
ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

457147Osobní číslo:FilipJméno:SváčekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Sémantické facetové vyhledávání na platformě React

Název bakalářské práce anglicky:

React-based Semantic Faceted Search

Pokyny pro vypracování:
1. Srovnejte existující přístupy k facetovému vyhledávání, především pak z hlediska využití sémantických technologií.
2. Navrhněte modul sémantického facetového vyhledávače, který bude umožňovat rozdělení vyhledávání a jeho vizualizace
do samostatných modulů.
3. Naimplementujte modul sémantického vyhledávače a vizualizační modul pro knihovnu React.
4. Ověřte správnost vaší implementace srovnáním s existujícím řešením používaným např. prohlížečem sémantického
slovníku státní správy.

Seznam doporučené literatury:
[1] D. Allemang, J. Hendler, Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL, Morgan
Kaufmann, 2011
[2] R. Wieruch, The Road to learn React: Your journey to master plain yet pragmatic React.js, 2018
[3] G. M. Sacco, Y. Tzitzikas, Dynamic Taxonomies and Faceted Search: Theory, Practice, and Experience, Springer,
2009

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Martin Ledvinka, skupina znalostních softwarových systémů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 05.01.2021Datum zadání bakalářské práce: 07.09.2020

Platnost zadání bakalářské práce: 19.02.2022

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Martin Ledvinka

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Czech
Technical
University
in Prague

Semantic faceted search on the React
platform

Filip Sváček

Supervisor: Ing. Martin Ledvinka
May 2021

ii

Acknowledgements
I would like to thank the supervisor of my
work, Ing. Martin Ledvinka, for his will-
ingness, advice, consultations and com-
mitment, despite the limitations and prob-
lems that persist this semester.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 21, 2021

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 21. května 2021

iii

Abstract
The purpose of this thesis is the design
and implementation of semantic facet
search, which allows users to query data
using facets on the semantic web.

For the purpose of trying out the imple-
mentation, I created a demo of Writers,
where a user searches data using facets.

For this project, I used the program-
ming language Javascript and the frame-
work React to build the user interface and
NodeJs to build to logic module.

Keywords: Semantic web, React,
Fasets, NPM, SPARQL

Supervisor: Ing. Martin Ledvinka

Abstrakt
Účelem této bakalářské práce je návrh
a implementace sémantického facetového
vyhledávače, který umožní uživatelům hle-
dat data za pomocí faset sémantickém
webu.

Na vyzkoušení fungování této imple-
mentace se vytvořilo demo spisovatelů,
nad kterými uživatel vyhledává pomocí
faset.

Pro řešení byl použit programovací ja-
zyk Javascript a framework React na
tvorbu uživatelského rozhranní a NodeJs
na tvorbu modulu logiky.

Klíčová slova: Sémantický web, React,
Fasety, NPM, SPARQL

Překlad názvu: Sémantické facetové
vyhledávání na platformě React

iv

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
2 Used technologies 3
2.1 HTML . 3
2.2 CSS . 3
2.3 Facets . 3
2.3.1 Faceted search 3

2.4 Javascript . 3
2.4.1 Bootstrap 4
2.4.2 JSX . 4
2.4.3 Sparql.js 4
2.4.4 Node.js . 5
2.4.5 NPM . 5

2.5 Git . 6
2.6 DOM . 6
2.7 ReactJS . 6
2.7.1 Props . 6
2.7.2 Components 7
2.7.3 State . 8
2.7.4 Render . 8
2.7.5 Lifecycle metody 9

2.8 Semantic web 9
2.8.1 SPARQL 10
2.8.2 Query . 10
2.8.3 Linked data 10
2.8.4 Vocabulary 10
2.8.5 Semantic triple 10

2.9 RDF . 11
3 Design and analysis 13
3.1 Comparison with other approaches
to faceted search 13
3.1.1 Item.js . 13
3.1.2 Solr Faceted Search React . . . 14
3.1.3 SPARQL Faceter 14

3.2 Summary . 15
3.3 Modular design 15
3.4 Component design 16
3.4.1 Making SPARQL query into a
HTTP request 16

3.4.2 Passing selected facets to logic
module . 16

3.4.3 Communicating with a
SPARQL endpoint 16

3.4.4 Parsing a query from JSON to
SPARQL . 16

3.5 Other design elements and
decisions . 17
3.5.1 JSON to SPARQL parser . . . 17
3.5.2 Facets . 17
3.5.3 Constraints 17
3.5.4 Query templates 18
3.5.5 Subqueries 19
3.5.6 Configuration 19

4 Implementation 21
4.1 Configuration 21
4.1.1 Visual module configuration . 21
4.1.2 Query creation process 22
4.1.3 Logic module configuration . . 22

4.2 JSON object templates 25
4.2.1 resultCountJSON 26
4.2.2 resultsubQueryJSON 26
4.2.3 textFacetTemplateJSON 26
4.2.4 firstSubQueryJSON 26
4.2.5 secondSubQueryJSON 26

4.3 Logic module’s public methods . 26
4.3.1 getResultPromise 26
4.3.2 getResultCountPromise 27
4.3.3 getFacetSelectionPromises . . . 27
4.3.4 setOffsetToResultQuery 27
4.3.5 setTextToTextFacet 27
4.3.6 setObjectToBasicFacet 27

4.4 Communication with the backend
and processing of results 27

5 Evaluation 29
5.1 Introduction 29
5.2 Demo description 29
5.3 Demo facets 29
5.4 Comparing both demos 30
6 Conclusion 31
6.1 Summary . 31
6.2 Future development 31
7 Sources 33
8 Pictures 35
9 Attachment 37

v

Figures
2.1 Demonstration of facet use in
e-shops, where there are facets, their
selection values and the number of
searchable results for each value. . . . 4

2.2 An example of a DOM graph 6
2.3 Graphical representation of
Semantic triple 11

2.4 Graphical representation of a RDF
graph . 11

3.1 Component diagram 17

Tables

vi

Chapter 1
Introduction

Faceted search is a thing that most people probably use in their everyday
lives, but only a minority of them are most likely conscious of it. From e-shops
to product labelers to job-searching, faceted search has a substantial usage
across all spheres of the internet. The situation is different with the semantic
web, where most people have probably not come to direct contact with the
semantic web, which mostly has a role in the background.

This project primarily deals with the combination of semantic web and
faceted search. It analyses some issues surrounding it, proposes solutions
to some problems, and shows the implementation of tools that address said
problems. There is a focus on modularity and the possible future scalability
of said solutions. As a part of this project, there is a demo implementation
to check the usability of the created tools.

1.1 Motivation

There are not many software projects that focus on the issues surrounding
the semantic web and faceted search, and they either focus on the back-end
side or have severe flaws in them. These issues, combined with insufficient
documentation, outdated implementation, high coupling, outdated imple-
mentation, and low cohesion of their codebase, mean a newly implemented
solution is needed. This project aims to be that solution, aiming to provide a
functional implementation that follows the best software engineering practices
to become a helpful tool in its area of use-case.

1.2 Goals

Semantic web and technologies related to it are becoming more relevant and
more needed with how the web expands and the need to go through a lot
of data that is on it. Semantic technologies are becoming to move from the
academic sphere as more of a theoretical exercise to the public sphere, where
private businesses try to adapt them for commercial purposes. Despite that
fact, many tools needed to use the semantic web and fully utilize it are in

1

1. Introduction
bad shape. This project aims to be a part small remedy to the wide-reaching
issue at stake.

2

Chapter 2
Used technologies

2.1 HTML

HTML is the most fundamental building block on the web. It defines the
structure of web content. This project uses the latest version HTML 5[1].

2.2 CSS

CSS is a style sheet language. Its intended usage is prescribing the presentation
of web content. Along with HTML and Javascript, it is one of the key
technologies on the web. CSS allows us to separate appearance from the
content of web elements, included but not limited to layouts, colors, and
fonts[2].

2.3 Facets

Facets are software components that implement one functionality, have one
publicly callable interface, and no residual state. In software engineering,
their function is to serve as a proven tool for surveying the informational
space. Each facet consists of a set of items, which are also called facet values.
[15]

2.3.1 Faceted search

Faceted search is a dynamic clustering of items or searched results into
classifications, where users can get searched results by any value in any field.
Each facet displayed also shows the number of hits within the search that
match that category. [15]

2.4 Javascript

Javascript is a scripting language that is most frequently used to develop web
technologies that run on the client-side.[3] It’s of the key technologies on the

3

2. Used technologies...................................

Figure 2.1: Demonstration of facet use in e-shops, where there are facets, their
selection values and the number of searchable results for each value.

web and ubiquitous in modern web applications.

2.4.1 Bootstrap

Bootstrap is the most popular framework for HTML, CSS, and Javascript,
emphasizing mobile development.[13] It has design templates designed for
forms, buttons, navigation, and other such components. The project uses the
version of Bootstrap 4.0.

2.4.2 JSX

JSX is a syntactic extension of Javascript, and developers often use it in
combination with React. It’s not a requirement, but it is an excellent visual
tool when working with user interfaces in Javascript.[10]
function Welcome(props) {

return <h1>Hello, {props.name}</h1>;
}

const element = <Welcome name="Helen" />;
ReactDOM.render(

element,
document.getElementById(’root’)

);

2.4.3 Sparql.js

Sparql.js a parser that can parse JSON objects to SPARQL and from SPARQL
to JSON.[11] This library was released quite recently, and initially, this project
should have used the designed and implemented semester project parser, which

4

...................................... 2.4. Javascript

this project follows upon. Sparql.js library has a much richer functionary,
existing public documentation, and the library includes thorough testing, so
this library is preferable to use this instead of the semester project parser
solution.[11]

2.4.4 Node.js

NodeJs is an open-source runtime environment, which allows developers to
run code outside of the web environment. NodeJS runs asynchronously in
one thread and has a massive emphasis on scalability and performance.

2.4.5 NPM

Npm is a package manager for Javascript. In NodeJS, it’s a default package
manager. [12] There are defined packages in the file package.json, where the
name and version of the application required attributes. Other things can be
added on and removed based on the application’s needs.

To demonstrate this, here is an example of a small part of the npm package,
which is used in the application.

{
"name": "bcproject",
"version": "0.1.0",
"private": true,
"scripts": {

"start": "react-scripts start",
"build": "react-scripts build",
"test": "react-scripts test",
"eject": "react-scripts eject"

},
"@testing-library/user-event": "^7.2.1",
"dependencies": {
"@testing-library/jest-dom": "^4.2.4",
"@testing-library/react": "^9.5.0",
"bootstrap": "^4.5.2",
"node-fetch": "^2.6.1",
"prop-types": "^15.7.2",
"react": "^16.13.1",
"react-bootstrap": "^1.3.0",
"react-dom": "^16.13.1",
"react-scripts": "3.4.3",
"sparqljs": "^3.1.2",
"xmlhttprequest": "^1.8.0"

},
}

5

2. Used technologies...................................

Figure 2.2: An example of a DOM graph

2.5 Git

Git is a distributed control version system, initially designed for coordinating
for coordination of programmers working on software development. Over
40 million developers use it, and it is a crucial tool for effective software
development. It’s easy to learn and offers good data compression and high
performance. This project uses it to store project data and for code revi-
sion.[14]

2.6 DOM

DOM (picture 2.2) is a platform and language-neutral interface that allows
programs and scripts to dynamically access and update the document’s
content, structure, and style. [16]

In this project, DOM manipulates with the help of Javascript to add,
update and remove HTML elements.

2.7 ReactJS

React is an open-source library written in Javascript. It’s made by Facebook,
along with a community of independent developers, and it’s used for user
interface development on the web. This library is prevalent, well documented,
and with a growing use-case, which leads to its use in this project.[18]

2.7.1 Props

Props are arguments that React passes to components. HTML attributes
help with the passing of props.

To demonstrate this, here is an example of pass usage.

function Welcome(props) {
return <h1>Hello, {props.name}</h1>;

6

.......................................2.7. ReactJS
}

const element = <Welcome name="Anna" />;
ReactDOM.render(

element,
document.getElementById(’root’)

);

2.7.2 Components

On a conceptual level, components are akin to functions in Javascript. They
serve to split up the code into building blocks, which allows for better
reusability and clarity of code. They take props as an input and return React
elements, which prescribe displaying of elements in the web browser.

To demonstrate this, here is an example of pass component usage, where
ShoppingList displays all shopping items and items passed through props.

class ShoppingList extends React.Component {
render() {

return (
<div className="shopping-list">

<h1>Shopping List for {this.props.name}</h1>

Item 1
Item 2
Item 3

</div>

);
}

}

Presentational components

Presentational components don’t have an inner state, except for the state
related to the presentation. They don’t have any methods in them and are
generally responsible for simply generating HTML code. In this project, pre-
sentational components primarily serve the purpose of user-defined functions
to display the incoming data.

Container components

Container components are more complex than presentational components,
have an inner state, and have inner methods. They are used in this project
as part of the visual module because of the project’s need for inner methods
and states when communicating with the logic module.

7

2. Used technologies...................................
2.7.3 State

State in React represents all dynamic content. Container components have
the setState method in them, which React uses for setting state and changing
state. After changing state with this method, React updates the web content
it generates.[17]

To demonstrate this, here is an example of a function that displays all car
id’s, which are in the state of the component.

class Car extends React.Component {
constructor(props) {

super(props);
this.state = {

brand: "Tesla",
};

}
render() {

return (
<div>

<h1>My Car is {this.state.brand}</h1>
</div>

);
}

}

2.7.4 Render

It is a function that is responsible for rendering HTML inside the web app.
It takes two parameters, the first of them is HTML code, and the second is
HTML element. Because this app uses the so-called render props technique,
it means that it passes code from one component to another. That’s how it
specifies HTML element only in the index.js file, and elsewhere we are using
only HTML code.[18]

To demonstrate this, here is an example of a function tick that renders
time as it passes.

function tick() {
const element = (

<div>
<h1>Hello, world!</h1>
<h2>It is {new Date().toLocaleTimeString()}.</h2>

</div>
);
ReactDOM.render(element, document.getElementById(’root’));

}
setInterval(tick, 1000);

8

.................................... 2.8. Semantic web

2.7.5 Lifecycle metody

Lifecycle methods are methods that components use. Each component has
a lifecycle, which can be manipulated during its three key lifecycle phases,
mounting, updating, and unmounting.[17]

During mounting, DOM received elements from React. During updating,
React updates elements inside DOM. At last, during unmounting, React
removes elements from DOM.

To demonstrate this, here is an example usage of componentDidMount for
loading data from the endpoint. After mounting all users are loaded from
the endpoint, state is changed and user statuses are displayed.

class FriendStatus extends React.Component {
constructor(props) {

super(props);
this.state = { isOnline: null };
this.handleStatusChange =

this.handleStatusChange.bind(this);
}

componentDidMount() {
ChatAPI.subscribeToFriendStatus(

this.props.friend.id,
this.handleStatusChange

);
}

render() {
if (this.state.isOnline === null) {

return ’Loading...’;
}
return this.state.isOnline ? ’Online’ : ’Offline’;

}
}
}

2.8 Semantic web

The semantic web is an extension of the current web, where information has
a clearly defined meaning, allowing for better interaction between people and
computers.[4] The primary purpose of the semantic web is to guarantee that
computer data are well-readable to computers.

9

2. Used technologies...................................
2.8.1 SPARQL

SPARQL is a semantic queering language made to manipulate and retrieve
data in RDF format in graph databases.[12] SPARQL allows users to execute
queries in a database or any other data source with an RDF format.[7]

2.8.2 Query

Query in the semantic web context is a set of technologies and protocols
that can return data from the web using programming. This concept applies
in many other database languages such as SQL, but in SPARQL, it uses
triple patterns to get the desired data. When using SPARQL, it’s possible to
get complex information, where the table format is a possible way to return
information.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {

?person foaf:name ?name .
}

2.8.3 Linked data

Linked data is a method for publishing structured data with the help of a
vocabulary[24], which can be connected and interpreted by computers.[5]
A typical example of a linked dataset is DBPedia, which has a subset of
Wikipedia’s content inside of itself in the RDF format.

2.8.4 Vocabulary

Vocabulary in the context of semantic web defines concepts and relations for
describing and representing data in a given field of interest.[6] The aim of
vocabularies on the semantic web is to help get rid of ambivalences in a large
set of data. Other aims include the ability to find new relations between data
types and organizations that deal with knowledge.

2.8.5 Semantic triple

Semantic triple is an atomic entity in RDF data format. It’s a set of three
entities, which are called subject, predicate, and object. Subject and object
represent vertices and predicate the oriented edge pointing from subject to
object. Together, they make a statement about semantic data.[4]

The usage of this format rests on the fact that machines read it well. It’s
possible to address each part of the statement with a unique identifier, and
thanks to that, it’s easy to operate and query under the semantic data.

10

.. 2.9. RDF

Subject
Predicate

Object

Figure 2.3: Graphical representation of Semantic triple

Figure 2.4: Graphical representation of a RDF graph

2.9 RDF

RDF is a framework designed to store information and a standard for data
exchange on the web. It consists of a linked web structure and uses URI
to name relations between things and between the ends of a link. Its aim
is accessible and transferable data structures made for flexible use between
many different applications. This linked data structure makes a graph, which
people can easily understand.[7]

11

12

Chapter 3
Design and analysis

3.1 Comparison with other approaches to faceted
search

To know what projects to select to compare this project too, first, we have to
define some criteria. The criteria for selecting existing projects are as follows.

1. The other project’s functionality needs to be substantially related to
this project’s functionality.

2. The other project needs to be used by a sufficiently large number of
developers.

3. The other project needs to be maintained and work as intended to this
day.

4. The other project needs to be publicly available.
The test is not all or nothing, except for number four, which is mandatory.

If the other project lacks strength in one of the criteria, the selection is still
not out of the question, especially if being particularly strong under other
criteria.

3.1.1 Item.js

Criteria match

Items.js[23] matches all of the defined criteria. That project is a very com-
prehensive faceted search engine that takes a JSON dataset and displays
it. According to the NPMJS statistics, it has roughly 600 downloads per
day[23]. The solution was last updated a few weeks ago, indicating an ac-
tive development. Based on several demo examples online, it’s working as
intended.

Functionality and design comparison

Items.js specializes entirely in creating a facet search app based on the user-
defined configuration. In that respect, it’s very similar to this project’s visual
module.

13

3. Design and analysis
The difference is Items.js is way more comprehensive in its domain, with a

more extensive selection of facets, more ways to set up the facets, displaying of
selected data, and more settings regarding how many facets will be displayed.

Usecase comparison

While Items.js is a go-to solution for people who want to apply faceted search
on their data, its comprehensiveness doesn’t make it a good fit for this project,
where a leaner solution is needed. It would likely be possible to use it as part
of, if not as the whole visual module, but the decision in this project is to
create a custom solution in React.

3.1.2 Solr Faceted Search React

Criteria match

Solr Faceted Search React[22] matches points 1, 2, and 4 with some caveats.
On the one hand, it’s substantially related to this project’s functionality. It’s
a faceted search using React. At last, it has roughly 50 downloads daily[22],
according to NPMJS statistics. On the other hand, it has been three years
since the last update. Also, it’s closely tied with different faceted search
technology. Though on balance, with it still being widely used, this project
passes the criteria.

Functionality and design comparison

Solr Faceted Search React specializes in faceted search, closely tied to Apache
Solr, a prerequisite to running the project. It has extensive options related
to configuring facets, displaying them, and the selected results. It also has a
wide selection in terms of facet types.

On the contrary, this project doesn’t require downloading any external
software to work. Data on the semantic web tends to be freely available
online, and getting data is usually just a matter of asking an endpoint for it
with a SPARQL query.

Usecase comparison

While that solution is more comprehensive than this project, it’s closely tied
to Apache Solr. The project is practical only when using the Solr platform.
The project would not be helpful in the context of the semantic web.

3.1.3 SPARQL Faceter

Criteria match

SPARQL Faceter[21] matches points 1 and 4. SPARQL Faceter tries to
implement almost the same functionality as this project. On the other hand,
SPARQL Faceter project is not very active. The last update is from 3 years

14

...................................... 3.2. Summary

ago, and demo examples in the project are not working, indicating that not
many people are using it.

On the other hand, SPARQL Faceter is so substantially related to this
project that it passes the criteria. SPARQL Faceter heavily influenced this
project. At the same time, this project tries to correct some things in SPARQL
Faceter.

Functionality and design comparison

Both projects are very similar in functionality, aside from the other project
having more defined facets. It’s in the design the difference is more severe.
SPARQL Faceter doesn’t separate logic from a user interface. The query
creation process is more cumbersome, adding up strings together instead
of some more high-level parser. Because of these issues, it’s also not very
expandable.

Usecase comparison

At this moment, the other project is not very usable for its intended purpose.
Queries sent to the backend stopped working, and fixing the issues would
take more effort than it’s worth. In contrast, this project tries to address a
lot of the issues that plague the SPARQL Faceter and hopefully is successful
in that goal.

3.2 Summary

While there are many-faceted search projects online, only a handful of them
is coming close to what this project requires. All fall short, either because
they offer only a small part of the solution or they try to tackle something a
bit different. And if they are coming close to what this project requires, they
lack in other areas, such as implementation and design.

3.3 Modular design

There is a need for separation in the app into two basic modules: The logic
module and the visual module.

The main reason for the modular design is that the logic is independent
of the visual platform. That is necessary because visual platforms come and
go, and as they get older, their support on the web goes away. Independence
of logic from visual platform guarantees the longevity of the project. When
the visual platform is not supported anymore, the logic stays intact, so it’s
possible to use it in combination with a newer visual platform.

Another big reason is the separation of concerns, where each module has
clearly defined boundaries of responsibility. The separation of concerns is
necessary for the maintainability and reusability of code.

15

3. Design and analysis
The logic module’s responsibility is taking facet data, parsing them into a

SPARQL query, and returning data from the endpoint. The visual’s module is
responsible for displaying a faceted search based on the project configuration
and facets and results from the endpoint.

Logic Module is wholly independent, whereas the visual module is reliant
on the Logic Module. This reliance only extends to giving logic module facet
data from the user’s side, setting up data from pagination, and receiving data,
so coupling remains low.

3.4 Component design

To ensure smooth modeling of implementation details, a component diagram
(picture 3.1) with established interfaces is needed and analysis of component’s
interfaces.

3.4.1 Making SPARQL query into a HTTP request

EndpointCaller, which is an object that that receives queries and sends data
to enpoint, creates an HTTP request for the backend from a SPARQL query
by taking the backend’s URL address, encoding Sparql query into a query
URI component, and from that assembling the final HTTP request.

3.4.2 Passing selected facets to logic module

When the user is selecting facets, the visual module calls the logic module,
and the app passes changed data into the logic module.

3.4.3 Communicating with a SPARQL endpoint

The communication between the project and endpoint is just sending HTTP
POST Request to get sought-after data, which the visual module displays.

3.4.4 Parsing a query from JSON to SPARQL

For generating queries, the app uses an existing library that functions as a
generalized JSON to SPARQL parser.

The only function that the logic module serves to generate SPARQL queries
is to prepare the data in the format that the Sparql.js library can parse. For
that reason, there are JSON template variables inside the logic module, which
the logic module modifies for the library to parse the data and create needed
queries.

16

.......................... 3.5. Other design elements and decisions

Figure 3.1: Component diagram

3.5 Other design elements and decisions

3.5.1 JSON to SPARQL parser

This project uses a universal JSON object to the SPARQL parser because
it allows for a flexible and maintainable way to build SPARQL queries. It
allows for easy setting of facet data in the query, unlike if the query was built
from scratch, adding various strings together until the final query is made,
which is the process in the SPARQL Faceter project.

3.5.2 Facets

For the project to filter data effectively, we need two types of facets: Text
facets and select facets. Text facets filter data through text input the user
writes in the app, and select facets filter data by selecting pre-loaded options.

3.5.3 Constraints

Because it’s not advisable to search the entire endpoint when querying for
data, the project uses constraints. Constraints in the app’s context are
Semantic triples that the app uses to narrow down data. Constrains would
be pre-loaded and user defined, and are in every single query all the time.

For example, let’s assume that we are searching for writers on the DBpedia.
let constrains = {

writer: {
constraintId: ’writer’,
predicate:
’http://www.w3.org/1999s/02/22-rdf-syntax-ns#type’,
object: ’http://dbpedia.org/ontology/Writer’,

17

3. Design and analysis
}

}

Instead of returning all data that the endpoint has in the beginning, and
dbpedia endpoint has a vast amount of data, constraint named writer allows
us to perform faceted search only above writers, and above no other set of
data.

3.5.4 Query templates

Query templates are user-defined and needed in the process of creating the
final query. They are used to offer flexibility to the user. If the entire query
were created from scratch by the app, the possible data selected would be
far more limited, or very cumbersome. There would be many unaccounted
possibilities in the data selection process were it not for user-provided query
templates. Even if it were possible to setup such a query from scratch in the
logic module, it would not be very practical.

To demonstrate this, here is an example of a query template for select
facets.

SELECT DISTINCT ?cnt ?facet_text ?result WHERE {
{

{<RESULT_SET0>} }
BIND("-- No Selection --" AS ?facet_text)

}
UNION
{

SELECT DISTINCT ?cnt ?result ?facet_text WHERE {
{<RESULT_SET1>}
FILTER(BOUND(?result))
BIND(COALESCE(?result, <http://ldf.fi/NONEXISTENT_URI>)
AS ?labelValue)
OPTIONAL { ?enPref skos:prefLabel ?lbl.

FILTER(LANGMATCHES(LANG(?lbl), "en")) }
OPTIONAL { ?enLabel rdfs:label ?lbl.

FILTER(LANGMATCHES(LANG(?lbl), "en")) }
OPTIONAL { ?prefLabel skos:prefLabel ?lbl.

FILTER(LANGMATCHES(LANG(?lbl), "")) }
OPTIONAL { ?label rdfs:label ?lbl.

FILTER(LANGMATCHES(LANG(?lbl), "")) }
BIND(COALESCE(?enPref, ?enLabel, ?prefLabel, ?label,
"undefined label") f
AS ?facet_text)

}
}

}

18

.......................... 3.5. Other design elements and decisions

It’s evident from this template that setting up optional values and binding
them in the logic module using methods would not be very practical. It’s
much more user-friendly to let the user write a large part of the query that
stays static during the facet selection process and generate the rest using the
logic module. The parts generated by the logic module are called subqueries.

In the example above, subqueries would be places in the result set 0 and
result set 1, with the rest of the query being a template.

Select facet query template

The project needs to build a query to get facet content endpoint. For that
purpose, there has to be a user-defined template that the logic module takes
and builds the final query from it.

Result query template

The project needs to build a query to get results from the endpoint. For that
purpose, there has to be a user-defined template that the logic module takes
and builds the final query from it.

3.5.5 Subqueries

The logic module’s job is to generate subqueries, which in combination with
user-provided query templates, the app uses to make the final query. The
project should use subqueries because of the need to filter the results in
selecting facets and displaying the results.

3.5.6 Configuration

Outside of being separated into two modules, the project would be heavily
reliant on user-defined configuration, so this chapter is tasked with their
design.

The app would use two config objects, one object to set up the logic module
and the other to set up the visual module. This separation into two files
is necessary because the logic module is wholly independent of the visual
module, but the visual module relies on the logic module for data. Settings
from the visual module aren’t necessary when solely using the logic module,
so it’s best to separate the two configurations.

Visual module configuration

Visual module configuration would be dependent on the type of visual plat-
form.

Logic module configuration

The logic module configuration needs to consist of all the data for module
needs to work. Namely, it needs to have query templates, endpoint address,

19

3. Design and analysis
defined facets and constraints, without which the logic module could not
work. All of these things need to be mandatory when using the visual module
and the logic module. So in essence it serves as a precondition on the selected
result data, in this case meaning that every single returned record needs to
be a writer.

20

Chapter 4
Implementation

4.1 Configuration

4.1.1 Visual module configuration

React is used in this project for the visual module because it’s a simple, well-
documented library that millions of developers use and is regularly maintained
and updated.

For configuring the visual module in react, the project uses two parameters:
Title and Iterator.

Title

The parameter title takes a JSX function that displays the names of the
columns.

An example of the JSX function Title displaying column names.
export const Title = () => {

return (
<tr>

<th>Writer</th>
<th>Abstract / Works</th>
<th>Birth Place</th>
<th>Notable Work</th>

</tr>
)

}

Iterator

The parameter Iterator is a function that and displays the incoming data in
the best way the user sees fit. It’s used to offer flexibility to users, which can
be useful with more difficult incoming data patterns.

An example of the JSX function Iterator displaying received data.
const Element = ({name, abstract, birthDate, deathDate}) => {

21

4. Implementation....................................
return (

<tr>
<td>{name}</td>
<td>{abstract}</td>
<td>{birthDate}</td>
<td>{deathDate}</td>

</tr>
);

};

const Iterator = ({data}) => {
return data.map
(

(data) => {
return (

<Element
key={data.id.value}
name={data.name ? data.name.value : ""}
abstract={data.abstract ?
data.abstract.value : ""}
birthDate={data.birthDate ?
data.birthDate.value : ""}
deathDate={data.deathDate ?
data.deathDate.value : ""}

/>
)

}
)

}

4.1.2 Query creation process

First, facets and contraints are loaded. From there, they are used to create
subqueries. These subqueries are then combined with query templates to
create a query. This process is used both for select facet query and result
query.

4.1.3 Logic module configuration

For configuring the logic module, the project uses four parameters: facets,
endpointUrl, selectQueryTemplate and resultQueryTemplate.

An example of an object logicConfig, which is used by the logic module.
let logicConfig = {

facets : facets,
endpointUrl : ’http://dbpedia.org/sparql’,
resultQueryTemplate: resultQueryTemplate,

22

.................................... 4.1. Configuration

constrains: constrains,
selectQueryTemplate: selectQueryTemplate

};
let logicModule = new LogicModule(logicConfig)

EndpointUrl

EndpointUrl is an address of the SPARQL endpoint. The app sends an HTTP
Request and receives data, and the app then displays data in the Visual
module.

selectQueryTemplate

SelectQueryTemplate is a string defined by the user to create a query. It
contains values <RESULTSET0> and <RESULTSET1>, which are used as
placeholder strings. This is where a subquery is placed after it’s generated in
the process of generating a final query that is then used for an endpoint.

SELECT DISTINCT ?cnt ?facet_text ?result WHERE {
{

{<RESULT_SET0>} }
BIND("-- No Selection --" AS ?facet_text)

}
UNION
{

SELECT DISTINCT ?cnt ?result ?facet_text WHERE {
{<RESULT_SET1>}
FILTER(BOUND(?result))
BIND(COALESCE(?value, <http://ldf.fi/NONEXISTENT_URI>)
AS ?labelValue)
OPTIONAL {

?labelValue skos:prefLabel ?lbl.
FILTER(LANGMATCHES(LANG(?lbl), "en"))

}
OPTIONAL {

?labelValue rdfs:label ?lbl.
FILTER(LANGMATCHES(LANG(?lbl), "en"))

}
OPTIONAL {

?labelValue skos:prefLabel ?lbl.
FILTER(LANGMATCHES(LANG(?lbl), ""))

}
OPTIONAL {

?labelValue rdfs:label ?lbl.
FILTER(LANGMATCHES(LANG(?lbl), ""))

}
BIND(COALESCE(?lbl, IF(!(ISURI(?result)), ?result, ""))

23

4. Implementation....................................
AS ?facet_text)

}
}

}

One is used to count the total number of results when not having a selected
facet value, and another one used for returning facet values.

ResultQueryTemplate

ResultQueryTemplate is a string defined by the user to create a query. It
contains a value <RESULTSET>, which is used as a placeholder string. This
is where a subquery is placed after it’s generated in the process of generating
a final query that is then used for an endpoint.
SELECT * WHERE {

{<RESULT_SET>}
FILTER(BOUND(?id))
OPTIONAL {

?id <http://www.w3.org/2000/01/rdf-schema#label> ?name.
FILTER(LANGMATCHES(LANG(?name), "en"))

}
OPTIONAL { ?id <http://dbpedia.org/propertybirthDate>
?birthDate. }
OPTIONAL { ?id <http://dbpedia.org/propertydeathDate>
?deathDate. }
OPTIONAL { ?id <http://dbpedia.org/ontology/thumbnail>
?depiction. }
OPTIONAL {

?work__id <http://dbpedia.org/ontology/author> ?id;
<http://www.w3.org/2000/01/rdf-schema#label>
?work__label;
<http://xmlns.com/foaf/0.1isPrimaryTopicOf> ?work__link.

FILTER(LANGMATCHES(LANG(?work__label), "en"))
}
OPTIONAL { ?id <http://xmlns.com/foaf/0.1isPrimaryTopicOf>
?wikipediaLink. }
OPTIONAL {

?id <http://dbpedia.org/propertybirthPlace> ?birthPlace.
FILTER(LANGMATCHES(LANG(?birthPlace), "en"))

}
OPTIONAL {

?id <http://dbpedia.org/ontology/abstract> ?abstract.
FILTER(LANGMATCHES(LANG(?abstract), "en"))

}
OPTIONAL {

?id (<http://dbpedia.org/ontology/notableWork>/
<http://www.w3.org/2000/01/rdf-schema#label>)

24

................................ 4.2. JSON object templates

?notableWork.
FILTER(LANGMATCHES(LANG(?notableWork), "en"))

}
}

There is one placeholder string, named result set. It’s use is to get result
records based on facet values.

Constrains

Constrains are objects that have parameters named Object, Predicate, and
ConstraintId. Object and Predicate both must be graph nodes, whereas
ConstraintId should be a unique identification string.

Facets

Facets are objects that have parameters named FaceType, Predicate, Name,
and FacetId. FaceType must either be a string with value text or with value
select, defining whether the facet is a select facet or a text facet. Predicate
must be a graph node. Name is the displayed label for the facet in the Visual
module.

4.2 JSON object templates

The logic module uses JSON object templates which it uses to build queries
using SPARQL Parser. These templates are variables inside the module, and
their purpose is to help in query creation. There five of these constants inside
the logic module, which the library sparql.js can parse when loaded with facet
data.

An example of JSON object template, that the app uses to build a SPARQL
query.

this.resultsubQueryJSON = {
queryType: "SELECT",
distinct: true,
variables: [

{
termType: "Variable",
value: "id"

}
],
where: {

type: "bgp",
triples: []

},
order: [

{

25

4. Implementation....................................
expression:

{
termType: "Variable",
value: "id"

}
}

],
limit: 10,
offset: 0

};

4.2.1 resultCountJSON

The app uses a JSON object template named resultCountJSON to help build
a query that gets the record count for pagination.

4.2.2 resultsubQueryJSON

The app uses a JSON object template named resultsubQueryJSON to help
build a query that gets the record result records.

4.2.3 textFacetTemplateJSON

The app uses a JSON object template named textFacetTemplateJSON to
add facet text input for both select facets and the result records.

4.2.4 firstSubQueryJSON

The app uses a JSON object template named firstSubQueryJSON to build a
select facet query. The query it help to build gets the number of total records.

4.2.5 secondSubQueryJSON

The app uses a JSON object template named secondSubQueryJSON to build
a select facet query. The query that it helps to build is used for returning
facet values.

4.3 Logic module’s public methods

The logic module has public methods that the visual module accesses to get
data. It also has public setters to take data from the site.

4.3.1 getResultPromise

The app uses getResultPromise to get a Promise of results of the faceted
search from the endpoint.

26

................ 4.4. Communication with the backend and processing of results

4.3.2 getResultCountPromise

The app uses getResultCountPromise to get a Promise of the number of
results of the faceted search from the endpoint.

4.3.3 getFacetSelectionPromises

The app uses getFacetSelectionPromises to get Promises of the select facet
values from the endpoint.

4.3.4 setOffsetToResultQuery

The app uses setOffsetToResultQuery when a user is paging between records.
It has a parameter named pageNumber, which sets the value of the page user
clicks at minus one.

4.3.5 setTextToTextFacet

The app uses setTextToTextFacet to set data from the text facet that the
user writes inside the text input. It has a parameter facetId, a key that points
to the facet value inside, and an object parameter, which is the data that the
user wrote inside the text input.

4.3.6 setObjectToBasicFacet

The app uses setObjectToBasicFacet to set selected data from the select facet.
It has a parameter facetId, a key that points to the facet value inside, and an
object parameter, which is the data that the user wrote inside the text input.

4.4 Communication with the backend and
processing of results

The results are obtained using the getJSON () method, and the app sends
an HTTP request to the backend SPARQL query encoded in the URL. The
method returns the results that came from the endpoint and stores them in
the state of the component.

27

28

Chapter 5
Evaluation

5.1 Introduction

To evaluate that the implemented solution works, a demo that tests the
solution’s functionality is required. For that purpose, the project implements
a government vocabulary explorer demo. There exists another solution that
SPARQL Faceter implements[24], and unlike all other publicly available
demos, this one still works.

The project uses a configuration that will allow us to compare the func-
tionality of this application with an existing solution. A publicly available
demo has been selected, named Semantic Government Vocabulary Explorer.
The purpose is to create a replica that functions the same way for validation
purposes.

5.2 Demo description

Demo’s purpose is to show the meaning of terms in different contexts of the
law. Because terms or words often don’t have one consistent meaning, they
can cause ambiguity. For instance, the word building has several different
meanings in the different areas of law. This demo tries to solve this problem
by showing terms across different glossaries, showing information about the
terms, information about the term, and the link from the glossary.

5.3 Demo facets

Demo contains three defined facets: one text facet and two select facets.
Demo uses the text facet to filter term names based on the user input. It
uses a glossary facet to select from which glossary the term comes from, and
it uses a type facet to select what specifies the type of term.

29

5. Evaluation
5.4 Comparing both demos

When it comes to functionality, both demos function more or less the same.
They both have the same facets. The queries they use to get data from the
backend are virtually the same by design. One key area where they differ is
that this solution paginates results, while the SPARQL Faceter demo doesn’t
and instead displays thousands of results outright. That means this demo
has much shorter load times and therefore is more user-friendly to use.

Another difference is that the demo implemented by SPARQL Faceter
allows users to switch languages from Czech to English, whereas this demo
now supports only the Czech language. This feature has not been requested
and is not working fully in the SPARQL Faceter demo, as the labels for facets
stay the same regardless of the language. It would also make the configuration
slightly more demanding for the user. Still, it’s not a problem to either create
a demo in a different language or to implement this functionality in the future.

All in all, based on the implemented demo and the comparison to the
existing one, both the logical and visual modules work well and match
expectations.

30

Chapter 6
Conclusion

6.1 Summary

Requirements demand a detailed analysis and design so there would be a
proper app implementation. The analysis establishes modules and their
responsibilities within the project. The analysis also defines all components of
the projects and describes their interfaces. Lastly, the analysis touches on how
to design user-defined configurations for the application to work correctly.

As part of the project, there is an implemented app that separates logic from
the user interface. Thanks to that, the app will be way more maintainable in
the case of change in Javascript’s technologies, which could happen in the
future.

There is an implemented demo of vocabulary terms to show that the app
works. The demo allows users to test the visual module and the logic module
by using it and comparing the functionality to another existing solution.

There is a comparison to other existing faceted search solutions. The
existing solutions are not suited for the semantic web or have severe flaws
that make them hard to use. Universally, going over existing solutions can
lead to preventing repeating the mistakes in them. That has been the case in
this project also.

6.2 Future development

Just because the assignment is complete doesn’t mean the project is fully
complete. There can always be things to be added upon later. This project
does not implement every conceivable possibility for the types of facets it
uses, for example. The only implemented types of facets are those that the
assignment demanded. But all is done so that whenever there is a need to
expand the project, there should be no problems expanding it from following
good software practices to having sufficient documentation.

The project is in a good state for future expansion, and it depends on the
potential developers, who are going to use it, how they are going to use it,
and for what purpose they are going to use it.

31

32

Chapter 7
Sources..1. HTML Tutorial. W3Schools [online]. [cit. 2021-01-05].
Available at: https://www.w3schools.com/html/..2. CSS. W3Schools [online]. [cit. 2021-01-05].
Available at: https://www.w3schools.com/css/..3. Javascript. W3Schools [online]. [cit. 2021-01-05].
Available at: https://www.w3schools.com/js/..4. The semantic Web made easy. W3.org [online]. [cit. 2021-01-05].
Available at: https://www.w3.org/RDF/Metalog/docs/sw-easy..5. Linked Data. W3.org [online]. [cit. 2021-01-05].
Available at: https://www.w3.org/standards/semanticweb/data..6. VOCABULARIES. W3.org [online]. [cit. 2021-01-05].
Available at: https://www.w3.org/standards/semanticweb/ontology..7. Questions on RDF, Ontologies, SPARQL, Rules. . . . W3.org [online]. [cit.
2021-01-05].
Available at: https://www.w3.org/2001/sw/SW-FAQ#whrdf..8. Abstract. W3.org [online]. Harris, Garlik, 2013 [cit. 2021-01-05].
Available at: https://www.w3.org/TR/sparql11-query/..9. Mocha. W3.org [online]. [cit. 2021-01-05].
Available at: https://mochajs.org/...10. Introducing JSX. W3.org [online]. [cit. 2021-01-05].
Available at: https://reactjs.org/docs/introducing-jsx.html...11. SPARQL.js – A SPARQL 1.1 parser for JavaScript.
Https://www.npmjs.com/ [online]. [cit. 2021-01-05].
Available at: https://www.npmjs.com/package/sparqljs

33

7. Sources ..12. About npm. Https://www.npmjs.com/ [online]. [cit. 2021-01-05].
Available at: https://docs.npmjs.com/about-npm...13. Bootstrap 4 Tutorial. W3Schools [online]. [cit. 2021-01-05]. Dostupné z:
https://www.w3schools.com/bootstrap4/...14. Git –distributed-is-the-new-centralized. Git [online]. [cit. 2021-01-05].
Dostupné z: https://git-scm.com/...15. What is Faceted Search? SearchHub [online]. SearchHub, 2009 [cit.
2021-01-05].
Available at: http://searchhub.org/2009/09/02/faceted-search-with-solr...16. What is the HTML DOM? Git [online]. W3schools [cit. 2021-01-05].
Dostupné z: https://www.w3schools.com/whatis/whatis_htmldom.asp...17. State and Lifecycle. ReactJS [online]. reactjs.org [cit. 2021-01-05].
Available at: https://reactjs.org/docs/state-and-lifecycle.html...18. Rendering Elements. ReactJS [online]. reactjs.org [cit. 2021-01-05].
Available at: https://reactjs.org/docs/rendering-elements.html...19. Handling Events. ReactJS [online]. reactjs.org [cit. 2021-01-05].
Available at: https://reactjs.org/docs/handling-events.html...20. NodeJS About [online]. NodeJS [cit. 2021-01-05].
Available at: https://nodejs.org/en/about/...21. SPARQL Faceter [online]. github.com [cit. 2021-01-05].
Available at: https://github.com/SemanticComputing/angular-semantic-
faceted-search...22. Solr faceted search [online]. npmjs.com [cit. 2021-05-05].
Available at: https://www.npmjs.com/package/solr-faceted-search-react...23. itemsjs [online]. npmjs.com [cit. 2021-05-05].
Available at: https://www.npmjs.com/package/itemsjs...24. SPARQL Faceter demo [online]. https://slovnik.gov.cz/ [cit. 2021-05-05].
Available at: https://slovník.gov.cz/prohlížeč/...25. Linked Data [online] https://www.coursehero.com/file/93934947/Linked-
Datadocx/ [cit. 2021-05-05].

34

Chapter 8
Pictures..1. Picture 2.1.
http://searchhub.org//wp-content/uploads/2012/08/CNET_faceted_search.jpg..2. Picture 2.2.
https://snipcademy.com/img/articles/javascript-document-object-model/dom.svg..3. Picture 2.3.
https://upload.wikimedia.org/wikipedia/commons/thumb/8/
88/Basic_RDF_Graph.svg/640px-Basic_RDF_Graph.svg.png..4. Picture 2.4.
https://www.w3.org/TR/rdf11-primer/example-graph.jpg

35

36

Chapter 9
Attachment

The project address is https://gitlab.fel.cvut.cz/svacefil/bcproject
After cloning the project

npm install

To install all the related packages of the npm environment.
After that

npm start

a project starts running

37

	Introduction
	Motivation
	Goals

	Used technologies
	HTML
	CSS
	Facets
	Faceted search

	Javascript
	Bootstrap
	JSX
	Sparql.js
	Node.js
	NPM

	Git
	DOM
	ReactJS
	Props
	Components
	State
	Render
	Lifecycle metody

	Semantic web
	SPARQL
	Query
	Linked data
	Vocabulary
	Semantic triple

	RDF

	Design and analysis
	Comparison with other approaches to faceted search
	Item.js
	Solr Faceted Search React
	SPARQL Faceter

	Summary
	Modular design
	Component design
	Making SPARQL query into a HTTP request
	Passing selected facets to logic module
	Communicating with a SPARQL endpoint
	Parsing a query from JSON to SPARQL

	Other design elements and decisions
	JSON to SPARQL parser
	Facets
	Constraints
	Query templates
	Subqueries
	Configuration

	Implementation
	Configuration
	Visual module configuration
	Query creation process
	Logic module configuration

	JSON object templates
	resultCountJSON
	resultsubQueryJSON
	textFacetTemplateJSON
	firstSubQueryJSON
	secondSubQueryJSON

	Logic module's public methods
	getResultPromise
	getResultCountPromise
	getFacetSelectionPromises
	setOffsetToResultQuery
	setTextToTextFacet
	setObjectToBasicFacet

	Communication with the backend and processing of results

	Evaluation
	Introduction
	Demo description
	Demo facets
	Comparing both demos

	Conclusion
	Summary
	Future development

	Sources
	Pictures
	Attachment

