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Abstrakt

Tato bakalářská práce se zabývá analýzou a vizualizaćı učeńı neuronových śıt́ı ve formě ztrátové funkce. Prvńı
část této práce je teoretický základ hlubokého učeńı. Druhá část je zkoumáńı povrchu ztrátové funkce v závislosti
na architektuře neuronové śıtě.
Hlavńım zaměřeńım bakalářské práce jsou feedforward networks, zejména jejich použit́ı v úlohách klasifikaci
obrázku a regrese. Korektnost a zobecnitelnost algoritmů jsou měřeny pomoćı validačńı přesnosti, a potom
jsou porovnány s tvarem povrchu ztrátové funkce. Bylo zjǐstěno, že zkoumané metody na vizualizaci povrchu
ztrátové funkce jsou vhodné jen pro nalezeńı významných chyb, jako je špatná volba architektury śıtě nebo typu
ztrátové funkce, ale zároveň jsou neefektivńı pro vizualizaci pokročilých metod jako je zřetězováńı DenseNetu.

Kĺıčová slova: neuronové śıtě, hluboké učeńı, vizualizace, ztratová funkce

Abstract

This bachelor thesis’s subject aims to visualize and analyze neural networks’ training as a loss function. The
first part of the thesis is the theoretical basis of deep learning. The second part is researching the loss surface
shape depending on the deep learning network architecture.
The thesis primarily focuses on feedforward neural networks, particularly on their usage in image classification
and regression tasks. The generalizability is measured in the form of validation accuracy and is compared
to the loss surface curvature. It was found that the examined loss surface visualization methods are suitable
for significant problem detection, such as lousy architecture or loss function choice, yet are ineffective for the
evaluation of the more advanced method such as DenseNet concatenating.

Keywords: neural network, deep learning, visualisation, loss function
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Introduction

Motivation

The question of Artificial intelligence existed for thousands of years and it is one of the fundamental parts of
materialist philosophy. We can find a giant constructed of bronze, depicting a human-made artificial life, in
Ancient Greek mythology[40][35], as well as the robots from Karel Čapek’s R.U.R.

René Descartes analyzed the difference between the artificial machine and human consciousness in his work
[42]. He stated:
”If touched in a particular part it may ask what we wish to say to it; if in another part it may exclaim that
it is being hurt, and so on. But it never happens that it arranges its speech in various ways, in order to reply
appropriately to everything that may be said in its presence, as even the lowest type of man can do.”
Therefore, he formulated the central question of today’s discussions on Strong and Weak A.I.

However, the actual starting point of machine intelligence can be considered the 1950s with Alan Turing’s
proposition of the Turing Test, a replacement for the philosophical question ”Can machines think?”[6].

Today, after 70 years of progress, the A.I. has become a significant part of our life. Started from a camera
tracking field, machine learning is making its way to the more complex tasks. Car driving, face recognition,
and more automatized fields are occupied by it[30]. Even though we are far from the ”Strong A.I.”, this field’s
progress is gaining momentum, and the discussions are more relevant than ever[38].

One of the modern artificial intelligence paradigms is the Deep neural network architecture that made its way to
the top in 2006 with the state-of-art solution to the image classification task. Since then, neural networks have
achieved further success and became one of the primary disciplines in the modern machine learning field[17][18].

However, the process of training a neural network often gives unexpected results. The architecture and
parametrization cause a massive impact on network behavior. Commonly, we observe a vast difference between
their approaches to solve a problem, even if their decisions are nearly the same. To understand the cause of this
behavior, we will dive into the network’s training process. More precisely, we will analyze the loss function -
the foundation stone of the training process and compare the loss function’s surface of the different architectures.

We will cover the theoretical basics, the training process, including some advanced techniques, and the ways of
visualizing it in detail. After that, we implement two loss surface visualization methods and test the original
papers’ statements on these methods.
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Chapter 1

Machine learning

The neural network algorithms are a part of a larger Machine Learning field. Because of that, we should
firstly dive into the machine learning field, and step by step, come to the neural networks.

1.1 Definition

What is machine learning?

The definition is:
”Machine Learning Algorithm is capable of learning from its Experience(E) towards a Task(T), and its

Performance(P) improves with an Experience(E).” [22]

• Example is data received from the real world. (Image, Audio, etc.)

• Features are a valuable part of an Example data. (Pixels, Audio waves, etc.)

• Result is an output that the algorithm is supposed to return. (Image description, text form of an Audio,
etc.)

Task T

Task is a process of analyzing an Example and calculating a Result based on Features.
The primary types of Task analyzed in this paper are:

• Regression - Approximation of a continuous function defined by points.[34]
The goal is - for a given input data vector, return an output data vector.

• Classification - Classification of an image from the label set[52].
The goal is - for a given input data vector, return an output labels’ probabilities.

Performance P

Performance is an explicitly defined function representing an error or a success towards the Example and
its correct Result. Practically it is represented as a scalar function, and it is called a loss function or cost
function.

Experience(E) and Dataset

We divide the entire dataset of examples into three categories:

• Training set - examples for training purposes

• Test set - examples to calculate the performance

• Validation set - examples to optimize hyper-parameters(see section 1.2).

Experience is a knowledge of an algorithm after analyzing a collection of training examples.

2



1.2 Training process

Every machine learning algorithm is being trained in the following steps:

1. Start with some Experience

2. Analyze a given Example

3. Improve our Experience based on Performance loss function

4. Repeat

Hyperparameters

Even though the algorithm can learn on its own, we should define a structure that cannot be changed during the
training process. These settings are called Hyperparameters. They can also be optimized, but our algorithm
cannot perform this, and we would need external interference[49]. For example: type of loss function, number
of neurons in network(see chapter 2), gradient step size(see section 1.3.1), etc.

Parameters

Everything changeable during the process of training is a part of parameters. Therefore, every single parameter
is considered as a variable of a composite function.
Based on this approach, the optimization can be defined.

1.3 Optimizer

Below is the detailed description for the third step of the training process (see section 1.2) for the scalar
functions.

1.3.1 Gradient Descent

One of the key methods to find the function’s local minimum is the Gradient Descent.

Gradient

The gradient is defined as a vector of a function’s partial derivatives:

∇ #»x f( #»x ) = (
∂f

∂x1
, ...,

∂f

∂xn
)T , #»x ∈ Rn

We know that the gradient represents a slope of the function or, in other words, the direction of the most
rapid increase of function’s value based on its linear approximation in a given point.

Negative Gradient direction

So, to certainly decrease the value of the function, we can go in the opposite direction:

#»xnew = #»x − ε∇ #»x f( #»x )

ε = length of a step

The length of a step should be optimized as a hyperparameter since, at a close distance to the
local minimum, it can step over it and possibly converge to another local minimum.

By repeating these steps, we will reach a point near the local minimum, which has better performance.
In our case, we should calculate this direction across all the input examples.

3



Stochastic Gradient descent

However, the problem is that if we calculated the gradient across all thousands of examples, it would take a
long time to train our algorithm.
Because of that we divide our training examples into the mini-batchesB = {Input(i), Input(i+1), ...Input(i+m)},
where m can be any small number. The new approach is:

1. Calculate the direction for a chosen mini-batch

2. Move the point

3. Take the next mini-batch

That way, it would minimize it not necessarily the shortest way, but it would take significantly less time to
calculate the direction.

1.3.2 Adam optimizer

Adam optimizer is an SGD with an adaptive gradient and step size choosing[16]. The main difference is the
form of the minibatch gradient applying. Instead of sequentially applying gradients, it calculates momentum,
or, in other words, the Exponentially Weighted Average(EWA) of the previous gradients to approximate
the actual gradient of the total dataset.

Let us say we have t minibatches with indices 1 to t.

#»g t = ∇ #»x ft(
#»x ) = minibatch gradient(with index t)

#»mt = β1
#»mt−1 + (1− β1) #»g t = momentum of the mean

#»mt =
#»mt

(1− βt1)
= descaling to correct β1 scaling

#»v t = β2
#»v t−1 + (1− β2) #»g 2

t = momentum of the variance

#»v t =
#»v t

(1− βt2)
= descaling to correct β2 scaling

And finally:

momentum gradient of the minibatch =
#»

Gt =
#»mt√

#»v t + 0.000001∗

So, we just apply:
#»xnew = #»x − ε #»

Gt

ε = length of a step
β1, β2 = constant hyperparameters

* - added to prevent zero division

As the Machine learning introduction is given, we can define a more concrete Machine learning algorithm type,
neural networks, in the next chapter.

4



Chapter 2

Neural Networks

This chapter dives deeply into the neural networks, one of the most used machine learning algorithm nowadays.
Main source is a book [18].
Although the neural networks are not limited by feedforward networks only, this thesis focuses mainly on them.
The reason for this is the upcoming experiments that focus on the classification and profile reconstruction of
gene expression tasks that are primarily solved by feedforward networks.

Feedforward networks

The feedforward networks’ main idea is that they approximate some function f∗, which maps every input #»x to
a category y.

• The algorithm defines a function: y = f( #»x ,
#»

θ )

where
#»

θ is a set of a parameters.

• The feedforward means that the input #»x is going through the intermediate computations and finally
becomes an output y.

• The network means that function can be written in the form of a chain of functions:
f( #»x ) = f (1)(f (2)(f (3)( #»x )))

This representation allows us to build a non-linear function f and divide all subfunctions into the layers.

2.1 Perceptron

Figure 2.1: Neural Network made of artificial
neurons
(Taken from [18])

Perceptron is one of the first artificial neuron structures. Each
perceptron can be viewed as the intermediate function that
creates a feedforward network.

• A perceptron is an object that holds some real value in
〈0, 1〉 bound.

• It can have inputs x1, x2, x3, ... in 〈0, 1〉 bound.

• Each input is associated with some real weight parameter
w1, w2, w3, ... that was predefined for perceptron.

• It can connect to other perceptrons, so its value is passed
as output to the connected perceptrons.

• Originally perceptron was defined that way:

output =

{
0 if

∑
j wjxj ≤ threshold

1 if
∑
j wjxj > threshold

5



This function is called the Step function, and the threshold
parameter is any real value predefined for perceptron.

We divide all artificial neurons into 3 layers:

Input layer - neurons without connected input. In practice, these neurons represent input
example data. [22]

Output layer - neurons without connected output. In practice, these neurons represent
network’s result.

Hidden layer - other neurons. In practice, these neurons represent network’s hidden heuristic.
These neurons can be further divided into several layers, as it is shown in figure 2.1.

2.2 Activation function

However, the problem is that the Step function is not continuous. Thus, we can hardly calculate the derivative
of the network’s final output, especially if we connect multiple perceptrons into the network.

Because of that, we want to generalize the definition of the perceptron:

• The artificial neuron will calculate its output:

output = f( #»w · #»x + b) (2.1)

#»w = vector of weights, #»x = vector of inputs, b = −threshold = bias, f()̇ = activation function,
#»z = #»w · #»x +

#»

b = weighted input vector

2.2.1 Static activation functions

One of the most used activation functions are the linear sigmoid function;

σ(z) =
1

1 + e−z
. (2.2)

the hyperbolic tangent and the non-linear ReLU function:

σ(z) = tanh(z) σ(z) = max{0, z}. (2.3)

LReLU(Leaky Rectified Linear Unit) was proposed in recent studies[10] and was shown to be superior to
the original ReLU due to the linearity on both sides[10]:

σ(z) =

{
z, if y ≤ 0
az, a ∈ (0, 1) if y < 0

On top of that, ELU(Exponential Linear Unit) activation shows significant advantages compared to both
ReLU and LReLU. Faster convergence rate and competitive results on the core datasets such as ImageNet and
Cifar make this activation a considerable alternative to the common ReLU + Batch Normalization(see 3.2)
combination[20]:

σ(z) =

{
z, if y ≤ 0
az, a ∈ (0, 1) if y < 0

Moreover, we consider using the Softmax function in the network’s output layer to convert it into the labels’
probability.:

softmax(zi) =
eczi∑
j e
czj
, c = predefined constant (2.4)
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2.2.2 Adaptive activation functions

However, the activation functions are not necessary non-parametrized as they were presented in the previous
cases. The activation function’s parametrization implies that we train the parameters through Gradient Descent,
and, thus, it becomes an Adaptive activation function.

For example, paper [13] proposes a variation of a Leaky ReLU function with a trainable parameter instead
of a constant and achieves a human-level surpassing performance on ImageNet. Similarly, the [3] proposes an
auto-tuning sigmoid to control the shape of the activation function.

Transformative adaptive activation function

The primary adaptive function analyzed in this thesis is the Transformative adaptive activation function
(TAAF) [48]:

Assume that we plan to apply a TAAF to every neuron in a layer:

#»y = output of the layer and input of the TAAF, f(·) = basic non-parametrized activation function

Then, we define TAAF as follows:

g(f, #»y ) = α · f(β · #»y + γ) + δ

where α, β, γ, δ ∈ R are trainable parameters added to a neuron

2.3 Backpropagation

Suppose we consider our neural network to be a combination of the artificial neurons with any activation function.
In that case, the gradient in the Optimization step(see section 1.2) will be calculated this way[26][2]:

Assume that the neural network’s output error is the Cost function2.4 composed of the layers or, in
other words, from all the network parameters and input vector #»x ..

C = cost function = C(w1, ..., wn, b1, ..., bk, ..,
#»x )

As we mentioned in the 1.3.1, the gradient should be computed as a partial derivative vector. Therefore,
the partial derivative will have a form of:

∆C = (
∂C

∂w1
, ...

∂C

∂wn
, ...,

∂C

∂bk
, ..)| #»x

Finally, since we consider the feedforward networks only, the layers are applied in a specific order.

C(w1, ..., wn, b1, ..., bk, ..,
#»x ) = C(l(1)(l(2)(....l(p)( #»x ))))

Consequently, we can use the composed function formula to compute the derivative of the functions of
the layers between the partial parameter layer and the output:

yj = output of the layer lj

p = last layer index

∂C

∂wi

=
∂C

∂ #»y p

· ∂
#»y p

∂wi

=
∂C

∂ #»y p

· ∂ #»y p

∂ #»y p−1

· ∂
#»y p−1

∂wi

=
∂C

∂ #»yp
· ∂ #»yp
∂ #»y p−1

· ... · ∂
#»y i

∂wi

In the end, every mentioned partial derivative can be defined in a modular way.
The name ”Backpropagation” implies the application of the derivatives from the last to the first
layers.
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2.4 Cost function

As we introduced the cost function in section 1.1, now we will see which ones are the most useful in modern
neural networks.

One of the most commonly used functions is the Mean Squared Error(MSE):

MSE =
1

2
· 1

m

m∑
i=1

(estimationi − reali)2

#                        »
estimation - calculated result,

#     »

real - correct result, m - number of test examples

We use 1
2 for future gradient purposes

The MSE function is primarily used in the regression tasks, and often the Cross-Entropy is preferred in
the classification task case:

C = − 1

m

m∑
i=1

[reali ln (estimationi) + (1− reali) ln (1− estimationi)]

The reason behind this was studied in research [9] that clearly shows that the MSE is worse than Cross-Entropy
in the case of poorly initialized weights.

Finally, we will introduce the Mean Absolute Error(MAE), the cost function used essentially in regression
tasks, particularly in the TAAF experiments in the forthcoming chapters6.50.

MAE =
1

m

m∑
i=1

(estimationi − reali)

Since the TAAF experiments’ dataset belong to the vector-to-vector[39] problem type, paper [46] shows that
the MAE gives lower loss values.

2.5 Convolutional Neural Networks

It is important to note that usually images are analyzed by a specific neural network architecture called
Convolutional Neural Networks.
It has three main concepts that allows us to get the highest results within small amount of time on images:

• Local receptive fields = every neuron from hidden layer gets an input from a
small region of previous layer and analyses the data locally. See figure 2.2

• Shared weights and biases = every neuron in each hidden layer has the same
weights and biases as other neurons in it.

• Pooling layers = on the top of two concepts above, we will use another type
of hidden layer, which is used to compress and re-scale the data from previous
hidden layer. See figure 2.3
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Figure 2.2: Local receptive fields example
(Taken from [18])

Figure 2.3: Pooling layer example
(Taken from [18])

Locality and Shared parameters

In a fully connected layer, we would have a parameter between
each input pixel and output neuron. Convolutional Neural networks
solved this problem by sharing the same weights across all neurons
in the convolutional layer. The weights of the layer are called the
filter.

Since an image is a depiction of an object, we can assume that
pixels far away have nearly zero connection between themselves.
Because of this, the calculations and analysis of the entire image
at once is too complex for one layer to accomplish.

As an example, see picture 2.2.
The filter is used to extract features from the image by applying
it to every 5x5 area. That way, it can analyze the local field of
pixels and determine the simple features from this area. Then,
when all the features for every area are gathered, the resulting
output image will represent the feature’s spatial location.
Finally, the Convolutional layer’s essential superiority is its spatial
invariance - since we use the same parameters, the feature’s
detection does not depend on its position.

Intermediate images

As we can see from figure 2.2, one hidden layer of convolutional
neural network can be seen as another image and thus can be
re-scaled to simplify its content. We can implement this operation
as another layer called the Pooling layer.

This approach is especially handful if the resulting output is much
simpler than the number of pixels on the image. For example,
if our goal is to determine the digit from the image, we can
do so even without using all pixels, but just by calculating the
maximum or average of the pixel area[18], [37].

9



Chapter 3

Advanced Neural Network Techniques

3.1 Gradient Explosion and Vanishing

From [4], we can define a problem in the backpropagation process:

Under certain conditions[32], the gradient tends to either:

• Explode = first layers’ weights become too large and tend to oscillate

• Vanish = first layers’ weights become too small, and the backpropagation
takes a prohibitive amount of time or does not find it at all.

The type of backpropagation error exponentially depends on the size of the weights.

3.2 Batch normalisation

Figure 3.1: Example of neural network

As stated in [15], with the rapid change of the network’s input
and parameters, it is hard to maintain control over the training
process.

With the change of the parameters, the distribution of data
passed to the next layers changes. As a result, every layer should
adapt to new inputs, even though they are just scaled old ones.
This problem is called a covariate shift[15]. In order to solve
this problem, we can normalize the input of each layer. This
normalization is called Batch Normalization[15], [31]:

For a layer of neural network, which takes an
d-dimensional input #»x = (x(1), x(2), ..., x(d)), we will
normalize each dimension:

x(k) =
x(k) − E[x(k)]√

V ar[x(k)]

where E = mean and Var = variance are computed
throughout the whole training set.

As an example - in figure 3.1 the blue layer will
consider the red layer as input #»x .

That way, we can significantly speed up the convergence, but it is impractical to calculate a global mean and
variance. Because of that, we use Batch Normalizing Transform with empirical data from mini-batch[15],
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[31]:

For a mini-batch B = (x1, ..., xm):

µB =
1

m

m∑
i=1

xi = empirical mean

σB =
1

m

m∑
i=1

(xi − µB) = empirical variance

Xnewi =
xi − µB√
σB + ε

= new normalized dimension (3.1)

where ε is a small arbitrary regulatory number.

The 3.1 equation will be calculated for every Xnew
(k)
i separately.

After these operations, we add two more parameters, γ and β, to our layer so that
it can detect the distribution change across minibatches and not move the optimal
weights[15], [31]:

yi = γXnewi + β = BatchNγ,β(Xi)

where yi is an output passed to the next layer. Parameters γ and β are trained as
well as weights and biases.
That way, we will converge faster and not make a covariate shift mistake.
Moreover, since we have placed our values in [0, 1] bound, we have solved the
Gradient explosion case.

3.3 Skip connections and Residual learning

The network structure we discussed previously can be seen as a plain network, which means that every layer
communicates with its neighbor layers only. However, the Gradient Explosion and Vanishing problem is being
caused due to this sequential applying of the functions.

Figure 3.2: Example of the Skip connection

To solve this, we can connect the non-neighbor layers in order
for them to communicate without the precision loss between
them.
That way, we would use a new structure of neural networks called
Residual Network(ResNet)[14][50].

In a plain network we are computing an
input sequentially:

#»x l+1 = σ(W l+1 ∗ #»x l +
#»

b l+1)

where
#»x l = input from previous layer,
W = weight matrix,

#»

b = bias vector,
σ = activation function
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But in the ResNet we will compute it:

#»x l+1 = σ(W l+1 ∗ #»x l +
#»

b l+1)

#»z l+2 = W l+2 ∗ #»x l+1 +
#»

b l+2

#»x l+2 = σ( #»z l+2 + #»x l)

for every 2 layers of the network, where we change only the last input. Similarly,
it can be done for larger distances.
For an illustration see figure 3.2, where the Red layer is standing for L-th layer.

As a result, the ResNet networks are not suffering from the Gradient Vanishing [14][50].

3.4 Densely Connected CNN

Figure 3.3: Example of Convolutional Network
(Taken from [19])

The last network architecture used in experiments
is the Densely Connected Neural Networks(DenseNets)[23].
Before we dive into the architecture theory,
we should add some knowledge to the
Convolutional layers from section 2.5.

For example, imagine the input to our network
- typically, it is an RGB image, e.g., 2D matrix
divided into three channels or, in other words,
filters.

Now, let’s say that we want to extract various features that from this image. If we were to use the method
as we know it, we should have built a network with multiple convolutional or even multiple fully connected
layers. However, this is an over-parametrized approach. The natural convolution layers are using multiple filters
- stacking many convolution layers and using the same input for all of them. As a result, we get many features
with minimum parameters used. Finally, the Densely Connected Networks’ main idea is combining the Residual

Figure 3.4: Building block of DenseNet
(Taken from [23])

Network approach with the Convolution stacking technique. But, unlike in ResNets, we are concatenating them
instead of summing - which means that we are stacking all filters from previous layers and not changing them.
As a result - we increase layer size, but not as high as parameters count grow in ResNet.
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Chapter 4

Visualisation

This chapter is a short review of the different neural network training visualization methods.

4.1 Grand Tour visualisation

The first approach in the Neural Network training visualization is the change of the output values during the
training[7].

Let the output data is a set of K label probabilities, which is a P-dimensional vector. To represent it in
a low-dimensional 2D space, we should take a vector

#»

O as the origin and then choose two base vectors.

Figure 4.1: Example of Grand
Tour visualization
(Taken from [47])

To continuously choose the proper parameters, the author proposes a
method of rotating all 2D subspaces[7]. Another way is to choose the
parameters manually depending on a particular strategy[5]:

• Equal division of 2D space between K labels:
The origin will be the vector with equal probabilities and
two vectors are chosen from the set of possible positions.

• Linear techniques(PCA components):
Analyzed in 4.4

• Non-Linear techniques(Sammon’s projection)[1]:
Defining a cost function that tries to preserve the inter-label
distances. The algorithm minimizes it with the Gradient descent.

As an example, see figure 4.1, where the different color represents different
labeling of the data. We can see the geometrical arrangement of the labels.

4.2 Loss Surface Visualisation in General

The second approach is to visualize the loss function’s surface, which is more significant to the training process.
The reason behind this is straightforward - backpropagation plays a crucial role in the training process because
it defines the gradient and, therefore, the training path of the parameters.

As we have mentioned in section 2.3, the backpropagation is made with respect to the weights and biases.
These parameters create a very high-dimensional vector θ of variables, which is impossible to visualize in its
original dimension.
Because of that, we have several approaches to the visualization of the loss function.
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1D visualisation

One of the straightforward approaches is to analyze the surface between two vectors of parameters:
#»

θ and
#»

θ ∗.
We can do so by defining a surface function[27][12]:

f(α) = (1− α)
#»

θ + α
#»

θ ∗ (4.1)

representing all points across the line between two vectors. Then, we can draw a graph with an α on one axis
and the value of the loss function in the f(α) point on the other, e.g. y = CostFunction(f(α))

However, this approach does not have enough expression power to prove our hypothesis about the surface
curvature fully. It was proved in [27] that the sharpness/smoothness(see 4.6) of the 1D curve is misleading and
can be easily reshaped using simple normalization methods. Thus, we should use a more advanced visualization
technique.

2D visualisation

To visualize a surface in the 2-dimensional space, we must choose an origin vector
#»

θ * and two directions
#»

δ and
#»η . After that, we can define a function to get all points on the 2D surface around the origin[27][12]:

f(α, β) = (
#»

θ ∗ + α
#»

δ + β #»η ) (4.2)

After that, we can set two axes to α and β, and the third axis will be the value of the loss function at the f(α, β)
point, e.g. y = CostFunction(f(α, β))
This method is just the multiple usages of the previous 1D interpolation if no other techniques are used. We
will consider two approaches to make use of this method - PCA(see 4.4) and Filter normalization(see 4.3).

Scale invariance

As we introduced the normalization methods in section 3.2, we can say that any network’s parameter can be
re-scaled using the batch-normalization[15].

Even though we will get the same distribution for any network, we cannot be sure what units to choose to
represent the network surface. For example - the large weights will be normalized to small numbers, and we
would need a tiny step to catch the surface. In comparison, the small weights will not be changed too much,
and we will compute a lot of unnecessary points’ value on the surface.[27]

4.3 Filter-wise normalized directions

As stated in the previous sections, we should consider the scale-invariant loss function’s properties and tune the
direction length accordingly. Concerning this problem, we can use a Filter-Wise normalization method to
catch the required curvature in the (-1, 1) range of the direction.

Let us assume that we have a network with
#»

θ parameters vector. Afterward, we generate a direction
#»

d for the
parameters vector with the same shape. To correctly choose a length, we will use the following normalization:

For each layer i:

• If the layer’s parameters have a dimension greater than 3:

#»

d i,j =

#»

d i,j

‖ #»

d i,j‖
‖ #»

θ i,j‖ (4.3)

where di,j is the element associated with j-th filtera of i-th layer.

• Otherwise:
#»

d i,j = 0 (4.4)

aFor example, layer with a total shape of (16, 3, 3) have 16 matrices/filters of (3, 3).
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That way, we will get vectors with the correct length to solve the Scale invariance problem[27].

4.4 Visualisation with PCA components

PCA Components

Theoretical basis

We want to project vectors from m-dimension to k-dimension so that the
variance is maximal.
Solution:[11][28]

1. Lets denote matrix A = { #»a 1, ...,
#»a n}T , where every #»a i ∈ Rm is a given

vector.

2. Because the solution can be affine, we will use their mean as origin:
#»amean = 1

n

∑
i

#»a i,
#»a i := #»a i − #»amean

3. We want to find a maximal variance matrix B = { #»

b 1, ...,
#»

b k}T , so that the

span of all
#»

b i creates a k-dimension subspace with all vectors from A.

4. We will calculate eigendecomposition of ATA = WΛWT , which is the
Covariance matrix of a data matrix AT . In case that eigendecomposition
not exists, we can use Singular decomposition(SVD).

5. We will choose k largest eigenvalues from Λ :
Y = (Λn−k+1, ...,Λn).
And then ortogonalize it, Y = ortog(Y).

6. Finally, we know that B = amean ∗ 1T +AY Y T

Application of PCA components

Lets assume that
#»

θ i represents the parameters at epoch i and the training ended
at epoch n = { #»

θ 0, ...,
#»

θ n}.
Let matrix M = {( #»

θ 0 −
#»

θ n), ..., (
#       »

θn−1 −
# »

θn)} and we use PCA Components(with
k = 2) to find two directions from this matrix.

That way we will visualise the maximum variation possible for the 2D.

4.5 Use of methods

4.5.1 PCA components

As shown in the previous chapter, the PCA components are the linear approximation of the given points into a
lower dimension. There exist other non-linear methods of approximation, such as t-SNE [4], but for simplicity,
we consider the PCA components only.

As papers propose, the PCA trajectories can be used to visualize either the path of the optimizer[21], [27]
or the spatial representation of the output([43]). In most cases, the optimizer path’s shape can be described
as a curve approaching the local minimum with a bit of oscillation near the minimum. For an illustration,
see 4.2 However, instead of visualizing the path, our goal is to investigate the converged point as a whole, not
the individual case. Moreover, as [8] states, the data ordering in a dataset increases convergence speed. The
consequences are obvious - even a reshuffling of data tangibly changes the optimizer path. Accordingly, we will
make an assumption - most of the paths with identical origin and leading to the selected minimum occupy the
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Figure 4.2: Example of PCA trajectory path
(Taken from [27])

area visualized by PCA trajectories.

Finally, we can formulate the following properties of a surface that we want to witness by PCA trajectories:

• Sharpness or Flatness(see section 4.6)

• Convexity or Non-convexity - as mentioned above, the optimizer paths are sensitive to curvature, data
sampling, and other changes in the training process. So, we can state that the non-convex surroundings of
the minimum act as a hazardous obstacle. In the case of a lousy learning rate, the optimizer can quickly
move to the area with an opposite gradient direction and converge to an entirely different minimum.
Nevertheless, as concluded in [27], the 2D approximation’s convexity is not enough to prove the convexity
of the original space. Positively, the non-convexity implies the total non-convexity of the original space.

We summarize them under the term efficiency of the minimum.

4.5.2 Random trajectories

The PCA trajectories’ main goal was to visualize the approximation of the optimizer’s path as a subspace.
Nevertheless, the subspace of the optimizer’s path is not enough to confirm the local minimum’s efficiency.
Even though the PCA’s subspace confirms the efficiency in the selected subspace, the actual point may be
located around the non-convex area and, therefore, be ineffective. Considering that, we should try visualizing
the endpoint’s surroundings to examine the found minimum’s efficiency.

The main reason to use random trajectories instead of PCA or any other fixed direction is to observe parameter
subspace that we do not consider in those methods. For example, the network can perform well for the optimized
path, but the surroundings of the minimum can be entirely ineffective near the point.
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Length normalization

However, the main question is how to choose the random direction and it’s length if we don’t have any
information about it. To do so, we have such method:

• Create a
#»

θ -dimensional Gaussian direction vector
#»

d = Normal distribution generalized in the
high-dimension

• Apply Filter normalization[27] - that way we will consider only the part of the layer where we
have matrices instead of scalars. In this case, we will be zeroing the parts of random trajectory in
case of bias, batch normalization, and other non-matrix types of parameters. Because of this, at
each point, the Batch normalization and other non-convolutional scaling are remaining the same.
Thus, we removed the scale invariance problem[27].

Finally, the more detailed reasons for the filter normalization method are described in [27]. Specifically,
the critical advantage of this method is the more accurate correlation of the sharpness with generalization
error.

4.6 Sharp vs Flat discussion

The motivation for the subsequent loss surface comparison is the discussion of sharp versus flat curvature
generalizability [24], [25], [27], [29].

The discussion is being unsolved due to the solid arguments on both sides. In comparison, the paper [24] stated
that the small-batch SGD converges to the flat minima correlated with better generalizability. Afterward, the
paper [25] argued that the generalizability is not directly related to the curvature, and there are techniques to
solve the generalizability problem [33].
Finally, the paper [27] introduced new methods to show the correlation between flatness and generalizability,
thus continuing the discussion.

In the end, we stick to the middle way - we test the introduced methods and check the correlation of flatness
and generalizability(see 6.1-6.6). Afterward, we conclude the results and evaluate the method’s correctness.

Theoretical summary

We have summarized the theoretical basics, the different architectures, and several advanced techniques used
in modern Neural Networks. With all the theoretical background set, we can dive into the implementation of
visualization in the next chapter.

We will focus on the Loss Surface visualization techniques and implement it in the Python.
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Chapter 5

Implementation and methods

In this chapter, we outline the experiments and provide details about the methods used in the next chapter.

5.1 Dataset overview

• Heterogeneity–aware dataset1 - Gene expression data defined as a regression problem. More precisely,
we use half of the inferred genes, e.g., pre-processed version from [48].
Size: 52,407 samples(train) + 17,469 samples(validation) of input size 942 and output size of 4759.

• Cifar102 - Classification dataset of hand-written digits, e.g., images of numbers 0-9.
Size: 50,000(Train) + 10,000(Validation) color images of size 32x32 split into 10 labels.

• ImageNet(ILSVRC 2012)3 - A complex dataset that is made of natural images. It includes a wide variety
of labels such as tiger shark, digital clock, board. The total number of labels is 1000.
Size: 1,281,167(Train) + 50,000(Validation) images of sizes between 75x56 and 4288 x 2848.

5.2 Experiments

For all experiments, we will consider validation accuracy as a generalizability representation.

• ResNet-Cifar10= Experiments in these sections will replicate the results from [27] and compare the loss
surface of the different ResNet implementations(see 5.4) and visualize the impact of the skip connections.
Dataset used - Cifar10.

• DenseNet-Cifar10 = The experiment in this section compares the impact of DenseNet ’s concatenating
(see 3.4) with the skip connections on the same dataset.
Dataset used - Cifar10.

• DenseNet/ResNet-ImageNet = The experiment in this section analyzes the previous DenseNet and
ResNet architectures with the more complex dataset.
Dataset used - ImageNet.

• TAAF x Dense = Experiments in these sections analyze the differences between the TAAF and static
activations. We are trying to inspect the hypothesis - whether adding four parameters per neuron results
in a more generalizable loss surface curvature or not.
We will test it on two network scales:

– 3 layers, 6000 neurons

– 3 layers, 9000 neurons

Dataset used - Heterogeneity–aware dataset.

1https://cbcl.ics.uci.edu/public_data/D-GEX/
2https://www.cs.toronto.edu/~kriz/cifar.html
3http://www.image-net.org/
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5.3 Visualisation methods

We will focus on two loss surface visualization methods in our experiments:

• PCA components(PCA) - the primary use of this method is to show the fittest linear approximation of
the surface in the optimizer space.
The motivation is to visualize the surface around the path of the optimizer[27].

• Random trajectories with filter normalization(filnorm) - the primary use of this method is to analyze the
surface around the converged local minima.
The motivation is to assess its effectiveness and generalizability[25].

5.4 Models overview

Below is the overview of the models taken from an external repository and the custom re-implemented ones.
The brief conclusion of the architectures’ performance and the parameters count are summarized in section
6.11.

External models

• TAAF(TensorFlow) [48]

• ResNet50(TensorFlow)[51]

• ResNet110(PyTorch)[41]

• DenseNet cifar(TensorFlow) [36]

• DenseNet121, ResNet50(TensorFlow-in-built) 4

Implemented models

• ResNet56(TensorFlow) - re-implementation of ResNet110 from [41]

5.5 Visualization details

The implementation of the loss surface visualization 5 contains three primary parameters:

• Scale = represents the area of the loss surface analyzed. It is defined as a square with a radius R, in
coordinates [−R,R]× [−R,R]. Throughout the experiment visualizations, we denote:

– R=2 or [−2, 2]× [−2, 2] as 2xScaled

– R=1 is not denoted with scale modification.

• Resolution = represents the number of points used to approximate the area chosen. It can be viewed as
a discretization of an area’s axes. Throughout the experiment visualizations, we denote:

– For example, 480 points per axes(x,y) as 480× 480

• XY Scale = represents the scaling of the XY plane, while the Z-axis scale remains the same or log-scaled6.
The XY-Scaling can be either auto-performed by the MatPlotLib library or manually tuned in the VTK
visualization libraries. Both variants are being used in most cases.

4https://www.tensorflow.org/api_docs/python/tf/keras/applications
5https://gitlab.fel.cvut.cz/anuarali/loss-surface-bp
6Log scale discussed later

19

https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://gitlab.fel.cvut.cz/anuarali/loss-surface-bp


Chapter 6

Experimental part

This chapter summarizes the experiments and their results.

6.1 ResNet110, Random trajectories with Filter normalization

Our next experiments replicate the result from the [27] with the ResNet Loss Surface.
More precisely, we consider multiple implementations of the ResNet architecture and compare their impact on
the loss surface curvature.

ResNet110, Training part

Below is a summary of training of the ResNet110 from [41] repository.

Figure 6.1: ResNet110 training

Required hardware:

• 1 CUDA60 GPU

Time taken:

• 2 hours 01 minutes 13 seconds.

Final results:

• Optimal epoch: 200.

• Loss function = MSE

• loss: 0.0187.

• accuracy: 87.40%.

• validation loss: 0.02737.

• validation accuracy: 81.49%.

Important note

The subsequent experiments compare the surfaces of the ResNet implementations with their noskip
versions using the random trajectories only. The reason for this is the computational cost of the
visualization.
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ResNet110(Noskip), Training part

Repeat the previous approach with skip connections removed from the model.

Figure 6.2: ResNet110(Noskip) training

Required hardware:

• 1 CUDA60 GPU

Time taken:

• 2 hours 02 minutes 42 seconds.

Final results:

• Optimal epoch: 69.

• Loss function = MSE

• loss: 0.0776.

• accuracy: 31.08%.

• validation loss: 0.0792.

• validation accuracy: 31.29%.

Again, removing the skip connections shows weight explosion and model degradation over time.

Visualization

Now we will generate the filter normalized random trajectories and observer the loss surface of the models. As
a relative point, we will choose epoch 69, as it is the best accuracy score in ResNet110(Noskip) model, and we
can observe the surface where the models are moving at that epoch.

Visualization part(ResNet110/ResNet110(Noskip))

Required hardware:

• 20x cuda60 GPU

• 20x cuda60 GPU

Visualization area:

• Scale=1, Resolution:200x200

• Scale=4, Resolution:300x300a

Time taken:

• 12 hours 02 minutes 00 seconds.

• 18 hours 12 minutes 12 seconds.

aLarger size used to demonstrate more detailed visualization
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Figure 6.3: Resnet110, ,
log scale, scale=1, 200x200

Figure 6.4: ResNet110(Noskip),
log scale, scale=1, 200x200

Figure 6.5: ResNet110,
Contour of 6.3

Figure 6.6: ResNet110(Noskip),
Contour of 6.4

Figure 6.7: ResNet110, light + shaders,
log scale, scale=3, 300x300a,b

ahttps://youtu.be/r-gC66QALqs
bhttps://youtu.be/novNA_qAiBA

Figure 6.8: ResNet110(Noskip), light + shaders,
log scale, scale=3, 300x300a,b

ahttps://youtu.be/AkY8hLnc-EE
bhttps://youtu.be/dhuTU-sxZ0I
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6.2 ResNet110, Validation dataset

The following plots are the same trajectories from the previous section but calculated on the validation dataset.
The main goal of the following experiment is to show the similarity between the train and validation loss surface.

Visualization part(ResNet110/ResNet110(Noskip))

Required hardware:

• 20x cuda60 GPU

Visualization area:

• Scale=4, Resolution:300x300a

Time taken:

• 15 hours 11 minutes 18 seconds.

aLarger size used to demonstrate more detailed visualization

Figure 6.9: ResNet110,
loss surface of validation dataset

Figure 6.10: ResNet110(Noskip),
loss surface of validation dataset

Figure 6.11: ResNet110,
same as 6.9a

ahttps://youtu.be/0i7ksxGJp60

Figure 6.12: ResNet110(Noskip),
same as 6.10a

ahttps://youtu.be/s_0RZGU-hRA
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6.3 ResNet50

The next ResNet architecture, ResNet-50 from [51], was designed for the more complex dataset, ImageNet.
Therefore, the architecture has more layers than needed for the image analysis and can be viewed as a
visualization of a lousy architecture choice.

6.3.1 ResNet50, Training

Training part

Figure 6.13: ResNet50 training

Required hardware:

• 1 cuda60 GPU, 1 CPU, 4 GB RAM

Time taken:

• 1 hours 45 minutes 02 seconds.

Final results after 150 epochs:

• Loss function = Cross Entropy

• loss: 0.0020.

• accuracy: 98.11%.

• validation loss: 0.0437.

• validation accuracy: 58.25%.

For an illustration, see graph 6.13.

6.3.2 ResNet-50 PCA visualization

Visualization part

Figure 6.14: ResNet50, PCA, with log scalea

After obtaining the checkpoints, we will run the visualization part:

Hardware needed:

• 10 machines * [1 cuda60 GPU, 1 CPU, 10GB RAM]

Visualization area:

• Scale=1, Resolution:200x200

Calculation of an area took:

• 12 hours 53 minutes 07 seconds.

aLog scale is discussed later
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6.3.3 ResNet-50(noskip) Training

Training part

Repeat the previous approach with skip connections removed from the model.

Figure 6.15: ResNet50 with no skip connection
training

Required hardware:

• 1 cuda60 GPU, 1 CPU, 10GB RAM

Time taken:

• 1 hours 46 minutes 05 seconds.

Final results:

• Loss function = Cross Entropy

• loss: 0.0052.

• accuracy: 66.87%.

• validation loss: 0.1011.

• validation accuracy: 29.82%.

The result is 150 calculated checkpoints with 20,774,666 parameters value in each of them. For an
illustration, see graph 6.15.

As we see from the training graph, removing the skip connections from the ResNet50 caused a
massive impact on the graph. The loss value and accuracy are degrading. The hypothesis of skip
connection’s role in the networks with dozens of hidden layers is working in our case.

6.3.4 ResNet-50(noskip) PCA visualization

Visualization part

Figure 6.16: ResNet50(Noskip), PCAa, with
log scaleb

Required hardware:

• 10 machines * [1 cuda60 GPU, 1 CPU, 10GB RAM]

Visualization area:

• Reduced size: 200x200

Calculation of an area took:

• 13 hours 01 minutes 25 seconds.

aWe used the scaling to the length of path from origin to the most distant checkpoint
bLog scale is discussed later
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6.3.5 ResNet50, Random trajectories with Filter normalization

Figure 6.17: 200x200 Resnet50,[-1,1]

Visualization part

• 10 machines * [1 cuda60 GPU, 1 CPU, 10GM RAM]

• 20 machines * [1 cuda60 GPU, 1 CPU, 10GM RAM]

Visualization area:

• Resolution size: 200x200, Scale: 1x1

• Resolution size: 300x300, Scale: 4x4**

Calculation of an area took:

• 15 hours 11 minutes 12 seconds.

• 16 hours 3 minutes 3 seconds.

* We will present other visualizations after the repairing in the next subsection
** Larger size used to demonstrate more detailed visualization

Repairing of the plot

Nevertheless, the flat surface on the bottom is misleading. The values there are not constant, so the surface we
see is deformed due to the other reason.
After analyzing the values in the plot, we can quickly determine that the problem here lies in the number order
- the minimum is 103, and the maximum number is 3.2e5.

Figure 6.18: Logarithm of the 6.14

To solve these problems, we will use several
techniques, such as:

• Log scale - to visualize the surface without the
order deformations, we can use a logarithm of
values. That way, we will preserve the function’s
surface in terms of value difference - the more
significant values will have a larger value and
vice versa.

• Value threshold - we will set a certain
threshold, and we will clamp all values above
it so that the function will not be a pointing
arrows.
We can see them as flat red surfaces on the sides
of the plot.

As an example see 6.18.
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Figure 6.19: ResNet50(Noskip), Filter norm,
log scale, scale=1, 200x200

Figure 6.20: ResNet50(Noskip), Filter norm,
threshold=7 + log scale, same as 6.19

Figure 6.21: ResNet50, light + shaders,
same as 6.18a

ahttps://youtu.be/CLhJFhy6vmM

Figure 6.22: ResNet50(Noskip), light + shaders,
same as 6.19a

ahttps://youtu.be/0pZH-153f3Q

Figure 6.23: ResNet50, light + shaders,
threshold=7 + log scalea

ahttps://youtu.be/qe009WdDjMc

Figure 6.24: ResNet50(Noskip), light + shaders,
threshold=7 + same as 6.20a

ahttps://youtu.be/YmfdkWz1dHU

Observations

As we see, the more complex the architecture gets, the more information we lose with the linear approximation
in PCA components. Because of this, the comparison of the surfaces relies more on the random trajectories
than the PCA.
Nonetheless, we perceive the results as similar to the previous experiments. With the mentioned threshold
technique, we can zoom in and inspect the impact of the skip connections. The skip connections conversely
remove the deformations and make the surface flatter. As mentioned beforehand, the flat surface is more likely
to become more generalizable[27][25][24].
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6.4 ResNet56, Random trajectories with Filter normalization

ResNet56, Training part

Figure 6.25: ResNet56 training

Below is a summary of training of the ResNet56.
Required hardware:

• 1 CUDA60 GPU

Time taken:

• 1 hours 01 minutes 25 seconds.

Final results:

• Loss function = Cross-Entropy

• loss: 0.00004.

• accuracy: 99.49%.

• validation loss: 0.0332.

• validation accuracy: 71.97%.

Figure 6.26: Resnet56, 200x200,
log scale + threshold

Figure 6.27: ResNet56(Noskip), 200x200,
log scale + threshold
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ResNet56(Noskip), Training part

Below is a summary of training of the ResNet56.

Figure 6.28: ResNet56(Noskip) training

Figure 6.29: 6.26 with light + log scalea

Figure 6.30: 6.27 with light + log scaleb

Required hardware:

• 1 CUDA60 GPU

Time taken:

• 1 hours 05 minutes 23 seconds.

Final results:

• Loss function = Cross-Entropy

• loss: 0.0013.

• accuracy: 80.98%.

• validation loss: 0.02736.

• validation accuracy: 52.49%.

Visualization part(ResNet56/ResNet56(Noskip))

Visualizations:

• ResNet56

• ResNet56(Noskip)

Required hardware:

• 10x cuda60 GPU

• 10x cuda60 GPU

Time taken:

• 11 hours 52 minutes 23 seconds.

• 11 hours 55 minutes 42 seconds.

ahttps://youtu.be/tiPlHAu-2q8
bhttps://youtu.be/r4N37djM45w

29

https://youtu.be/tiPlHAu-2q8
https://youtu.be/r4N37djM45w


Summary of ResNet

After the visualization of all ResNet architectures with the Cifar10 dataset, we can summarize the following
conclusions:

• The flattening effect of the ResNet’s skip connections was witnessed on all scales and models.

• All of the ResNet models were prevailing over the noskip versions on both loss and accuracies.

• The MSE function gives the most deformations and is the most sensitive static activation function to the
surface curvature.

Concluding note - since the MSE is the most sensitive to deformations, we may assume that it is not suitable
for classification tasks. More specifically, the generalizability in a deformed surface may suffer due to the sharp
minima.
Also, since we have an accuracy used as a generalizability representation, now is the time to compare the
accuracy performance from 6.11 with the curvature.
The most prominent evidence for the accuracy-flatness correlation is the ResNet110 plots(81% vs 31.29%), and
it holds for train and validation datasets. Next, ResNet50(58.25% vs 29.82%)and ResNet56(71.97% vs 52.49%),
even though the curvature changes are visible only near the minimum, also supports the correlation, but can
not fully prove the correlation.For a brief overview of the correlation, see 6.11.

6.5 DenseNet, Cifar/ImageNet

DenseNet cifar, Training part

Below is a summary of training of the DenseNet from [36] repository.

Figure 6.31: DenseNet cifar training

Required hardware:

• 1 CUDA60 GPU

Time taken:

• 4 hours 05 minutes 33 seconds.

Final results:

• Optimal epoch: 150.

• Loss function = Cross-Entropy

• loss: 0.0578.

• accuracy: 99.22%.

• validation loss: 0.9348.

• validation accuracy: 84.60%.

Visualization part(DenseNet-cifar)

Required hardware:

• 20x cuda60 GPU

• 20x cuda60 GPU

Time taken:

• 13 hours 44 minutes 26 seconds.

• 13 hours 41 minutes 58 seconds.
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Figure 6.32: DenseNet, PCA, [200x200],
2x scaling

Figure 6.33: DenseNet, filnorm random, [200x200],
2x scaling

Figure 6.34: DenseNet, PCA,
light + threshold=exp(50), same as 6.32a

ahttps://youtu.be/SJfUXEHdPl4

Figure 6.35: DenseNet, filnorm, light + threshold=300,
same as 6.33a

ahttps://youtu.be/ohJocdL0xLg

Observations

From the filter-normalized visualization above, we can see that the curvature of the DenseNet architecture is
slightly different from the ResNet architecture curvatures. The notable differences are small non-convexities
that occur as the surface decreases near the minimum.
However, in comparison with the ResNet’s noskip versions, these non-convexities are primarily negligible and
do not affect the direction of the gradient as the previous deformations observed.
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6.6 ResNet50/DenseNet121 with ImageNet

As we tested the network architectures on one of the commonly used datasets - Cifar10, we can visualize a more
complex dataset. However, as the complexity grows, the time needed for the training grows with it. Because of
this, we use pre-trained models available in the TensorFlow library.
Moreover, since the validation data are extensive, we can not visualize with a high resolution as in previous
visualizations.

The primary difference compared to previous visualizations is that we cannot possibly visualize an original
train loss in a reasonable time. The complexity of the ImageNet dataset is beyond our computational powers,
and thus we will focus on the validation dataset only.

DenseNet121

Figure 6.36: DenseNet121, ImageNet validation loss

Parameter number:

• 7,978,856

ImageNet validation accuracy(checked):

• 0.7232

Hardware needed:

• 20x cuda60 GPU

Visualized are:

• Scale = 1, Resolution = 60x60

Time taken:

• 21 hours 37 minutes

ResNet50

Figure 6.37: ResNet50, ImageNet validation loss

Parameter number:

• 25,636,712

ImageNet validation accuracy(checked):

• 0.8011

Hardware needed:

• 20x cuda60 GPU

Visualized are:

• Scale = 1, Resolution = 60x60

Time taken:

• 23 hours 22 minutes
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Figure 6.38: DenseNet121, Filter norm,
scale=1, 60x60a

ahttps://youtu.be/uH8ghzdTEfU

Figure 6.39: ResNet50, Filter norm,
scale=1, 60x60a

ahttps://youtu.be/_5RX0Bv1wg8

Figure 6.40: DenseNet121, Heatmap,
scale=1, 60x60

Figure 6.41: ResNet50, Heatmap,
scale=1, 60x60

Figure 6.42: DenseNet121, ContourMap,
scale=1, 60x60

Figure 6.43: ResNet50, ContourMap,
scale=1, 60x60

Observations

As we have seen previously(see 6.2), the validation dataset surface reflects the loss surface of the training loss.
On top of that, all the assumptions of the optimal minimum hold for the following pre-trained networks.
We can observe that the method proposed in [27] correlates with the generalization error and works even with
the validation loss surface.
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6.7 TAAF, Preparations

Figure 6.44: 271x271 loss surface of [48]
[calculated on MetaCentrum platform]

Figure 6.45: 811x811 loss surface of [48]
[calculated on MetaCentrum platform]

Important Note

For all the following TAAF experiments, we use the sigmoid-based TAAF activation function

Experiment details

Our next experiment is going to show the basic
functionality of the loss surface visualization.

Network: TAAF, two layers with 300 neurons each[48].
Dataset: a subset of the D-GEX(GEO)1dataset, taken
from [48].
Visualization technique: PCA(151 checkpoints with
664408 parameters each)

The main goal is to visualize the surface of the
small network and show the main techniques used in the
upcoming experiments.

Required hardware from the MetaCentrum:

1. 4 machines with 8 avx512dq CPU each

2. 7 machines with 8 avx512dq CPU each

Visualization details:

• First approach = 271x271, scale = 1

• Second approach = 811x811, scale = 2

Calculation of an area took:

1. 22 hours 22 minutes 38 seconds.

2. 26 hours 38 minutes 05 seconds.

The results are figures 6.44 and 6.45

As we see, with a relatively small number of parameters
in comparison with the next experiments, we get a
smooth surface.

1https://www.ncbi.nlm.nih.gov/gds
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6.8 TAAF, Preparations 2

The following plots show us the importance of scaling and resolution increase.
Hardware needed:

• 10 machines * [1 cuda60 GPU, 1 CPU, 8GB RAM]

• 20 machines * [1 cuda60 GPU, 1 CPU, 8GB RAM]

Visualization area:

• Scale=1, Resolution:210x210 (plots 6.46, 6.48)

• Scale=2, Resolution:480x480 (plots 6.47, 6.49)

Calculation of an area took:

• 12 hours 53 minutes 07 seconds.

• 13 hours 45 minutes 12 seconds.

Figure 6.46: TAAF[2x300], PCA Figure 6.47: TAAF[2x300], PCA, 2x scaling

Figure 6.48: TAAF[2x300], filnorm Figure 6.49: TAAF[2x300], filnorm, 2x scaling

However, as we see from the plots, it is hard to analyze the surface in 3D. Therefore, we convert the
same surface to the heatmap + contour maps in the coming TAAFxDense sections. Also, the log scale
is applied to all of the plots.
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6.9 TAAF vs Plain, 3 layers, 6000 neurons

Now, as we have seen the visualization of a small network, we can visualize a more practical network.
The two following experiments compare the loss surfaces of the networks with and without the TAAF activation
functions.
We will call the non-TAAF activations network as Plain, e.g., fully-connected hidden layers with a sigmoid
activation function.

Training part

Figure 6.50: TAAF vs Plain, 3x6000

Parameter count:

• 106,297,036 (TAAF )

• 106,228,759 (Plain)

Required hardware:

• 1 cuda60 GPU, 1 CPU, 24 GB RAM

Time taken:

• 3 hours 45 minutes 02 seconds.

Final results after 500 epochs:

• Loss function = MAE

• loss: 0.1324(TAAF), 0.1293(Plain).

• validation loss: 0.1607(TAAF),
0.1813(Plain).

For an illustration, see graph 6.50.

As we see, with the relatively low number of parameters added, the network’s performance increases
significantly. The dominance of the parametrized sigmoid TAAF over the default sigmoid is apparent.

Visualization part

Hardware needed:

• 10 machines * [1 cuda60 GPU, 2 CPU, 28GB RAM]

Visualization area(same for all):

• Scale=2, Resolution:200x200

Calculation of an area took:

• 17 hours 12 minutes 05 seconds(PCA)

• 18 hours 01 minutes 11 seconds(filnorm)
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Figure 6.51: TAAF[3x6000] PCA, 2x scaled Figure 6.52: TAAF[3x6000] filnorm, 2x scaled

Figure 6.53: TAAF[3x6000] PCA Contour Figure 6.54: TAAF[3x6000] filnorm Contour

Figure 6.55: Plain[3x6000] PCA, 2x scaled Figure 6.56: Plain[3x6000] filnorm, 2x scaled

Figure 6.57: Plain[3x6000] PCA Contour Figure 6.58: Plain[3x6000] filnorm Contour
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6.10 TAAF vs Plain, 3 layers, 9000 neurons

Training part

Figure 6.59: TAAF vs Plain, 3x9000

Parameters count:

• 213,436,036 (TAAF )

• 213,340,759 (Plain)

Required hardware:

• 1 cuda60 GPU, 1 CPU, 24 GB RAM

Time taken:

• 3 hours 45 minutes 02 seconds.

Final results after 500 epochs:

• Loss function = MAE

• loss: 0.1251(TAAF), 0.1206(Plain).

• validation loss: 0.1625(TAAF),
0.1819(Plain).

For an illustration, see graph 6.59.

Again, the dominance of the TAAF activations over the default sigmoid is seen. However, we can observe
that the performance has not improved and partially degraded compared to the 6000 neurons. The possible
reasons for this are the overfitting issue and the poor starting point issues.
Unfortunately, due to the resource contraints, we cannot reproduce the same experiment multiple times and
analyze the reasons for this behavior more profoundly.

Visualization part

Hardware needed:

• 10 machines * [1 cuda60 GPU, 2 CPU, 28GB RAM]

Visualization area(same for all):

• Scale=2, Resolution:200x200

Calculation of an area took(Average):

• 19 hours 33 minutes 21 seconds(PCA)

• 19 hours 37 minutes 14 seconds(filnorm)
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Figure 6.60: TAAF[3x9000] PCA, 2x scaled Figure 6.61: TAAF[3x9000] filnorm, 2x scaled

Figure 6.62: TAAF[3x9000] PCA Contour Figure 6.63: TAAF[3x9000] filnorm Contour

Figure 6.64: Plain[3x9000] PCA, 2x scaled Figure 6.65: Plain[3x9000] filnorm, 2x scaled

Figure 6.66: Plain[3x9000] PCA Contour Figure 6.67: Plain[3x9000] filnorm Contour
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TAAF summary

As we see, the network scaling to the 9000 neurons has not changed the curvature of a surface compared to the
6000-neuron version.
Unfortunately, no other information can be gathered from the plots. The filter-normalized random trajectory
plots show us the same curvature between TAAF and FC networks.
Moreover, the PCA plots show us nearly the same plot when reduced to the unit scale, e.g., cut 1/4 of each axis.
From this observation follows that the paths of the optimizers follow the same curvature. The only exciting
observation encountered is the degrading phenomenon after the scaling. Unluckily, it had no effects on the plot.

So, if we were to conclude the TAAF regression section, we see that the loss surface method is not suitable for
this type of regression task with the networks chosen. The experiments show us the necessity of further analysis
with more sophisticated methods to measure the impact of the TAAF.
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6.11 Brief overview

* All CPUs are avx512dq(TensorFlow requirement)
** [—] is 1 machine resources

Computation time comparison

Model name
Experiment details

Training
time

Training
resources

Visualisation
time

Visualisation
resources

TAAF(Prep), PCA,
271x271, 811x811

0h 32m 1 CPU*
(MetaCentrum)

22h 22m
26h 38m

7x [8 CPU*]**
(MetaCentrum)

TAAF(3x6000)
PCA(200x200)

3h 45m 1x CUDA60 GPU
(MetaCentrum)

17h 12m 10x [CUDA60 GPU]**
(MetaCentrum)

TAAF(3x6000)
filnorm(200x200)

3h 45m 1x CUDA60 GPU
(MetaCentrum)

18h 01m 10x [CUDA60 GPU]**
(MetaCentrum)

TAAF(3x9000)
PCA(200x200)

3h 45m 1x CUDA60 GPU
(MetaCentrum)

19h 33m 10x [CUDA60 GPU]**
(MetaCentrum)

TAAF(3x9000)
filnorm(200x200)

3h 45m 1x CUDA60 GPU
(MetaCentrum)

19h 37m 10x [CUDA60 GPU]**
(MetaCentrum)

ResNet50
PCA, 200x200

3h 01m 1x CUDA60 GPU
(MetaCentrum)

12h 53m 10x [CUDA60 GPU]**
(MetaCentrum)

ResNet50(Noskip)
PCA, 200x200

3h 36m 1x CUDA60 GPU
(MetaCentrum)

13h 01m 10x [CUDA60 GPU]**
(MetaCentrum)

ResNet50
FiltNorm, 200x200

3h 01m 1x CUDA60 GPU
(MetaCentrum)

15h 11m 10x [CUDA60 GPU]**
(MetaCentrum)

ResNet50
FiltNorm, 300x300

3h 01m 1x CUDA60 GPU
(MetaCentrum)

16h 03m 20x [CUDA60 GPU]**
(MetaCentrum)

ResNet50(Noskip)
FiltNorm, 200x200

3h 36m 1x CUDA60 GPU
(MetaCentrum)

15h 11m 10x [CUDA60 GPU]**
(MetaCentrum)

ResNet50(Noskip)
FiltNorm, 300x300

3h 36m 1x CUDA60 GPU
(MetaCentrum)

16h 03m 20x [CUDA60 GPU]**
(MetaCentrum)

ResNet56
FiltNorm, 200x200

1h 01m Google Colab GPU 11h 52m 10x [CUDA60 GPU]**
(MetaCentrum)

ResNet56(Noskip)
FiltNorm, 200x200

1h 05m Google Colab GPU 11h 55m 10x [CUDA60 GPU]**
(MetaCentrum)

ResNet110
FiltNorm, 200x200

2h 01m Google Colab GPU 12h 02m 20x [CUDA60 GPU]**
(MetaCentrum)

ResNet110
FiltNorm, 300x300

2h 01m Google Colab GPU 18h 02m 20x [CUDA60 GPU]**
(MetaCentrum)

ResNet110(Noskip)
FiltNorm, 200x200

2h 02m Google Colab GPU 12h 03m 20x [CUDA60 GPU]**
(MetaCentrum)

ResNet110(Noskip)
FiltNorm, 300x300

2h 02m Google Colab GPU 18h 03m 20x [CUDA60 GPU]**
(MetaCentrum)

DenseNet(Cifar)
PCA, 200x200

4h 05m 1x CUDA60 GPU
(MetaCentrum)

13h 44m 20x [CUDA60 GPU]**
(MetaCentrum)
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Model accuracies comparison

Model name Epochs Cifar10 Train Accuracy Cifar10 validation
Accuracy

ResNet50 150 98.11% 58.25%

ResNet50(Noskip) 150 66.87% 29.82%

ResNet56 200 99.49% 71.97%

ResNet56(Noskip) 200 80.98% 52.49%

ResNet110 200 87.40% 81.49%

ResNet110(Noskip) 200 31.08% 31.29%

DenseNet(Cifar) 150 99.22% 84.60%

TAAF vs Plain regression comparison

Model name Epochs GEO Train Loss GEO validation Loss

TAAF[3x6000] 500 0.1324 0.1607

Plain[3x6000] 500 0.1293 0.1813

TAAF[3x9000] 500 0.1251 0.1625

Plain[3x9000] 500 0.1206 0.1869

ImageNet model comparison

Model name Parameter count validation accuracy

ResNet50 25.64 mil 80.11%

DenseNet121 7.98 mil 72.32%
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Chapter 7

Conclusion

Through the work, we have successfully analyzed the theoretical and practical parts of Neural Networks.
We have started with the Machine learning theory and introduced some basic methods for optimizing the
learning algorithm like Stochastic Gradient Descent.

Next, we narrowed it to the Neural network field, starting from the Perceptron, one of the first Neural
network architecture. With the step-by-step progressing, we have shown the reasons behind specific changes
in the architecture. On top of that, we introduced several techniques to solve a few critical problems during
Neural network training.

After that, we have reviewed the ways to visualize the loss surface of the neural network and identified their
advantages and disadvantages. On top of that, we introduced the fundamental properties that we want to
observe on our visualized plots.

Finally, we dived into the work’s practical part, where we successfully implemented the PCA and filter-normalized
random trajectory visualizations. We have tested it on TAAF, ResNet, and DenseNet networks and came
to the following conclusion:

1. Loss surface visualization technique can be used for specific tasks only. More precisely - it visualizes
the curvature of the surface and hence, is needless in the case of methods that have little effect on the
curvature. The examples of these disadvantages were the experiments with TAAF that showed us tiny
deformations only(viz. fig 7.1, 7.2).

Figure 7.1: TAAF, 3x6000, lighta

ahttps://youtu.be/c2qQ04Egqso

Figure 7.2: Plain, 3x9000, lighta

ahttps://youtu.be/OjAVh5SwHAI

2. Curvature alone can not say anything about the generalizability of the local minimum. However, it
can serve as one of the criteriums to evaluate the total generalizability, combined with the more precise
methods.
Primarily, the local minimum can be evaluated as non-optimal if a highly non-convex area surrounds it.
The most notable example is the ResNet110 (Noskip) surface and, less representative sample, ResNet50.
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The non-optimality of these surfaces lies in deformations - As we see, these deformations are large enough
to change the optimizer’s direction completely. For an illustration see figure 7.3.

ResNet110(Noskip) ResNet50(Noskip)

Figure 7.3: Most notable surfaces

Furthermore, the MSE loss function used in ResNet110 shows us why it is wrong for the classification
tasks. The visualizations of the larger areas show us that even the skip connections are not capable of
repairing the non-convex deformations of the surface. For an illustration see figure 7.4, 7.5

Figure 7.4: ResNet110 Figure 7.5: ResNet110(Noskip)

3. PCA trajectories are suitable for small architectures only. After the specific limit, the PCA’s ability to
approximate the high-dimensional surface becomes less and less effective. The proof for this is the attempt
to visualize the PCA trajectory plot for the ResNet50, a highly parametrized network(viz fig 7.6, 7.7).

Figure 7.6: ResNet50, PCA Figure 7.7: ResNet50(Noskip), PCA
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Figure 7.8: TAAF, 3x9000 Figure 7.9: Plain, 3x9000

Alternatively, over-parametrized TAAF and Plain networks with 3x9000 sizes each also prove the point(viz.
fig 7.8, 7.9).

As we see, the PCA shows us the same picture for entirely different networks in terms of performance.
Therefore, the linear approximation gives zero information in this case.

4. Finally, the evaluation of the method from [27], e.g., filter-normalized random trajectories.
As we progress through the architectures, we observe that the more complex architecture and more
over-parametrized ones are less sensitive to the curvature change, while lousy choices such as the MSE
loss function give us the most deformations visible.

For example, the DenseNet performance is hard to determine using this method. It has a non-convex
deformation, but the total shape remains flat. For an illustration see figure 7.10, 7.11

Figure 7.10: DenseNet, cifar Figure 7.11: DenseNet, ImageNet

Even though the research here is not enough to fully prove the statement, the observations clearly show
the following correlation - the method’s effectiveness decreases with the more advanced method such
as DenseNet concatenation, task-specific architecture(ResNet50 with ImageNet), and TAAF activation
functions.

To conclude - the visualization of the loss surface of the neural network is one of the possible visualization
ways to evaluate the generalizability. However, the more advanced the architectures become, the less
noticeable the problems are. Because of this behavior, new methods of evaluating neural network performance
are needed.
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Chapter 8

Appendix

This chapter will summarize implementation details.

8.1 Pytorch library

Tutorials [45] and [44] are being summarized below as an example of Neural network interface in Python language

Code overview

Initializers

1 # Neural Network wrapper class

2 class CustomModel(nn.Module):

3 def __init__(self , dim1 , dim2 , dim3):

4 # Create an empty wrapper with all variables

5 super(CustomModel , self).__init__ ()

6

7 # initialize every hidden layer function #

8

9 def forward(self , X):

10 # compute an output from X with hidden layer functions #

11

12

13 # Initialize a function y = XA + b

14 # Random parameters in <-sqrt (1/ dim1), sqrt (1/ dim1)>

15 # To access parameters: A = f.weights , b = f.bias

16 f = nn.Linear(dim1 , dim2)

17

18 # Initialize a function y = max(x, 0)

19 nn.ReLU()

20

21 # Initialize a function y = tanh(x)

22 nn.Tanh()

23

24 # Initialize a CrossEntropy(Softmax(out , real)) loss function

25 nn.CrossEntropyLoss(out , real)

26

27 # Initialize a MSE function loss function

28 nn.MSELoss ()

29

30 # Optimization gradient function

31 # Parameters are Variables , learning_rate = number

32 torch.optim.SGD(parameters , learning_rate)
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Training process

1 # Create objects

2 model = CustomModel(input_dim , hidden_dim , output_dim)

3 error = nn.CrossEntropyLoss ()

4 optimizer = torch.optim.SGD(model.parameters (), lr=0.2)

5

6 # Train from some train data

7 # (image , label) is mini -batch

8 for (image , label) in train_data:

9 optimizer.zero_grad () # Clear gradient

10 outputs = model(train) # Calculate output

11 loss = error(outputs , labels) # Calculate loss

12 loss.backward () # Calculate gradient of loss function

13 optimizer.step() # Move variables

8.2 Tensorflow library

The next library is more high-level and flexible for model definition because machine learning’s main functionality
is wrapped and prepared for us.

Initializers

1 import tensorflow as tf

2

3 # Wrapper objects of Neural Network

4 tf.keras.Model() # Empty wrapper

5 tf.keras.Sequential () # Network without skip -connections

6

7 # Layers are added to wrapper

8 tf.keras.layers.Layer() # Empty Layer

9 tf.keras.Flatten(input_shape) # Reshape 2D data into 1D

10 tf.keras.Dense(shape) # Fully connected layer (W + bias)

11 model.add(Layer) # Add layer to model

12

13 # Optimizers

14 tf.keras.optimizers.SGD(l_rate) # Stochastic Gradient Descent

15 tf.keras.optimizers.Adam(l_rate) # Adam modifier

16

17 # Loss functions

18 tf.keras.losses.MeanSquaredError () # MSE

19 tf.keras.losses.BinaryCrossentropy () # Cross -E for 1D output

20

21 # Activation functions

22 tf.keras.tf.keras.activations.relu(x) # Non -linear ReLu

23 tf.keras.activations.sigmoid(x) # Linear sigmoid

24 tf.keras.activations.softmax(x) # SoftMax -> (0, 1)

Training process

1 model = Sequential () # Define model

2 # Add layers

3 model.add(Dense (10, activation=’relu’,input_shape =(n_features ,)))

4 model.add(Dense(8, activation=’relu’))

5 model.add(Dense(1, activation=’sigmoid ’))

6

7 model.compile(optimizer=’sgd’, loss=’mse’) # Compile model

8 model.fit(X, y, epochs =100, batch_size =32) # Train model
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8.3 Used platforms

Figure 8.1: 20x20 loss surface of [48]
[calculated on Google Colab platform]

As the starting point, we use the Google Colab platform
for the implementation of basic functionality. Unfortunately,
this platform is merely capable of calculating thousands of
loss surface points. Mainly, it provides only a 2 CPU
hardware that is incapable of proper parallelization of this
task.
For example, 8.1, which is a primitive loss surface,
has been calculated in nearly a half-hour with 2 CPU
parallelization.

Thus, we will move our calculations to the CESNET
MetaCentrum1 to achieve a more prominent picture of the Loss
Surface.

8.4 High-Level overview

Training process

The first part is to train a model and save intermediate results of parameters.

1 # Any model definition and compile

2 model = model_initialization ()

3

4 # Prepare save callback and define filepath with formatting

5 mcc = tf.keras.callbacks.ModelCheckpoint(filepath , ..)

6

7 # Create an array of all callbacks

8 callbacks = [mcc , ...]

9

10 # Train a model and add callbacks to it

11 # Saving of the parameters happens during training

12 model.fit(callbacks=callbacks , ..)

Visualization process

The second part is to compute the Loss Surface from saved parameters and model.

1 # Load our train data and model

2 loss_vis_obj = LossVisualisation(model , optimizer , loss_func , train_x , train_y)

3

4 # Load our checkpoints

5 # Calculate PCA components (already in it)

6 loss_vis_obj.load_from_checkpoints (...)

7 # OR generate random trajectories

8 loss_vis_obj.generate_rand_trajectories (...)

9

10 # Calculate an area of Loss Surface

11 area = loss_vis_obj.compute_mesh (...)

12

13 # Visualize calculated area

14 loss_vis_obj.visualize_3d ()

1https://metavo.metacentrum.cz/
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Random trajectories calculation

Layer normalization

random traj.py

1 def generate_rand_trajectories(model):

2 a = model.trainable_variables

3 res = []

4 for v in a:

5 # Generate Gaussian random vector

6 rand = tf.random.normal(v.shape)

7 # Layer normalization

8 rand = tf.math.scalar_mul (1/(tf.norm(rand , axis=None)) + 1e-10, rand)

9 rand = tf.math.scalar_mul(tf.norm(v, axis=None), rand)

10 # Add them to array(per filter)

11 res.append(rand)

Filter normalization

random traj.py

1 def filter_normalization(direction : np.ndarray , layer_variables: np.ndarray):

2 rand_final = []

3 for d, w in zip(direction , layer_variables):

4 d = d * (1 / np.linalg.norm(d) + 1e-10) # |d| = 1

5 w_size = np.linalg.norm(w) # get |w|

6 d = d * w_size # |d| = |w|

7

8 d = np.reshape(d, -1)

9 rand_final = np.concatenate (( rand_final , d), axis =0)

10 return rand_final

11

12 def get_random_filnorm_trajectories(model):

13 rand_dir = []

14 orig_dir = []

15 for param in model.trainable_variables:

16 param_np = param.numpy ();

17 shape = param.shape

18 d = None

19 if param_np.ndim <= 1:

20 d = np.zeros(shape=shape)

21 d = np.reshape(d, -1)

22 else:

23 rd = np.random.normal(size=shape)

24 d = filter_normalization(rd, param_np)

25 rand_dir = np.concatenate ((rand_dir , d), axis =0)

26

27 param_f = np.reshape(param_np , -1)

28 orig_dir = np.concatenate ((orig_dir , param_f), axis =0)

29 print(’Final dimensions:’)

30 print(rand_dir.shape)

31 return rand_dir , orig_dir

Full code is available on gitlab2

2https://gitlab.fel.cvut.cz/anuarali/loss-surface-bp
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