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Abstract

This thesis focuses on the design and de-
velopment of a three-axis robotic manipu-
lator.

The thesis gradually describes the sub-
ject matter. Firstly, the manipulator de-
sign is introduced, and used hardware
is described, including the custom-made
control PCB. The following chapter is fo-
cused on manipulator kinematics. For-
ward and inverse kinematics are solved
and explained, and collision detection is
introduced. In the last chapter, the ma-
nipulator control software is described.

The manipulator will be mounted under
a UAV and used for various tasks moti-
vated by the MBZIRC 2023 competition.

Keywords: robotic manipulator, UAV,
end-effector, kinematics, servomotor,
STM32, ROS

Supervisor: Ing. David Žaitlík
Praha, Resslova 307/9, room: E-118

Abstrakt

Tato práce se zaměřuje na design a vývoj
tříosého robotického manipulátoru.

Práce postupně rozebírá danou proble-
matiku. V první části práce je předsta-
vena konstrukce manipulátoru dle poža-
davků a popis použitého hardwaru včetně
řídící desky, která byla v rámci práce na-
vržena. Následující část práce je zaměřená
na kinematiku manipulátoru. Je vyřešena
dopředná i inverzní kinematická úloha a
představen způsob detekce kolizí. Poslední
kapitola je věnována popisu softwarové
části. Popisuje řízení manipulátoru v pro-
středí ROSu a firmware mikrokontroléru.

Tento manipulátor bude uchycený pod
dronem a bude použitý pro různé úkoly,
které jsou motivovány soutěží MBZIRC
2023.

Klíčová slova: robotický manipulátor,
UAV, koncový efektor, kinematika,
servomotor, STM32, ROS

Překlad názvu: Robotický manipulátor
pro bezpilotní dron
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Chapter 1

Introduction

This thesis is focused on designing and controlling a robotic manipulator
mounted on a drone. The manipulator itself had to be designed and manu-
factured. The control system had to be designed along with a custom-made
printed circuit board.

1.1 Motivation

The manipulator will be mounted under a UAV and can be used for lifting
and carrying various items. Platform Tarot T650 (Figure 1.1) is used.

Figure 1.1: Used drone [1]
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1. Introduction .....................................
The task is motivated by MBZIRC 2023 [5] international robotics competi-

tion, where MRS group competed on multiple occasions already. There are
many challenges planned for the 2023 competition [6]:

. Agriculture Applications

. Harvesting. Precision Delivery

.Marine Applications

. Surface Capture. Sub-Surface Capture

. Hospital Applications

. Bed Side Assistance. Sterilization

The manipulator is primarily intended for Marine Applications - Surface
Capture challenge.

1.2 Design

Chosen manipulator architecture consists of three degrees of freedom using
servomotors as rotational joints. Figure 1.2 shows the joints labeling conven-
tion used throughout this thesis. Structural links were made out of carbon
fiber to minimize weight. More complicated parts, which would be difficult
to machine, were 3D printed. As an end-effector, an electro-permanent mag-
net was used. However, the magnet can be easily swapped for a different
end-effector type. It is possible to add another servomotor to be used as a
mechanical gripper and use the same circuit without any modifications to
control it.

2



....................................... 1.2. Design

Figure 1.2: Joints labeling convention

The inverse kinematics problem of this specific manipulator has up to
four solutions. The manipulator is intended to manipulate objects on the
ground, so the end-effector orientation is considered when choosing the optimal
solution. Also, UAV’s legs, frame, and especially propellers have to be avoided.
Therefore, the manipulator work region is defined, and a collision check is
performed. No structural part of the manipulator is allowed to reach out of
the work region 1.3. Furthermore, this defined region simplifies IKT because
it usually automatically discards two solutions.

Figure 1.3: Manipulator work region
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1. Introduction .....................................
Servomotors and the end-effector are controlled using a custom-made

printed circuit board based on an STM32 microcontroller. Inverse kinematics
and other necessary calculations are done in ROS, which runs on the drone.
Commands are then sent to the PCB using UART, interpreted, and executed
by the STM32 microcontroller.

4



Chapter 2

Hardware

2.1 Mechanical Design

The manipulator was designed using Fusion360 CAD software. RRR ma-
nipulator structure was chosen. It consists of three Dynamixel AX-12A
servomotors as revolute joints, joined together by series of links.

The first draft consisted of two single links (Figure 2.1). However, this
was rejected, and additional structural parts were added in order to increase
rigidity.

Figure 2.1: First manipulator draft
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2. Hardware ......................................
Link sizes and other dimensions of the finished manipulator are shown in

the Figure 2.2, all dimensions are in millimeters. Links are held together using
the mechanical components included with AX-12A servomotors. Prototype
(Figure 2.3) had links made from 4 mm MDF. Other necessary structural parts
(such as the mounting bracket) were 3D printed with PLA filament. Only
one prototype was made and appeared to be successful, and no modifications
were needed.

150 100

69
56

23

Figure 2.2: Manipulator drawing

Figure 2.3: Prototype

The robotic manipulator will be mounted on a drone Tarot 650 (Figure
1.1). Therefore, low weight was a priority. In order to minimize weight, the
final version (Figure 2.4) was fitted with links made from 2 mm carbon fiber.
And other parts were 3D printed using a Creality CR-10 printer with PETG
filament, which has good properties for such application.
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............................... 2.2. Manipulator Work Region

Figure 2.4: Finished manipulator with the control board

2.2 Manipulator Work Region

Servomotors travel limits and maximum allowed rotational speed (joints
numbers are based on the convention described in the Figure 1.2):

. Joint 1. Travel limit: ±180 ◦.Maximum rotational speed: 10 RPM. Joint 2. Travel limit: 0− 100 ◦.Maximum rotational speed: 15 RPM. Joint 3. Travel limit: ±100 ◦.Maximum rotational speed: 15 RPM

The limits on the previous page show the maximum that can be achieved
before the robot collides with itself. However, collision with the drone must

7



2. Hardware ......................................
also be avoided for apparent reasons. Therefore, a work region was established
(Figure 2.5). It does not represent a reachable area by the robot. It simply
defines a safe space where the manipulator can move. When choosing the
optimal inverse kinematics solution, the position of joint 3, as well as the
end-effector, is calculated using transformation matrices mentioned in section
3.2. If the end-effector position or any of the joints exceeds the allowed work
region, such an inverse kinematics solution is discarded.

In case the drone’s legs are moved or modified, or the manipulator is
mounted on an entirely different UAV, the region can be easily modified in
the manipulator control ROS node to suit the current requirements.

31
0

500

31
0

320

(a) : Manipulator workspace - isometric view

31
0

500

31
0

320

(b) : Manipulator workspace - front and side view

Figure 2.5: Manipulator workspace
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................................. 2.3. AX-12A Servomotors

2.3 AX-12A Servomotors

A servomotor is a type of motor with a closed-loop control system, which
allows precise positioning of the output shaft by utilizing position feedback.
Dynamixel AX-12A servomotors were used as revolute joints of the manipu-
lator. Table 2.1 shows specifications of the used servomotors [3].

Baud Rate 7843 bps - 1 Mbps
Weight 54.6 g
Dimensions (W x H x D) 32 mm x 50 mm x 40 mm
Resolution 0.29 °

Running Degree 0 ° - 300 °
Endless Turn

Motor Cored
Gear Ratio 254:1
Stall Torque 1.5 Nm (at 12 V, 1.5 A)
No Load Speed 59 RPM (at 12 V)
Operating Temperature -5 °C - +70 °C
Input Voltage 9.0 - 12.0 V (Recommended: 11.1 V)
Command Signal Digital Packet

Protocol Type Half Duplex Asynchronous Serial Communication
(8 bit, 1 stop bit, no Parity)

Physical Connection TTL Level Multi Drop Bus
ID 254 ID (0-253)
Feedback Position, Temperature, Load, Input Voltage
Gear Material Engineering Plastic(Full)
Case Material Engineering Plastic(Front, Middle, Back)

Table 2.1: AX-12A specifications [3]

Servomotors are connected to the control board with three pins (12 V, GND,
and Data), and all motors are connected to those three pins. Data messages
are sent using half-duplex UART at 112500 bps. Message structure is shown
by Table 2.2. Communication with STM32 microcontroller was partially
implemented by Ondřej Procházka in his thesis Robotic Fire Extinguisher
Mounted to an Unmanned Aerial Vehicle [7].

Header1 Header2 Servo ID Length Instruction Param 1 . . . Param N Checksum
0xFF 0xFF ID Length Instruction Param 1 . . . Param N CHKSUM

Table 2.2: Servo message definition [4]

Before the servomotors can be controlled, the correct baud rate, as well

9



2. Hardware ......................................
as servo ID, must be stored into EEPROM. The proper way to do this is to
use a USB2DYNAMIXEL module together with Dynamixel Wizard software.
Dynamixel Wizard was not used in this project, but other hardware capable
of UART communication can be used (SMT32 microcontroller in this case).
The communication baud rate is set in the EEPROM control table of the
servomotor and might be unknown before the first use. Desired baud rate
can be selected set by sending a change baud rate message at all typical baud
rates and by using the Broadcast ID(254, 0xFE) [4]. This ID targets the
message at every connected servomotor, no matter its stored servo ID. Once
the desired communication baud rate is chosen, the servo ID needs to be
selected. That can be done by connecting a single servomotor that needs to
be changed and sending a change servo ID message at broadcast ID (254,
0xFE).

The maximum speed of AX-12A servomotors is 59 RPM, which is more
than enough for the manipulator. In fact, the speed is limited to 15 RPM.
It would be beneficial to change the gear ratio of the servomotor in order to
trade the speed for additional torque.

The used servomotor’s resolution is 0.29 ◦, this value is calculated by diving
the maximum servo travel (300 ◦) by the position value range (AX-12A
uses 10-bit value to set the position), 300

1024 ≈ 0.29 ◦. Assuming link length
150 mm, which theoretically means 0.78 mm resolution at the end of the link.
However, the AX-12A has a gearbox, which means there is also inevitable
backlash present. Backlash is a lost motion caused by the clearance between
individual gears in the gearbox, manufacturing tolerances, etc. The result
is that the output shaft might not hold position completely rigidly, there
is some unwanted movement in the gearbox. Another inaccuracy might be
caused by the elasticity and deformation of the used materials, especially
with longer links which increase leverage, weight, and subsequently torque on
the servomotor.

Each servomotor is capable of delivering 1.5 Nm of torque. It was enough
for this application. Nonetheless, if more torque is needed in the future, then
AX-18A servomotors could be used. It is a higher performance servomotor
also made by Dynamixel, which is fully compatible with the used AX-12A
servomotors. It has the exact dimensions and is controlled in exactly the
same way. It is also only 1.3 grams heavier. But crucially, it provides 20%
higher torque than AX-12A. However, AX-18A’s current draw peaks at 2.2 A
[8]. Unfortunately, that means that the current control circuit cannot handle
three AX-18A servomotors at full load.

10



..................................... 2.4. End-effector

2.4 End-effector

The electro-permanent magnet EPM V3 R5C (Figure 2.6) used as an end-
effector is mounted on the last link using four screws. It is a type of permanent
magnet made of material that is magnetized and demagnetized by applying a
current pulse. The used magnet can achieve maximum holding force up to
300 N while using only 50 mW of power in a steady state. This performance
with low standby power consumption is achieved by magnetizing AlNiCo
material. The magnet control board uses short and powerful pulses (up to
300 A at 5 V) to magnetize or degauss the alloy, which takes roughly one
second [2].

Figure 2.6: Used electro permanent magnet [2]

The magnet can be controlled by RCPWM, UAVCAN, UART or using a
button. Pulse width modulation at 50 Hz frequency was chosen for simplicity.
When the pulse duration is 1.75 to 2.5 ms, then the magnet is on. Pulse
width 0.5 to 1.25 ms the magnet will demagnetize, as can be seen in Figure
2.7.
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2. Hardware ......................................
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(a) : Pulse width 2125 µs - magnet turned on
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(b) : Pulse width 870 µs - magnet turned off

Figure 2.7: PWM for controlling the magnet

As mentioned in Chapter 1, the end-effector can be swapped for a different
type, for example, a mechanical gripper.

2.5 Control Board Design

An electrical circuit had to be designed to control the servomotors and other
hardware. A suitable control board needs to do the following tasks:

. stepping down battery voltage to 12 V (for servomotors) and 5 V to
3.3 V (for microcontroller). parse incoming commands from ROS via UART

12



.................................2.5. Control Board Design

. send commands to servomotors via UART

. control the end-effector

Prototyping and testing of the circuit were done on a breadboard using
Nucleo L031K6. The finished manipulator uses a custom-made PCB, which
was designed in KiCad.

The circuit is based on STM32F042K6 microcontroller (Figure 2.8 - MCU)
with 16 MHz oscillator. Messages from the ROS node are received via UART
using pins 19 and 20. There is a UART output for servomotors on pin 8 with
a pull-up resistor. The electro-permanent magnet is controlled using PWM,
which is shifted up to 5 V using a level shifter (Figure 2.9).

LMZM33606RLXR step-down converter made by Texas Instrumens was
needed to step-down battery voltage to 12 V for servomotors. This converter
can accept up to 36 V at the input and outputs a fixed voltage (up to 20 V)
based on resistor R6. Resistor value in kΩ can be calculated using formula 2.1.
Where VOUT is the desired voltage value and VFB is a typical value VFB =
1.006 V [9]. LMZM33606RLXR can output 6 A maximum, which sufficient
for this application. In fact, the AX-12A servomotor draws 1.5 A maximum,
so the circuit is powerful enough to supply four AX-12A servomotors. That
means the same circuit can be used without any modifications for an additional
manipulator joint, a gripper with a servomotor, or other hardware in the
future.

R6 = 10 · (VOUT − VFB) (2.1)

Linear regulator MCP1825S-3302E (Figure 2.8 - LDO) was used to reduce
5 V from the drone to 3.3 V needed by STM32F042K6T6. Maximum current
draw is 0.5 A, more than enough for the microcontroller [10].

13



2. Hardware ......................................

Figure 2.8: KiCad schematic - part 1
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.................................2.5. Control Board Design

Figure 2.9: KiCad schematic - part 2
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2. Hardware ......................................

Figure 2.10: Designed PCB visualization

16



Chapter 3

Kinematics

In order to move the arm into the desired position, a base coordinate system
needs to be established (Figure 3.1). Assuming the UAV is in a level flight,
the base coordinate system has a Z-axis facing toward the ground, a Y-axis
facing towards the side of the drone, and an X-axis facing forward of the
UAV. The coordinate system origin lies at the intersection of the first joint
rotational axis and the bracket which mounts the first servomotor. This
coordinate system is particularly convenient for deriving inverse kinematics.
Nevertheless, this system is only a convention, and a position can be expressed
in any other coordinate system if one chooses to do so.

Inverse and forward kinematics derived in the following text is always
meant with respect to this coordinate system. Distances or angles in formulas
are always meant in millimeters or radians, respectively. Figure 3.2 shows
the manipulator in two positions defined by joint coordinates. Figure 3.2b
shows the positive direction of the joints.

17



3. Kinematics......................................

Figure 3.1: Manipulator base coordinate system

(a) : Θ1 = 0 ◦, Θ2 = 0 ◦, Θ3 = 0 ◦ (b) : Θ1 = 45 ◦, Θ2 = 45 ◦, Θ3 = 45 ◦

Figure 3.2: Manipulator in two positions

3.1 Manipulator Denavit-Hartenberg Parameters

Denavit-Hartenberg is a convention that can be used to designate reference
frames for each joint. By doing so, DH parameters can serve as a quick
and convenient manipulator description. Subsequently, it is trivial to derive
transformation matrices from one joint to the next and obtain formulas to
calculate end-effector position from joint coordinates (forward kinematics).

DH parameters can be used only for an open kinematic chain, which a
three axis RRR manipulator structure has [11]. Each link is characterized by

18



................................ 3.2. Direct Kinematics Task

four numbers (DH parameters) in a format shown by equation 3.1.

Ji =
[
αi ai Θi di

]
(3.1)

. αi is the angle between the Z-axis of the previous joint and the Z-axis of
the following joint. ai is the length of the link (euclidian distance of joint axis).Θi is the servo angle (joint coordinate - not a constant). di is the joint Z offset

DH parameters describing the manipulator are written in equations 3.2,
3.3, and 3.4.

J1 =
[
π
2 23 Θ1 56

]
(3.2)

J2 =
[
0 150 Θ2 0

]
(3.3)

J3 =
[
0 100 Θ3 0

]
(3.4)

3.2 Direct Kinematics Task

3.2.1 Introduction

Direct (also forward) kinematics is used to calculate end-effector position
and orientation from joints coordinates. For this specific application, forward
kinematics can be particularly useful to determine end-effector orientation
to decide which inverse kinematics solution is preferable. It is also used to
calculate the position of each link to find out whether it exceeds the defined
work region and causes a collision.

3.2.2 Link Frame Transformations

Using DH parameters introduced in section 3.1, it is trivial to derive forward
kinematics. Each transformation from one joint to the next is of the form

19



3. Kinematics......................................
shown by an equation 3.5. By simply plugging DH parameters into this matrix,
transformation matrices from each joint to the next joint are obtained. These
transformation matrices (link frame transformation) are used for collision
detection, and by multiplying them together, the forward kinematics is
achieved.

Ti =


cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)
sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

 (3.5)

Matrix 3.6 is the transformation matrix from base coordinate system to the
second joint frame.

T1→2 =


cos Θ1 0 sin Θ1 23 cos Θ1
sin Θ1 0 − cos Θ1 23 sin Θ1

0 1 0 56
0 0 0 1

 (3.6)

Matrix 3.7 is the transformation matrix from the second joint frame to the
third joint frame.

T2→3 =


cos Θ2 − sin Θ2 0 150 cos Θ2
sin Θ2 cos Θ2 0 150 sin Θ2

0 0 1 0
0 0 0 1

 (3.7)

Matrix 3.8 is the transformation matrix from the second joint frame to the
end-effector frame.

T3→E =


cos Θ3 − sin Θ3 0 100 cos Θ3
sin Θ3 cos Θ3 0 100 sin Θ3

0 0 1 0
0 0 0 1

 (3.8)

3.2.3 End-effector Position

By multiplying matrices in section 3.2.2, a transformation matrix from the
base coordinate system to the end effector is calculated. By applying such
transformation to the null vector in homogeneous coordinates (equation 3.9),

20



................................ 3.2. Direct Kinematics Task

an end-effector position (desired forward kinematics) is acquired (equation
3.10).

T1→2 · T2→3 · T3→E ·


0
0
0
1

 =


x
y
z
1

 (3.9)

xy
z

 =

23 cos Θ1 + 150 cos Θ1 cos Θ2 + 100 cos Θ3 cos Θ1 cos Θ2 − 100 sin Θ3 cos Θ1 sin Θ2
23 sin Θ1 + 150 cos Θ2 sin Θ1 + 100 cos Θ3 cos Θ2 sin Θ1 − 100 sin Θ3 sin Θ1 sin Θ2

150 sin Θ2 + 100 cos Θ2 sin Θ3 + 100 cos Θ3 sin Θ2 + 56


(3.10)

3.2.4 Using Link Frame Transformations for Collision
Detection

Collision with the drone must be avoided. Avoiding collision between the
end-effector and the drone is trivial. Simply check whether the end-effector
lies within the defined work region. However, that is not enough. The rest
of the manipulator also must be considered so that no collision can occur.
Manipulator structural parts can be checked for collision by checking the
positions of each revolute joint.

Joint 1 is rigidly connected to the mounting bracket. Therefore, it cannot
cause a collision because it is stationary with respect to the drone.

Joint 2 might interfere with the drone, but if that situation would occur
then joint 3 would collide with the drone first.

Joint 3 is the only thing that needs to be checked for collision (apart from
the end-effector) because it might exceed the allowed work region even if the
end-effector lies within the work region. Therefore, a collision check for joint
3 must be performed. By using transformations matrices in section 3.2.2,
it is possible to calculate the position of the third servomotor to check for
collisions. Transformation matrix from the base coordinate system to the
third joint frame is shown by equations 3.11 and 3.12.

T1→3 = T1→2 · T2→3 (3.11)
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T1→3 =


cos Θ1 cos Θ2 − cos Θ1 sin Θ2 sin Θ1 23 cos Θ1 + 150 cos Θ1 cos Θ2
cos Θ2 sin Θ1 − sin Θ1 sin Θ2 − cos Θ1 23 sin Θ1 + 150 cos Θ2 sin Θ1

sin Θ2 cos Θ2 0 150 sin Θ2 + 56
0 0 0 1


(3.12)

Deriving the desired position of the third joint axis center is analogous to
deriving the end-effector position. Applying the null vector in homogeneous
coordinates to the transformation calculates the position of the third joint
(equation 3.13). The third joint axis center position, based on joint coordinates
2 and 3, is defined in equation 3.14.

T1→3 ·


0
0
0
1

 =


x3
y3
z3
1

 (3.13)

x3
y3
z3

 =

23 cos Θ1 + 150 cos Θ1 cos Θ2
23 sin Θ1 + 150 cos Θ2 sin Θ1

150 sin Θ2 + 56

 (3.14)

3.3 Inverse Kinematics Task

3.3.1 Introduction

Inverse kinematics is a mathematical process of calculating joints coordinates
given an end effector position. It is needed to move the manipulator into
desired cartesian position. IKT of this specific manipulator has four solu-
tions. Therefore, end effector orientation is taken into consideration when
calculating inverse kinematics. A solution that points the magnet more to-
wards the ground is preferred because the manipulator is intended for object
manipulation. Figure 3.3 shows all possible solutions for end-effector position
(2, 0, 300).
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................................3.3. Inverse Kinematics Task

Figure 3.3: Possible solutions of inverse kinematics problem

For clarity sake assume a situation illustrated by the Figure 3.4.

End point

x

y

z

d = √(x2+y2)-23

h = z-56

√(d2+h2) = e

2th joint origin

Figure 3.4: Assumed situation

Keep in mind that the first joint angle has two solutions, as is mentioned
in section 3.3.2. Figure 3.4 assumes only one solution to keep things more
clear. The second solution of the first joint has a different origin of the second
joint. For this reason, different values of d and e need to be defined for both
solutions of joint 1.
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3. Kinematics......................................

h = z − 56 (3.15)

d1 =
√
x2 + y2 − 23 (3.16)

e1 =
√
d2

1 + h2 (3.17)

d2 =
√
x2 + y2 + 23 (3.18)

e1 =
√
d2

2 + h2 (3.19)

. (3.15) - h is the distance in z direction from the second joint axis center
to the end effector. h is a constant defined by chosen base coordinate
system and physical manipulator structure. (3.16) - d1 is the distance in the xy plane from the second joint axis
center to the end effector (valid only for the first solution of joint 1). (3.17) - e1 is the total distance from the second joint axis center to the
end effector (valid only for the first solution of joint 1). (3.18) - d2 is the distance in the xy plane from the second joint axis
center to the end effector (valid only for the second solution of joint 1). (3.19) - e2 is the total distance from the second joint axis center to the
end effector (valid only for the second solution of joint 1)

3.3.2 First Joint

θ
11

θ
12

End point

x

y

Figure 3.5: Top view (from the drone)
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................................3.3. Inverse Kinematics Task

Angle of the first servomotor depends only on x and y coordinate. Equations
3.20 and 3.21 are the two possible solutions of the first joint. Figure 3.5 is a
visualization of these two solutions.

Θ11 = atan2(y, x) (3.20)
Θ12 = atan2(−y,−x) (3.21)

3.3.3 Second and Third Joint

d

z

e = √(d 2+h 2)

θ
2

α

150

100

β

-θ
3

ɣ

d

z

e = √(d 2+h 2)

θ
2

100

150

θ
3

Figure 3.6: Two possible solutions of joints 2 and 3

For each solution of joint 1 exist two solutions of joints 2 and 3. That means
four solutions of the inverse kinematics problem in total.

Firstly, angles α, β, and γ (equations 3.22) need to be solved using the law
of cosines. Those angles are the same for both solutions of joints 2 and 3.
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3. Kinematics......................................
Once those angles are calculated, solutions for joints 2 and 3 are effortlessly
expressed in equations 3.23.

α = atan2(h, d) (3.22)

β = cos−1(−e
2 − 1502 − 1002

2 · 150 · 100 )

γ = cos−1(−1002 − 1502 − e2

2 · e · 150 )

Θ21 = α+ γ (3.23)
Θ22 = α− γ
Θ31 = β − π
Θ32 = π − β

3.3.4 Inverse Kinematics Solutions

As was already mentioned, four solutions of inverse kinematics exist.

Let P = (x, y, z) be an IKT input (desired end effector position).

Define variables for intermediate calculations (equations 3.24), that helps to
express final solutions very neatly.

h = z − 56 (3.24)

d1 =
√
x2 + y2 − 23

d2 =
√
x2 + y2 + 23

e1 =
√
d1 + h2

e2 =
√
d2

2 + h2

α1 = atan2(h, d1)
α2 = atan2(h,−d2)

β1 = cos−1(−e
2
1 − 1502 − 1002

2 · 150 · 100 )

β2 = cos−1(−e
2
2 − 1502 − 1002

2 · 150 · 100 )

γ1 = cos−1(−1002 − 1502 − e2
1

2 · e1 · 150 )

γ2 = cos−1(−1002 − 1502 − e2
2

2 · e2 · 150 )
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Then the four possible solutions (if they exist) can be elegantly expressed in
a form Si = [Θ1,Θ2,Θ3]. The solutions are formulated in equations 3.25.

S1 = [atan2(y, x), α1 + γ1, β1 − π] (3.25)
S2 = [atan2(y, x), α1 − γ1, π − β1]
S3 = [atan2(−y,−x), α2 + γ2, β2 − π]
S4 = [atan2(−y,−x), α2 − γ2, π − β2]

For x = y = 0 an infinite number of solutions exist. In this case position of
joint 1 can be arbitrarily chosen. This is handled by the function atan2(),
which either returns 0 or π and solves the singularity issue.

3.3.5 Choosing the Optimal Solution

Inverse kinematics is calculated in the ROS node responsible for controlling
the manipulator. The most optimal solution is picked and sent to the control
board. Due to the limited servomotor travel, it is very sporadic that all four
solutions are valid.

The first thing that is checked is whether the solution is within the travel
limit of the servomotors. Then a collision check is performed. Also, when
deciding which solution to choose end-effector angle is a factor. The purpose
of the robotic arm is manipulation with objects on the ground. Naturally, it
is desirable to keep the end-effector pointed towards the ground. Therefore,
for each IKT solution, an angle with the ground plane is calculated using a
formula 3.26.

φ = π

2 −Θ2 −Θ3 (3.26)

If φ = 0, then the magnet is pointed precisely towards the ground (assuming
the drone is in a level flight above level ground). A minimal value of |φ| is
desirable in order to have the end-effector in an optimal position.

After all these things are considered, a single inverse kinematics solution
is usually left (assuming that desired point is in the manipulator reach and
in servomotor travel limits). However, there can exist two solutions in some
positions that do not cause collisions and have the same angle with the
ground plane. When such a situation occurs, the ROS node remembers the
last position and chooses the solution that minimizes servo travel from the
last position.
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Chapter 4

Software

The UAV’s system is running on Robot Operating System. It was necessary
to implement software in ROS to allow controlling the manipulator and make
it compatible with the rest of the MRS system. Position request is made
in ROS environment, necessary calculations are performed, and the control
system creates messages and sends them to the created circuit with STM32
microcontroller. The control board interprets incoming messages, handles
servomotor movement and end-effector state.

Diagram 4.1 shows manipulator control system. Position request starts
in ROS environment by publishing on the relevant topic. The request is
read, IKT is calculated, collision check is performed, and byte array for serial
communication is created. This array is published to another node mrs_serial,
which is a ROS package created by the MRS group, responsible for handling
serial communication. The message is interpreted by STM32, and commands
to servomotors and end-effector are sent.
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Figure 4.1: Manipulator control system
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4.1 ROS Software

4.1.1 Indroduction

The control system of the drone is based on ROS architecture. It is a collection
of tools that are organized into so-called ROS packages. It is also distributed
under an open-source license which makes it ideal for the development of
robot applications [12]. This section will explain the core components of the
Robot Operating System, which are then used to control the manipulator.

. ROS nodes

ROS node is an executable within a ROS package that can be used for
various computation tasks. Multiple nodes can be combined together and
share data to build complex systems. Each node can publish messages
on a ROS topic. Other nodes then can subscribe to this topic and read
messages. Such an approach provides many advantages. Each node can
be dedicated to simpler tasks that reduce implementation complexity.
Also, potential errors will be isolated to the specific node and will not
propagate to the rest of the system [13].

Nodes can also provide or call services, which are explained in the
following text.. ROS topics and messages

Communication between nodes is done using ROS topics. The structure
of the message must be defined. This definition includes the name and
data type of the shared variables. Standard messages can be used, or
custom messages can be defined in msg file.

Nodes can send (or publish) messages on a topic, and another node can
subscribe to the topic to receive the message. Multiple nodes can be
connected to the same topic [12].. ROS services

Nodes can provide or call services. Services are a different way to
exchange data in ROS. By using a service, it is possible to call a function
within a node from outside. It is generally not recommended for long-
lasting tasks because the service caller expects a reply before the service
can be used again [12]. That makes services ideal for irregular and quick
tasks. For example, move an actuator, switching lights, take a picture
with a camera, etc.
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4. Software.......................................
In this application, a service is used to move the manipulator into a
parking position. Standard services can be used, but using a service
usually necessitates defining the request and reply in a srv file.

4.1.2 Manipulator ROS Package

START
main()

initialize

TOPIC
/uav1/serial/send_message
topic created by mrs_serial

sends message via serial port

park_service
service to park the manipulator

into predefined position

subscriber
reads commands from topic

publisher
create and publish message to

STM32
byte array

PARK MANIPULATOR

TOPIC /man_position
desired manipulator position

float x,y,z
bool magnet on

calculate_ikt()
calculates inverse kinematics

choose_solution()
choose an optimal solution
perform a collision check

Figure 4.2: Flow chart - manipulator control node

Diagram (Figure 4.2) shows how the manipulator control is done in ROS. The
node initializes a subscriber, publisher, and service for moving the manipulator
into a predefined parking position.

Subscriber creates a topic /man_position. To this topic, the desired position
is published by external nodes. When a request for new position is made
the function calculate_ikt() is called. Inverse kinematics is calculated, which
returns up to four solutions. Then function choose_solution() is called, where
the optimal solution is chosen as mention in section 3.3.5 and a collision
check is performed. If a position request is not valid because the manipulator
cannot reach such position or it causes a collision, then the last position is
restored on topic /man_position. If a valid solution exists, then function
choose_solution() returns it.

After that, a byte array is created and published to a topic /uav1/serial/send_message.
This is a topic created by node mrs_serial (ROS package created by MRS
group), which handles the communication via serial port.
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For testing purposes, a node that publishes to topic /man_position based
on keyboard input was programmed.

4.2 STM32

4.2.1 Indroduction

The designed PCB utilizes an STM32F042K6T6 microcontroller to receive and
interpret UART messages, controlling servomotors and the electro-permanent
magnet. The code was written in STM32CubeIDE using the HAL library.

STM32CubeIDE is a development tool that provides various features. It
provides various features such as code editor, debugger, or STM32CubeMX
tool. STM32CubeMX provides a graphical interface for easy configuration of
peripherals, clocks, timers, interrupts, serial communication, etc. It was used
to set up clocks of the microcontroller and automatically generate initialization
code for necessary features (UART, timer, DMA, etc.)

The HAL driver library provides a user-oriented API to simplify implemen-
tation. It provides an upper-level interface to initialize and control peripherals,
handle interrupts, timers, pulse-width modulation, DMA, etc. The advantage
of using this library is the relative simplicity of the implementation. However,
for optimal performance and advanced features, LL (low-level) drivers should
be used instead. [14]

4.2.2 STM32 Firmware

Firstly an initialization of all necessary features is done. UART1, UART2 (for
ROS messages and servomotors) instances are created and initialized. Correct
baud rate, mode, word length, parity, etc., is set. Peripherals are correctly
set as well as timers for PWM, which controls the magnet. Servomotors are
initialized, the maximum rotational speed is set. Also, the manipulator is
moved into a predefined parking position when the PCB circuit is powered
for the first time.
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Figure 4.3: Microcontroller pinout

Direct memory access (DMA) was established to receive messages from
ROS in a non-blocking manner. Direct memory access is a way of data
transfer without processor intervention. This approach gives performance
benefits [15]. Timer was also used for PWM generation with direct registry
control. The PWM pulse width is controlled by direct manipulation of a
registry value. Figure 4.3 shows the pinout in Device Configuration Tool.

Then the main while loop is entered. Received messages are directly written
into memory without processor intervention and are processed. Then the
necessary commands are sent to the servomotors. Only valid commands
should be received from ROS. However, the STM32 firmware also checks the
servomotor travel limits, which is redundancy to increase the safety of the
manipulator and protect the UAV from collisions. The magnet end-effector is
controlled by directly changing the registry value of the PWM timer. Diagram
4.4 shows the microcontroller program function.
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START
main()

initialize UART1, UART2,
DMA, PWM, peripherals and

servomotors

main loop

UART command
incoming command from ROS

Set PWM
end-effector control

Servomotor command
UART message

Figure 4.4: Microcontroller program diagram
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Chapter 5

Conclusion

The goal of this thesis was to design and develop a robotic manipulator. The
task was motivated by MBZIRC 2023 robotic competition, where drones will
compete in capturing stationary or moving objects. The task assignment had
multiple objectives:..1. Design a robotic arm that will allow safe manipulation with

objects below a UAV
A robotic arm with three revolute joints was the chosen architecture.
Dynamixel AX-12A servomotors were utilized as revolute joints. The me-
chanical structure was designed in Fusion360 CAD software. A prototype
was built using the hardware included with the AX-12A servomotors,
structural links from MDF, and 3D printed parts from PLA. The pro-
totype was put into test, and only minor changes were made for the
second version. The final version had structural links machined from
2 mm thick carbon fiber in order to decrease weight while maintaining
rigidity, and mounting brackets were printed from PETG plastic which
provides better properties than PLA...2. Design a suitable end-effector for the manipulator
An electro-permanent magnet was chosen as an end-effector. Used Open-
Grab EPM v3 electro-permanent magnet made by Nicadrone is capable
of up to 300 N of holding force while keeping very low power consumption
in a steady state. The magnet is mounted to the manipulator using four
screws and can be swapped for a different end-effector type if necessary.
The designed hardware can be used without any modifications to con-
trol a servo gripper, for example. Furthermore, implemented inverse
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5. Conclusion......................................
kinematics can be easily modified by changing parameters to move the
end-effector reference point...3. Implement a control system for the manipulator. Utilize the
provided STM32 microcontroller
Manipulator is controlled using ROS. A control node was implemented,
which reads desired position on a ROS topic, calculates inverse kinematics,
selects optimal solution. A collision check is performed, then a byte array
is created and published for another node that handles the communication
with the PCB.
A circuit with a custom-made PCB was designed, which receives com-
mands via UART, interprets them, and controls servomotors using half-
duplex UART and magnet end-effector using pulse-width modulation...4. Devise and implement an Inverse Kinematic Task for the ma-
nipulator
Direct and inverse kinematics task problems were introduced and solved.
Up to four solutions of inverse kinematics can exist. Because the ma-
nipulator is intended to manipulate objects on the ground, the optimal
solution is selected based on the end-effector attitude with the ground
plane. Simple collision avoidance was implemented by defining a bound-
ing box around the manipulator and restricting the movement of the
end-effector and the third joint inside this bounding box...5. Implement communication between a computer and the mi-
crocontroller in order to control the manipulator and the end-
effector from the Robot Operating System (ROS)
ROS tools created by the MRS group were used for the implementation
of communication through serial port. It was necessary to define a
custom message with all the needed information. The message includes a
boolean value for the end-effector state, the angles of all three joints, and
other data blocks such as a checksum, message ID, or message length.
Manipulator control ROS node creates a byte array a publishes it to the
correct topic. ROS node mrs_serial then sends it using a serial port.
STM32 microcontroller then receives the data and saves them using Direct
Memory Access, a way of data transfer without processor intervention
and thereby increasing performance. Data are then continuously read
from memory in a loop, and UART messages for servomotors are sent as
well as the PWM signal for the magnet end-effector.

In future work, it might be beneficial to use a servomotor with a different gear
reduction. Currently, the servomotor speed is limited to around 25% of the
maximal achievable speed. A different gear ratio would sacrifice unnecessary
speed capabilities and provide additional torque. Used Dynamixel AX-12A
servomotors could be swapped with a fully compatible AX-18A version, which
provides up to 20% higher peak torque while being only 1.3 grams heavier.
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Appendix B

List of Abbreviations

Abbreviation Meaning
UAV Unmanned Aerial Vehicle
MBZIRC The Mohamed Bin Zayed International Robotics Challenge
DOF Degrees of Freedom
RRR 3 revolute joints - manipulator structure
DKT Direct Kinematics Task
IKT Inverse Kinematics Task
RPM Revolutions per Minute
DH parameters Denavit-Hartenberg parameters
CAD Computer-aided Design
CNC Computer Numerical Control
MDF Medium Density Fiberboard
PLA Polylactic acid - material for 3D printing
PETG Polyethylene terephthalate glycol - material for 3D printing
ROS Robot Operating System
API Application Programming Interface
DMA Direct Memory Access
HAL Hardware Abstraction Layer
UART Universal Asynchronous Receiver-Transmitter
PWM Pulse Width Modulation
PCB Printed Circuit Board
LDO Low Dropout Regulator
EEPROM Electrically Erasable Programmable Read-Only Memory
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Appendix C

Supplementary Material

File robotic_manipulator_for_an_unmanned_aerial_vehicle_material.zip is
attached to the thesis. The content of this file is explained below.

Directory name Content
manipulator_parts STL files for 3D printing and DXF files of carbon fiber links
src/ros_package Manipulator ROS package
src/stm_firmware Microcontroller firmware
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