilizer solutions, ph-Ups/ph-Downs and pure water.

3.2 Required components

In this section I will describe all components mentioned at Figure (3.1).

3.2.1 Computing power

3.2.1.1 Arduino Uno

Figure 3.2: Arduino Uno microcontroller

The most famous microcontroller. Due to low CPU resources and small memory

(about 2 KB) is not really suitable for big programs and hard computations. [8] Lack of

the ability to connect to the internet without additional shields is its next disadvantage.

3.2. REQUIRED COMPONENTS 15

But on the other hand due to lower power consumption and a lack of operating system

(therefore, low maintenance) Arduino Uno is really good at real-time processing. [9] In

combination with the fact that it has good support for analog signals [10], Arduino Uno

is a good choice for measuring sensors’ data, sending it for computation via serial link,

receiving responses and sending commands to actuators (relays).

3.2.1.2 Raspberry Pi

Figure 3.3: RaspberryPi microcomputer

RaspberryPi is the most famous microcomputer with high CPU resources, memory,

internet connection and other advantages. [11]

Due to its operating system (which does not grant us control over resources) and a

bad support for analog signals (reading analog sensors requires extra hardware assistance)

RaspberryPi is not really suitable for work with sensors, which the project requires. [12]

Otherwise, it may serve as a normal computer running Raspbian (Linux-like) OS.

Raspberry’s OS allows to run programs as services, i.e. to work with them semi-automatically

by setting boot and other options. Therefore, it perfectly suits for processing of data re-

ceived from Arduino.

3.2.1.3 Summarizing

In the following table I will summarize each computer’s pros and cons. The informa-

tion in the table repeats previous sections and serves for better lucidity.

16 CHAPTER 3. HARDWARE ANALYSIS

Table 3.1: Summarizing computer devices

Arduino Uno Raspberry Pi

System Microcontroller Single-Board computer

Operating System Has no operating system Runs an operating system

Dynamic memory 2 kb Up to 8 gb

Resources control Full resources control be-

cause of lack of the OS

OS doesn’t grant full re-

sources control

Internet connection Requires external HW and

additional code

Can be easily connected via

Wi-Fi or Ethernet

Measuring analog data Native support Requires external HW and

additional libraries

Program execution Can run only one program

loop

Can run multiple programs

in parallel

Computing power Rather low High

Data-Transfer protocols I2C, UART UART, Ethernet/Wi-Fi

Real-Time processing Suitable due to lack of the

OS

Not really suitable because

of a lower resources control

3.2.2 Sensors

Table 3.2: Required sensors

Name Photo Description

ISE Probe

interface

Reading data from

pH probe

3.2. REQUIRED COMPONENTS 17

Lab pH probe Measuring pH level

EC Probe interface
Reading data from

EC probe

Lab EC probe Measuring EC

DS18B20
Measuring water

temperature

18 CHAPTER 3. HARDWARE ANALYSIS

HC-SR04
Measuring water

level

3.2.3 Actuators

Table 3.3: Required actuators

Name Photo Description

Dosing pump

Dosing of

fertilizers,

ph-Ups/ph-Downs

and water

Relay

Opening and

closing circuits for

turning the

actuators on and

off

3.3. COMMUNICATION 19

Water cooler
Reduces water

temperature

3.3 Communication

Most of the sensors are connected to Arduino Uno via I2C interface (will be described

in more details later), the remaining ones and actuators are connected directly to its

analog or digital pins.

Therefore, Arduino does all the work with them: it collects data from the sensors

and constantly sends it to RaspberryPi via serial link. Arduino also checks its serial port

for messages from RaspberryPi, i.e. commands for actuators, which are represented by

relays. Then sends these commands directly to them.

RaspberryPi is responsible for processing data gathered from Arduino, deciding if

parameters’ values are beyond required and sending commands back to it via serial link.

RaspberryPi is also responsible for storing data in local and cloud databases for further

use.

Data flow is described at Figure (3.4).

Figure 3.4: System communication scratch scheme

20 CHAPTER 3. HARDWARE ANALYSIS

4. Used technologies

4.1 Data storage

Each system requires reliable data storage. When it comes to the system which is

responsible for life support, the reliability of its data must be even greater. It also must

be flexible and scalable. The project requires cloud data storage data to be accessible

from the internet. But since we can not rely on the internet connection, the project needs

to have another one local storage.

Nowadays when it comes to deciding, there is a question: relative (SQL) or non-

relative (No-SQL) database. This section goes through it.

4.1.1 SQL vs NoSQL

Relative database is an old classic. Static tables with predefined columns and powerful

SQL language for querying data. Is really suitable for storing highly structured data, but

is not when it comes to flexible systems such as hydroponics. Variable data and data

structures generated by the hydroponic system lead us to No-SQL databases.

Table 4.1: Comparison of SQL and No-SQL databases

SQL No-SQL

Type Relational Non-relational

Data Structured. Stored in tables Unstructured. Stored in JSON

Schema Static Dynamic

Scalability Vertical Horizontal

Flexibility Rigit schema Non-rigit flexible schema

Software Oracle, PostgreSQL, MySQL DynamoDB, MongoDB, RedisDB

Elasticity Mostly requires downtime Automatic. No downtime required

21

22 CHAPTER 4. USED TECHNOLOGIES

4.1.2 Dynamo Database

DynamoDB is a part of Amazon Web Services. It is a No-SQL database for applica-

tions that require strong consistency and low latency (under 10ms) at any scale. It is also

fully managed and supports both document and key-value store models.

DynamoDB gives the ability to auto-scale by tracking how close the usage is to the

upper bounds (auto-sharding) and the ability to work with really large amounts of data

(thousands of reads or writes per second).

The database is multi-regional, which enables the maintenance of identical copies as

replicas of a DynamoDB master table in one or more regions. [13]

Since DynamoDb supports a document-oriented data model, we will store data as

“items”, which correspond to “rows” in SQL. Each item will have the following attributes:

”system id”, ”sensor type”, ”sensor name”, ”value” and ”timestamp”. Since attributes

are dynamic, there may be new ones in the future.

The project’s database will contain 1 table with sensors’ data with a composite pri-

mary key defined as ”system id” + ”timestamp”.

Alternatives:

• Any SQL database. Is not as flexible as DynamoDb, because they work only with

structured data and predefined tables. Also, they are not as performant as No-SQL

when it comes to processing large amounts of data. [14]

• MongoDB. Good candidate with similar benefits as DynamoDB. But it is less

scalable (since it doesn’t support auto-sharding and multi-shard transactions) and

is not very low latency. [15]

4.1.3 Redis Database

Provides almost equal functionality as Dynamo Database, but has advantages, which

made it the best decision to be the local data storage:

• Free to use offline.

• Provides publish/subscribe channels which allow simulating subscription to the ta-

ble, which we need for communication between applications.

• Not only stores data in heap but in some other data structures, such as list and

sorted set.

Alternatives:

4.2. PROGRAMMING LANGUAGES 23

• Same as DynamoDB’s. Plus disadvantage of not having publish/subcribe or

easy-to-implement table subscription.

4.2 Programming languages

4.2.1 Arduino

Arduino itself has native support for a language that is called the same (“Arduino

programming language”). It is basically a framework built on top of C/C++, therefore

follows its logic and syntax. [16]

The language also provides prepared libraries with functions suitable for the project.

Most modern sensors provide libraries to work with Arduino. So mainly will be used these

libraries and also one called “Wire” serving for I2C communication[17]. Also often used

are functions as analogRead() for reading analog data from sensors that don’t provide

libraries and digitalWrite() for sending electric signals to actuators.

Arduino programs (due to their simplicity also called scratches) are saved with the .ino

extension and their main difference from programs written in C/C++ is that the whole

code is wrapped into 2 main functions: setUp(), where there is a common initialization,

and loop(), which is, obviously, a loop containing entire program’s logic.

Alternatives:

• None. Since Arduino Programming Language is built on top of C/C++, we could

use pure versions of these languages, which is unnecessary because Arduino provides

built-in explicit extensions to control its hardware.

4.2.2 Python

Python nowadays is a very popular and widespread high-level programming language.

According to the TIOBE programming community index is ranked second. [18]

The language kernel’s syntax is minimalistic, but in the meantime, its Standart library

provides many useful functions. one of the main reasons why Python is so popular and

why it was chosen for the project is its variety of external libraries, some of which will

be used in the project: “serial” for communication with Arduino Uno via UART protocol

[19], “boto3” for accessing Amazon’s DynamoDB [20] and ”redis” for accessing RedisDb.

Python is an interpreted language, i.e. it doesn’t compile, but interprets line by line.

Which makes it slower than some other languages (Java, C/C++). But despite this, it is

used in such Real-Time applications as Instagram, DropBox, Reddit and others. [21]

24 CHAPTER 4. USED TECHNOLOGIES

Python is also great for working with AI, which is it’s next benefit for the project, as

the project has the potential to use AI logic to work with actuators. [22]

Alternatives:

• Java. Also a popular and widely used language. Since it is a compiled language,

Java is fast and performant. Also provides many useful libraries. But on the other

hand, libraries for communication via Serial link and working with DynamoDb are

subjectively not as convenient to work with as Python’s.

The second disadvantage is not good support for AI. [23]

4.2.3 Summarize

The following table doesn’t compare the languages but summarizes their advantages

and reasons why they were chosen for the project.

Table 4.2: Summarizing programming languages

Arduino Language Python

Built on top of C/C++ One of the most popular languages

The only opportunity to write a
program on Arduino

The standard library provides many
useful functions

Provides in-built functionality to read
analog signals and send electrical

Provides many useful libraries

Provides in-built functionality to
read and write to/from a serial link

Supports DynamoDB and RedisDB
well

Provides a library for working with
an I2C bus

Supports serial communication well

Great for working with AI

4.3 Microservice Architecture

Microservices is a modern architecture that gradually takes on trends and replaces

the previous most popular and widespread architecture, i.e. monolith.

Microservice architecture represents independent components, each doing its job (Sep-

aration Of Concerns) and communicating with each other. A system built on microservices

loses a lot of software’s critical point: Single Point Of Failure. Therefore it is a flexible

4.3. MICROSERVICE ARCHITECTURE 25

architecture that perfectly suits the project’s purposes.

Communication between services will be set up via publish/subscribe messaging chan-

nels.

Figure 4.1: Microservice architecture scratch scheme

Alternatives:

• Monolith. Old fashioned style of development. All the software is managed in

one place: databases, client- and server applications. That leads to many bottle-

necks and points of failure, reduces system flexibility. Which is unacceptable for the

project.

Figure 4.2: Monolith architecture scratch scheme

26 CHAPTER 4. USED TECHNOLOGIES

The following table describes the main differences between the 2 architectures

mentioned above.

Table 4.3: Comparison of Microservice and Monolith architectures

Monolith Microservices

Deployment
Large code base mostly
deployed on one device

Multiple independent
applications. It May be

deployed on different devices

Scalability

Bad scalability, since the
project is deployed on one
device which has hardware

limitations

Easy to scale

Flexibility
Bad flexbility. Since one small
change may cause an avalanche

effect of changes

Good flexibility because of a
Separation Of Concerns

Data Storage Shared storage
Each service mostly has own

storage

SPOF A big problem Almost eliminates the SPOF

Reusage Mostly is very difficult Services can be easily reused

4.4 Communication protocols

Since there are 2 communication pairs in the project (Sensors/Actuator <> Arduino

Uno and Arduino Uno <> Raspberry Pi), it is necessary to define the protocols that will

be used for their communication.

The only requirement for the protocols is for them to be wired to keep the system

immune to such problems as the internet- or wireless signal loss.

4.4.1 I2C

Inter-Integrated Circuit is a synchronous serial protocol for data transfer designed

for microcontrollers. The absolute majority of modern sensors do communicate over this

protocol. It requires only 2 wires to work: first for sending and receiving data and the

second that carries the clock signal for synchronizing.

Protocol’s Master-Slave communication allows us to connect up to 128 devices (sensors

in our case), which makes it perfect for the project. [24]

4.4. COMMUNICATION PROTOCOLS 27

Alternatives:

• Serial Peripheral Interface (SPI). Another communication protocol designed for

microcontrollers. Mostly used in special sensors or other devices when low response

time is required. Unlike I2C doesn’t allow to create buses of up to 128 devices, i.e.

supports only 1 master device and 4 slaves.

• Direct connection. Will certainly be used in the project to connect less complex

sensors and relays directly to the Arduino Uno.

4.4.2 UART Protocol

Universal asynchronous receiver-transmitter is one of the oldest and commonly used

physical data transfer protocols, which uses asynchronous serial communication.

Asynchronous stands for no clock signal to synchronize the output bits from the

transmitting device going to the receiving end.

Arduino Uno and Raspberry Pi will be connected via USB, since Arduino has an

in-built converter from USB to Serial which RaspberryPi can handle well. [25]

Alternatives:

• Binary protocol. Unnecessarily difficult to implement since Arduino Uno and

RaspberryPi may be easily connected via USB using UART protocol to communi-

cate. Therefore, is not taken into account.

28 CHAPTER 4. USED TECHNOLOGIES

5. Software analysis

This chapter is devoted to complete project software analysis. It includes analysis

of state around hydroponics from a business point of view, diagrams describing projects

from a technical point of view and analysis of technologies used in the project and their

alternatives.

5.1 AS-IS state

Nowadays hydroponics is still not a widespread technology; therefore, many people

treat and use it the old way.

They have to keep in mind a value for a special parameter for each growth phase of

every single plant. During the plant’s growth gardeners have to constantly measure all

these parameters with common instruments, such as thermometer, EC - meter and so on.

Manipulations with the solution in order to change the parameter’s values are also made

manually. Which is long, ineffective and leads to mistakes, many of which can completely

ruin the solution.

Industrial hydroponics is mostly widespread in the USA and UK, where its market

sizes are around 2.000.0000.000$, production sizes are around 22.500.000 kg a year and

will grow further in the future. [26]

5.2 Strategic intent

The intent of the project is to create a system, which provides a partial automatization

of the plants’ cultivating process using hydroponic systems.

The user will be able to efficiently and reliably keep track of information about the

state of the hydroponic system’s solution and to set up its parameters, depending on the

plants’ growth phase or a gardener’s will.

The system, in turn, is responsible for keeping the parameters at given values and

storing gathered data to the databases.

29

30 CHAPTER 5. SOFTWARE ANALYSIS

5.3 Business intent

The system will make gardeners sure that their systems work just as required and at

the same time will relieve them of much routine work allowing them to concentrate less

on maintaining the farms and giving them an opportunity to further expand them.

Also making it easier to work with hydroponics systems will bring new people, which

will have a good effect on gardening progress itself and the whole world’s food availability.

5.4 5F analysis

• Rivalry

– Rather small amount of offers with similar functionalities.

– In majority automated hydroponic systems are made for industrial plant cul-

tivation and are very expensive. [21]

– Systems for common use are rare on the market. At most are handmade and

low-quality.

• Potential entrants

– Entry threshold to IT business is low.

– Required knowledge of plant cultivation and hydroponics systems, which is not

hard to gain.

– Cheap hardware and not really complex software may bring many entrants.

– Ready for the appearance of new entrants.

• Suppliers

– Hardware suppliers.

– Fertilizers suppliers.

– Plant seeds suppliers.

– Many offers in different price categories. Substitute inputs are present.

• Buyers

– The practice of hydroponics is expanding.

– Information about hydroponics is becoming easier to get.

– Every social category is in the target group.

5.5. PEST ANALYSIS 31

• Substitutes

– Substitutes’ appearance possibility is real.

5.5 PEST analysis

• Political

– Situation is stable.

• Economical

– Situation is unstable due to coronavirus.

– Hardware prices grow due to a deficit of components and production facilities.

• Social

– Situation is unstable due to coronavirus.

– The situation is hard to predict.

• Technological

– Situation is stable. We are using the technologies, which are considered to

grow in terms of usage in the future:

∗ Arduino is an in-built programming language. Widely used and sup-

ported, since it is the only way to work with Arduino.

∗ Python programming language. One of the most popular nowadays. Well

supported and provides a large number of libraries, which are suitable for

the project.

∗ DynamoDB is a No-SQL database powered by Amazon, one of the world’s

richest and most stable companies. It is fully managed, multi-region and

widely used, which suits the project’s purposes well.

∗ RedisDB is a No-SQL database powered by RedisLabs. Is also widely

used, and well supported.

32 CHAPTER 5. SOFTWARE ANALYSIS

5.6 Functional requirements

Table 5.1: Functional requirements

ID Description Priority

1 System allows to gather data from sensors High

2 System allows to send data for computation High

3 System allows to evaluate the data High

4
System allows to store data to local and cloud

databases
High

5 System allows to send commands to actuators High

6 System allows users to set up parameters High

7
System allows users to change parameters while

system is up
Medium

8 System allows to retrieve data about solution’s state Low

5.7 Non-functional requirements

• The system must be independent of internet connection.

• The system must be available 24/7/365.

• The system must be highly performant, e.g. the time between sending a command

to an actuator and actual turning on must be within a second.

• The system must be scalable. This applies both for HW (adding new sensors and

actuators) and SW (simple implementation of new functionalities)

5.8 Communication between Services

Since Microservice Architecture implies separate and independent components, it is

necessary to find a way of communication between them. Publish/Subscribe message

5.9. SEQUENTIAL DIAGRAMS 33

channels provided by Redis Database are a good choice for it.

Publish/Subscribe pattern allows publishers to send their messages to an arbitrary

number of receivers. They, in turn, may subscribe to an arbitrary number of channels

and receive messages from publishers.

For the project we need 2 channels: for notifying about new data and for sending

commands to actuators.

Figure 5.1: Communication using channels

5.9 Sequential diagrams

The following diagrams describe in a more formal (UML) way the communication

process mentioned in chapter 3.3 and described informally at Figure (3.4).

5.9.1 Arduino application

This diagram describes the app running on Arduino Uno which is connected to sensors,

actuators and RaspberryPi. At startup the app sends a request for device data stored on

Raspberry Pi. After receiving a response and setting devices up, the main program loop

starts.

There is another loop inside the main one. It iterates throw sensors and, if required

time passed, reads data from them and sends it to RaspberryPi via serial link.

Every iteration app checks its serial port for commands which continuously come from

RaspberryPi.

34 CHAPTER 5. SOFTWARE ANALYSIS

Figure 5.2: Arduino application sequential diagram

5.9.2 Raspberry Pi Local Persistence Service

This diagram describes the first of 3 apps running on Raspberry Pi. It is responsible

for gathering data from Arduino Uno, storing it to the local Redis Database and sending

commands back to Arduino.

At startup the app sets the connection to the database up. Since Raspberry ap-

5.9. SEQUENTIAL DIAGRAMS 35

plications do communicate using message channels provided by Redis, so the app also

subscribes to the commands message channel .

There are two phases in the main loop: the first checks the command channel for new

commands and sends them to the Arduino Uno in case of presence; the second checks the

serial port where messages from Arduino constantly arrive.

In case of a data request message, the app will send back configuration device data

which is stored internally, in case of a sensors data message, the app will store it to the

local Redis database and send a message to the data message channel, notifying all the

channel subscribers about the newly stored data.

Figure 5.3: Local persistence service sequential diagram

36 CHAPTER 5. SOFTWARE ANALYSIS

5.9.3 Raspberry Pi AWS Persistence Service

Figure 5.4: AWS persistence service sequential diagram

The following diagram describes the second of 3 apps running on Raspberry Pi. This

one is responsible for storing gathered data to the cloud Dynamo Database.

The main goal of the application is to keep data consistent. To that end, except for

connecting to the databases and subscribing to the data message channel, the app will

also fetch the last data saved locally (from the RedisDb) and in the cloud (DynamoDb).

In case of data inequality (meaning the data, which were saved locally were not saved in

the cloud for some reason), missing data will be fetched from RedisDb and stored to the

DynamoDb. There is also a failed connection handling mechanism which will be described

in Chapter 6.

In the main loop app checks the data message channel, which notifies about new

locally stored data. It will fetch new data and store it in the cloud.

5.9. SEQUENTIAL DIAGRAMS 37

5.9.4 Raspberry Pi Regulation Application

Figure 5.5: Regulation servce sequential diagram

The last of 3 apps running on Raspberry Pi is responsible for regulating hydroponic

solution parameters based on required values by sending commands for actuators to turn

up or down. This is an app where all the interesting logic happens which will be described

in more details in Chapter 4.

Like the other 2 apps, this one connects to the RedisDb and subscribes to the data

message channel at startup.

The main loop consists of 2 phases: during the first one the app checks its list of

scheduled commands and, if it is the time, sends a command to the command message

channel; during the second one the app checks the data message channel and in case

of new data presented, it fetches it and sends to the associated handler (depending on

38 CHAPTER 5. SOFTWARE ANALYSIS

parameter type: temperature, pH-level, etc.). Handler decides, if the value is beyond

required and, if necessary, send a message to the commands message channel.

Some actuators require to be turned off after the required amount of time (so-called

scheduled commands). In that case this information will be also saved to the local list of

scheduled commands.

5.10 Deployment diagram

The following diagram shows the physical deployment of the system.

Figure 5.6: System communication scratch scheme

• Hydroponics System

All the sensors and actuators are physically located inside of a hydroponic so-

lution tank or near it and connected to the Arduino Uno via I2C.

• Arduino Uno

The microcontroller thatruns the script gathering data from the sensors, sending

it to the Raspberry Pi and sending commands to the actuators. Is connected to the

RaspberryPi via UART.

• Raspberry Pi

Main system computer. Runs 3 applications described above and a local Redis

Database.

• AWS Server

An external server that runs Dynamo Database. Raspberry Pi is connected to

it via Ethernet or Wi-Fi.

6. Implementation

In this chapter I move on to the practical part of the project. The chapter describes

each of the 4 project’s applications and their programmatic solutions.

6.1 Arduino Uno Application

As mentioned in previous chapters, arduino application consists of 2 parts:

• setup()

Listing 6.1: Setup Function

char* device_data[POSSIBLE_NUMBER_OF_DEVICES][CONFIG_ENTRIES];

void setup() {

Serial.begin(9600);

Wire.begin();

fetch_config_data();

setup_devices();

}

The function that is called at the application startup. It starts serial communication

and sets the Wire library up for work with I2C devices.

Then the ”HELLO” message is sent and device data are fetched from Raspberry

Pi with a response. It is stored in the device data variable which is a double-

dimensional list.

The response represents lines of config entries for every device. The format is

the following:

Figure 6.1: Device configuration format

39

40 CHAPTER 6. IMPLEMENTATION

Tempo time stands for the amount of time in seconds that must pass after the

last reading before sensors can send new data. Tempo time is 0 for actuators.

• loop()

Listing 6.2: Setup Function

void loop() {
for (int i = 0; i < number of sensors; i++){

check for actuator commands();

const char∗ sensor name = device data[i][0];

const char∗ sensor type = device data[i][1];

int device address = int(atoi(device data[i][2])) ;

unsigned long sensor tempo = int(atoi(device data[i][3])) ;

float sensor value = 0;

bool measuring required = time passed(last sensor timestamps[i], sensor tempo);

if (!measuring required) continue;

if (! strcmp(sensor type, PH S)) {
sensor value = pH lib.measurepH(mv lib.measureTemp());

}
else if (! strcmp(sensor type, EC S)) {

sensor value = ec lib .measureEC(mv lib.measureTemp());

}
else if (! strcmp(sensor type, TEMP S)) {

sensor value = mv lib.measureTemp();

}
else if (! strcmp(sensor type, MID WATERLEVEL S) || !strcmp(sensor type,

LOW WATERLEVEL S) || !strcmp(sensor type, UP WATERLEVEL S)) {
sensor value = (digitalRead(device address) == HIGH) ? 1 : 0;

}
else if (! strcmp(sensor type, FLOW S)) {

sensor value = getFlow(device address);

}
last sensor timestamps[i] = millis () ;

send data(sensor name, sensor type, sensor value) ;

}
}

The function where application constantly iterates throw the sensors and, if

6.1. ARDUINO UNO APPLICATION 41

required time passed, read its data and sends this information to the RaspberryPi.

Since Arduino Uno has a really small amount of memory, the message format is the

following:

Figure 6.2: Sensor data message format

• Another function which is worth to mention is check for actuator commands()

which is called every iteration.

Listing 6.3: Setup Function

void check_for_actuator_commands() {

while (Serial.available()) {

String act_type = Serial.readStringUntil(’\n’);

String act_command_value = Serial.readStringUntil(’\n’);

for (int i = 0; i < POSSIBLE_NUMBER_OF_DEVICES; i++){

if (!strcmp(act_type.c_str(), device_data[i][1])) {

if (act_command_value.equals("0")) {

digitalWrite(int(atoi(device_data[i][2])), HIGH);

} else if (act_command_value.equals("1")) {

digitalWrite(int(atoi(device_data[i][2])), LOW);

}}}

}

}

The function checks Arduino’s serial port and reads all the messages (com-

mands) of the following format:

Figure 6.3: Command message format

Command value equal to 1 stands for turning the actuator up, 0 - for turning

it down.

42 CHAPTER 6. IMPLEMENTATION

6.2 Local persistence service

As mentioned in previous chapters, this is the program responsible for the commu-

nication with Arduino Uno, storing its data to the local Redis Database and notifying

others about the new data by sending messages to the Redis’ Data Message Channel.

• 1st phase

Listing 6.4: Serial Link Handling

def check_act_command():

sub_message = redis_sub.get_message() #Checking Command

Message Channel

if sub_message:

command = sub_message[’data’]

[act_type, act_command_value] = command.split()

ser.write((act_type + "\n" + act_command_value +

"\n").encode("ascii"))

ser.flush()

logger.info(’Command sent to %s with value %s’,

act_type, act_command_value)

At the beginning of every iteration application checks Redis’ Command Message

Channel and if there is one, the app sends it to the Arduino Uno.

• 2nd phase

Listing 6.5: Serial Link Handling

if ser.in_waiting > 0:

line = ser.readline().decode(’utf-8’)

logger.info(’received: ’ + line)

if line == "HELLO":

logger.info(’Hello message received’)

file = open(constants.CONFIG_FILE_NAME)

config_data = file.read().replace("\n", " ")

file.close()

ser.write(config_data.encode("ascii"))

ser.flush()

elif line.startswith("sensor_data"):

measured_data = line.split()

6.2. LOCAL PERSISTENCE SERVICE 43

sensor_data = {

"system_id": constants.SYSTEM_ID,

"sensor_name": measured_data[1],

"sensor_type": measured_data[2],

"value": measured_data[3],

"timestamp": datetime.now().strftime("%Y/%m/%d

%H:%M:%S")

}

save_data(sensor_data)

The application checks its serial port and if there is a ”HELLO” message (device

data request), it will send the data from the associated config file. Otherwise, if the

message represents sensors data, it will be saved to the Redis Database.

• save data()

Listing 6.6: Serial Link Handling

def save_data(sensor_data):

timestamp = sensor_data["timestamp"]

redis_client.hset(timestamp, mapping=sensor_data)

redis_client.rpush(sensor_data["sensor_name"] + "_timestamps",

timestamp)

redis_client.rpush(constants.TIMESTAMPS_LIST_NAME, timestamp)

new_timestamp_id =

redis_client.zadd(constants.TIMESTAMPS_FOR_IDS_SORTED_SET_NAME,

timestamp) # Sorted set which increases IDs of inserted items

redis_client.publish(constants.PUB_SUB_SENSORS_CHANNEL_NAME,

timestamp + " " + str(new_timestamp_id))

– Since sensors data are to be read sequentially, each timestamp will be unique,

which makes it a perfect key.

– Redis provides 3 data structures: the heap where all objects are stored, list

and sorted set. We use every one of them to be able to work with data in a

No-SQL database.

– After saving the data app sends the timestamp and its id to the Data Message

Channel so other services can query the full object from the heap.

44 CHAPTER 6. IMPLEMENTATION

6.3 AWS Persistence Service

This is a simple service responsible for storing gathered data in the cloud. Its goal is

to keep data consistent. There are tho mechanisms helping to achieve this goal: the 1st

one runs on the very startup and was well described on the sequential diagram and won’t

be described in this chapter. The second one is the Connection Loss Handling Mechanism.

Listing 6.7: Serial Link Handling

sub_message = redis_handler.redis_sub.get_message()

if sub_message:

timestamp, current_id = utils.split_timestamp_and_id(sub_message)

sensor_data = redis_handler.redis_client.hgetall(timestamp)

is_saved = save_item(sensor_data)

if not is_saved and not disconnected:

logger.warning(’Internet connection is lost’.)

disconnected = True

first_unsuccessful_id = current_id

elif is_saved and disconnected:

logger.info(’Internet connection has been reestablished.’)

disconnected = False

last_unsuccessful_id = current_id - 1

unsent_timestamps =

redis_handler.redis_client.zrangebyscore(min=first_unsuccessful_id,

max=last_unsuccessful_id)

save_all(unsent_timestamps)

Every iteration application checks Data Message Channels and if there is a new mes-

sage (new data’s timestamp and id) it will query the whole object from Redis and store it

to the Dynamo Database. In case of internet loss save item() method returns False and

the algorithm begins:

• If the connection had just been lost, i.e. it was the first data that failed to save,

app will set its id as first unsuccessful.

• If the connection had been lost a while ago, i.e. first unsuccessful id is already set,

nothing happens.

6.4. REGULATION SERVICE 45

• When an item is saved and service was disconnected, i.e. the connection reestab-

lished, the app will fetch unsaved data (from first unsuccessful id up to current)

from Redis Database and save them all together.

• Mechanism is also present in the save all() method.

Listing 6.8: Serial Link Handling

def save_all(timestamps_for_ids):

for unsaved_redis_ts in timestamps_for_ids:

unsent_sensor_data =

redis_handler.redis_client.hgetall(unsaved_redis_ts)

is_saved = save_item(unsent_sensor_data)

if not is_saved:

disconnected = True

first_unsuccessful_id = unsaved_redis_ts

logger.warning(’Internet connection is lost’)

break

6.4 Regulation Service

Like other applications, this one establishes the connection to the Redis Database and

subscribes to the Data Message Channel at startup.

At the beginning of every iteration application checks scheduled commands (will be

described later) and modifications of associated configuration files. In case of modification

new data are saved. Configurations files are:

• Coefs.json

These are the coefficients that will be used in formulas for regulations. phUp-,

phDown- and ecUp- coefficients stand for the amount of a solution in milliliters

required to change the required parameter by 1 in 1 liter of hydroponic solution.

46 CHAPTER 6. IMPLEMENTATION

Figure 6.4: Regulation coefficients

• Rules.json

Figure 6.5: Regulation rules

These are the variable values defining required parameters, tolerances and types

of sensors and actuators associated with a given parameter. The screenshot is an

example where not all parameters are provided.

6.4.1 Parameters regulation

The application provides BaseHandler class which is to be extended for every actuator

type. The class has handle() method where regulation logic is. At the moment there are

6.4. REGULATION SERVICE 47

4 of them:

• Water Level Handler

The first parameter to be regulated. Until the water level is at the required

mark, none of the other parameters can be regulated.

Logic is the following:

– There are 2 level sensors: the lower and the upper ones.

– When Water Level Handler gets information that water is below the lower

sensor, i.e. it sent ”0” in its data, command for water level actuator to on is

sent.

– When Water Level Handler gets information that water is above the upper

sensor, i.e. it sent ”1” in its data, command for water level actuator to off is

sent.

– When the water level has been regulated the next parameter regulation is

possible.

• EC Handler

The next parameter for regulation is EC. The handler determines if a gathered

value is higher or lower than the required one and based on this it turns on ecUp-

or ecDown actuator.

– ecUp

ecUp actuator is a dosing pump which pumps fertilizers. We need to deter-

mine the amount of time for actuator to be turned on to reach required value.

We need to use the following formula for it:

act time =
CoefficientecUp · Vwater

CoefficientdosPump

(6.1)

Where CoefficientecUp is a coefficient defining the amount of fertilizers in

milliliters required to raise EC by 1 in 1 liter of hydroponic solution, Vwater

is a volume of water and CoefficientdosPump is the amount of solution which

dosing pumps pump in 1 second.

– ecDown

ecDown actuator is a dosing pump that pumps pure water. We also need

to determine the amount of time for an actuator to be turned on.

48 CHAPTER 6. IMPLEMENTATION

water volume to add =
Vwater · CoefficientecToPpm · current EC

required EC · CoefficientecToPpm

− Vwater

(6.2)

This formula determines the amount of water that is necessary to add to

change EC to the required. It comes out of the fact, that EC may be converted

to PartsPerMillion (concentration), which may be reduced by raising the water

volume. Where CoefficientecUp is a coefficient defining the amount

– Application stores information about the time, when each actuator must be

turned off. Then checks it at the beginning of every iteration and sends the

commands to turn off.

– To continue regulation, the EC level must stabilize, i.e. new obtained value

must not differ from last stored by more than the value specified in the corre-

sponding rule called ”stabilizing tolerance”.

• pH Handler

pH Handler works almost the same way as the previous one. The only difference

is the formula used to calculate the amount of time for an actuator to stay turned

on.

regulator volume to add =

Vwater

required PH
− Vwater

current PH

1
phLevelregulator

− 1
required PH

(6.3)

Here the regulator is a phUp or a phDown solutions which depends whether we

need to raise or lower hydroponic solution’s pH level.

• Temperature Handler

The most common and simple handler. Its algorithm:

– If temperature is higher than required, turn on the cooler

– If temperature is lower or equal to the required and the cooler is ON, then turn

it off.

7. Testing and Evaluation

Since the project is a system that works with real-time sensors data, automated testing

is difficult to implement, therefore in this chapter I will evaluate the results of the work,

describe manual testing use-cases and illustrate them using screenshots of logs and AWS

console.

7.1 Storing the data

As mentioned in previous chapters, there are 4 parameters which we follow:

• Temperature

• EC level

• pH level

• Water level

To test that all the parameters are successfully measured, gathered and stored in

the database we need to take a look at the Local Persistence Service’s logs, the Aws

Persistence Service’s logs and the AWS console.

Figure 7.1: Local persistence service log

Local persistence successfully obtains the sensors data from the Arduino Uno

Figure 7.2: AWS persistence service log

Data are successfully being stored to the Dynamo Database.

49

50 CHAPTER 7. TESTING AND EVALUATION

Figure 7.3: AWS DynamoDB console

As it can be seen from the above, the data are not only successfully stored but

stored regularly based on values in the configuration file (2 minutes). New data does

not rewrite the old which is suitable for the possible future implementation of Artificial

Intelligence algorithms. Data is easily queryable for the purposes of the future front-end

application.

7.2 Parameters regulation

In this section I will go throw use-cases that will take place during the system work.

• Low temperature

Figure 7.4: Low temperature log

When temperature value is higher than required, the signal is sent to the temper-

ature actuator which starts cooling the water. Nothing happens until temperature

lowers. Then the signal to turn off is sent.

Figure 7.5: Temperature is back to normal log

7.2. PARAMETERS REGULATION 51

• Water level is beyond required

Figure 7.6: Low water level log

When water level goes below the lower level sensors, it sends a signal to the

water level actuator to turn off, i.e. to the feeding pump. Nothing happens until

water touches the upper-level sensor. Then the signal to turn off is sent.

Figure 7.7: Water level is back to normal log

• Low/high pH level

Figure 7.8: Wrong pH log

When pH level is lower or higher than required, the volume of a regulator to

add is calculated using the formula (5.3). Then the time for an actuator, i.e. dosing

pump, to run is calculated and stored and the signal to turn on is sent. After the

calculated time passes, the signal to turn off is being automatically sent.

The process repeats until pH level is stable.

• Low/high EC level

Figure 7.9: Wrong pH log

The algorithm is the same as for regulation of the pH level. The only difference

is the formula to calculate the volume of a regulator: (5.1) for ecUp and (5.2) for

ecDown.

52 CHAPTER 7. TESTING AND EVALUATION

8. Conclusion

The project was a part of a larger one aimed at almost complete automation of work

with hydroponic systems by automated monitoring and regulation of its parameters.

During the project, a list of required HW was compiled, assembled the module contain-

ing the HW, proposed and implemented the software system for parameters monitoring

and regulation, carried out manual testing. Project goals are considered as accomplished.

This thesis covers the study of hydroponics, hardware and software analysis, analysis

of used technologies and their alternatives and a practical part covering implementation

and testing.

There are many opportunities for further development:

• Data visualization using front-end application.

• Using Artificial Intelligence to make parameters regulation even more effective.

• Connection of separate hydroponic systems into one network.

• Improved analysis of the data stored in the Dynamo Database.

53

54 CHAPTER 8. CONCLUSION

A. List of Abbreviations

• HW - Hardware

• SW - Software

• DWC - Deep Water Culture

• NFT - Nutrient film technique

• EC - Electrical conductivity

• RPi - RaspberryPi

• SQL - Structured Query Language

• DB - Database

• AI - Artificial Intelligence

• I2C - Inter-Integrated Circuit

• SPI - Serial Peripheral Interface

• UART - Universal Asynchronous Receiver-Transmitter

• SPOF - Single Point Of Failure

• AWS - Amazon Web Services

55

56 APPENDIX A. LIST OF ABBREVIATIONS

B. Source code

Project’s source code on GitLab:

57

58 APPENDIX B. SOURCE CODE

Bibliography

[1] Growing at a slower pace, world population is expected to reach 9.7 billion in 2050
and could peak at nearly 11 billion around 2100: UN Report, [Online] https://www.
un.org/sustainabledevelopment/blog/2019/06/growing-at-a-slower-pace-

world-population-is-expected-to-reach-9-7-billion-in-2050-and-could-

peak-at-nearly-11-billion-around-2100-un-report

[2] Ali Akhmadov. Monitoring and automated regulation of parameters of hydroponic
system environment. Bachelor Thesis, Czech Technical Univercity in Prague, Faculty
of Electrical Engineering and Technology, 2021.

[3] William Texier. Hydroponics for Everybody: All About Home Horticulture. 2015,
ISBN 978-2845941205.

[4] Pak. J. Agri., Agril. Engg., Vet. Sc. HYDROPONICS: KEY TO SUSTAIN AGRI-
CULTURE IN WATER STRESSED AND URBAN ENVIRONMENT, [Online]
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.4323

&rep=rep1&type=pdf

[5] Keith Roberto. How-To Hydroponics, Fourth Edition. 2003. ISBN 978-0967202617.

[6] Hydroponics For Beginners – The Definitive Guide, [Online] https://www.trees.
com/gardening-and-landscaping/hydroponic-gardening

[7] Why EC Is Important In Hydroponics, [Online] https://www.hydroponics.co.uk/
news/why-ec-is-important-in-hydroponics/

[8] Arduino Uno technical specifications, [Online] https://store.arduino.cc/ardui
no-uno-rev3

[9] Arduino Uno Board with Real-Time Application Projects, [Online] https://www.wa
telectronics.com/arduino-uno-board-tutorial-and-its-applications

[10] Analog Input Pins, [Online] https://www.arduino.cc/en/Tutorial/Foundations
/AnalogInputPins

[11] Simon Monik. Raspberry Pi Cookbook, 2013. ISBN 978-1449365226.

[12] Capturing Analogue Signals with a Raspberry Pi, [Online] https://www.rs-onlin
e.com/designspark/capturing-analogue-signals-with-a-raspberry-pi

[13] Amazon DynamoDb documentation, [Online] https://docs.aws.amazon.com/amaz
ondynamodb/latest/developerguide

59

https://www.un.org/sustainabledevelopment/blog/2019/06/growing-at-a-slower-pace-world-population-is-expected-to-reach-9-7-billion-in-2050-and-could-peak-at-nearly-11-billion-around-2100-un-report
https://www.un.org/sustainabledevelopment/blog/2019/06/growing-at-a-slower-pace-world-population-is-expected-to-reach-9-7-billion-in-2050-and-could-peak-at-nearly-11-billion-around-2100-un-report
https://www.un.org/sustainabledevelopment/blog/2019/06/growing-at-a-slower-pace-world-population-is-expected-to-reach-9-7-billion-in-2050-and-could-peak-at-nearly-11-billion-around-2100-un-report
https://www.un.org/sustainabledevelopment/blog/2019/06/growing-at-a-slower-pace-world-population-is-expected-to-reach-9-7-billion-in-2050-and-could-peak-at-nearly-11-billion-around-2100-un-report
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.4323&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.4323&rep=rep1&type=pdf
https://www.trees.com/gardening-and-landscaping/hydroponic-gardening
https://www.trees.com/gardening-and-landscaping/hydroponic-gardening
https://www.hydroponics.co.uk/news/why-ec-is-important-in-hydroponics/
https://www.hydroponics.co.uk/news/why-ec-is-important-in-hydroponics/
https://store.arduino.cc/arduino-uno-rev3
https://store.arduino.cc/arduino-uno-rev3
https://www.watelectronics.com/arduino-uno-board-tutorial-and-its-applications
https://www.watelectronics.com/arduino-uno-board-tutorial-and-its-applications
https://www.arduino.cc/en/Tutorial/Foundations/AnalogInputPins
https://www.arduino.cc/en/Tutorial/Foundations/AnalogInputPins
https://www.rs-online.com/designspark/capturing-analogue-signals-with-a-raspberry-pi
https://www.rs-online.com/designspark/capturing-analogue-signals-with-a-raspberry-pi
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide

60 BIBLIOGRAPHY

[14] Sql and NoSq;: An overview with advantages and disadvantages, [Online] https:
//acodez.in/sql-and-nosql-an-overview/

[15] MongoDb documentation. Sharding, [Online] https://docs.mongodb.com/manual/
sharding/

[16] Brian Evans. Beginning Arduino Programming, 2011. ISBN 978-1430237778.

[17] Wire library, [Online] https://www.arduino.cc/en/reference/wire

[18] TIOBE Index for December 2020, [Online] https://www.tiobe.com/tiobe-index/

[19] PySerial documentation, [Online] https://pythonhosted.org/pyserial/

[20] Getting Started Developing with Python and DynamoDB, [Online] https://docs.a
ws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Py

thon.html

[21] 7 Popular Software Programs Written in Python, [Online] https://codeinstitut
e.net/blog/7-popular-software-programs-written-in-python/

[22] Prateek Joshi. Artificial Intelligence with Python: A Comprehensive Guide to
Building Intelligent Apps for Python Beginners and Developers, 2017. ISBN 978-
1786464392.

[23] The best AI Programming Languages – Java vs Python, [Online] https://huddle.e
urostarsoftwaretesting.com/the-best-ai-programming-languages-java-vs

-python/

[24] I2C-bus specification and user manual, [Online] http://www.nxp.com/docs/en/us
er-guide/UM10204.pdf

[25] Raspberry Pi Arduino Serial Communication, [Online] https://roboticsbackend.
com/raspberry-pi-arduino-serial-communication/

[26] Hydroponics Market Size, Share Trends Analysis Report By Type, [Online] https:
//www.grandviewresearch.com/industry-analysis/hydroponics-market

https://acodez.in/sql-and-nosql-an-overview/
https://acodez.in/sql-and-nosql-an-overview/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://www.arduino.cc/en/reference/wire
https://www.tiobe.com/tiobe-index/
https://pythonhosted.org/pyserial/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Python.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Python.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Python.html
https://codeinstitute.net/blog/7-popular-software-programs-written-in-python/
https://codeinstitute.net/blog/7-popular-software-programs-written-in-python/
https://huddle.eurostarsoftwaretesting.com/the-best-ai-programming-languages-java-vs-python/
https://huddle.eurostarsoftwaretesting.com/the-best-ai-programming-languages-java-vs-python/
https://huddle.eurostarsoftwaretesting.com/the-best-ai-programming-languages-java-vs-python/
http://www.nxp.com/docs/en/user-guide/UM10204.pdf
http://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/
https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/
https://www.grandviewresearch.com/industry-analysis/hydroponics-market
https://www.grandviewresearch.com/industry-analysis/hydroponics-market

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Introduction to hydroponics
	Back to history
	Types of hydroponic systems
	Deep Water Culture (DWS)
	Nutrient film technique (NFT)
	Dutch Bucket

	Substrates
	Stones and pebbles
	Expanded clay (ceramsite)
	Perlite and Rockwool

	Required parameters
	pH Level
	Electrical conductivity (EC)
	Water temperature
	Air temperature
	Air humidity
	Lighting
	CO2 level

	Hardware analysis
	General scheme
	Required components
	Computing power
	Arduino Uno
	Raspberry Pi
	Summarizing

	Sensors
	Actuators

	Communication

	Used technologies
	Data storage
	SQL vs NoSQL
	Dynamo Database
	Redis Database

	Programming languages
	Arduino
	Python
	Summarize

	Microservice Architecture
	Communication protocols
	I2C
	UART Protocol

	Software analysis
	AS-IS state
	Strategic intent
	Business intent
	5F analysis
	PEST analysis
	Functional requirements
	Non-functional requirements
	Communication between Services
	Sequential diagrams
	Arduino application
	Raspberry Pi Local Persistence Service
	Raspberry Pi AWS Persistence Service
	Raspberry Pi Regulation Application

	Deployment diagram

	Implementation
	Arduino Uno Application
	Local persistence service
	AWS Persistence Service
	Regulation Service
	Parameters regulation

	Testing and Evaluation
	Storing the data
	Parameters regulation

	Conclusion
	List of Abbreviations
	Source code
	Bibliography

