
Bachelor’s thesis

Comparison of REST web architecture and
GraphQL

Zarif Abdalimov

Department of Computer Graphics and Interaction
Supervisor: Bc. Petr Huřťák

May 21, 2020

Acknowledgements

I would like to thank my supervisor Bc. Petr Huřťák who guided me throughout this
work.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the
Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Tech-
nical University in Prague has the right to conclude a license agreement on the utilization
of this thesis as school work under the provisions of Article 60(1) of the Act.

In Prague on May 21, 2020 .

Czech Technical University in Prague
Faculty of Electrical Engineering
© 2020 Zarif Abdalimov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has
been submitted at Czech Technical University in Prague, Faculty of Electrical Engineering.
The thesis is protected by the Copyright Act and its usage without author’s permission is
prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis

Abdalimov, Zarif. Comparison of REST web architecture and GraphQL. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Electrical Engineering, 2020.

Abstrakt

Každý rok je trh IT naplněn novými technologiemi pro vytvářeńı webového API. Jednou z
těchto nových a populárńıch technologíı je GraphQL. Ćılem této práce je porovnat webové
architektury REST a GraphQL a zjistit výhody jednoho řešeńı oproti druhého.

Kĺıčová slova web api, klientská aplikace

Abstract

Every year, the IT market is filled with new technologies for creating a web API. One
of these new and popular technologies is GraphQL. The aim of this work is to compare
REST and GraphQL web architectures and find out the advantages of one solution to
another.

Keywords web api, client application

vii

Contents

Listings 1

1 Introduction 3
1.1 Goal . 3
1.2 Outputs . 3
1.3 Web API . 3
1.4 Motivation . 4

2 Background 5
2.1 Node.js . 5
2.2 REST . 5
2.3 GraphQL . 6
2.4 Technology Stack . 7

3 Design 9
3.1 Business requirements . 9
3.2 Functional requirements . 9
3.3 System architecture . 13

4 Implementation 15
4.1 API setup . 15
4.2 HTTP GET request . 18
4.3 HTTP POST, DELETE, PUT, UPDATE request 23
4.4 REST controllers and GraphQL resolvers 27
4.5 Security middlewares and directives on the Express.js server 29
4.6 Data caching on the client application . 36
4.7 Real time applications . 43
4.8 File transfer . 44

5 Conclusion 45

A Application Setup Instructions 47

B List of Abbreviations 49

ix

Bibliography 51

x

List of Figures

1.1 GraphQL weekly project usage chart [1] . 4

3.1 UI select position example . 11
3.2 UI select skills example . 11
3.3 System UML diagram . 12
3.4 Programming field example . 13
3.5 Use case model of the application . 14

4.1 GraphQL request sequence diagram . 32
4.2 REST request sequence diagram . 34
4.3 Simple GraphQL mutation . 37
4.4 GraphQL mutation with updating the cached data 38
4.5 GraphQL mutation with optimistic response 41

xi

List of Tables

4.1 Summary of initializing the REST and GraphQL on the express.js server . . . 18
4.2 Summary of creating GET queries for REST and GraphQL on the express.js

server and client . 23
4.3 Summary of creating of modifying requests for REST and GraphQL on the

express.js server and client . 27

xiii

Listings

2.1 GraphQL schema example . 6
2.2 GraphQL query definition and query result example 6
4.1 GraphQL schema Object type example . 15
4.2 Add GraphQL server to the Express.js server example 16
4.3 Express.js REST controller example . 17
4.4 GraphQL schema query example . 18
4.5 GraphQL query resolver example . 19
4.6 Create GraphQL client example . 19
4.7 GraphQL client call query example . 19
4.8 GraphQL query variables example . 20
4.9 REST get controller example . 21
4.10 REST GET request example . 21
4.11 REST GET request with query variables example 21
4.12 GraphQL mutation example . 23
4.13 GraphQL input example . 23
4.14 GraphQL mutation resolver example . 24
4.15 GraphQL client mutation example . 24
4.16 GraphQL client mutation with cache update example 25
4.17 REST POST controller example . 26
4.18 GraphQL client POST request example . 26
4.19 GraphQL mutation resolver example . 28
4.20 REST controllers example . 28
4.21 REST response example . 29
4.22 Express.js middleware example . 29
4.23 GraphQL schema directives example . 30
4.24 GraphQL directive resolver example . 30
4.25 Express.js server authorization middleware example 32
4.26 Express.js server middleware use example 34
4.27 Several middlewares example . 35
4.28 Directives example . 35
4.29 GraphQL mutation schema example . 36
4.30 GraphQL client caching data example . 38
4.31 GraphQL client read data from the cache example 39
4.32 GraphQL client mutation update cache example 40

1

Listings

4.33 GraphQL client optimistic response example 42
4.34 GraphQL subscription schema example . 43
4.35 Example of sending data to the REST endpoint with Blob 44

2

Chapter 1
Introduction

1.1 Goal

The goal of this work is to compare web architectures GraphQL and REST and find out
the advantages of one solution over another.

1.2 Outputs

The outputs of this work are:

1. Definition of the requirements

2. Analysis of GraphQL and REST web architecture

3. Express.js server using GraphQL and REST API, web application.

1.3 Web API

A web application (or web app) is an internet technology term used to describe a computer
software program that is run on a web server, unlike computer-based software programs
that are stored locally on the Operating System (OS) of a device. Web applications are
accessed by the user through a web browser with an active internet connection. These
applications are programmed using a client–server modeled structure—the user (“client”)
is provided services through an off-site server that is hosted by a third-party. Examples of
commonly-used, web applications, include: web-mail, online retail sales, online banking,
and online auctions.[2]

REST

Representational state transfer (REST) is a software architectural style that defines a set
of constraints to be used for creating Web services. Web services that conform to the
REST architectural style, called RESTful Web services, provide interoperability between
computer systems on the Internet. RESTful Web services allow the requesting systems to
access and manipulate textual representations of Web resources by using a uniform and
predefined set of stateless operations.[3]

3

1. Introduction

GraphQL

GraphQL is an open-source data query and manipulation language for APIs, and a runtime
for fulfilling queries with existing data. GraphQL was developed internally by Facebook.
It provides an approach to developing web APIs, and has been compared and contrasted
with REST and other web service architectures. It allows clients to define the structure of
the data required, and the same structure of the data is returned from the server, therefore
preventing excessively large amounts of data from being returned, but this has implications
for how effective web caching of query results can be. It consists of a type system, query
language and execution semantics, static validation, and type introspection.[4]

1.4 Motivation

Over the past decade, REST has become the standard for designing web APIs. It offers
some great ideas, such as stateless servers and structured access to resources. However,
REST APIs have shown to be too inflexible to keep up with the rapidly changing require-
ments of the clients that access them.

GraphQL follows the same set of constraints as REST APIs, but it organizes data into
a graph using one interface. Objects are represented by nodes (defined using the GraphQL
schema), and the relationship between nodes is represented by edges in the graph. Each
object is then backed by a resolver that accesses the server’s data.

Figure 1.1: GraphQL weekly project usage chart [1]

4

Chapter 2
Background

This chapter introduces information about the context of this project.

2.1 Node.js

Node.js is an open-source, cross-platform, JavaScript runtime environment that executes
JavaScript code outside of a web browser. Node.js lets developers use JavaScript to write
command line tools and for server-side scripting—running scripts server-side to produce
dynamic web page content before the page is sent to the user’s web browser. Consequently,
Node.js represents a “JavaScript everywhereen” paradigm, unifying web-application devel-
opment around a single programming language, rather than different languages for server-
and client-side scripts.[5]

2.2 REST

Representational state transfer (REST) is a software architectural style that defines a set
of constraints to be used for creating Web services. Web services that conform to the
REST architectural style, called RESTful Web services. It was designed for distributed
systems to address architectural properties such as performance, scalability, simplicity,
modifiability, visibility, portability, and reliability. [6] REST architectural style is defined
by 6 principles/architectural constraints:

1. Client-server

2. Uniform interface

3. Stateless interactions

4. Cacheable

5. Layered system

6. Code on demand

5

2. Background

2.3 GraphQL

GraphQL is a query language for your API, and a server-side runtime for executing queries
by using a type system you define for your data. GraphQL isn’t tied to any specific
database or storage engine and is instead backed by your existing code and data.[7] A
GraphQL service is created by defining types and fields on those types, then providing
functions for each field on each type.

GraphQL schema example

type User {
id: String
email: String
firsName : String
lastName : String

}

type Query {
me: User

}

type Mutation {
createUser (input: UserInput !): User

}

input UserInput {
email: String !
firsName : String !
lastName : String !
password : String !

}

Listing 2.1: GraphQL schema example

GraphQL query and response example:

// Query
{

me {
id
email
firstName
lastName

}
}

// Response
{

"me" {
"id": "5 de120339d402e485cc04211 "
"email ": "john. doe@gmail .com"
" firstName ": "John"
" lastName ": "Doe"

}
}

Listing 2.2: GraphQL query definition and query result example

6

2.4. Technology Stack

2.4 Technology Stack

Technologies used in this project:

1. Express.js [8] - Node.js framework for processing http requests

2. MongoDB [9] - Document oriented database

3. Mongoose [10] - ORM for MongoDB

4. Google storage [11] - CDN for storing documents

5. Redis [12] - Library for creating JWT tokens. Used for authentication

6. Apollo client [13] - library for creating GraphQL requests and managing client state

7. Apollo server [14] - library for creating the GraphQL server.

8. Yarn [15] - Package manager for JavaScript

Express.js

Express.js is Node.js framework for building API. In this project Express.js used for cre-
ating web API with Graphql and REST endpoints.[6]

MongoDB

MongoDB is an open-source database management system (DBMS) that uses a document-
oriented database model that supports various forms of data. It is one of the numerous
nonrelational database technologies which arose in the mid-2000s under the NoSQL banner
for use in big data applications and other processing jobs involving data that does not fit
well in a rigid relational model. Instead of using tables and rows as in relational databases,
MongoDB architecture is made up of collections and documents.[9]

JWT

JWT token is a library for decoding, verifying, and generating JWT. In this project, JWT
used for authentication and authorization. The token is stored in cookies, and the client
will be sent with every request. The express server will verify and decode token data.
Based on the token data system will know what sources are allowed to the client. [12]

Apollo server

Apollo Server is an open-source, spec-compliant GraphQL server that’s compatible with
any GraphQL client, including Apollo Client. It’s the best way to build a production-
ready, self-documenting GraphQL API that can use data from any source. [14]

7

2. Background

Apollo client

Apollo Client is a complete state management library for JavaScript apps. Simply write
a GraphQL query, and Apollo Client will take care of requesting and caching your data,
as well as updating your UI. Fetching data with Apollo Client guides you to structure
your code in a predictable, declarative way consistent with modern React best practices.
With Apollo, you can build high-quality features faster without the hassle of writing data
plumbing boilerplate. [13]

8

Chapter 3
Design

In order to compare REST and GraphQL it will need to build a web application that using
both GraphQL and REST APIs. The web server will provide functionality that modern
web servers can do. This chapter will introduce the business and functional requirements.

3.1 Business requirements

For this project, I’m creating a web application for recruiting programmers. There will be
three user types: programmer, company and admin. Programmers (in future I will call
them members) may create a profile where they can add information about themselves and
their technical knowledge. Companies may create a profile where they can create positions
that they need to hire. After creating a profile, member can start the auction for 30 days,
where registered companies may add the offer to this auction. In offer, they will let the
members know at what position they want to hire them and what salary they can give.
After 30 days of the auction, the member may contact the company with an integrated
chat or by contact that the company provides. Administrators will have an administrator
interface where they can control the status of companies, add new programming fields,
languages, positions to the system.

3.2 Functional requirements

The system will have 3 roles:

1. Member

2. Company

3. Admin

Functional requirements for each role

Member

The system will allow to create member profile. Member registration will consist of two
stages. In each stage, the user will complete information about himself. In the first stage
member will complete information:

9

3. Design

• About his work position (the member must choose the work position that will be
provided by the system)

• Information about his technological knowledge (the member must choose technolo-
gies that will be provided by the system)

• Phone number, email, first name, surname, and password

• Accept the license agreement

After completing the first stage, the server sent the member an email, with which the
member can confirm his email address. After confirming the email address, the member
will complete the information:

• Current place of work, working position, date of start, employment form (contract,
employee), place of residence, employment time (full-time, part-time), date of birth
(optional)

• Fill out a special form. The questionnaire will have six questions; for some questions,
the user can choose from the suggested answers.

• Fill out a special form about member education (University/school name, education
start/end, language knowledge)

After registration, the member will have access to the profile. In the profile, the member
will be able to change the avatar, upload examples of his code, write a text about himself.
Also, the member will be able to update the information from the previous steps except
for the email address and password. After registration, the member will be able to launch
an auction, which will last 30 days. After creating, the auction will appear in the search
list in the profile of the company. If the company makes an offer to the member, the
member will receive a notification. The member will be able to log out and log in using
the email address and password

10

3.2. Functional requirements

Figure 3.1: UI select position example

Figure 3.2: UI select skills example

11

3. Design

Figure 3.3: System UML diagram

Company

The system will allow to create company profile. To create a company profile, company
CEO will complete information:

• Email address and password

• Company name, full time employee, contractor (optionally), company web page,
company LinkedIn profile.

After the registration, the server sent an email, with which the company CEO can confirm
his email address. After confirming the email address, the company will have access to
the company profile. In the company profile, the user can create a job position. A job
position will be created with the following information:

• Position title

• Company description

• Company team description

• Company project description

• Technologies that programmer will use on the project

• Offer provider contact (name, company position, email address, phone number, web
page link, LinkedIn profile link)

In the company profile, the user will be able to browse active auctions. The company will
be able to participate in member auction. To participate in the auction, the user will need
to click on the auction page and complete the following information.

12

3.3. System architecture

Figure 3.4: Programming field example

• Select position from created positions

• Offer salary

• Employment type(contract, full-time employee)

• Message for member

After creating an offer, the member will get the notification email. In the company profile,
the user will be able to invite new users to the company profile. The company will have a
page where will be a list of all invited users. In the company profile, the user will be able
to update any company information except company ID.

Admin

The system will allow using the admin interface. To get access to the admin interface, the
user must be logged in to any profile (company profile or member profile) with an email
from the white list. The admin interface will allow creating tree structures from program-
ming fields, positions, programming languages, and technologies. The programming filed
will be a root of the tree. Programming fields may have 0-N references to the working
positions. Working positions will have reference to the single programming field and may
have 0-N references to the programming languages. Programming languages will have
reference to the single working position and may have 0-N references to the technologies.
Technologies will have a single reference to programming language.

3.3 System architecture

System will have client-server architecture. Client Server Architecture is a computing
model in which the server hosts, delivers and manages most of the resources and services
to be consumed by the client. This type of architecture has one or more client computers
connected to a central server over a network or internet connection. This system shares
computing resources. Client/server architecture is also known as a networking computing

13

3. Design

Figure 3.5: Use case model of the application

model or client/server network because all the requests and services are delivered over
a network.[16] The server is Express.js server, which using GraphQL and REST API.
The client is web application that running in the browser. The client and server will
communicate with HTTP requests.

14

Chapter 4
Implementation

4.1 API setup

This section describes how to start with REST and GraphQL on the Express.js server and
compare both ways.

GraphQL

To start with GraphQL on Express.js server, it will need to:

1. Install packages express and apollo-server-express.

2. Create GraphQL schema.

3. Add resolvers to the GraphQL schema.

4. Create GraphQL server.

5. Install GraphQL server to the Express.js.

Packages express and apollo-server-express can be installed with npm or yarn. After we
can start with GraphQL on the server. Firstly it needs to define GraphQL schema. The
basic components of a GraphQL schema are object types, which represent a kind of object
that can be fetched from the server, and what fields it has[17]. In the GraphQL schema
language, data might be represented like this:
type User {

id: String
email: String !
firstName : String
lastName : String

}

Listing 4.1: GraphQL schema Object type example

The language is pretty readable, but let’s go over it so that we can have a shared vocab-
ulary:

• “User” is a GraphQL Object Type, meaning it’s a type with some fields. Most of
the types in your schema will be object types.

15

4. Implementation

• “firstName” and “lastName” are fields on the “User” type.

• String is one of the built-in scalar types - these are types that resolve to a single
scalar object, and can’t have sub-selections in the query. We’ll go over scalar types
more later.

• String! means that the field is non-nullable, meaning that the GraphQL service
promises to always give you a value when you query this field. In the type language,
we’ll represent those with an exclamation mark.

Most types in the schema will just be normal object types, but there are two types that
are special within a schema this is Query and Mutation types. These types are the same
as a regular object type, but they are special because they define the entry point of every
GraphQL query. Example of creating GraphQL server:

// 1. Create express server
const server = express ()

// 2. Define schema
const types = gql ‘

type User {
id: String
email: String
firstName : String
lastName : String

}

type Query {
me: User

}
‘

// 3. Create executable schema for Apollo GraphQL server
const schema = makeExecutableSchema ({

typeDefs : [types],
resolvers : {

Query: {
me: async (_, __ , { req }) => {...} ,

},
}

});

// 4. Create apollo server
const apolloServer = new ApolloServer ({ schema })

// 5. Install Apollo GraphQL server to express server
apolloServer . applyMiddleware ({ app: server })

// 6. Start express server
server . listen ({ port: 3000})

// Apollo GraphQL server will be at http :// localhost :3000/ graphql

Listing 4.2: Add GraphQL server to the Express.js server example

16

4.1. API setup

REST

To start with REST on Express.js server, it needs to install express package and create
REST resources. In REST, primary data representation is called Resource.

A resource can be a singleton or a collection. For example, “users” is a collec-
tion resource and “user” is a singleton resource. We can identify “users” collection re-
source using the URI “/users”. We can identify a single “user” resource using the URI
“/user/userId”.[18]. In the Express.js server, usually, REST resources are called “con-
troller”. Controller implementation example:
// 1. Create express server
const server = express ()

// 2. Declare controller
server .get ("/ me", (req , res) => {...})

server . listen ({ port: 3000 })

// 3. Controller will be at http :// localhost :3000/ me

Listing 4.3: Express.js REST controller example

The name of REST controller should be self-descriptive. For example controller at URI
“/user/userId” return user, “/users” returns a users collection and etc. In web development
name “me” is used for controller that return authorized user.

REST and GraphQL comparison in terms of setting up the Express.js
server

Implementation speed

In REST, it needs just defining controllers. REST does not need to define what data types
controller return or which inputs does it have. Creating REST controllers is a far faster
way to start with API than GraphQL. In GraphQL, it needs to create the schema. Inside
schema, it must be defined what types the system may operate. Then it needs to create
resolvers for schema and apply it to the server. This process is taking more time, and it
needs to install more packages for the project.

Code Documentation

In REST, after defining controllers, it needs to use external services, for example, Swagger
to create documentation to the API. In services like Swagger, it needs to define URI
to the controller, what data types do controller accepts, and what data types controller
returns. In GraphQL, we are getting documentation about the API after defining schema.
GraphQL provides a tool for the API – GraphiQL. GraphiQL is a graphical interface
where we can inspect what queries/mutations/subscriptions the API supports. For every
query/mutation/subscription, we can see what inputs does it have and what data does it
return. In this case, we are using apollo-graphql, so we do not need to install graphiql.
GraphQL server provides a playground that is the same tool as GraphiQL, but we can use
it inside the browser. After starting the server, the playground is available at:
http :// localhost :<port >/ graphql

17

4. Implementation

Versioning

Often when consuming third-party REST APIs, we see stuff like v1, v2, v3 etc. which
simply indicate the version of the REST API we are using. This leads to code redundancy
and less maintainable code. With GraphQL, there is no need for versioning as we can
easily add new fields and types to our GraphQL API without impacting existing queries.
Also, we can easily mark fields as deprecated and the fields will be excluded from the
response gotten from the server.

Speed Code docs Versioning

REST No need to
install packages non self-documenting Using of different URIs

for new versions

GraphQL

Install packages
Define schema
Create resolvers
Create GraphQL server
Add to express.js server

Self-documenting No versioning
just update schema

Table 4.1: Summary of initializing the REST and GraphQL on the express.js server

4.2 HTTP GET request

In the last chapter, we started express.js server with GraphQL and REST. In this chapter,
we will look at how to fetch data from server. In other words - making of HTTP GET
requests to the express.js server from the client application and how to proceed GET
request on the server.

GET request

In REST, HTTP GET requests are requests that are fetching data from the server without
modifying any sources. In GraphQL GET request equivalent is Query type.

GraphQL

Server

Firstly it needs to define the query in GraphQL schema.
type User {

id: String
email: String
firstName : String
lastName : String

}

type Query {
me: User

}

Listing 4.4: GraphQL schema query example

The schema above has the query “me”, which returns an object of type “User”. After it
will need to define resolver for this query. Resolver implementation example:

18

4.2. HTTP GET request

const resolvers = {
Query: {

me: async (_, __ , { req }) => {
return await models .User. findOne ({id: req.user.id})

}
}

}

Listing 4.5: GraphQL query resolver example

Read more about GraphQL resolvers in the “REST controllers and GraphQL resolvers”
section. That’s all you need to do to create a query in the GraphQL server.

Client

To create GraphQL requests from the client application, it needs to create an Apollo
Client. To use Apollo, it needs to install packages apollo-client, apollo-cache-inmemory,
and apollo-link-http the the client application. Apollo Client example:
const httpLink = createHttpLink ({

uri: ‘${ CONFIG .url.api }/ graphql ‘,
credentials : " include "

})

const client = ApolloClient ({
cache: new InMemoryCache (),
link: from ([httpLink])

})

Listing 4.6: Create GraphQL client example

More options can be passed to the client, for example, authorization header, cookies,
credentials, etc. These options will work for every GraphQL request that we make. After
creating the client, we can do GraphQL queries like so:
const fetchData = async () => {

const { data } = await client .query ({
query: gql ‘

{
me {

id
email
firstName
lastName

}
}

‘
})

return data.me
}

const data = await fetchData ()

Listing 4.7: GraphQL client call query example

To create a GraphQL query, it needs to call function “query” on the client, and as a first
parameter, it takes an object, which is an option for the query. For writing the query, the
client using graphql-tag; this is the label gql before query that assists in the writing of
GraphQL queries. Because GraphQL using schema definition language, the query result

19

4. Implementation

is predictable, and it may autocomplete and suggest options for the query, for example,
body parameters or query response variables. GraphQL returns only data that that is
defined in the query. For example, in the query above, there are four variables:

• id

• email

• firstName

• lastName

If the client needs the only email, all variables except email can be removed, and the server
will return the only email. After returning of queried data, Apollo will automatically save
request data to cache. Next time when the client will need to view data, firstly, Apollo
will try to find data in the cache. If Apollo finds data in the cache, it will return data
from the cache, and the request will not be proceed. Read more about Apollo cache in
“Data caching on the client application” section. Query variables can be sent as a JSON-
encoded string in an additional query parameter called variables. If the query contains
several named operations, an “operationName” query parameter can be used to control
which one should be executed.
// GraphQL schema
type Query {

user(id: String !): User // id is non - nullable
}

// Client query
const { data } = await client .query ({

query: gql ‘
query GET_USER ($id: String !) {

user(id: $id) {
email

}
}‘,

variables : {
id: "5 de120339d402e485cc04211 "

}
})

Listing 4.8: GraphQL query variables example

id: String! means that the field is non-nullable, meaning that the GraphQL service
promises to always give you a value when you query this field.

Important to mention that the client application may create GraphQL request with
native JavaScript “fetch” function or any function from libraries that allows creating HTTP
GET request. It needs to pass the GraphQL query as a query parameter inside request
URI. Example:
await fetch (" http :// localhost :4000/ graphql ?query ={ me { id } }")

REST

Server

In REST it needs to create controller on the express.js server. To create REST controller
it needs to call “get” function on the express.js server object. This function accepts two

20

4.2. HTTP GET request

positional arguments. First one is the URI, where the client make request, second is the
handler for this controller. Read more about REST controllers in “REST controllers and
GraphQL resolvers” section. Example of creating controller:
const server = express ()

server .get ("/ me", (req , res) => {
res.send(await models .User. findOne ({id: req.user.id}))

})

Listing 4.9: REST get controller example

That is all that need to do to create the REST controller on the express.js server.

Client

To create the GET request to the REST controller, in the client application, there is
a native JavaScript “fetch” function that is supported by most browsers. Also, we can
install a package that allows making GET requests, for example, “axious”. The pros of
using such packages are that they automatically provide polyfill[19] for functionality that
old browsers do not support. If we need to know what functionality does browser supports,
we can use services such as https://caniuse.com. Here client will use the fetch function.
Example of using fetch function on the client application:
const fetchData = async () => {

return await fetch (" http :// localohost :3000/ me")
}

const data = await fetchData ()

Listing 4.10: REST GET request example

The first parameter of the function is URI to the server controller. The second parameter
is query options, for example, headers that will be sent, request type, request body, etc.
In REST, if we need to pass parameters to query, we can pass it to request URI.
const fetchData = async () => {

return await fetch (" http :// localohost :3000/ user?id=5
de120339d402e485cc04211 ")

}

const data = await fetchData ()

Listing 4.11: REST GET request with query variables example

REST and GraphQL comparison in terms of creating fetch data
functions on the server and client application

Speed

To create a GET query to the REST controller, the client using the fetch function (or
equivalent function from installed packages). As a first parameter, it will always require
URI to the server controller, and optionally we can pass request options.

To create a GraphQL query, you can also fetch function or use GraphQL client. To
use the client, it needs to set up an Apollo client. Then with this client, the client can call
the query function and pass the GraphQL query as a parameter.

21

https://caniuse.com

4. Implementation

Data fetching

In REST, when we make the query, we do not know what data will be returned, unless
we have got documentation. Also, we get all the data that the server returns. We cannot
prevent fetching of unnecessary data.

In GraphQL, we always know what data will be returned from the server. And we can
manipulate with query result. If we don’t need data, we just do not query on it.

Query variables

In the REST, we can pass parameters inside URI as a query parameter. Cons of this
approach are that on the server, this parameter will always seem like a string if we want
to pass an integer, then on the server, we must parse integer query parameters. It’s not
secured way to transfer data to the server throw the internet and also query parameters
has limited data length.

In GraphQL, we are passing variables in the request body. Also, we know what data
types we are passing to request body. If we try to pass the wrong data type, for example,
string instead of an integer, then GraphQL will throw an error.

Security

In some cases, we need to authorize the request to grant access to some server sources.
For example, only authorized users may fetch profile data. To secure REST routes, we
can do it in two ways. The first way is to control request headers (for example, cookies or
authorization header) in the controller. Pros of this way that this is a fast way to secure
the controller. Cons are that we will have duplicating code, and we do not have any
documentation about what controllers are secured and what not. The second way is to
create middleware. Middleware is a function that will always be called before proceeding
request. In this function, we can check request headers, for example, cookies and, based
on it, allow/forbid access to the controller. Pros of this way are that we can use one
middleware for several controllers, and we do not need to duplicate our code. Cons are
that if we have several middlewares and we need to apply it to different controllers, we
will not have documentation on what routes are secure and what not.

In GraphQL, we can also use the manual way to check requests, we can also apply
middleware for resolvers, but we can also use schema directives. A directive can be at-
tached to a field or fragment inclusion, and can affect execution of the query in any way
the server desires.[20] We can use schema directives not only for security reason but also,
for example, to format or filter data. Read more about middelwares and directives in
“Security middlewares and directives” section

22

4.3. HTTP POST, DELETE, PUT, UPDATE request

Speed Data fetching Query variables Security

REST Create GET controller No control over
fetching data

Pass variables inside
URI as query
parameters

Controllers control
Middlwares

GraphQL
Update schema
Create resolvers for
new fields

Fetch only desired
data

Pass variables as
query options

Resolvers control
Middlwares
Directives

Table 4.2: Summary of creating GET queries for REST and GraphQL on the express.js
server and client

4.3 HTTP POST, DELETE, PUT, UPDATE request

HTTP requests that are modifying server sources have a post, delete, put, or update
method. REST using the same request types. GraphQL equivalent for all these request
types is the Mutation type.

GraphQL

Server

When it needs to modify data on the server, in GraphQL, we are using Mutations. This is
the unique GraphQL type. In GraphQL, mutate means to modify the data source (create,
update, delete). Example of defining GraphQL mutation in the schema:
type User {

id: String
email: String
firstName : String
lastName : String

}

type Mutation {
createUser (user: UserInput !): User

}

input UserInput {
email: String
firsName : String
lastName : String
password : String

}

Listing 4.12: GraphQL mutation example

In the example above, schema has mutation “createUser” that has one input “user” of type
“UserInput” and this mutation returns the object of “User” type. ! sign after “UserInput”
means that variable “input” cannot be nullable. To reduce repeating code and make
GraphQL schema simpler, GraphQL has a special type called input. Instead of passing
parameters separately, we can use inputs to pass an object to the resolver. It makes
schema clearer and also simplifies work with parameters in the resolver. We can also use
inputs to get rid of duplicate code, for example:
type Mutation {

createUser (user: UserInput !): User
updateUser (user: UserInput !): Boolean

23

4. Implementation

}

input UserInput {
email: String
firsName : String
lastName : String
password : String

}

Listing 4.13: GraphQL input example

In the code above we are using input “UserInput” for “updateUser” and “createUser”
mutations. After defining new mutations to the schema, we can create resolvers for it.
const resolvers = {

Mutation : {
createUser : async (_, {user }) => {

const checkEmail = await models .User. findOne ({ email: user.email })

if (checkEmail) {
return new AlreadyExists ()

}

const newUser = {
... user ,
password : hash(user. password)

}

return await models .User. create (newUser)
},

},
}

Listing 4.14: GraphQL mutation resolver example

In the example above, we create a resolver for “createUser” mutation. This resolver will
check if user email is free. If it’s free, then the server will create a new user. If it’s not,
then the server will throw “AlreadyExists” error. “AlreadyExists” is the custom error,
GraphQL allows to create custom errors. That is all we need to do to create GraphQL
mutation on the server.

Client

To make GraphQL mutations, we are using client the same way as we used it for making
queries.
const createUser = async (user) => {

const {data} = await client . mutation ({
query: gql ‘

mutation CREATE_USER ($user: UserInput !) {
createUser (user: $user) {

id
email
firstName
lastName

}
}‘,
variables : {

user: { ... user }
}

24

4.3. HTTP POST, DELETE, PUT, UPDATE request

})
}

Listing 4.15: GraphQL client mutation example

Cache

In most cases, after a mutation, you need to update the interface and display the result
of the mutation. For example, the system allows to admins creating of programming
languages. After creating the programming language we wants to show created language
inside the language table. There are two ways how can we do this. The first way - we
will make a request to the server to save the language, and then we will make a second
request to re-get all the languages that are recorded in the database.The second way is
that we will make a request to the server to save the language, and in response data of
this request, we will get the language ID that we created on the server. Then we modify
the cache by combining the data from the client and data from the server (ID). Because
we have already received a list of languages, we do not need to get all the languages again.
It’s enough to modify the cache in which these languages are stored. Apollo GraphQL
provides a tool for interacting with cached data. To start with the cache update, we need
to pass “update” property to the mutation options. “update” is the function that as the
first parameter accepts cache, and the second parameter is data that we get from the
server. Example of using Apollo to modify cached data:
createLanguage (language) {

this. $apollo . mutate ({
mutation : removeLanguageMutation ,
variables : {

language : { ... language }
},
update : (cache , {data: { createLanguage }}) => {

// Read data from the cache. As the parameter , we are passing the
query that we already make to the server

const { languages } = cache. readQuery ({
query: languagesQuery

})

// Create new data by pushing new language to the array from the
cache

const newData = langugages .push(createLanguage)

// Write new data to the cache
cache. writeQuery ({

query: languagesQuery ,
data: { languages : newData }

})
}

})
}

Listing 4.16: GraphQL client mutation with cache update example

This approach dramatically speed up the execution of queries that don’t rely on real-
time data. Read more about caching data in GraphQL in “Data caching on the client
application” section.

25

4. Implementation

REST

Server

Creating of REST endpoints for POST requests is the almost same as defining REST
endpoint for GET requests. It need just call post function on the express server. As
the first parameter it accepts URI, where REST endpoint will listen. As the second
parameter it accepts function that handles POST request. Handle function accepting two
parameters, request and response. Request is an object that contains information about
request. Response is an object for creating response to the client. Read more about REST
controllers at “REST controllers and GraphQL resolvers” section.

const server = express ()

server .post ("/ createUser ", (req , res) => {
const user = req.body.user

const checkEmail = await models .User. findOne ({ email: user.email })

if (checkEmail) {
return res. status (400).json ({ error: ’User already exists ’ })

}

const newUser = {
... user ,
password : hash(user. password)

}

res.json(await models .User. create (newUser))
})

Listing 4.17: REST POST controller example

In the example above, we create a REST controller. This controller will check if user email
is free. If it’s free, then the server will create a new user. If it is not, then the server sends
request status 400 with the error message.

Client

To create POST request to the REST controller, similarly as in GET requests, the client
application can use fetch function or any libraries that allows to create HTTP POST
requests. Example of creating POST request to the REST endpoint:

const createUser = (user) => {
const data = await fetch(’http :// localhost :3000/ createUser ’, {

headers : {
....

},
body: {

user: {... user}
}

})
}

Listing 4.18: GraphQL client POST request example

26

4.4. REST controllers and GraphQL resolvers

REST and GraphQL comparison in terms of modifying data on the
server

Speed

Creating of GraphQL mutations and REST POST controllers is the same as creating of
GraphQL queries and REST GET controllers. In GraphQL, it needs to update the schema
and implement resolvers for new fields. In the REST, it needs call “post” function on the
express.js server object, define URI and controller handler.

POST request body

Passing the data to request the body is the important step of each request that is modifying
server sources. The client should pass correct data types and transfer them to the server
in a secure way. Both REST and GraphQL requests may run over HTTPS, so the request
body is secured. However, the client can access the REST controller with any data in
the body, so the server always needs to control received data. In GraphQL, we will never
access the resolver if the client passes the wrong data to the mutation variables. GraphQL
will throw an error if the client tries to pass the wrong data. So there is no need to control
data types inside resolver because the server ensures that the resolver has correct data.
Also GraphQL

Cached data

Both GraphQL and REST requests are cacheable but GraphQL provides efficient tool to
manage, cached data. This helps to speed up client application and reduce load to the
server.

Error handling

Both GraphQL and REST allows handling request errors. However, GraphQL allows us to
create custom errors, with their options and custom types. Creating custom errors helps
the client to present error information more efficient way than in the REST.

Speed POST request body Cached data Error handling

REST Create POST controller Server should
controls data types

Cacheable, but no
specific way how to update
cached data

Send request status
and error message

GraphQL
Update schema
Create resolvers for
new fields

Data in the body
well formed and has
correct types

Cacheable
Provides tools for
managing cached data

Custom errors

Table 4.3: Summary of creating of modifying requests for REST and GraphQL on the
express.js server and client

4.4 REST controllers and GraphQL resolvers

In this section, I will describe in more details, how to define the GraphQL and REST
endpoints.

27

4. Implementation

GraphQL resolver

In order to respond to requests, a schema needs to have resolvers for all fields. Resolvers are
per field functions that are given a parent object, arguments, and the execution context,
and are responsible for returning a result for that field. Resolvers cannot be included in
the GraphQL schema language, so they must be added separately. Every resolver in a
GraphQL.js schema accepts four positional arguments:[21]
const resolvers = {

Mutation : {
async createLanguage (obj , args , context , info) {

...
}

}
}

Listing 4.19: GraphQL mutation resolver example

• obj - The object that contains the result returned from the resolver on the parent
field, or, in the case of a top-level Query field, the rootValue passed from the server
configuration. This argument enables the nested nature of GraphQL queries.

• args - An object with the arguments passed into the field in the query. For example,
if the field was called with
createLanguage (title: " JavaScript ")

the args object would be
{ "title ": " JavaScript " }

• context - This is an object shared by all resolvers in a particular query, and is
used to contain per-request state, including authentication information, dataloader
instances, and anything else that should be taken into account when resolving the
query. If you’re using Apollo Server.

• info - This argument should only be used in advanced cases, but it contains infor-
mation about the execution state of the query, including the field name, path to the
field from the root, and more

REST controller

The REST controller is the endpoint that is listening on a specific URI and handle
HTTP requests. To define the REST controller on the express.js server its needs to call
post/delete/put/get function (based on request type) on the server object. post/delete/put/get
function accepts two positional arguments.
const server = express ()

server .get ("/" , (req , res) => {
...

})

server .post ("/" , (req , res) => {
...

})

Listing 4.20: REST controllers example

28

4.5. Security middlewares and directives on the Express.js server

• URI - where the REST endpoint listening

• Controller handler function that handles the request

The second parameter function accepts two two positional arguments.

• req - this is an object that contains the information about request such as headers,
cookies, body etc.

• res - this is the function that allows us to send response to the client.

The REST controllers are listening on the different URIs. All GraphQL requests are
coming to the single URI “/graphql”. This approach has its cons and pros. Pros of the
single URIs is that the client has one URI where it sends all the request. Also, on the
server, there is no need to think about securing different URIs. However, the single URI
make limitations. For example, if the server needs to create API for a third party system,
it should use REST for this purpose.

Another disadvantage of GraphQL resolvers is that the GraphQL request cannot be
redirected. Each query field in the schema has defined results, and there is no nothing
like “Redirect” type or redirect status in the GraphQL schema. For these purposes also
better to use REST controllers.

4.5 Security middlewares and directives on the Express.js
server

In the previous chapters, it was mentioned that the server uses middleware and GraphQL
directive to authorize the client. In this chapter, I will describe in more detail the sequence
of processing the request on the server.

Middleware

Middleware is a function that is called before GraphQL resolver or REST controller.
middleware accepts 3 parameters:

1. req - this is an object that contains the information about request such as headers,
cookies, body etc.

2. res - this is the function that allows us to send response to the client. For example
res.send (" Response ") // send plain text
res. redirect (" http :// www.fel.cvut.cz/en /") // send redirect to URI

Listing 4.21: REST response example

3. next - this is the function that allows us to pass request to the next stage

Create middleware example:

const server = express ()

const newMiddleware = (req , res , next) => {
... // middleware body
next ()

29

4. Implementation

}

server .use(newMiddleware , "/ graphql ")

Listing 4.22: Express.js middleware example

By calling use function on the express server, we are passing “newMiddleware” function as
the first parameter, and at which URI should middleware be called, if the second parameter
not passed, it will be called before every request.

Directive

A directive can be attached to a field or fragment inclusion, and can affect execution of
the query in any way the server desires.[20]
directive @auth on FIELD_DEFINITION
directive @auctionMemberName on FIELD_DEFINITION
directive @confirmed on FIELD_DEFINITION
directive @company on FIELD_DEFINITION

type Query {
me: User @auth
auction (auction : String): Auction @auctionMemberName @confirmed @company

@auth
}

Listing 4.23: GraphQL schema directives example

In the example above, we attached the “@auth” directive to the “me” query. If we are
attaching several directives as we do for the “auction” query, then directives will be ex-
ecuted from right to left. After defining the directive, it needs to create resolver for it.
“@auth” directive resolver implementation example.
class Auth extends SchemaDirectiveVisitor {

visitFieldDefinition (field) {
const { resolve = defaultFieldResolver } = field;
field. resolve = async function (

source ,
{ format , ... otherArgs },
context ,
info

) {
if (context .req. authorized) {

return await resolve .call(this , source , otherArgs , context , info);
}
else {

return new Unauthorized ();
}

};
}

}

const schemaDirectives = {
auth: Auth ,

}

const schema = makeExecutableSchema ({
...
schemaDirectives

30

4.5. Security middlewares and directives on the Express.js server

})

Listing 4.24: GraphQL directive resolver example

For the first time, you are looking at the directive. Its implementation might not look
straightforward. It is true that directives still does not have clear syntax, unlike middle-
ware. The central part of the example above is the body of the asynchronous anonymous
function. All we do inside this function is controlling the request context if it has autho-
rized property that we record in the middleware. If it has this property, then the directive
will call resolve request, if not then it will throw an unauthorized error. Similarly, you can
implement any logic for other directives.

31

4. Implementation

Figure 4.1: GraphQL request sequence diagram

The diagram above describes the sequence that the GraphQL request passes on the server.

For GraphQL requests, the server uses both middlewares and directives. In the mid-
dleware server checking request cookies and if it has authorization token, then it will verify
token and write token data to the request context. This middleware applied to all requests
coming to the server. Then inside directives, we checking request context, and based on
these parameters, the server resolves or reject GraphQL request. Code example:
const authorization = (req , res , next) => {

const token = req. cookies ["token -name"]
if (token) {

try {
const data = verifyToken (token)
req. authorized = true
req.user = data.user

}
catch (e) {

req. authorized = false
}
next ()

}
else {

32

4.5. Security middlewares and directives on the Express.js server

req. authorized = false
next ()

}
}

Listing 4.25: Express.js server authorization middleware example

In the example above, we create middleware “authorization” that checking request cookies.
If it has a cookie with a name token, then try to verify token and modify the request
context. Notice that this middleware does not reject the request if it does not contain
cookies, its just modifying context. Then the request will proceed to GraphQL. Firstly it
will proceed to directive. GraphQL directive will check context and based on the context
it will reject/resolver the request. Directive example above

33

4. Implementation

Figure 4.2: REST request sequence diagram

The diagram above describes the sequence that the REST request passes on the server.
Because there is no directives in the REST we should use several middlewares to secure
controllers. N-middleware means that request may pass several middlewares. Example:

const server = express ()

server .use ("*" , authorization),
server .use ("/ user /*", userMiddleware)
server .use ("/ user/ auction /*", userCompletedProfileMiddleware)
...

Listing 4.26: Express.js server middleware use example

In the example above, the server using several middlewares for different URIs. “*” means
that “authorization” middleware applied to all requests, “/user/*” means that “userMid-
dleware” applied to all requests to “/user” URI and any source after it, etc.

34

4.5. Security middlewares and directives on the Express.js server

GraphQL and REST comparison

Let’s compare both ways of securing server sources on the express.js server.
const server = express ()

server .use ("/ authorized ", authorization),

server .use ("/ authorized /user/ auction /*", memberMiddleware)
server .use ("/ authorized / company / auctions /*", companyMiddleware)
...

Listing 4.27: Several middlewares example

This is how we can secure REST controllers with the middlewares. The disadvantage of
this approach is that we always need to define the URI where we need the middlewares to
be used. If the server has a complex structure of source security, the syntax will become
unclear. For example, we do not know what routes are listing at “/authorized/user/auc-
tion/*”. It is important to mention that the middleware ways of securing REST controllers,
works only on the Node.js servers. Other web servers like Java also using similar ways
of securing REST controllers, but there is no standardized way of how we should secure
API. However GraphQL provides schema directives. In GraphQL schema, we can see each
field, and with what directives this field is protected.

directive @member
directive @company
directive @auth

type Query {
myAuction : Auction @member @auth
auctions : [Auction] @company @auth

}

type Mutation {
createAuction (auction : MutationInput): Auction @member @auth
createBet (bet: BetInput): Bet @company @auth

}

Listing 4.28: Directives example

In the example above, there is GraphQL schema, which is using several directives to
different fields.

35

4. Implementation

4.6 Data caching on the client application

In the previous chapters, it was mentioned that the client application uses Apollo GraphQL
to manage cache memory during requests. In this chapter, I will describe in more detail
how Apollo GraphQL works with cached data.

Apollo

Because the GraphQL is the type system, it has a loot of tools that helping us in devel-
opment. One of this tools is Apollo. If you are using GraphQL, in most cases you will
also use Apollo framework. Apollo is the industry-standard GraphQL implementation,
providing the data graph layer that connects modern apps to the cloud.[22] In the client
applications, Apollo helps us to create GraphQL requests, interacting with cached data
and application state managment.

Mutation

GraphQL mutation is a special type that is used to modify the source on the server.
Mutation schema definition example:
type Language {

id: String
title: String

}

type Mutation {
createLanguage (title: String !): Language

}

Listing 4.29: GraphQL mutation schema example

36

4.6. Data caching on the client application

Figure 4.3: Simple GraphQL mutation

The diagram above shows the simple GraphQL mutation request sequence. Simple means
that we are not using anything to display data from the server. We can proceed with
the request in two more ways - with updating the cached data and with using of opti-
mistic response. Firstly I will describe updating cached data, and then I will describe the
optimistic response.

37

4. Implementation

Figure 4.4: GraphQL mutation with updating the cached data

Updating the cached data

The diagram above shows the GraphQL mutation request and cache updating sequence.
After receiving new data from the server, we are calling the “update” function. We are
passing this function to mutation options.
const languagesQuery = gql ‘

query {
languages {

id
title

}
}

‘

const createLanguageMutation = gql ‘
mutation CREATE_LANGUAGE ($language : LanguageInput !) {

createLanguage (language : $language) {
id

}
}

‘

38

4.6. Data caching on the client application

const fetchLanguages = async () => {
const {data} = await this. $apollo .query ({

query: languagesQuery
})

return data
}

const createLanguage = (language) => {
this. $apollo . mutate ({

mutation : createLanguageMutation ,
variables : {

language : { ... language }
},
update : (cache , {data: { createLanguage }}) => {

const { languages } = cache. readQuery ({
query: languagesQuery

})

const newData = langugages .push(createLanguage)

cache. writeQuery ({
query: languagesQuery ,
data: { languages : newData }

})
}

})
}

fetchData ()
createLanguage ({ title: " JavaScript "})

Listing 4.30: GraphQL client caching data example

Firstly we are fetching the data from the server. It will fetch all the languages that we
have in the database. After the query request completed, it will automatically save request
data to the cache. So if the component that has this data will be unmounted, on the next
mount, the request will not be sent to the server again, it will take data from the cache.

After fetching the data, we want to create a new language, so we called “createLan-
guage” mutation. The mutation “createLanguage” returns object of “Language” type so
we can get any “Language” parameter from the server. In this case, we need language id
only because we already have the language title in the client.

After the mutation request is completed, we need to modify the cache manually. To
do it, we are passing update function to mutation options. The first parameter of the
“update” function is cached data. A cache is an object that allows us to interact with
cached data. It has four primary methods:

• readQuery - this method enables you to run GraphQL queries directly on your cache.
If your cache contains all of the data necessary to fulfill a specified query, readQuery
returns a data object in the shape of your query, just like a GraphQL server does.
If your cache doesn’t contain all of the data necessary to fulfill a specified query,
readQuery throws an error. It never attempts to fetch data from a remote server.
Example:
const client = new ApolloClient (...)
const cache = client .cache

39

4. Implementation

const languagesQuery = gql ‘
languages {

id
title

}
‘

const {data} = await client .query ({
query: languagesQuery

})

const { languages } = cache. readQuery ({
query: languagesQuery

})

Listing 4.31: GraphQL client read data from the cache example

In the example above, “data.languages” and “languages” will be almost the same
fields that contain “Language” type objects. They will not be exactly the same
because Apollo modifying fetched data with key property, so we can access this data
in the cache with this key. Usually the key is the same as id property.

• readFragment - this method enables you to read data from any normalized cache
object that was stored as part of any query result. Unlike readQuery, calls to read-
Fragment do not need to conform to the structure of one of your data graph’s
supported queries.

• writeQuery and writeFragment - with method you can write arbitrary data to the
cache. These methods have the same signature as their read counterparts, except
they require an additional data variable. Example:

The second parameter of the “update” function is the data object. This is data that we
are fetching after mutation. In this case, we are fetching “id” property, so after data will
be an object called “createLanguage” with single property “id”. Example of using the
“update” function:
const update = (cache , {data: { createLanguage }}) => {

const { languages } = cache. readQuery ({
query: languagesQuery

})

const newData = languages .push(createLanguage)

cache. writeQuery ({
query: languagesQuery ,
data: { languages : newData }

})
}

Listing 4.32: GraphQL client mutation update cache example

In the example above, firstly, we are fetching data from the cache with “readQuery”
function. After fetching data, we are creating new data that we will push to cache. So
“newData” will be a field with a new language. Then we are writing new data to cache
with “writeQuery” function.

40

4.6. Data caching on the client application

Figure 4.5: GraphQL mutation with optimistic response

Optimistic response

The diagram above shows the GraphQL mutation request with an optimistic response.
Optimistic UI is a pattern that you can use to simulate the results of a mutation

and update the UI even before receiving a response from the server. Once the response is
received from the server, the optimistic result is thrown away and replaced with the actual
result. Optimistic UI provides an easy way to make your UI respond much faster, while
ensuring that the data becomes consistent with the actual response when it arrives. [23]

So the idea of an optimistic response is to create a “fake” request response from the
server by defining data that we expect to be returned from the server. In most cases,

41

4. Implementation

we have all data that we are creating on the client application, and only data we need
from the server is an id that will be generated on the server. For example, when we are
creating a new language, we expect that server will return the object of type “Language”
with properties:

• title - which is a string with the value that we entered on the client

• typename - which is a string with value “Language” that GraphQL will add on the
server

• id - the property that will be generated on the server.

To use an optimistic response on the client application, we need to pass optimistic response
property to the mutation options. In this property, we are defining the object that we
expect that will be returned from the server. Example:
const createLanguage = (language) => {

this. $apollo . mutate ({
mutation : createLanguageMutation ,
variables : {

language : { ... language }
},
update : (cache , {data: { createLanguage }}) => {

const { languages } = cache. readQuery ({
query: languagesQuery

})

const newData = langugages .push(createLanguage)

cache. writeQuery ({
query: languagesQuery ,
data: { languages : newData }

})
},
optimisticResponse : {

__typename : " Mutation ",
createLanguage : {

__typename : " Language ",
id: -1,
title: language .title

}
}

})
}

Listing 4.33: GraphQL client optimistic response example

In the example above, we defined that we are expecting an object “createLanguage” (the
name is the same as mutation name). For property “id” we are using -1 value because we
do not know what id will be generated on the server. After sending the mutation request,
the client application will update the cached data with the optimistic response data, and
then after fetching data from the server, the client application will update cached data
again but with data from the server.

There are some use cases where the optimistic response may cause errors on the server.
For example, if we are using optimistic response, after sending “createLanguage” request
and then using “updateLanguage” (which is the mutation that updating language) or

42

4.7. Real time applications

“deleteMutation” (which is the mutation that deleting language) without waiting for the
data from the server, then it will send a request with language id equals to -1. In that
case, we need to handle this kind of thing on the client application. For example, make
the delete button disabled if language id equals to -1.

4.7 Real time applications

In this chapter I will describe how to create real-time application with GraphQL. the
GraphQL spec supports a third operation type, called subscription. GraphQL subscrip-
tions are a way to push data from the server to the clients that choose to listen to real
time messages from the server. Subscriptions are similar to queries in that they specify
a set of fields to be delivered to the client, but instead of immediately returning a single
answer, a result is sent every time a particular event happens on the server.

GraphQL subscription

A common use case for subscriptions is notifying the client side about particular events,
for example the creation of a new object, updated fields and so on. [24] In our server,
I am using a subscription for creating chat. After clients starts the application it will
send subscription “newMessage” with parameter “targetId”. That means that the client
is subscribed to the new message event with one filter “targetId”.
type Mutation {

createMessage (message : InputMessage !): Message
}

input InputMessage {
text: String !
from: String !
to: String !

}

type Message {
id: String
text: String
from: String
to: String

}

type Subscription {
newMessage (targetId : String !): Message

}

Listing 4.34: GraphQL subscription schema example

In the example above, the server has a mutation “createMessage”. This mutation accepts
one argument “message”. This argument has three fields:

• text - message text

• from - id of the user that is sending the message

• to - id of the user that will receive this message

43

4. Implementation

Inside the resolver of this mutation, the server emits an event that the new message was
created. Then the server will check current “newMessage” subscriptions. This subscrip-
tion has one parameter “targetId”. If “targetId” of one of subscription will be equal to
“to” parameter, then the server will send data to the client that is subscribed with this
parameter. This simple event-based principle helps to create real-time applications with
GraphQL. REST web architecture do not provide any specific way how to create real-time
applications. In REST client may send the request with interval to check if there is new
data on the server, but this is the unoptimized way of creating such applications.

4.8 File transfer

REST

To upload the files to the storage (in our system we are using Google storage) it will need to
create REST endpoints, because GraphQL does not supporting transferring binary data.
GraphQL will need to use external libraries to make it work. In REST web architecture
it will need to create endpoint and send data for example as Blob. The Blob object
represents a blob, which is a file-like object of immutable, raw data; they can be read as
text or binary data, or converted into a ReadableStream so its methods can be used for
processing the data:

Blobs can represent data that isn’t necessarily in a JavaScript-native format. The File
interface is based on Blob, inheriting blob functionality and expanding it to support files
on the user’s system.[25] Example
const sendData = async () => {

const file = new Blob (["<h1 >HTML file </h1 >"], { type: "text/html" });
const formData = new FormData ();

formData . append (" file", file);

await fetch (" http :// localhost :3000/ import -file", {
headers : {

"content -type ": " multipart /form -data"
},
body: formData

})
}

Listing 4.35: Example of sending data to the REST endpoint with Blob

44

Chapter 5
Conclusion

This chapter will shortly introduce a summary of each section from “Implmentation”
chapter

API structure

Types

GraphQL uses SDL. Every GraphQL service defines a set of types that describe entirely
the set of possible data that can query on that service. Then, when queries come in, they
are validated and executed against that schema. So, you can always get predictable result.
REST web architecture does not provide a type system. The resource naming principles
is the only thing that can describe resource expect data.

Documentation

After defining the schema, GraphQL creating documentation for API, to let know what
exactly API can do. With GraphiQL or GraphQL Playground, developers can inspect
schema and even run queries and mutations to test out API. For REST, it needs to
use external services like Swagger and manually create documentation for each REST
controller.

Schema tools

GraphQL provides many tools, such as directives, enums, fragments, and inputs. Each
of this tool helps to make the code clearer, reduce code repeating and make it more
understandable for other developers

Data fetching/modifying

The most significant improvement that GraphQL introduced is data fetching. In a typical
REST API, to fetch or retrieve data from a server, we might end up making requests to
multiple endpoints. But with GraphQL, we only have one endpoint with which we access
data on a server. With a single request, we can get an object and its related objects.

45

5. Conclusion

Security

GraphQL provides schema directives to secure resolvers. However, directives might be
used not only for security reasons. In the REST web architecture, the usual way to secure
resources is to use middlewares for defined URIs.

API endpoints

Because GraphQL using single URI for all requests, it will be problematically to create
API for other systems. For this purpose, it is better to use the REST endpoint, which is
running on different URIs.

Technologies

Because GraphQL is the type system, it has many tools that help the developers to build
modern web applications with features such as “Optimistic response”. Also, there are
many tools like https://graphql-code-generator.com/ that help developers to reduce
manual writing of code and make it more automatized.

Real-time applications

One of the most significant advantages of GraphQL is Subscriptions. Subscriptions are
a GraphQL feature that allows a server to send data to its clients when a specific event
happens in real-time. GraphQL describes the easy way of creating such features. REST
web architecture do not provide any specific way how to create real-time applications. In
REST client may send the request with interval to check if there is new data on the server,
but this is the unoptimized way of creating such applications.

Files transfer

If the webserver using GraphQL without any libraries, then transferring documents from
the client to the server will be possible only with REST API. This is the place where
REST web architecture taking a step forward.

46

https://graphql-code-generator.com/

Appendix A
Application Setup Instructions

In order to run application there are following software required to be installed on the
machine:

• Yarn 1.22.4

• NPM 6.14.4

• Node.js 14.2.0

Run yarn install in the root folder from the terminal. It will install project depen-
dencies. After installation, run yarn run price66-dev and yarn run api-dev from the
root folder, it will start API and web application. After start, web application will be
available at http://localhost:8024 and server at http://localhost:8380. You can
test GraphQL requests with GraphQL playground. This is the graphical interface for
developers. After server launched, playground will be available at http://localhost:
8380/graphql. To test REST endpoint you can use any tool for making HTTP requests,
for example Postman

To start Cypress[26] end-to-end[27] tests, run yarn run cypress:open from the root
folder. It will open a Chorium window where you can start tests.

Deployed version is running on https://app.price66.com/

47

http://localhost:8024
http://localhost:8380
http://localhost:8380/graphql
http://localhost:8380/graphql
https://app.price66.com/

Appendix B
List of Abbreviations

API Application Programming Interface

CRUD Create, Read, Update and Delete

REST Representational State Transfer

URI Uniform Resource Identifier

URL Uniform Resource Locator

ORM Object-relational mapping

SDL Schema definition language

JSON JavaScript Object Notation

HTTP Hypertext Transfer Protocol

UML Unified Modeling Language

49

Bibliography

[1] GraphQL usage chart. Available from https://www.drupal.org/project/usage/
graphql.

[2] Web API definition. Available from https://en.wikipedia.org/wiki/Web_
application.

[3] REST API definition. Available from https://en.wikipedia.org/wiki/
Representational_state_transfer.

[4] GraphQL definition. Available from https://en.wikipedia.org/wiki/GraphQL.

[5] IBM. JavaScript Everywhere and the Three Amigos (Into the wild BLUE yonder!).
2013, available from https://community.ibm.com/community/user/ibmcommunity/
home.

[6] Ledvinka, M. HTTP, REST Web Services. 2018, available from https:
//cw.fel.cvut.cz/b181/_media/courses/b6b33ear/lectures/lecture-06-rest-
s.pdf.

[7] Introduction to GraphQL. 2018, available from https://graphql.org/learn/.

[8] Express.js - Node.js framework. Available from https://expressjs.com/.

[9] MongoDB - document database. Available from https://www.mongodb.com/.

[10] Mongoose - ORM for MongoDB. Available from https://mongoosejs.com/.

[11] Google Storage - CDN for storing documents. Available from https://
cloud.google.com/storage.

[12] JWT - decode, verify and generate JWT. Available from https://jwt.io/.

[13] Apollo client. Available from https://www.apollographql.com/docs/react/.

[14] Apollo server. Available from https://www.apollographql.com/docs/apollo-
server/, keywords = ”Apollo, server”.

[15] Yarn - package manager for JavaScript. Available from https://yarnpkg.com/.

51

https://www.drupal.org/project/usage/graphql
https://www.drupal.org/project/usage/graphql
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/GraphQL
https://community.ibm.com/community/user/ibmcommunity/home
https://community.ibm.com/community/user/ibmcommunity/home
https://cw.fel.cvut.cz/b181/_media/courses/b6b33ear/lectures/lecture-06-rest-s.pdf
https://cw.fel.cvut.cz/b181/_media/courses/b6b33ear/lectures/lecture-06-rest-s.pdf
https://cw.fel.cvut.cz/b181/_media/courses/b6b33ear/lectures/lecture-06-rest-s.pdf
https://graphql.org/learn/
https://expressjs.com/
https://www.mongodb.com/
https://mongoosejs.com/
https://cloud.google.com/storage
https://cloud.google.com/storage
https://jwt.io/
https://www.apollographql.com/docs/react/
https://www.apollographql.com/docs/apollo-server/
https://www.apollographql.com/docs/apollo-server/
https://yarnpkg.com/

Bibliography

[16] Client Server Architecture definition. Available from https://cio-wiki.org/wiki/
Client_Server_Architecture.

[17] GraphQL schema definition. Available from https://graphql.org/learn/schema/.

[18] REST Resource Naming Guide. Available from https://restfulapi.net/resource-
naming/.

[19] Polyfill. Available from https://developer.mozilla.org/en-US/docs/Glossary/
Polyfill.

[20] GraphQL directive definition. Available from https://graphql.org/learn/
queries/.

[21] GraphQL resolver definition. Available from https://www.apollographql.com/docs/
graphql-tools/resolvers/.

[22] Apollo definition. Available from https://www.apollographql.com/.

[23] Apollo Optimistic UI definition. Available from https://www.apollographql.com/
docs/react/performance/optimistic-ui/.

[24] GraphQL subscription definition. Available from https://www.apollographql.com/
docs/react/data/subscriptions/.

[25] Blob definition. Available from https://developer.mozilla.org/en-US/docs/Web/
API/Blob.

[26] Cypress - JavaScript end-to-end testing framework. Available from https://
www.cypress.io/.

[27] End to End. Available from https://www.valentinog.com/blog/cypress/.

52

https://cio-wiki.org/wiki/Client_Server_Architecture
https://cio-wiki.org/wiki/Client_Server_Architecture
https://graphql.org/learn/schema/
https://restfulapi.net/resource-naming/
https://restfulapi.net/resource-naming/
https://developer.mozilla.org/en-US/docs/Glossary/Polyfill
https://developer.mozilla.org/en-US/docs/Glossary/Polyfill
https://graphql.org/learn/queries/
https://graphql.org/learn/queries/
https://www.apollographql.com/docs/graphql-tools/resolvers/
https://www.apollographql.com/docs/graphql-tools/resolvers/
https://www.apollographql.com/
https://www.apollographql.com/docs/react/performance/optimistic-ui/
https://www.apollographql.com/docs/react/performance/optimistic-ui/
https://www.apollographql.com/docs/react/data/subscriptions/
https://www.apollographql.com/docs/react/data/subscriptions/
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://www.cypress.io/
https://www.cypress.io/
https://www.valentinog.com/blog/cypress/

