
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Procedural Generation of Videogame
Environments

Jan Kutálek

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
May 2021

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483778Osobní číslo:JanJméno:KutálekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačové hry a grafikaSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Procedurální generování prostředí pro videohry

Název bakalářské práce anglicky:

Procedural generation of videogame environments

Pokyny pro vypracování:
Zmapujte metody procedurálního generování 3D scén. Soustřeďte se na techniky vhodné pro videohry. Vytipujte metodu
vhodnou pro generování rozsáhlých prostředí typu bludiště. Metodu následně implementujte v programu Houdini. Vytvořte
nejméně čtyři procedurálně generovaná prostředí. Vyhodnoťte implementaci z hlediska výpočetní náročnosti v závislosti
na parametrech metody a velikosti generovaného prostředí. Vytvořte jednoduchou aplikaci (hru), která využije generovaná
prostředí v herním enginu. Vygenerovaná prostředí vyhodnoťte z hlediska jejich struktury a vizuální kvality v rámci
uživatelské studie.

Seznam doporučené literatury:
[1] Noor Shaker, Julian Togelius, Mark J. Nelson. Procedural Content Generation in Games. Springer International
Publishing. 2016.
[2] Hendrikx, Mark et al. Procedural Content Generation for Games: A Survey. In: ACM Trans. Multimedia Comput.
Commun. Appl. 9.February, pp. 1–22. 2013.
[3] Marco Niemann. Constructive Generation Methods for Dungeons. Seminar report, Munster University. 2015.
[4] Seth Teller, Carlo Séquin, Visibility Preprocessing for Interactive Walkthroughs, in Computer Graphics (Proc. Siggraph
'91), 25:61-69.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

doc. Ing. Jiří Bittner, Ph.D., Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 21.05.2021Datum zadání bakalářské práce: 11.02.2021

Platnost zadání bakalářské práce: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Jiří Bittner, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my colleagues for
sharing their experiences and hardships
while writing their theses. I would like to
thank two of my best friends for giving
me their time when I needed a distraction
or words of encouragement. From the bot-
tom of my heart, I would like to thank my
family, especially my mom and sister, for
their mental support. Most of all, I would
like to express my gratitude to my super-
visor, doc. Ing. Jiří Bittner, Ph.D., for
giving me his full support in my pursuit of
having a video game related topic for my
thesis, as well as for pointing me in the
right direction when I needed, for sharing
his understandings and wisdom, and for
having patience with me and encouraging
to push forward.

Declaration
I hereby declare that this thesis represents
my own work.

iv

Abstract
There are many features in games that
take a lot of time and resources to de-
velop. That is why this thesis is focused
on procedurally generated content, pre-
cisely dungeon environments, and gener-
ates video game levels using binary space
partitioning algorithm in Houdini Engine.

Keywords: BSP, Binary Space
Partitioning, Dungeon Generator,
Procedural Generation, Video Games,
Houdini

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.
Praha 2, Karlovo náměstí 13, E-421

Abstrakt
V herním průmyslu je spousta věcí, které
vyžadují hodně času a prostředků. Proto
se tato prace soustředí na procedurální ge-
nerování obsahu do video her, přesněji na
generování herních úrovních typu bludiště,
na které je použit algoritmus binárního
rozdělování prostoru a je implementován
v Houdini Enginu.

Klíčová slova: BSP, binární rozdělování
prostoru, generátor bludišť, procedurální
generování, video hry, Houdini

Překlad názvu: Procedurální
generování prostředí pro videohry

v

Contents
Project Specification iii
1 Introduction 1
1.1 Benefits of Procedurally Generated
Content . 1

1.2 Dungeons . 2
1.3 Games using Generated Content . 3
1.4 Aim of this Thesis 3
2 Procedural Generation of
Dungeon Levels 5
2.1 Binary Space Partitioning 5
2.2 Agent-based Dungeon Growing . . 6
2.3 Cellular Automata 7
2.4 Other Level Generation Algorithms 7
3 Houdini 9
3.1 Nodes . 9
3.2 Geometry . 10
3.3 Metadata . 10
3.4 Notable nodes 10
4 BSP Implementation 15
4.1 Setip . 15
4.2 Main loop 15
4.3 Face Division 17
4.4 Rooms . 22
5 Creating Corridors 25
5.1 Lines and Neighbours 25
5.1.1 Neighbors 26
5.1.2 Deleting Borders 26
5.1.3 Lines Merging 27
5.1.4 Floor of The Hallway 28

5.2 Connecting Rooms 31
5.2.1 Making Connections 31
5.2.2 Adding Vertices to Hallways
and Removing Borders 34

5.2.3 Adding Vertices From Hallways
To Other Hallways 36

6 Grouping, Extrusion, and
Materials 37
6.1 Groups . 37
6.2 Extrusion . 38
6.3 Materials . 39
7 Making Doors 41
7.1 Door Frames 41
7.2 Doors . 44

8 Results 47
8.1 Tests . 47
8.2 A Stress Test 49
8.3 Usable Limit 50
8.4 Unity 3D Test 52
9 Conclusion 53
9.1 What Was Achieved 53
9.2 Flaws and Possible Improvements 53
Appendix A Electronic appendix
content 55
Appendix B User manual 57
Bibliography 59

vi

Figures
1.1 Procedurally generated world in
Minecraft. Source Minecraft Fandom
[8]. 1

1.2 Procedurally generated map in
Rogue (source [7]). 2

1.3 Procedurally generated map in The
Binding of Isaac 3

2.1 BSP Diagram 5
2.2 Levels from BSP 6
2.3 Cave generation using a Cellular
automata algorithm (source [1]). . . . 7

2.4 A city generation using City
Engine. Source [9] 8

3.1 An example of 3 nodes wired
together. 9

3.2 A visualized example of 3 nodes
wired together in the viewport. . . . 10

3.3 All nodes used in this thesis. . . . 11

4.1 The main BSP Loop. 17
4.2 A node graph in Houdini for
separating edges of a primitive . . . 19

4.3 A node graph in Houdini of an
If-Switch system for BSP algorithm 20

4.4 Cut primitive’s line for BSP. . . . 20
4.5 Example of BSP result. 21
4.6 A whole node graph of a BSP
algorithm in Houdini. 21

4.7 Node graph of rooms transform . 23

5.1 Node graph of rooms transform . 25
5.2 A red missing patch on a corner of
four faces . 28

5.3 A rectangle with a pivot point P. 29
5.4 A node graph of shortening the
hallway faces. 30

5.5 An example of generated hallway
connected to rooms. Blue rectangles
are the rooms, green ones are the
hallway areas and the red rectangles
are the connections. 32

5.6 Diagram of a hallway after deleting
its borders. 34

6.1 Example of room grouping in
Unity 3D. 38

6.2 Example of an extruded level. . 39
6.3 Example of textured floors. . . . 40
6.4 Example of textured walls. 40

7.1 Houdini graph of door frame
creating. 42

7.2 Door frames visualization. 43
7.3 The complete Houdini node graph
of door frame and door creation. . 44

7.4 Doors with frames. 46

8.1 One example of each test settings 49
8.2 Stress test room layout. 50
8.3 The biggest generated dungeon. 51
8.4 A small game with a ball
wandering around a generated
dungeon. 52

vii

Tables
8.1 Table of tested settings and their
parameters . 47

8.2 Test settings and results. 48
8.3 Stress test parameters and results 50
8.4 Limit test parameters and results. 51
8.5 Parameter settings for Unity 3D
test. 52

viii

Chapter 1
Introduction

Procedural content generation in games refers to the creation of game content
automatically using algorithms [4]. Many kinds of content can be generated:
levels, items, characters, textures, quests, music, and others. Each can play a
crucial role in different kinds of game genres and situations. Well generated
non-player characters and narrative can be a different and unique experience
for every player, which can be, for example, seen in the Nemesis System in
a game Middle-Earth: Shadow of Mordor. However, procedural generation
is often used for game objects such as vegetation, terrain, and various level
generators.

1.1 Benefits of Procedurally Generated Content

There are many reasons to use procedurally generated content, and it can
save a lot of development time and resources. It is not even needed to use
the generated content and can be just used as an inspiration. Randomization
can also help with replayability - games such as Minecraft, seen in figure 1.1,
and Terraria throw each player into different generated worlds. This brings
everyone a completely unique experience and may make the player play again
after finishing the game because they will play in a different world.

Figure 1.1: Procedurally generated world inMinecraft. Source Minecraft Fandom
[8].

1

1. Introduction
Nevertheless, in games, it is not usually desired to have the content gen-

erated totally randomized. Therefore it is aimed for algorithms to have
parameters that can further adjust the results. Such parameters can be
anything from a size of a car wheel to a number of different-looking planks in
a wooden bridge. The number of parameters changes the level of control that
the user has, and it is usually good to have at least a couple of them, but at
the same time, too many of them can bring more complexity in the creation
of desired generated object, and it can also be desired for the parameters to
change only a local scope of their working area.

Replayability and procedural content go hand in hand with one specific
genre - rogue-like, named after a game called Rogue, which was made back in
the early-1980s. Rogue introduced a perma-death concept - once the player
dies, he loses everything and has to start all over again. This required a
lot of content to keep the player engaged as replaying the completely same
game again would become dull real quickly, but at the same time, creating
that much content with perma-death as one of the genre-defining concepts
by hand would be either impossible or excessively time-consuming. That is
where procedural generation turned out to be the best solution for both the
developer and the player. See figure 1.2 for an example of a generated level
in Rogue.

Figure 1.2: Procedurally generated map in Rogue (source [7]).

1.2 Dungeons

A dungeon in the real world is where prisoners were held captive, usually
underground, and were present primarily in the medieval age associated
with castles. However, a dungeon in games is referred to as a labyrinth
area where the player enters at one point and dives in to explore various
rooms, encounters enemies, and finds chests as a game reward. This idea
probably originated from the famous tabletop game Dungeons & Dragons.

2

............................ 1.3. Games using Generated Content

These dungeons are very popular in various games and game genres, and even
dungeon-crawler, a subgenre of role-playing games, was created.

1.3 Games using Generated Content

Besides already mentioned games, there are many games that use procedural
content. Diablo - a successful action role-playing game, uses generated
dungeon and cave system, Spelunky - a popular indie 2D platformer, creates
levels in a 2D world. The Binding of Isaac, yet another popular 2D indie
game, but in a top-down view, is a rogue-like game that generates simple level
layouts but changes the room’s content. Furthermore, Rimworld is a sci-fi
colony simulation game where in-game events are generated procedurally. Of
course, there are many more, and it is impossible to mention them all.

Figure 1.3: Procedurally generated map in The Binding of Isaac

1.4 Aim of this Thesis

The plan is to create a dungeon layout using one of the procedural algorithms
- the Binary Space Partitioning, to change the way generated rooms are
connected to achieve a more original layout with more user control, and
finally, extruding the layout into 3D space. All of it will be implemented
in Houdini, a modeling and animation software known for its procedural
generation usage in the industry. This can provide both a useful set of tools
and its own limitation and an extra challenge for the author to learn in new
software.

3

4

Chapter 2
Procedural Generation of Dungeon Levels

There are many interesting ways of procedurally generating video game levels,
and all of them have their advantages and disadvantages, as well as their
use cases. This thesis picked just one of them to implement but will briefly
mention others too. They are all talked about in more detail in Procedural
Content Generation in Games [1].

2.1 Binary Space Partitioning

The thesis will solely focus on a Binary Space Partitioning (BSP) [14] al-
gorithm, which is used to create random rooms for procedurally generated
levels for games. BSP recursively divides space into two subsets. Each subset
then can be represented in a BSP tree structure, where each node represents
a subset before division and leaves represent the final space.

Figure 2.1: BSP Diagram

A straightforward way of making rooms out of the subsets is to take random
2 points in each cell, one top left and one down right, make a rectangle to
represent a room. To then connect them, the BSP tree can be used to
determine which room to connect by connecting every two leaf nodes with
the same parent, making them a new subset area, and continuing the same

5

2. Procedural Generation of Dungeon Levels
recursive algorithm by looking at the new areas as the new leave nodes as
seen in figure 2.2. Connected corridors are then seen as part of the subset,
and other corridors can be connected via them.

This approach guarantees that all rooms are connected but removes intuition
and control over the look of the level; therefore, this method does not use the
BSP tree to connect the rooms. Instead, this thesis uses the lines between
rooms (white spaces in figure 2.1) to generate the main hallway and then
connect the rooms all together.

Figure 2.2: Levels from BSP

2.2 Agent-based Dungeon Growing

The agent-based approach uses a single agent that digs through a grid. It
starts by digging a rectangle, then chooses a direction in which it continues
to dig a corridor, and then it either continues digging the corridor or creating
another room

The agent-based approach uses a single agent that digs through a grid. It
starts by digging a rectangle, then chooses a direction in which it continues

6

.................................. 2.3. Cellular Automata

to dig a corridor, and then it either continues digging the corridor or creating
another room Agent-based algorithms usually create more chaotic layouts
rather than systematic ones that the BSP does. The agent’s AI can be either
deterministic or stochastic, rooms can be allowed to intersect, and the agent
can either have and use the knowledge of the already generated layout, or it
can dig entirely blindly. These parameters are then used to produce different
levels.

2.3 Cellular Automata

A cellular automaton uses a set of rules in an n-dimensional grid to change its
states iteratively based on its neighbors. The grid is usually 1 or 2 dimensional.
The most simple one is making a 2D layout with states either off or on. These
states can be interpreted as space or a wall. The final look is dependent on
the set of rules, number of iteration, and the state of the grid at the beginning
but is usually used for cave layouts. However, a cellular automaton is not
only limited to level generation; a popular example is Game of Life [10].

Figure 2.3: Cave generation using a Cellular automata algorithm (source [1]).

2.4 Other Level Generation Algorithms

Several other algorithms can be used for level creation, one of them being
Grammar-based dungeon generation. An example of a grammar-based ap-
proach is Cite Engine, that creates cities of any complexity, see figure 2.4. It
is also possible to use Fractals or Noise to generate a terrain environment.
Grammars, more specifically L-Systems, can then be used to generate various
vegetation for such areas or can be used to generate plants as a decoration
for dungeon rooms.

7

2. Procedural Generation of Dungeon Levels

Figure 2.4: A city generation using City Engine. Source [9]

8

Chapter 3
Houdini

Houdini is a 3D animation software application developed by Toronto-based
company SideFX. It is especially great for creating procedural content, which
is why it has been chosen for this work.

3.1 Nodes

Houdini utilizes a node-based procedural workflow that makes it easy to
work with. Each node represents an operation, and it is possible to traverse
through each node to see its result, as well as it is possible to connect one
node with several others as means of reusing older parts’ results.

In figure 3.1, there are three nodes. The first Grid node creates a grid.
The other two are Transform nodes that transform the grid. The former node
scales the grid, and the latter translates it. In addition, the translating node
is marked blue, which displays it, and the Grid node is marked pink, which
displays it as a reference in a wireframe mode. The final view is in figure 3.2,
reference grid on the bottom, the current scaled and translated grid on the
top.

Figure 3.1: An example of 3 nodes wired together.

9

3. Houdini

Figure 3.2: A visualized example of 3 nodes wired together in the viewport.

3.2 Geometry

Geometry in Houdini is represented through 3 main components - Points,
Vertices and Primitives.. A point is simply a point in space as defined by four numbers (X, Y, Z,

W).. A vertex is a reference to a point.. Primitives use vertices to reference points. For example, the corners of
a polygon, the center of a sphere, or a control vertex of a spline curve.
Primitives can share points, while vertices are unique to a primitive [6].

3.3 Metadata

To work with the geometry procedurally, there is a need for various data
to work with during the whole generating process. In Houdini, such data
is called attributes and can be stored into the geometry - into the points,
vertices, and attributes. In addition, it is also possible to store attributes into
Detail, which is a storage area shared for the whole geometry.

There are several attribute types to work with. The most used ones are
int, float, string, and vector of varying dimensions of 2, 3, and 4. In addition,
it is also possible to work with arrays that are dynamic.

Examples of attributes can be point or primitives’ ID, vertex position P,
and of course, any user-defined such as Area that can be calculated using the
Measure node.

3.4 Notable nodes

There are dozens and dozens of nodes in Houdini; luckily, it is not needed to
know all of them. In this project, there is a total number of 26 nodes used.
This section will briefly introduce them; they can all be found in figure 3.3.

10

.................................... 3.4. Notable nodes

Figure 3.3: All nodes used in this thesis.

. For-Each

For-Each is a node that allows us to iterate. It is composed of two
subnodes - For-Each_Begin and For-Each_End. In addition, it is also
possible to create a For-Each_Metadata subnode that stores the current
iteration number. It is possible to iterate over few options: points,
primitives, and by count. Moreover, there is a gathering method to be
set - Feedback Each Iteration that outputs the last iteration of the loop.. Attribute Create/Copy/Delete
Creates/Copies/Deletes an attribute from geometry, the type of at-
tributes can be selected. Attribute Copy copies attributes from one
geometry to another..Group Create/Copy/Delete
Analogical to the attribute variation, but instead groups the selected
geometry.. Add
Adds Points or creates Polygons from selected points..Measure
Measures the area, the perimeter, the centroid of the geometry, and few
others too that were not used in this work.. Carve
Carve slices, cuts or extracts points or cross-sections from a primitive.

11

3. Houdini
. Clean

Clean node consolidates points, removes duplicates, removes unused
points, or can reverse winding.. Primitive Wrangle
Runs a VEX snippet that can modify the geometry, add or change the
attributes. It is iterated over primitives, but can the iteration can be
changed to points, vertices, or even whole geometry, in which case it
can iterate a defined number of times. The node uses a VEX language,
which is very similar yet slightly different from the C language.. Reverse
Reverses the order of vertices in primitives..Grid
Creates a grid geometry.. Switch-If
Has two inputs and passes one depending on a condition. There can be
multiple conditions set and test various expressions, attributes value, or
element count. If one of the inputs is not connected, empty geometry
can pass through..Merge
Merges any number of geometry inputs into a single geometry.. Transform
Transforms the geometry using translation, rotation scale, or shear. The
pivot can be changed.. Delete
Deletes the specified geometry.. Extract Centroid
Extracts the centroid of the geometry.. Fuse
Fuses points in the geometry based on its distance.. Copy and Transform
Duplicates the geometry and transforms in the same fashion as the
Transform node.. Null
Null node does nothing essentially but can be used as a place holder. It
is possible to change the parameter interface of every node, including
the null node. Therefore it can be used as a node that holds all the
parameters that change the procedural generation.

12

.................................... 3.4. Notable nodes

. PolyExtrude
Extrudes the geometry, either in the direction of primitive normals or
point normals. Several outputs can be selected, the extruded sides, front,
and bottom primitives.. UV Texture
Assigns uv texture coordinates to the geometry..Material
Assigns material to the geometry.. Convert Line
Converts the geometry from faces to lines.

13

14

Chapter 4
BSP Implementation

This chapter takes the introduced BSP algorithm shown in figure 2.1 and
explains the implementation in Houdini. It creates a square face and divides it
into several subparts using an iterative version of BSP. The following sections
discuss the Set-Up, the Main Loop with the partitioning process, and, finally
creating room areas out of them.

4.1 Setip

As BSP operates on a rectangle, a square is used as the starting geometry.
Moreover, a placeholder for parameters is needed. To create a square in
Houdini, a Grid node is used with rows and columns set to 2. After that, a
Null node is created separately; parameters will be added here when needed
throughout the rest of the project.

4.2 Main loop

The core of the BSP algorithm is its recursive partitioning. As the author
did not find a way to recursively connect nodes in Houdini, the main loop
was adjusted into an iterative version using two for loops. The inner loop
iterates over each primitive and divides it accordingly. The outer for each
loop iterates n number of times where n is a large number.

As this loop would run forever, a stop condition is set. That is why an
attribute leaveLoop is needed beforehand that will be read from. In the inner
loop, then the division algorithm will be held, but to add more control over
the result, a new parameter minArea is set. The division will be held only if
the primitive’s area is at least minArea large.

If all primitives’ areas are less than minArea then the loop must end. That
is why leaveLoop is set to true in the outer loop, and if any primitive is
divided, it is set to false. The outer loop then ends if all primitives are

15

4. BSP Implementation
smaller than minArea.

Algorithm 1: Main Loop
1 bool leaveLoop = false;
2 for (int i = 0; i < n and !leaveLoop; i++) {
3 leaveLoop = true;
4 foreach Face ∈ Faces do
5 if Face > minArea then
6 leaveLoop = false;

// divide Face

This algorithm is replicated by first creating an Attribute Create node
and renaming the attribute to leaveLoop, integer is used as there are no
booleans in Houdini. Then making a For-Each, setting it to iterate By
Count with a large enough number of iteration, 99999999 was used in the
implementation. Primitive Wrangle node follows with a single line of code
setdetailattrib(0, "leaveLoop", 1);. This will set the leaveLoop to
1. It continues with another For-Each node, this time set to iterate over
primitives.

Now to check the primitive’s area, a Measure node is added for the calcula-
tion. Then an If-Switch node is used to check the area condition. This node
is then duplicated to create another branch, but this time with a negated
condition.

One branch is left blank, as its only purpose is to not lose the primitive
that is already done, but the splitting branch has one more Primitive Wrangle
node that sets the leaveLoop to 0. Finally, both branches are merged together
with a Merge node. The node system, together with the first set-up, can be
seen in figure 4.1.

16

.................................... 4.3. Face Division

Figure 4.1: The main BSP Loop.

4.3 Face Division

With the pseudo-recursion working, it is division time. The division part can
be broken down to separating edges, taking a parallel pair and cutting each
edge from one pair. This creates two new pairs for the new primitives. As
the vertices are actually the most important, there is no need to create the
middle edge, and it is enough to take all the vertices, order them correctly
and create new faces.

Furthermore, it is important to decide the cut direction. At first thought, it
would be desired to be completely randomly chosen, but it will create layouts
not good in terms of level design - some of the faces will be too long and
narrow. That is why a condition check is added. If the shape is similar to a
square, choose randomly; if not, cut the wider edge. The shape check is done
through the edges’ ratio. The minimum required ratio will also serve as a
new parameter Ratio.

With the direction decided, cutting it remains. However, it may not be
desired to slice the face too close to its vertices, as this would create too long

17

4. BSP Implementation
and narrow divisions again. Thus, 2 new parameters are added - minCut and
maxCut, where: 0 < minCut < maxCut < 1. These parameters then define
the edge ratio cut limit and the cut position is randomly selected in the range
(minCut,maxCut).

Finally, to get different results, a seed will be defined as a parameter called
BSPSeed. This seed is used in the random direction decision as well as the
cut ratio. To avoid getting same outcomes, this seed is multiplied by the
primitive’s ID.

Algorithm 2: BSP Algorithm
1 bool leaveLoop = false;
2 for (int i = 0; i < n and !leaveLoop; i = i++) {
3 leaveLoop = true;
4 foreach Face ∈ Faces do
5 if Face > minArea then
6 leaveLoop = false;
7 verticalLines[] = GetVerticalLines(Face);
8 horizontalLines[] = GetHorizonalLines(Face);
9 Line linesToCut[];

10 Line otherLines[];
11 float currentRatio = getRatio(verticalLines,

horizontalLines);
12 if currentRatio > Ratio then
13 if random(BSPSeed ∗ Face.id) > 0.5 then
14 linesToCut = verticalLines;
15 otherLines = horizontalLines;
16 else
17 linesToCut = horizontalLines;
18 otherLines = verticalLines;
19 else
20 linesToCut = maxLen(horizontalLines, verticalLines);

// gets longer lines
21 otherLines = minLen(horizontalLines, verticalLines);

// gets shorter lines
22 Line newLines[] = cutLines(linesToCut);
23 createNewFaces(newLines, otherLines);
24 delete(Face);

Transferring the algorithm into a node graph requires a bit more work
and can look a bit confusing. Therefore the nodes will be colored at the end
for better visualization. To start with edges separation, the primitive needs
to be separated into lines. A carve node is used for this, following a set of
Delete nodes as seen in figure 4.2. The two branches are symmetrical, just
inverted the first selection. Starting with the first Delete node, it is set to
delete by range and to delete every other primitive. Because the primitives
are guaranteed to be order clock-wise, opposite lines are deleted. The node
then branches again with two more Delete nodes. This time, one deletes the

18

.................................... 4.3. Face Division

0th primitive, and the other deletes the 1st primitive. Each Delete node now
holds one edge, which is equivalent to lines 6 and 7 in the BSP Algorithm [2].

Figure 4.2: A node graph in Houdini for separating edges of a primitive

Following line 10, to get the current ratio, the length of the edges is
calculated using two Measure nodes. The lengths are stored in attributes
called Width and Height. As for the first if statement, several If-Switch
nodes are used, four for each edge and four again for its negation. The
condition looks as follows: min(Width, Height) / (max(Width, Height))
> Ratio. As it is possible to reference the test, only one If-Switch node has
the condition, and others reference it. This is the first row with green nodes
in figure 4.3. The following row is a set of two of the exact same node graph
system, but this time with a different condition. The condition this time
implements line number 12 in the BSP Algorithm. BSPSeed is referenced
from the control node and Face.ID is referenced from the For-Each node’s
Metadata node, where the iteration number is stored.

The assigning part is done with Merge nodes, perpendicular pairs of edges
are merged, which substitutes the lines 13, 14, 16, 17, 19, and 20. The
four final merged nodes then represent two pairs of edges; the first two are
linesToCut, the latter otherLines.

19

4. BSP Implementation

Figure 4.3: A node graph in Houdini of an If-Switch system for BSP algorithm

Each node from the first pair is connected into two Carve nodes. The first
Carve node has its First U value set to a random value n between minCut
and maxCut, which are new parameters added to the control nodes and where
0 < minCut < maxCut < 1. This shortens the line by the number n. The
other connected Carve node has set the Second U to a value 1− n, as this
shortens the edge in the opposite direction. The two new lines are visualized
with a different color in figure 4.4

Figure 4.4: Cut primitive’s line for BSP.

Finally, with the new edges created, they are merged together with the
other previous lines to form two new faces. This is done with a combination
of a Merge node, inputting respective lines anti-clockwise, using a Clean node
to remove duplicate points, and creating the making a face with an Add
node. As this is required for both of the two new faces, they are also merged
together, cleaned of the duplicate points, and wired back into the for each
loop. A test example result can be seen in figure 4.5 and the whole graph in
Houdini in figure 4.6.

20

.................................... 4.3. Face Division

Figure 4.5: Example of BSP result.

Figure 4.6: A whole node graph of a BSP algorithm in Houdini.

21

4. BSP Implementation
4.4 Rooms

Rooms from the divided space are created by scaling down each room. The
scale defines the width of the wall, but since this is something that can
be helpful to have as a parameter, it is introduced as such as WallWidth.
However, because scaling is a done with percentages, a formula to calculate
the percentage is needed. Because edges of all faces are parallel with x and
z-axis, scaling in each direction will be done. Since x · length = newLentht,
where x is wanted scale factor, and newLength = length − 2 · wallWidth,
because a wall is on both sides, then x = length−2·wallW idth

length . The sides are to
be scaled down using this equation with their respective line lengths.

Houdini implementation is pretty straightforward. It takes the divided
space from the partitioning process and runs a for-each loop with the For-
Each node. In this, it branches out into two directions. One is for calculating
only, and the other uses a Transform node for scaling.

The first branch uses an Extract Centroid node to get the centroid for each
face, as it would transform the face in respect to the zero vector otherwise,
and then continues with a Carve node to get edges of the primitive, and then
two series of double Delete nodes to separate a single edge in both directions,
the edge isolation is analogical to the edge separation process in the previous
section. Both perpendicular edges are then wired to a Primitive Wrangle
node that is set to iterate just once.As this node can be wired with multiple
nodes, it is used to calculate the length of both edges in a single node and
correctly stored since it is also required to know what direction length is. For
this xLen and zLen attributes are used, and a condition checks whether the
edge’s points have equal x or z coordinate. All can be seen in pseudocode 3.

Algorithm 3: Calculating primitive’s dimension
1 float ε = 0.001;
2 float xLen;
3 float yLen;
4 vector edgeVertices1[] = getVertices(input[0]);
5 vector edgeVertices2[] = getVertices(input[1]);
6 if abs(edgeVertices1[0].x - edgeVertices1[1].x) < ε then
7 xLen = distance(edgeVertices2);
8 yLen = distance(edgeVertices1);
9 else

10 xLen = distance(edgeVertices1);
11 yLen = distance(edgeVertices2);

The other branch uses the Transform node to scale down the primitive
using the formulas x = xLen−2·wallW idth

xLen and z = zLen−2·wallW idth
zLen respectively,

and translating the pivot to the primitive’s centroid. See the figure 4.7 for
the cmoplete graph in Houdini.

22

....................................... 4.4. Rooms

Figure 4.7: Node graph of rooms transform

23

24

Chapter 5
Creating Corridors

This chapter focuses on connecting all the rooms together. As discussed in
chapter 2, there are many ways to connect rooms, a main hallway is used
for this project. To create a main hallway, the edges of the divided space
are used as a guideline and attached to the rooms. Attaching the hallway to
the rooms requires calculating neighboring the neighboring first. Once it is
obtained, the rooms are connected to the main hallway.

5.1 Lines and Neighbours

Getting the edges is very simple in Houdini, and a Convert Line node does
all the work. The graph from figure 2 is wired into it. However, if an edge
has three or more faces neighboring, then the edge is actually made of many
sub-edges after converting to lines. In example 5.1, the faces A, B, and C all
have one common edge. However, each face has its own individual edge - A
has the red one, B has the green one, and C has the blue one. Therefore they
will be unified. However, first, the vertices of the edges will be used to obtain
the relationships between edges and faces.

Figure 5.1: Node graph of rooms transform

25

5. Creating Corridors...................................
5.1.1 Neighbors

To get each edge its neighboring faces, all vertices from the edge are checked
with all faces. As there will never be an edge with more than two faces, it is
used as an optimization.

Algorithm 4: Finding neighbouring faces for edges
1 foreach edge ∈ edges do
2 int commonVertices = 0;
3 foreach face ∈ faces do
4 foreach edgeV ertex ∈ edge.vertices do
5 foreach faceV ertex ∈ Edge.V ertices do
6 if edgeV ertex == faceV ertex then
7 commonVertices++;
8 break;

9 if commonVertices == 2 then
10 edge.faces.push(face);
11 if edge.faces.size() == 2 then
12 break;

In Houdini algorithm 5 is written in VEX code using the Primitive Wrangle
node, wired in both, the edges and the faces, and the faces are saved are then
saved in the edges geometry using new primitive attribute faces.

5.1.2 Deleting Borders

Having the neighbours set, the edges are to be merged. However, few lines
will be deleted as this thesis takes having a hallway around the outer rooms
as undesirable. Therefore these lines will be deleted by checking their vertices
coordinates.

The outer edges are deleted if they have their vertices on the original
primitive square, which is checked by comparing all vertices’ x or z components
to the half of the original square’s width. If both coordinates are, the vertex
is deleted, as it is a corner; if only one coordinate is, it is marked as a border
and later used for the edge deletion as well as for shortening the corridors in
the following section.

Algorithms 5 and 6 are implemented using two Primitive Wrangle points,
the former iterating over points and the latter iterating over primitives. The
border property is stored in a point attribute.

26

................................. 5.1. Lines and Neighbours

Algorithm 5: Finding border points and deleting corners
1 float ε = 0.001;
2 foreach vertex ∈ vertices do
3 if abs(vertex.x ± width / 2) < ε and abs(vertex.z ± width / 2) <

ε then
4 removeVertex(vertex);
5 else if abs(vertex.x ± width / 2) < ε or abs(vertex.z ± width /

2) < ε then
6 vertex.border = true;

Algorithm 6: Deleting border edges
1 foreach edge ∈ edges do
2 bool delete = true;
3 foreach vertex ∈ edges.vertices do
4 if vertex.border == false then
5 delete = false;
6 break;
7 if delete == true then
8 deleteEdge(edge);

5.1.3 Lines Merging

For avoiding duplicates and optimizing extrusion later, all lines that are
parallel and intersecting will be merged. The exception are edges that only
share a single point, these lines are only touching, and if there were to be
a cross - four different lines would share the single point, it would create a
cross that in the future extrusion would create a walled-off cross. However,
in it is guaranteed that all other edges merge because unless a point has
four common faces, it is either a final edge or intersects with a different edge.
Furthermore, this merging will be done recursively using a pseudo-recursive
iterative version, with the same principles as in the BSP algorithm.

The implementation in Houdini is done with an Attribute Create node
to create the leaveLoop check, following a For-Each node that serves as an
infinite for loop with the leaveLoop set as a stop condition, and finally a
Primitive Wrangle node for the code.

27

5. Creating Corridors...................................
Algorithm 7: Merging lines
1 bool leaveLoop = false;
2 for (int i = 0; i < n and !leaveLoop; i++) {
3 leaveLoop = true;
4 sort(edges);

// sort by length
5 for (int e = 0; e < edges.size(); e++) {
6 for (int otherE = e; otherE < edges.size(); otherE++) {
7 if areIntersect(e, otherE) and areParallel(e, otherE) then
8 mergeFaceAttribute(e, otherE);
9 mergeEdges(e, otherE);

10 remove(edges, otherE);
11 otherE–;
12 leaveLoop = false;

5.1.4 Floor of The Hallway

The floor is created by duplicating the lines and translating them in both
perpendicular directions in the xz plane. As this requires information of
line direction, which will be needed later too, it is added as a new attribute
orientation, equal to either x or z. The width of the corridors is a new
parameter CorridorWidth. Since the neighboring corridors would overlap
because they are tangents to each other, each corridor is squished in the
opposite direction by scaling down that way. This, however, creates an empty
space when there is a corner of four faces, see figure 5.2. For this reason, for
each point that is part of exactly four faces, a square patch is created in the
middle.

Figure 5.2: A red missing patch on a corner of four faces

28

................................. 5.1. Lines and Neighbours

Algorithm 8: Creating main hallway floors
1 float ε = 0.001 foreach edge ∈ edges do
2 Edge duplicatedEdge = EdgeCopy(edge);
3 string orientation;
4 if abs(edge.vertices[0].x - edge.vertices[1].x) < ε then
5 edge.vertices[0].x += CorridorWidth / 2;
6 edge.vertices[1].x += CorridorWidth / 2;
7 duplicatedEdge.vertices[0].x -= CorridorWidth / 2;
8 duplicatedEdge.vertices[1].x -= CorridorWidth / 2;
9 else

10 edge.vertices[0].z += CorridorWidth / 2;
11 edge.vertices[1].z += CorridorWidth / 2;
12 duplicatedEdge.vertices[0].z -= CorridorWidth / 2;

duplicatedEdge.vertices[1].z -= CorridorWidth / 2;
13 vector faceVertices[];
14 push(faceVertices, edge);
15 push(faceVertices, duplicateEdge);
16 Face face = addFace(faceVertices);

This is implemented using a Primitive Wrangle node; however, there is
one problem with the new primitive - the vertices are not guaranteed to
be ordered right. That is why a new algorithm for ordering the vertices is
introduced. If the face is convex, any point in the middle of the face can be
taken as a pivot. Then any vertex is taken together with the pivot, and they
make a pivot line. After that, take each of the other vertices, connect it with
the pivot and calculate an angle between this line and the pivot line. See
figure 5.3; there are points A, B, C, and D, a pivot P, and a red line as the
pivot line. If α is the angle between the pivot line and the B-P line, β is the
angle between the pivot line and the C-P line, then α < β, analogically for
all the other lines. Descending sort by angle provides anti-clockwise points.

Figure 5.3: A rectangle with a pivot point P.

29

5. Creating Corridors...................................
Algorithm 9: Ordering primitive’s vertices
1 vector pivot = {0, 0, 0};
2 foreach vertex ∈ vertices do
3 pivot += vertex;
4 pivot /= vertices.size();
5 vector firstVertex = vertices[0];
6 firstVertex.angle = 0;
7 for (int i = 1; i < vertices.size(); i++) {
8 vector v = vertices[i];
9 v.angle = angleBetween(firstVertex - pivot, v - pivot);

10 sort(vertices);

Taking all the corridor floors now, it is needed to shorten them in their
respective directions. This is a slightly different variation of the graph in
figure 4.7. It is expanded in the left branch by 2 Switch-If nodes, each having
its own Transform node, and then merging together with a Merge node, see
figure 5.4. The Switch-If nodes check the orientation. The Transform nodes
scale down the corridor areas in their respective directions.

Figure 5.4: A node graph of shortening the hallway faces.

Finally, square patches are implemented by taking all points that belong
to four primitives, making three duplicates of this point, and transforming

30

.................................. 5.2. Connecting Rooms

them to corners of a square. Because the patches are implemented separately
in a different branch, all other points are deleted. A Primitive Wrangle node
is used with the following algorithm 10.

Algorithm 10: Square patch creation
1 foreach vertex ∈ vertices do
2 if vertex.faces.count() != 4 then
3 deleteVertex(vertex);
4 else
5 vector patchVertices[];
6 vector vertex1 = vertex2 = vertex3 = vertex;
7 vertex.x += CorridorWidth / 2.0;
8 vertex.z += CorridorWidth / 2.0;
9 vertex1.x -= CorridorWidth / 2.0;

10 vertex1.z += CorridorWidth / 2.0;
11 vertex2.z -= CorridorWidth / 2.0;
12 vertex2.x -= CorridorWidth / 2.0;
13 vertex3.x += CorridorWidth / 2.0;
14 vertex3.z -= CorridorWidth / 2.0;
15 addFace(vertex, vertex1, vertex2, vertex3);

5.2 Connecting Rooms

Connecting rooms requires a few steps. First, for each hallway face, get
its neighbor rooms, create connection corridors, add points to the corridors
in places where the corridors connect, and finally, merge them all together.
Adding points to the hallways is necessary for extrusion later; otherwise, there
would be no holes in the geometry for the entrance.

5.2.1 Making Connections

To make the connection corridors, the algorithm goes as follows. For each
corridor face, take all its rooms and create four new vertices for the connecting
corridor. Then depending on the orientation, the x and z coordinates are
assigned, but because it is completely analogical, only the x orientation is
discussed. Find a corridor’s edge that is close to the room, and a room’s
edge that is close to the corridor, as the new vertices will lie on them. Assign
the z coordinate of the corridor’s edge to the first two new vertices, and the
z coordinate of the room’s edge to the latter two coordinates. Because the
connections will be perpendicular to the edges, find two x coordinates in
the middle of from the corridor’s edge and the room’s edge vertices. This
guarantees that choosing a value in between the two middle x coordinates

31

5. Creating Corridors...................................
does not make a connection out of bounds. Then generate a random number
in range

To make the connection corridors, the algorithm goes as follows. For each
corridor face, take all its rooms and create four new vertices for the connecting
corridor. Then depending on the orientation, the x and z coordinates are
assigned, but because it is completely analogical, only the x orientation
is discussed. Find a corridor’s edge close to the room, and a room’s edge
that is close to the corridor, as the new vertices will lie on them. Assign
the z coordinate of the corridor’s edge to the first two new vertices and
the z coordinate of the room’s edge to the latter two coordinates. Because
the connections will be perpendicular to the edges, find two x coordinates
in the middle of the corridor’s edge and the room’s edge vertices. This
guarantees that choosing a value in between the two middle x coordinates
does not make a connection out of bounds. Then generate a random number
in range < minX + corridorW idth

2 , maxX − corridorW idth
2 > to get the x

coordinate of the center of the new corridor and call it randomX. Add
randomX ± corridorW idth

2 respectively to the x coordinate of each of the new
vertices to create a rectangle. Finally, order the vertices anti-clockwise and
create a new primitive. Moreover, vertices that lie on the corridor edges
are added to an array to add them to corridors’ primitives in the following
subsection; vertices that lie on the room edges are added now and sorted
again too. The connections are visualized in figure 5.5 as red rectangles.

Figure 5.5: An example of generated hallway connected to rooms. Blue rectan-
gles are the rooms, green ones are the hallway areas and the red rectangles are
the connections.

32

.................................. 5.2. Connecting Rooms

Algorithm 11: Making Connections
1 foreach corridorFace ∈ corridorFaces do
2 vector verticesToAddToCorridor[];
3 foreach room ∈ corridorFace.rooms do
4 vector vertices[];
5 for (int i = 0; i < 4; i++) {
6 push(vertices, {0,0,0});
7 if corridorFace.orientation == "x" then
8 edge corridorEdge =

getXEdgeFromFaceCloseToFace(corridorFace, room);
9 edge roomEdge = getXEdgeFromFaceCloseToFace(room,

corridorFace);
10 for (int i = 0; i < 2; i++) {
11 vertices[i].z = corridorEdge.vertices[0].z;
12 for (int i = 2; i < 4; i++) {
13 vertices[i].z = roomEdge.vertices[0].z;

14 float insideXCoords[] =
getInsideXCoordinates(corridorEdge.vertices,
roomEdge.vertices);

15 float maxX = min(insideZCoords);
16 float minX = max(insideZCoords);
17 float randomX = random(minX + corridorWidth/2,

maxX - corridorWidth/2);
18 for (int i = 0; i < 4; i++) {
19 vertices[i].x = randomX + (−1i) · corridorWidth ;

20 face newFace = addFace(vertices);
21 newFace.orientation = "z";
22 for (int i = 0; i < 2; i++) {
23 push(verticesToAddToCorridor, vertices[i]);
24 push(room.vertices, vertices[i + 2]);
25 else

// Analogical but with x and z coordinates
exchanged

33

5. Creating Corridors...................................
5.2.2 Adding Vertices to Hallways and Removing Borders

Because the points that lie on the borders of the original square create dead
ends, they are to be removed. However, the hallways need extra points to
maintain their rectangle shape, as they would collapse, as illustrated in figure
5.6 with red lines. For this reason a copy, of its corner is created and mirrored.

Figure 5.6: Diagram of a hallway after deleting its borders.

Since the points lie on axis x and z, finding the extra points to hold its
structure is done by finding both the minimum and maximum value on either
the coordinate x or z, depending on the orientation. Not always adding
extra points is necessary, however, as seen the in figure 5.6. The hallway
between rooms A and B is collapsed only on one side. The points will not be
added if there are no border points deleted. The mirroring process is done
by iterating over the original four points and finding a point that has the
opposite coordinate different because there are only two options, overwriting
it in such a way mirrors the point to the other side of the rectangle. Finally,
the new point is added to the face.

34

.................................. 5.2. Connecting Rooms

Algorithm 12: Adding vertices from corridor parts to the main
hallway.

25 if corridorFace.orientation == "x" then
26 vector minZ = {0, 0, minFloat};
27 vector maxZ = {0, 0, maxFloat};
28 foreach vertex ∈ corridorFace.vertices do
29 if vertex.z < minZ.z then
30 minZ = vertex.z;
31 if vertex.z > maxZ.z then
32 maxZ = vertex;
33 bool addMax = true;
34 bool addMin = true;
35 foreach vertex ∈ corridorFace.vertices do
36 if vertex.border == true then
37 remove(corridorFace.vertices, vertex);
38 else
39 if vertex.z > maxZ.z then
40 addMax = false;
41 else if vertex.z < minZ.z then
42 addMin = false;
43 foreach vertex ∈ corridorFace.vertices do
44 if abs(vertex.x - min.x) > ε // Is not equal
45 then
46 minZ.x = vertex.x;
47 if abs(vertex.x - maxZ.x) > ε // Is not equal
48 then
49 maxZ.x = vertex.x;
50 if addMax then
51 push(verticesToAddCorridor, maxZ);
52 if addMin then
53 push(verticesToAddCorridor, minZ);
54 push(corridorFace.vertices, verticesToAddCorridor);
55 else

// Analogical but with x and z coordinates exchanged

35

5. Creating Corridors...................................
5.2.3 Adding Vertices From Hallways To Other Hallways

Because the hallways need to be able to walk through between each other,
they need a hole when they are touching; however, there are none at this
moment, and upon extrusion, there would be walls in the way. Because of
this, neighboring hallways add each other their respective points.

Algorithm 13: Adding vertices from hallway parts to other hallway
parts.
1 foreach corridorFace ∈ corridorFaces do
2 foreach corridorFaceOther ∈ corridorFaces do
3 if corridorFace == corridorFaceOther or

corridorFace.orientation ==
corridorFaceOther.orientation then

4 continue;
5 edge corridorEdge[] =

getEdgeFromFaceCloseToFace(corridorFace, room);
6 edge corridorEdgeOther[] =

getEdgeFromFaceCloseToFace(room, corridorFace);
7 vector verticesToAdd[] =

getOverLappingVertices(corridorEdge, corridorEdgeOther);
8 if verticesToAdd.size > 0 then
9 push(corridorFace, verticesToAdd);

To save computing time, algorithm 13 is divided into 2 Primitive Wrangle
nodes in Houdini. The first seven lines implement one node from the original
hallway primitives with four points each. The other has wired two inputs;
the primary one is the hallway geometry with points in places of connectors
to rooms. The secondary input brings the information about the new vertices
and adds it to the hallways. In the end, the vertices in each primitive are
sorted for anti-clockwise order.

36

Chapter 6
Grouping, Extrusion, and Materials

The chapter uses Houdini’s group system to group every part separately,
which allows easier control over the model and uses the fact that when the
model is exported to a different engine, for example, Unity 3D, the model’s
hierarchy uses the group system. Then everything is extruded to showcase
the dungeon in 3D space. Finally, materials are assigned to each group for a
better visual experience.

6.1 Groups

Taking all of the final nodes of each chapter - rooms, the hallway, and the
connectors, a Group Create node is assigned with their individual group
names - Room Floor, Hallway Floor, and Connectors Floor. The latter two
can also both have the same corridor group.

Moreover, Houdini allows running a function call in the parameter text
fields in any node. This is used to our advantage to mark each room separately.
Using a For-Each node to iterate over each room, a Group Create node is
used with "Room " as the group name, followed up with a function call that
references the For-Each’s iteration number. This creates a group with a
unique identifier in its name. This group can also be used to encode any data
into the geometry, but at the bare minimum, it is very beneficial in games
to distinguish between rooms. This can be used to tell where the player is
currently to trigger events or to use pathfinding algorithms for non-player
characters.

An example can be seen in figure 6.1. The floor of the level was exported,
and in the hierarchy on the left, each part has its unique name, which is a
union of all groups. The rooms were part of 3 groups - Room Floor, floor,
and Room ’ID’, where ID is its unique identification number. As seen in the
picture, only one room is selected when selecting one of the room objects in
the hierarchy.

37

6. Grouping, Extrusion, and Materials

Figure 6.1: Example of room grouping in Unity 3D.

6.2 Extrusion

It is time to give the dungeon depth. Since it is a rectangular-shaped dungeon,
two extrusions take place. The first extrusion gives the dungeon a height.
It is trivially done with a PolyExtrude node. Moreover, a new parameter,
Height, is introduced. However, the PolyExtrude node expects that the new
primitives are an outside area of an object, and here they are walls facing
inwards, which is why a Reverse node is used to reverse normals. In addition,
only the wall faces need to be in the node; that is why the Output Front
parameter is not no ticked.

The other extrusion uses the walls. Since their normals point outwards,
the node extrudes that way as well because the extrusion follows normals.
This creates width to the walls. In previous chapters, a WallWidth and
CorridorWidth parameters were introduced; from them, the extrusion depth
is calculated. Because theWallWidth defines the width and the CorridorWidth
takes part of the depth, the CorridorWidth is subtracted at half of its value
from the WallWidth, because only half of the width occupies the insides of
the wall. Moreover, it is extruded at half of the value because the corridor is
extruded from the other side. The formula is W allW idth− CorridorW idth

2
2 .

Finally, a Group Create node is added for the walls at the end, and a Wall
group is assigned. See figure 6.2 for the result.

38

...................................... 6.3. Materials

Figure 6.2: Example of an extruded level.

6.3 Materials

To give the dungeon more life, materials are given to each face. Moreover,
each room is given a different random color for its texture. This has no other
purpose than better visual clarity with more complex layouts and shows that
it is very easy to access different rooms. With room types, each could be given
a different texture and its properties could be changed. This would result in
each room having a unique texture. However, this is outside of the scope of
this thesis. Moreover, Houdini’s materials have displacement textures; this
thesis simplifies the project by removing all displacement textures.

Corridors use a Houdini built-in concrete material. First, all of the corridors
are assigned a UV Unwrap node. Then a UV Transform node to scale the uv
coordinates, and finally, a Material node.

In the Material node, concrete material is chosen, which was first created
in the material workflow section of Houdini by selecting the built-in concrete
material. The UV Transform node scale is set according to the material in
relation to all other parameters as it sets the size of the material.

Rooms are all set analogically, but the Material node is in a For-Each node,
and the material’s color is changed randomly for each room, see figure 6.3 for
the result.

39

6. Grouping, Extrusion, and Materials

Figure 6.3: Example of textured floors.

Walls use a UV Texture node for unwrapping instead because each face
will have its own set of uv parameters. Together with a Material node with a
brick texture, they make brick walls in a single direction, see figure 6.4 for
the result.

Figure 6.4: Example of textured walls.

40

Chapter 7
Making Doors

The dungeon’s basic structure is finished, but to make it more likable and
distinguish between rooms better, doors between rooms and corridors are
added. This chapter discusses their creation and gives them materials as
well. Because all doors are in the short connector corridors, their floors are
worked with. Moreover, an extra line of code is added to the previous Making
Connection algorithms 11 - since orientation was added to the primitive
attributes, another more precise attribute is added - direction. Direction is
a vector with values 1 or -1 in the x or z coordinates. It points towards to
room it is connected to; in addition, a new group is added for the two points
closer to the room called doorFrame. This marks down which points are the
door frames made from.

7.1 Door Frames

Door frames play an important role for doors because they are being held by
them. There are three parts to make, two vertical sides and one top part.

For each connector, two points pointing towards the room are taken. Then,
they are duplicated, and a new parameter doorFrameWidth is introduced. The
duplicated points are moved by doorFrameWidth in the opposite direction of
the direction vector are added together as a new primitive. This also creates
a base for the door in the next section.

Then, the base is extruded upwards by Height, creating a box with two
holes, on top and the bottom. Using the direction vector to find which
primitives face the room, the primitives are deleted, leaving only two side
primitives, which are the sides of the door frame. Next, each of the primitives
is extruded to make side blocks, serving as a door frame.

The top side is created by taking the top points from the side extrusion,
adding them together as a primitive, and then extruding them down to form
a block.

41

7. Making Doors

Figure 7.1: Houdini graph of door frame creating.

The Houdini implementation in figure 7.1 exactly follows the description
above. It is placed in a For-Each node, followed by a delete node that deletes
points that are not in a doorFrame group. Then a Primitive Wrangle node
is used to duplicate the points and move them in the direction direction by
doorFrameWidth. Moreover, the side points are grouped with their respective
group names side1, and side2. The following Primitive Wrangle fixes the
vertices order using the previous algorithm 9.

Following, a PolyExtrude node extrudes the primitive upwards with an
option of only outputting the sides of the box. Then, a Primitive Wrangle
node uses algorithm 14 to remove unwanted primitives. Because each side
has a separate side group, if there are points from both groups in the face,

42

.....................................7.1. Door Frames

then the face aims alongside the corridor.
Algorithm 14: Removing parts from a door frame geometry.
1 foreach face ∈ faces do
2 bool side1 = false;
3 bool side2 = false;
4 foreach point ∈ face.points do
5 if point.isInGroup("side1") then
6 side1 = true;
7 else if point.isInGroup("side2") then
8 side2 = true;
9 if group1 and group2 then

10 removeFace(face);

By default, the faces’ normals point outwards after an extrusion; that is
why there is a Reverse node to reverse the normals. Two branches follow.
The left branch creates the sides, and the right branch creates the top of the
door frame.

The left branch iterates over the two faces using a For-Each node, then
extrudes them by doorFrameWidth with an PolyExtrude node. Because the
normals point inside, the extrusion follows them. Finally, a Transform node
makes it shorter from the top because that is where the top part will be.

The right branch uses side1 and side2 groups because the top points were
not assigned with the groups. Then an Add node creates a primitive out
of the four top points. Since the normal points upwards, an Extrude node
extrudes in the negative value of doorFrameWidth. However, extruding in a
negative direction makes all normals point inwards, which is why a Reverse
node is used to flip the normals.

Finally, both branches are merged, and given a texture, and an iron texture
was used.

Figure 7.2: Door frames visualization.

43

7. Making Doors
7.2 Doors

Figure 7.3: The complete Houdini node graph of door frame and door creation.

Making doors is pretty straightforward because this thesis uses a simple
block as a door. However, to make it more procedural, there will be options
to make the door opened or closed, as well as randomly choose an open angle,
to make the scene more interesting.

First, the door is created from the leftover bottom face from the previous
section and extruded. Then, whether the door is opened or not is generated,
as well as the angle and its rotation pivot. Finally, the door is rotated and
merged with the door frame.

The graph in figure 7.3 is quite large to digest at once, but the left branch
was already covered in the previous section. The door is created in the second
branch right from the door frame branch. The third branch is a supporting
branch that was already seen before. It calculates the length of the edges in
both, x and z direction, and it extracts the centroid too. And at last, the top
branch is another supporting branch. It calculates the door angle, its pivot,
and whether the door should be opened or closed.

The door in the second branch is created by first shrinking the bottom
face prepared from the previous section. Because there is a door frame, the

44

..7.2. Doors

door must get smaller by the doorFrameWidth amount. This is done by
using a pair of Switch-If nodes to separate x and z direction doors. Then a
Transform node is used to shrink the primitive down to fit inside the door
frame. Then a merge node to merge both cases, and, finally, extruded with a
PolyExtrude node upwards to create a door block.

The following transform node rotates the door, but it needs a few parameters
defined in the top branch. The first two pairs of the top branch do the same
thing as in the second down branch, but with a different input - it shrinks
down two of the original points that lie on both the room and the corridor,
to fit in the door frame. Now, one of the points is the pivot that the door
rotates around. Algorithm 15 is used in the Primitive Wrangle node.

Algorithm 15: Getting a rotation pivot and direction for doors.
1 vector orientation = getOrientation();
2 vector vertices[] = getVertices();
3 vector pivot;
4 int direction;
5 floar r = rand(teration * openDoorSeed);
6 if openDoorPercentage > r then
7 r = rand(iteration * openDoorOrientationSeed);
8 if r > 0.5 then
9 pivot = vertices[0];

10 else
11 pivot = vertices[1];
12 if orientation.x > 0 then
13 if vertices[0].z > vertices[1].z then
14 if pivot == vertices[0] then
15 direction = 1;
16 else
17 direction = -1;
18 else
19 if pivot == vertices[0] then
20 direction = -1;
21 else
22 direction = 1;
23 else if orientation.x < 0 then

// Analogical...
24 else if orientation.z < 0 then

// Analogical...
25 else if orientation.z > 0 then

// Analogical...

There are two new seed parameters introduced - openDoorSeed, and open-
DoorOrientationSeed. The openDoorSeed is for randomizing doors that are
opened, which can be seen in line 6 together with a new parameter open-

45

7. Making Doors
DoorPecentage, which was created to open the desired number of doors in
percentage. OpenDoorOrientationSeed randomizes the orientation of the
doors. Doors will always open into the rooms, and the orientation picks which
of the two points will serve as a pivot, which can be seen on lines 7-11.

Following lines 12-22, these calculate direction. If the direction is positive,
the opening direction is clockwise; if the direction is negative, the opening
direction is anti-clockwise. Since the door will always open into the rooms,
the direction is calculated to open the door into the room. As an example,
if the orientation of the connector face is positive om the x-axis, then the
room is in a direction (1, 0, 0) to the connector. This means that if the first
vertex is the right vertex, and the second vertex is the left vertex (line 12),
and the pivot is in the right vertex, then the door must rotate clockwise, that
is why the direction is 1 (line 15), and if the pivot is the left vertex, then
the door must rotate anti-clockwise, that is why the direction is -1 (line 17).
Analogically for all other cases.

Moving back to the door rotation transform node, it just needs to be
set right. Moreover, another three parameters will be introduced - open-
DoorAngleMin, openDoorAngleMax, and openDoorAngleSeed. The first two
parameters speak for themselves; they decide the minimum and the maximum
angle that the doors will be opened. The seed is used for the random genera-
tion, because sometimes when the doors are too closed together, they can
collide, the number of new seed parameters is to prevent it. The pivot of the
rotation is set from the previous algorithm and the rotation is done around
the z-axis. The angle is a random number between openDoorAngleMin and
openDoorAngleMax. This angle is multiplied by the direction, if the direction
is −1, the rotation direction flips; if it is 1; it stays the same.

The last nodes are for assigning material for the door. Wood chip material
was chosen for the doors because there was not any other material similar to
wood. And at last, the door is merged with the door frame; see figure 7.4 to
see the result.

Figure 7.4: Doors with frames.

46

Chapter 8
Results

This chapter produces various parameter settings of the project to showcase
and test the final results. The results will compare their look, practicality
and time to create them. Each result has set their own following parameters:
Height, maxArea, minCut, maxCut, Ratio, CorridorWidth, WallWidth, Door-
Width, and DoorFameWidth. Since, aside from the main seed, the other local
seeds do not change the geometry in a way that would change the number of
points or primitives, and therefore would not change the time as well, they
will not be mentioned.

8.1 Tests

Tests of four varying parameters were run, all can be seen in the Parameter
Settings table. The parameters were selected in such way that would make
sense for the rooms. Because the maxArea, that decides the maximum size
of a room, is the main parameter, that makes the dungeon more complex,
the parameter graduates was picked significantly less than in the previous
settings, to see the differences.

Parameter Settings

Setting 1 2 3 4
maxArea 32.8 10 5.42 0.5
minCut 0.285 0.35 0.262 0.45
maxCut 0.561 0.55 0.629 0.6
Ratio 1 0.584 0.399 0.886
Height 0.2 0.4 0.16 0.1

CorridorWidth 0.15 0.3 0.1 0.05
WallWidth 0.4 0.4 0.016 0.1
DoorWidth 0.03 0.05 0.02 0.002

DoorFrameWidth 0.03 0.04 0.01 0.001

Table 8.1: Table of tested settings and their parameters

47

8. Results
Setting 1

Test 1 2 3 4
Rooms 5 5 4 4

Time(seconds) 0.205 0.274 0.206 0.211
Vertices 545 636 448 448

Primitives 606 582 403 403

Setting 2

Test 1 2 3 4
Rooms 15 13 15 15

Time(seconds) 0.568 0.600 0.964 0.718
Vertices 2310 1996 2212 2132

Primitives 2083 1803 1990 2087

Setting 3

Test 1 2 3 4
Rooms 28 28 28 25

Time(seconds) 1.618 1.237 1.459 0.977
Vertices 4408 4702 4576 4102

Primitives 3978 4260 4140 3712

Setting 4

Test 1 2 3 4
Rooms 254 279 296 237

Time(seconds) 11.362 13.689 15.987 10.392
Vertices 48104 52947 56243 44726

Primitives 43669 48055 51056 40597

Table 8.2: Test settings and results.

With the maxArea growing smaller, more rooms are added, and so more
time it takes to create. However, with a dungeon of a size of 200-300 rooms,
10-20 seconds is not much time, as in games, the dungeons are not usually
that large.

Settings 2 and 3 have their Ratio set to a lower value, and the minCut and
maxCut deviate more from the other test, which in theory makes possible for
the dungeon have more narrow rooms, which can be seen in figure 8.1.

Setting 1 has more of a square shape setting with an exception of minCut,
which deviates significantly. Because the maxCut is set close to 0.5, this
can create dungeons that have more square shapes in one corner, and more
narrow rooms in the direction of the other corner, see 8.1.

Setting 4 was set to produce more square shapes. minCut and maxCut do
not deviate much from 0.5, and the Ratio is close to 1 as well. This produces
more regular pattern of rooms mostly of a square shape.

48

.................................... 8.2. A Stress Test

Setting 1 Setting 2

Setting 3 Setting 4

Figure 8.1: One example of each test settings

8.2 A Stress Test

Using the parameters from Settings 4 from the previous section with an
exception of setting the maxArea to 0.05, a stress test was run. It run for 10
hours and 42 minutes but still did not finish, and the test had to be stopped.
Most of the algorithms run for less than a minute; However, two algorithms
were an exception.

The first one being the Merging lines algorithm 7. It run for 2 hours and 34
minutes. Since the algorithm runs over all edges and then over the remaining,
the complexity is O(n · (n− 1)) ∈ n2, and it runs recursively. However, each
recursive iteration skips many operations after the first iteration, but it still
is a considerable amount of condition check. At this stage, there were a total
of 55441 edges before merging and 17274 edges after merging.

The other one was the algorithm for adding vertices from hallway parts
to other hallway parts 13. It run for a total of 7 hours and 54 minutes, and
it was in this part where it was stopped, so it would run for longer. Since
it runs over all corridor primitives in two nested loops, the complexity is
O(n2). Moreover, each face has four points, and there are more demanding
geometry operations, from finding close edges to finding overlaps. Meanwhile,
the previous merging lines algorithm only checks prepared edges already.
Because there were a total of 17274 edges after merging, there were 17274
faces, which is a total of 4 · 17274 edges.

However, creating just the BSP areas is not that demanding because each
algorithm took under a minute. The minCut, and maxCut were locally

49

8. Results
Parameter settings for a stress test

maxArea 0.05
minCut 0.45
maxCut 0.6
Ratio 0.886
Height 0.1

CorridorWidth 0.05
WallWidth 0.1
DoorWidth 0.002

DoorFrameWidth 0.001

Results

Rooms 16348
Time 10h 42m

Table 8.3: Stress test parameters and results

modified for this test to percentages, as for a dungeon of this size, it would
be impossible to find correct parameters with no dynamic restrains. There
are 16348 rooms; see figure 8.2.

Figure 8.2: Stress test room layout.

8.3 Usable Limit

The stress test pushed the algorithms to their limits. However, this section
was focused on finding a limit for generation that could be used in games.
I tested many variation and setting maxArea as low as possible but many
limitation appeared. The algorithms were breaking in the extreme case. I
suspect float values with rounding errors being partly at fault, together with
no dynamic restrains. However, the geometry gets demanding on hardware

50

.....................................8.3. Usable Limit

and the scene camera gets hard to control as well. Parameters in table 8.4
were used for the successful test:

Limit Test

maxArea 0.15
minCut 0.4
maxCut 0.6
Ratio 0.9
Height 0.05

CorridorWidth 0.04
WallWidth 0.7
DoorWidth 0.002

DoorFrameWidth 0.001

Results

Rooms 870
Time(seconds) 72.876

Vertices 168619
Primitives 153049

Table 8.4: Limit test parameters and results.

A dungeon with 870 rooms was generated in a relatively short time, which
means that in practice, it would be possible to use it to generate content with
levels with up to 1000 rooms. However, it is very, very rare for games to use
such large-level layouts, so these limitations are irrelevant. Moreover, the
algorithm still takes most of the time in the same algorithms as the stress
test, and the following algorithms for door generation, where the stress test
did not get, took very little time in comparison and can be neglected. The
result is in figure 8.3

Figure 8.3: The biggest generated dungeon.

51

8. Results
8.4 Unity 3D Test

A dungeon with the parameters in table 8.5 was created to test it out in Unity
3D. However, it was exported without materials, because a paid Houdini
license is needed. In addition, a small application was written in Unity 3D -
a ball that can wander around the dungeon, see figure 8.4.

Parameter Settings for Unity 3D Test
Setting Unity Test
maxArea 3.5
minCut 0.45
maxCut 0.6
Ratio 0.886
Height 0.31

CorridorWidth 0.2
WallWidth 0.3
DoorWidth 0.03

DoorFrameWidth 0.02
DoorFrameWidth 0.02

Table 8.5: Parameter settings for Unity 3D test.

Figure 8.4: A small game with a ball wandering around a generated dungeon.

The game only consists of two scripts, one for moving the ball, the latter
for camera following the ball. However, it is very trivial to use the dungeon
in the game as it is only required to set up colliders and it is ready.

52

Chapter 9
Conclusion

The thesis succeeded in generating dungeon levels that could be used in a
video game. However, there were a few limitations in Houdini that slowed
down the implementation process, and more could have been achieved. The
final chapter goes through the implementation one more time to summarize
and review it.

9.1 What Was Achieved

There are many achievements, the most important one being the overall
generation of a dungeon. However, there is much more to it. Simple dungeons
can be created in just a few seconds, and the more complicated one still under
a minute. A stress test was held, too, together with its usable limit testing.

A simple application, that used a generated dungeon, tested the level as
well.

Furthermore, a custom corridor idea was implemented and doors with door
frames as a bonus to the implementation. The levels are also exportable to
game engines, and the rooms’ information is stored in the hierarchy of the
geometry of the dungeon.

Many algorithms could be written in a single Primitive Wrangle node or
built up from various Houdini’s nodes. In this project, both approaches were
used for different algorithms.

Moreover, there is a total of 14 settable parameters that change the result
to make a unique layout. These parameters include settings such as the
maximum area of dungeons’ rooms, a width of walls, height, percentage of
the opened doors, and more.

There is room to expand. Because of Houdini’s node based system, it is
very simple to add features, as shown by adding doors, any other asset could
be added similarly.

9.2 Flaws and Possible Improvements

The biggest limitation is probably the complexity of the algorithm, which
adds vertices from hallway faces to other hallway faces because it does not

53

9. Conclusion......................................
allow overly massive layouts. It does not have to be that big of an issue since
games do not usually use such levels.

Parameters lack restrains. Currently, it can be difficult to change parame-
ters because they are depended on each other. For example, a corridor width
can be set higher than a wall width. This makes the wall overflow. Moreover,
the corridors require more parameters because the door is always as big
as the corridor. This limits the settings significantly because it can make
unpleasant-looking wide doors when experimenting with very wide corridors,
and height has to be also set accordingly because then the door can look too
wide.

The project generates only a single floor of a level. For the future, it could
be interesting to make multiple floors on top of each other, connected, for
example, by a ladder.

Everything connects with everything. At the moment, the corridor always
goes everywhere, but it could be expanded by counting how many connections
in a single room is and limit its number to achieve more corridor variety.

The level layout can also use a more complex extrusion algorithm. The
defined space areas could be potentially used for a cave system if it was not
just a block room.

54

Appendix A
Electronic appendix content

The Houdini project file is included in a src folder, and all images are included
in the images folder. Moreover, the latex files are in the latex folder and the
specification is located in the specification.pdf file.

55

56

Appendix B
User manual

There are three nodes in the scene, a camera, a light, and a geometry node.
The generation is done under the geometry node. To modify the parameters,
they can be set in a control node at the very top above the top For-Each
loop.

The main seed is linked to an animation frame; to get a different result,
move to a different frame. By default, the frame control is located at the
bottom of the Houdini window.

To export the geometry, there is a File node at the very bottom, but it
is deactivated. To activate it, press the yellow button on the node. It is set
to save the geometry as a object.obj file to Desktop, but it can be changed
in the node’s interface. Unfortunately, the fbx format is not supported in a
free version, and the materials are not exported with obj files. The export
is done upon rendering the scene in the File node; it is done by clicking the
blue button on the node.

To see the current result, the last Output node must be selected for a render,
but any part of the implementation can be seen by rendering in different
nodes.

57

58

Bibliography

[1] Noor Shaker, Julian Togelius, Mark J. Nelson. Procedural Content Gener-
ation in Games. Springer International Publishing. 2016.

[2] Hendrikx, Mark et al. Procedural Content Generation for Games: A
Survey. In: ACM Trans. Multimedia Comput. Commun. Appl. 9.February,
pp. 1–22. 2013.

[3] Marco Niemann. Constructive Generation Methods for Dungeons. Seminar
report, Munster Univesity. 2015.

[4] Togelius Julian, Kastbjerg Emil, Schedl David, Yannakakis, Georgios.
What is Procedural Content Generation? Mario on the borderline,
2011/01/01

[5] Jiří Velebil. Abstraktní a konkrétní lineární algebra, České vysoké učení
technické v Praze, 2020

[6] Points and vertices in Houdini https://www.sidefx.com/docs/
houdini/model/points.html

[7] Rogue Wikipedia https://en.wikipedia.org/wiki/Roguelike

[8] Minecraft Fandom Wiki https://minecraft.fandom.com/wiki/World_
type

[9] City Engine https://www.esri.com/arcgis-blog/products/3d-gis/
3d-gis/cityengine-2017-highlight-reel/

[10] Andrew Adamatzky. Game of Life Cellular Automata, University of the
West of England, Bristol, 2010

[11] Stefan Greuter, Jeremy Parker, Nigel Stewart, Geoff Leach. Procedural
modeling of cities, Association for Computing Machinery, 2001

[12] Yoav I. H. Parish, Pascal Müller. Procedural Generation of Dungeons,
Computer graphics and interactive techniques in Australasia and South
East Asia, 2003

59

 https://www.sidefx.com/docs/houdini/model/points.html
 https://www.sidefx.com/docs/houdini/model/points.html
 https://en.wikipedia.org/wiki/Roguelike
 https://minecraft.fandom.com/wiki/World_type
 https://minecraft.fandom.com/wiki/World_type
https://www.esri.com/arcgis-blog/products/3d-gis/3d-gis/cityengine-2017-highlight-reel/
https://www.esri.com/arcgis-blog/products/3d-gis/3d-gis/cityengine-2017-highlight-reel/

B. User manual.....................................
[13] Seth J. Teller, Carlo H. Sequin. Visibility Preprocessing For Interactive

Walkthroughs, University of California, Berkeley, 2000

[14] Henry Fuchs, Zvi M. Kedem, Bruce F. Naylor. On visible surface gener-
ation by a priori tree structures, New York, 1980

60

	Project Specification
	Introduction
	Benefits of Procedurally Generated Content
	Dungeons
	Games using Generated Content
	Aim of this Thesis

	Procedural Generation of Dungeon Levels
	Binary Space Partitioning
	Agent-based Dungeon Growing
	Cellular Automata
	Other Level Generation Algorithms

	Houdini
	Nodes
	Geometry
	Metadata
	Notable nodes

	BSP Implementation
	Setip
	Main loop
	Face Division
	Rooms

	Creating Corridors
	Lines and Neighbours
	Neighbors
	Deleting Borders
	Lines Merging
	Floor of The Hallway

	Connecting Rooms
	Making Connections
	Adding Vertices to Hallways and Removing Borders
	Adding Vertices From Hallways To Other Hallways

	Grouping, Extrusion, and Materials
	Groups
	Extrusion
	Materials

	Making Doors
	Door Frames
	Doors

	Results
	Tests
	A Stress Test
	Usable Limit
	Unity 3D Test

	Conclusion
	What Was Achieved
	Flaws and Possible Improvements

	Appendix Electronic appendix content
	Appendix User manual
	Bibliography

