
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Integrated user interface for effective
utilization of multiple project management
tools

Anton Striapan

Supervisor: RNDr. Ladislav Serédi
May 2021

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

478877Osobní číslo:AntonJméno:StriapanPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Integrované uživatelské rozhraní pro efektivní práci s více nástroji ke správě projektů

Název bakalářské práce anglicky:

Integrated user interface for effective utilization of multiple project management tools

Pokyny pro vypracování:
Identifikujte možné scénáře paralelního způsobu práce s více nástroji pro zprávu
projektů (project manager software, PM), podle Vaši volby, například: Jira, Tello a
Asana. Najdete možné směry zvýšení efektivity činnosti. Diskutujte možnosti snižování
času potřebného k přepínání mezi jednotlivými PM během práce. Navrhněte
architekturu, jež umožňuje kombinovat jednotlivé PM a efektivně provádět běžné
operace s nimi. Prozkoumejte stávající REST API jednotlivých PM, a na jeho základě
vytvořte webovou front-end aplikaci (GUI) pro společnou správu projektů. Budou-li
pro navrženou architekturu potřebné, implementujte serverové komponenty,
případně vazbu na databázi. Navrhněte vhodný scénář použití Vaši aplikaci uživatelem
z typického korporátního prostředí. Proveďte uživatelské testování, výsledky
porovnejte a diskutujte výhody a nevýhody vašeho řešení oproti použití oddělených
PM.

Seznam doporučené literatury:
1. Angular project website [online]. ©2010-2020 Google [27.12.2020]. Available at:
https://angular.io/
2. Trello Developer Guides [online]. ©2020 Atlassian [15.12.2020]. Available at:
https://developer.atlassian.com/cloud/trello/rest/api-group-actions/
3. API Introduction [online]. ©2020 Atlassian [15.12.2020]. Available at:
https://developer.atlassian.com/cloud/trello/guides/rest-api/api-introduction/
4. Authorizing With Trello's REST API [online]. ©2020 Atlassian [15.12.2020].
Available at: https://developer.atlassian.com/cloud/trello/guides/rest-
api/authorization/
5. Jira Server Developer Guides [online]. ©2020 Atlassian [17.11.2020]. Available
at: https://developer.atlassian.com/server/jira/platform/rest-apis/
6. Asana Developers - Projects [online]. ©2020 Asana, Inc. [23.11.2020]. Available
at: https://developers.asana.com/docs/projects
7. Ян Генрихович Малиевский, Руслан Иванович Баженов. Управление
проектами в среде Trello [online]. ISSN 2414-4487 ©2015 Постулат
[8.10.2020]. Available at: http://www.e-
postulat.ru/index.php/Postulat/article/view/3
8. Jobin Kuruvilla. Jira Development Cookbook [online]. Packt Publishing Ltd,
©2016 [17.11.2020]. Available at:
https://books.google.sk/books?id=ioZcDgAAQBAJ

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

Jméno a pracoviště vedoucí(ho) bakalářské práce:

RNDr. Ladislav Serédi, kabinet výuky informatiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 21.05.2021Datum zadání bakalářské práce: 12.02.2021

Platnost zadání bakalářské práce: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryRNDr. Ladislav Serédi

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I’m very grateful to my mentor RNDr
Ladislav Serédi for his big part in my writ-
ing assignment, for the useful comments
which he gave me during the semester.
Also, I would like to thank my supervisor
from Siemens - Michal Rydlo for his help
with the project and all other people who
were involved in the work on my thesis.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May , 2021

v

Abstract
The goal of this bachelor thesis is to pro-
pose a way to increase the effectiveness of
task managing in cases when individual
tasks are stored and managed by multiple
applications. This goal can be achieved
by eliminating the time and effort spent
on switching between different tasks man-
agers. The task managing software se-
lected for this thesis includes Asana, Jira
and Trello. Their REST APIs are dis-
cussed in the Research section. The tool
proposed in the Implementation part will
allow combining tasks from these task
managers in a single GUI tab enabling
all common operations in one place, effec-
tively eliminating the need to separately
log in to each task manager. This tool will
be implemented as a web application, with
a front-end running in a browser, commu-
nicating with each of the task manager
through their REST API. It will manage
authorization to task managers as well –
for this purpose, it will include a back-end
and database component. After building
a working prototype, user testing will be
performed to show the effectiveness of the
described approach. This work was sup-
ported by Siemens Czech Republic to in-
crease the effectivity of usage of project
managers and its internal processes.

Keywords: Trello, Jira, Asana, Task
Managers, Project Managers, Time
Tracking

Supervisor: RNDr. Ladislav Serédi
Praha, Resslova 9, E-429 (vchod Karlovo
náměstí 13)

Abstrakt
Cílem této bakalářské práce je navrhnout
způsob zvýšení efektivity správy úkolů
v případech kdy jednotlivé úkoly jsou
uložené a spravované v různých nástro-
jích. Toho může být dosaženo odstraně-
ním prodlevy nastávající během přepínání
mezi jednotlivými správci úkolů. Nástroje
– správce úkolů - vybrané pro tuto práci
jsou Asana, Jira a Trello. Jejich REST
rozhraní je rozebrán v první části práce.
Softwarový nástroj navržený v implemen-
tační části bude dovolovat kombinování
úkolů od jednotlivých správců do jediné
GUI komponenty bez nutností opakova-
ného přihlášení do jednotlivých správců
úloh. Nástroj bude implementován jako
webová aplikace, s části front-end běžící
v prohlížeči komunikující se správci úloh
prostřednictvím jejich specifického REST
rozhraní. Bude mít též na starosti auten-
tifikaci uživatele směrem ke správcům –
z toho důvodů bude nástroj disponovat
též databázovou a back-end komponentou.
Po implementaci funkčního prototypu pro-
běhne uživatelské testování se zaměřením
na použitelnost a efektivitu popsaného
přístupu. Práce byla podporována spo-
lečností Siemens Česká Republika jako
součást jeho úsilí o zefektivnění použití
správců projektů.

Klíčová slova: Trello, Jira, Asana,
Správci úloh, Projektoví manažeři,
Sledování času

Překlad názvu: Integrované uživatelské
rozhraní pro efektivní práci s více
nástroji ke správě projektů

vi

Contents
1 Introduction 1
2 Done research 3
2.1 REST API . 3
2.1.1 Trello . 3
2.1.2 Jira . 4
2.1.3 Asana . 4

2.2 Authorization in provided REST
API from Trello, Jira, Asana 4
2.2.1 Trello . 4
2.2.2 Jira . 5
2.2.3 Asana . 6

2.3 Fetching tasks from PM 7
2.4 Used technologies 7
2.5 Summary . 8
3 System architecture 11
3.1 System overall diagram 11
3.2 Database UML diagram 12
3.3 Trello Authorization flow 13
3.4 Jira Authorization flow 13
3.5 Asana Authorization flow 15
4 Implementation 17
4.1 Authorization 17
4.2 Internal Authorization 17
4.2.1 Database 18
4.2.2 Front-end 18
4.2.3 Back end 19

4.3 Authorization in PM’s 21
4.3.1 Database 21
4.3.2 Front-end 21
4.3.3 Back end 25

4.4 Fetching tasks from PM 27
4.4.1 Trello . 27
4.4.2 Jira . 28
4.4.3 Asana . 29

4.5 Displaying Tasks in front-end . . 31
5 Testing 35
5.1 Artem Hurbych (CTU, FEE, OI
3rd year student) first version
testing . 35

6 Conclusion 37
A Application setup instructions 39
A.1 How to run and serve application 40
B List of Abbreviations 41
C Bibliography 43

vii

Figures
2.1 Trello authorization flow 5
2.2 Jira authorization flow 6
2.3 Asana authorization flow 7
2.4 Angular Model 8

3.1 System overall diagram 11
3.2 UML class diagram 12
3.3 Trello Authorization flow 13
3.4 Jira Authorization flow 14
3.5 Asana Authorization flow 15

4.1 Registration form from frontend 18
4.2 Login form from frontend 19
4.3 UI for account PM connetions
page . 22

4.4 Trello granting access page 22
4.5 Jira access granting page 23
4.6 Jira form for code 24
4.7 Asana access granting page 24
4.8 Filled table with tasks from
Trello/Jira/Asana 31

4.9 Opened task with description . . 32
4.10 Opened task with filled
comments . 32

4.11 Filtered table by PM’s name
(Trello) . 33
4.12 One of Trello Boards with
assigned tasks 33

Tables

viii

Chapter 1
Introduction

Currently there are numerous more or less incompatible task tracking solutions
– including task managing software - on the market. In teams where work
is going parallel on different projects team members often use different task
managers. On average, the developer may use up to 5 PM solutions, and to
manage all his tasks he has to navigate (switch) between them fairly often.

The main idea is to create an app (ATT) that will combine the most
common PMs and allows basic usage of them. The application should not
provide full usability of the original PM, rather quick access to their most
popular features. The original PM would provide better UI, amount of
features e.t.c, but we suppose that in most cases developer will not use all
of them - only basic ones. And this is why ATT will allow to display only
assigned tasks and if a developer needs to find something else he would
better use a specific PM where the task belongs. Also, ATT will allow some
simple CRUD operations such as leaving a comment under a specific task,
filtering tasks by name or by PM name. In the next chapters, I will describe
the process of development in detail from research to user testing of the
implemented application.

1

2

Chapter 2
Done research

In this chapter, I will describe the first steps which should be done before
starting to design the system architecture or implementation phase. At this
moment I expect to find out how to efficiently parse tasks from PMs, which
technologies to use, and the approximate architecture of the application.

2.1 REST API

The first task to solve was to check if popular PMs provide REST API which
we can use to fetch the task to the ATT application. In the sections below I
will describe some of the most common PMs (Trello, Jira, Asana) and provide
short deception of them.

2.1.1 Trello

Trello provides REST API which allows to set up webhooks and fetch requests
and take data directly from Trello, so there is no need for parsing web pages,
etc [2]. Because an API is provided by Trello developers we can suppose
that it will be available in the long term future. Trello uses a delegated
authentication and authorization flow so the application never has to deal
with storing or handling usernames or passwords. Instead, it passes control to
Trello (identifying itself via the API key) and once Trello has allowed the user
to choose an account and sign in, Trello will hand the user and control back
to the ATT application, along with an API token. To get started, the ATT
application needs an API key. It can be obtained by logging into Trello and
visiting https://trello.com/app-key. ATT users will always see the Trello
authorization screen when granting ATT application access. The permissions,
duration of access, and application name displayed are all configured via the
URL parameters. Once a user clicks "Allow" he will grant ATT app access to
his account and be redirected to a page that contains the API token. This
token, along with his API key, can be used to read and write for the user’s
entire Trello account. Tokens should be kept secret.

3

2. Done research
2.1.2 Jira

The Jira platform provides Java APIs that the ATT app can use to interact
with Jira programmatically[9]. These APIs are common to all Jira applications.
In addition, Jira Software and Jira Service Desk provide APIs for application-
specific functionality. The Jira Java APIs are typically used when building
Plugins2 apps (for Jira Server). The Jira REST APIs are used to interact
with the Jira Server applications remotely, for example, when configuring
webhooks. The Jira Server platform provides the REST API for common
features, like issues and workflows. The Jira Software and Jira Service Desk
applications have REST APIs for their application-specific features, like
sprints (Jira Software) or customer requests (Jira Service Desk):. Jira Software Server REST API. Jira Service Desk Server REST API

2.1.3 Asana

The Asana API is a RESTful interface providing programmatic access to
much of the data in the system[6]. It provides predictable URLs for accessing
resources and uses built-in HTTP features to receive commands and return
responses. This makes it easy to communicate with from a wide variety of
environments, from command-line utilities to gadgets to the browser URL
bar itself. The API accepts JSON or form-encoded content in requests and
returns JSON content in all of its responses, including errors. Only the UTF-8
character encoding is supported for both requests and responses. Pagination
is an important concept when working with queries for multiple objects.
Requests with large result sets may timeout or be truncated; therefore,
pagination is strongly encouraged to ensure both you and your users have
the best experience when using the Asana API.

2.2 Authorization in provided REST API from
Trello, Jira, Asana

For interacting with the REST API the user should allow the ATT application
to access his account. After that, the application will store the PAT token
locally (in local storage) and in the database for future usage.

2.2.1 Trello

Trello’s API uses token-based authentication to grant third-party applications
access to the Trello API. Once a Trello user has granted application access to
their Trello account and data, the application is given a token that can be
used to make requests to the Trello API on behalf of the user. There are two
ways to authorize a client and receive a user token. The first is via Trello’s

4

................2.2. Authorization in provided REST API from Trello, Jira, Asana

1/authorize route, the second is via basic OAuth1.0. More inforamation
could be found on the Trello developers pages[4].

For the implementation of authorization in Trello from the ATT application
OAuth 1.0 was chosen because it allows multi-users usage in the future. Trello
provides a client.js library to make it easier to interact with Trello’s API
in third-party applications. It provides a global Trello object that includes
helper methods for common actions in Trello’s API. There are two steps
to use the client.js library. The first is to get the ATT application key.
This key identifies ATT to the API and is needed for any authenticated or
unauthenticated API calls. Using the Trello object, we need to authenti-
cate the user. This is done with the Trello.authenticate method. This
method will automatically trigger Trello’s authorization flow and return an
authentication token. This token will be specific to the user’s API key. This
token grants access to the authenticated user’s boards, lists, cards, and other
settings, depending on the permissions requested in the authenticate method.
We now can access our user’s Trello data. The functionality provided via
client.js makes use of callbacks for success and failure. The authorization
flow is shown in more detail in the following diagram.

Figure 2.1: Trello authorization flow

2.2.2 Jira

Jira uses 3-legged OAuth (3LO), which means that the user is involved by
authorizing access to their data on the resource (as opposed to 2-legged OAuth,
where the user is not involved). More detailed information could be found on
official Jira REST API documentation [10]. In Jira, a client is authenticated
as the user involved in the OAuth dance and is authorized to have read and
write access. The data that can be retrieved and changed by the client is
controlled by the user’s permissions in Jira. The authorization process works
by getting the resource owner to grant access to their information on the
resource by authorizing a request token. This request token is used by the
consumer to obtain an access token from the resource. Once the client has
an access token, it can use the token to make authenticated requests to the

5

2. Done research
resource until the token expires or is revoked. This process can be separated
into three stages:. 1. The user authorizes the client with Jira to receive an access code.. 2. The client makes a request to Jira with the access code and receives

an access token.. 3. The client can now receive data from Jira when it makes a request
including the access token. Note, the client can continue making authen-
ticated requests to Jira until the token expires or is revoked.

The authorization flow is shown in more detail in the figure 2.2

Figure 2.2: Jira authorization flow

2.2.3 Asana

Asana supports a few methods of authenticating with the API. Simple cases
are usually handled with a Personal Access Token, while multi-user apps
utilize OAuth.. OAuth 2.0 Asana requires that applications designed to access the Asana

API on behalf of multiple users implement OAuth 2.0.. Personal Access Token Personal Access Tokens are designed for accessing
the API from the command line or from personal applications.

For ATT implementation was chosen authorization via OAuth 2.0 because
the app can be used in the future for multi-users usage. The authorization
flow is shown in more detail in the following diagram.

6

................................2.3. Fetching tasks from PM

Figure 2.3: Asana authorization flow

2.3 Fetching tasks from PM

As the ATT app is already authorized in all PM, authorization tokens for
Trello, Jira, Asana are stored in local DB and LS. Now we can make API
calls using them to get all cards assigned to the authorized user. More info
about this in the next chapter (Implementation of fetching task section)

2.4 Used technologies

. Front end: Angular, HTML, SCSS, REST

. Back end: Java Spring

. Database: Postgres

First and the foremost, the ATT app should be a client-based app that will
consist of a front-end application and connect to a database. For the front
end, I wanted to choose one of the currently popular frameworks, Angular[1]
or React JS[11]. As a style framework, I chosed Bootstrap[12]. At the end of
the front end side, I decided to use Angular because it has better architecture
- all parts of code are written separately (HTML, SCSS, TS). The figure 2.4
will describe the basic Angular Model and how its components communicate
with each other.

7

2. Done research

Figure 2.4: Angular Model

On the part of connecting the database to the ATT app, I figured out
that the database cannot be connected to the front end, because it would be
insecure by creating an opportunity for intruders to manipulate the database
and steal the private data of users and manipulate their accounts in the
future. So the ATT app will need a back-end server application. As a
back-end platform Java Spring Boot was chosen[13]. I stopped my view on it
because of the features and benefits it offers as given here:. It provides a flexible way to configure Java Beans, XML configurations,

and Database Transactions.. It provides a powerful batch processing and manages REST endpoints.. In Spring Boot, everything is auto configured; no manual configurations
are needed.. It offers annotation-based spring application. Eases dependency management. It includes Embedded Servlet Container

2.5 Summary

All task managers provide tools for other developers to make their products
more popular and usable. In most cases, task managers insist on using OAuth
authorization, differ only by the level of provided API. Trello provides the
developers with client.js library which allows authenticating users in one
command, the result will be Personal Access Token stored in local storage
under trello_token variable. With Jira and Asana, all looks a bit different.
With them, I should implement Oauth authorization in my way, because they

8

...................................... 2.5. Summary

don’t provide done solution for that. And also unlike Trello, I should use my
backend part for authorization. With authorization flow for different task
managers, you can get acquainted bellow.

9

10

Chapter 3
System architecture

In this chapter, I will describe system architecture, database model, and the
base operations via sequential diagrams.

3.1 System overall diagram

On the figure 3.1 we can see the system overall diagram, which describes
parts of the application and how they communicate. The base idea is - user
interacts with ATT UI, the front-end part, which allows the to user create a
new account, log in into the existing one, connect PMs, track the tasks, and
perform some CRUD operations on tasks. It will communicate with external
API (Trello, Jira, Asana) and with backend part via HTTP requests. The
ATT app can perform actions with DB only via backend, for security reasons.

Figure 3.1: System overall diagram

11

3. System architecture..................................
3.2 Database UML diagram

Figure 3.2 describes the content of the database, in this case, there are only
two tables "User" and "Token". The database was created for storing PAT
for specific users and for storing users’ data. Firstly user creates his account
and his username, email, name, surname, the password will be stored in DB.
After ATT app will connect PAT and the user, for which token was saved, for
future manipulations with them such as updating PAT if it expired, adding
new PAT e.t.c As we can see in this version of the DB table User has:. Unique id. Email, which can be used as login for successful authorization. Name. Password, which also should be used for successful authorization. Surname. Username, by default user has two options, use username or email for

authorization

Table "Token" has:. Unique id, which is used to connect specific token to specific user. Name, which will allow to detect for which PM belongs. Refresh token, which is used for Asana case, All other PMs provide PAT
which won’t expire within time. In case of Asana we should use refresh
token to get new PAT every hour.. Token, which is actually PAT

Figure 3.2: UML class diagram

12

............................... 3.3. Trello Authorization flow

3.3 Trello Authorization flow

This sequence diagram describes the Trello authorization flow [4]. Firstly
user should start the action by clicking on Connect button, after a huge part
of the work will be done by Trello client.js library. The user will only need
to check if the displayed data is correct and grant access to his account from
my ATT app. After that, the PAT will be stored in the local storage of the
web browser and will be sent via HTTP POST request at the back end to be
stored in DB.

Figure 3.3: Trello Authorization flow

3.4 Jira Authorization flow

The idea is the same as with Trello, but the implementation is different.
Firstly user starts authorization flow with click on Connect button. Then
HTTP GET request will be sent to backend side for access URL, the user will
be automatically redirected to granting access page, where should confirm
that user provides access to his account to third party application (ATT app).
He will be given a temporary code that should be pasted to a specific form

13

3. System architecture..................................
on the front-end side. After that, code will be added to an HTTP request to
the back end, the back end will exchange it on PAT. PAT will be stored in
DB and added as a response for previous HTTP request. Token will be saved
in local storage in browser and on that point authorization flow is finished.

Figure 3.4: Jira Authorization flow

14

............................... 3.5. Asana Authorization flow

3.5 Asana Authorization flow

Authorization flow with Asana is the same as with Jira. User should start it
with Connect button. After that, he will get access URL from ATT back end
side and will be redirected to that page immediately. When the user confirms
access, he will be redirected back to the user page, temporary code will be
given as a query parameter in the URL. Then the front end will parse the
URL, extract the code and create an HTTP GET request with it. When the
back end exchange it to PAT, the token will be stored in DB and added as
value to the HTTP response. After that, the token will be also stored in the
browser’s local storage.

Figure 3.5: Asana Authorization flow

15

16

Chapter 4
Implementation

As a practical representation, I decided to build an application, that will
allow testing all use cases and functionality. The prototype will support the
following features: create a new account, log in to it, connect PMs, parse
assigned tasks from PM, filter tasks by keyword, leave a comment which will
be transferred to the original PM task/issue. It will be described in more
detail in the following chapters dedicated to the implementation of particular
parts of the application.

4.1 Authorization

One of the most important parts of an application is security, so in this
chapter, I will describe it in terms of different parts of the ATT app. The
authorization process is divided into two parts - internal and external. Internal
authorization is authorization in the ATT app using a username and password
which the user defined during the registration process. The method of internal
authentication can be changed, for example on a production server we can use
the MyID library which will allow us to authenticate a user via his PKI card.
External authorization is authorization and granting access to different task
managers. The authorization flow of external authorization is shown above
as diagrams, but here we will have closer look at it and I will describe why
the final implementation looks different as it was described in the previous
chapter.

4.2 Internal Authorization

In this part, we will have a closer look at internal authorization and how it
works on different levels of application. It is divided into 3 parts - Database,
Back end, and Front-end. DB is responsible for storing and searching the
data. It can be grant access, get contact info about the user, get all tokens
that are connected to the user. The back end is responsible for security and
DB manipulations and the Front end for the user interface.

17

4. Implementation....................................
4.2.1 Database

The role of the database in the authorization process is quite simple - store
the username and hashed password for future usage.

Registration

For creating a new user account, the user should fill the registration form in
the front end (more in the front-end authorization section), and data from
this form will be added to the database after validation.

Sign in

After user creates his new account, he can login via his credentials, back end
will check if user with this credentials really exists using the following SQL
query for searching

Listing 4.1: SQL query for sign in method
@NamedQueries({

@NamedQuery(name = "User.findByUsername",
query = "SELECT u FROM User u WHERE u.username = :username")

})

Next it will return the user object and the back end will do the next step of
authorization.

4.2.2 Front-end

The front end’s role in authorization is: validate input data, build a JSON
object, send it to the back end, save the JWT token eventually handle the
exception.

Registration

Figure 4.1: Registration form from frontend

For registration, the user should fill all mandatory fields (are marked with *)
Front-end will validate all inputs before sending data to the back end. First of

18

.................................4.2. Internal Authorization
all, it will check if all inputs were user data, not a hostile script. It will prevent
XSS, CSRF attacks. It will check if the email input field is a “@” sign and it is
an email. And it will check if passwords are the same, have length > 8 symbols,
etc. If verification was successful, data will be converted to JSON format and
sent to the back end endpoint http://localhost:8080/att/register via
HTTP POST method.

Sign in

Figure 4.2: Login form from frontend

For sign-in user should fill all mandatory fields (all mandatory fields are
marked with *) As for the registration part, the front-end will validate
all fields before sending data to the back end and preventing XSS, CSRF
attacks. After control data will be converted to JSON format and sent to
http://localhost:8080/att/authentication endpoint. As a response, a
JWT token will be received. This token will be used for future operations
such as getting current signed user, storing user’s authentications tokens for
PM. Also, this JWT token will be stored in local storage.

4.2.3 Back end

The internal authorization back end is responsible for storing data in the
database and for checking if a user with this username and password exists.
For this version of the application, I used JWT based authorization. What
does it mean? If a user with this combination of username and password
exists in the database or after the successful registration user will get the
JWT token, front-end will store it for future usage in local storage. After the
user gets his JWT token the front end will automatically sign all his HTTP
requests with it. The back end will get the HTTP GET/POST request with
an authorization header and will validate the JWT token from there. If the
token is valid - HTTP request will be processed, if not - the user will get a
403 error - “Forbidden error”

19

4. Implementation....................................
Registration

Listing 4.2: Endpoint for creating new user
@RequestMapping(value="/register", method = RequestMethod.POST)
public String register(@RequestBody StoreUserDto userDto) {

if(userService.findByUsername(userDto.getLogin())==null) {
userService.store(userDto);
return "200";

}
return "401";

}

For the creation of a new user account, the back end should check if a
user with the same username is not already in the database. It will call the
.findByUsernamemethod from userService, which is calling .findByUsername
from userDao and is implemented like that.

Listing 4.3: Endpoint for creating new user
public User findByUsername(String username) {

try {
return em.createNamedQuery("User.findByUsername",

User.class).setParameter("username", username)
.getSingleResult();

} catch (NoResultException e) {
return null;

}
}

After that, the user will be stored in the database and can login into his new
account.

Sign in

Listing 4.4: Endpoint for creating new user
@RequestMapping(value = "/authentication", method =

RequestMethod.POST)
public ResponseEntity<?> login(@RequestBody AuthenticationRequest

authenticationRequest) throws Exception {
try {

authenticationManager.authenticate(
new sernamePasswordAuthenticationToken(

authenticationRequest.getUsername(),
authenticationRequest.getPassword())

);
} catch (BadCredentialsException e) {

throw new Exception("Incorrect username or password", e);
}
final UserDetails userDetails = userService.

loadUserByUsername(authenticationRequest.getUsername());

20

.................................4.3. Authorization in PM’s

final String jwt = jwtTokenUtil.generateToken(userDetails);
final Integer id=userService.

findByUsername(userDetails.getUsername()).getId();
return ResponseEntity.ok(new AuthenticationResponse(jwt, id));
}

}

After the back end gets a JSON object with a username and his password, it
should verify if the user with this username and password exists. For that,
I use .authenticate method from authenticationManager and if a user
exists will be sent the response with JWT which will be stored in localStorage
in the browser and will be used for future requests to the back end.

4.3 Authorization in PM’s

Authorization in PMs is a different process from internal authorization because
we should provide all data that we need for successful and comfortable usage
of PM’s API. First of all, the authorization flow is specific for different PMs.
For example, to be able to use Trello API we should connect client.js
library from Trello developers and call the method Trello.Authenticate().
But for Jira we can’t use the front-end, so we should perform OAuth dance
on the server part. The process is the same for Asana. Authorization in
different PMs will be described deeper in the next sections.

4.3.1 Database

Database role in external authorization (Authorization in PMs) is the same
as in internal - store the PAT token for future usage. After the user grants
access to his account on the front-end part, the token will be sent to the back
end and saved. This is need for the prevention of data loss and successful
re-authorization.

4.3.2 Front-end

One of the main front-end roles is to connect user actions and the back end.
The behavior of the front-end for different task managers is different, but
the goal was to create a comfortable UI that will require minimum user
interaction. I will describe the differences in the next few sections.

21

4. Implementation....................................

Figure 4.3: UI for account PM connetions page

Trello

When the user clicks on Connect button the external authorization in Trello
will begin. As I described above, Trello developers provide us a client.js
library for this purpose. So I added a specific method Trello.authorize()
which is called after the user will click on the button. After that user will be
redirected to the access granting page.

Figure 4.4: Trello granting access page

When the user confirms that he is giving access to his account to the third
level application he will be redirected back and the PAT token will be saved

22

.................................4.3. Authorization in PM’s

in local storage. After the front end detects the PAT in local storage it will
send it to the back end via an HTTP POST request, where it will be saved for
future usage. For example, when a user signs into his account, the front-end
will send the HTTP GET request to get all PAT tokens assigned to the user.

Jira

In the case of Jira, we can’t perform API calls from the front-end because of the
CORS settings of Jira. This limitation doesn’t apply to the full "paid" version
of Jira, but in our case - we had to find the solution for this shortcoming.
It was solved by implementing authorization flow on the back-end side and
use the front end only as a tool which is connecting the user to the back-end.
As in Trello, the user should start authorization flow with Connect button.
After that front end will send HTTP GET request to /tokens/jiraAuth
endpoint and as a response it will get the granting access URL. Then the
user will be automatically redirected to that page where he should confirm
providing access to the ATT app.

Figure 4.5: Jira access granting page

Then user should copy the code and paste it into form in the ATT app.

23

4. Implementation....................................

Figure 4.6: Jira form for code

After that, the front-end will send an HTTP POST request to the back
end and as response, it will get the PAT token, which will be stored in the
local storage.

Asana

Asana had a ready-made solution for implementing authorization in Java, so
the authorization was moved to the backend side. Because of that the user
should only click on Connect button and the front-end will do the rest - it
will send HTTP GET request to the back end for granting access URL.

Figure 4.7: Asana access granting page

When the response will be parsed, the user will be redirected to the access

24

.................................4.3. Authorization in PM’s

granting page where he should confirm the action. After that, the user will be
redirected back with the access code given as a query parameter in the URL.
The internal parser will detect that the user was returned and the access code
is present. The code will be extracted and sent as a body parameter to the
back end. As a response client will get the PAT for Asana, already stored in
DB, and store it in local storage on the front-end.

4.3.3 Back end

In external authorization back end is used as a proxy because most PMs
(Asana and Jira) don’t allow CORS requests. The main idea is to store
the PAT token in the database, but before this, we need to start OAuth
dance to get a temporary code, then exchange it for an access token. In the
case of Asana, we also will get a refresh token. For different PM’s we need
various approaches in the implementation of authorization. I will describe all
problems and solutions in according subsections below.

Trello

Back end doesn’t play any role in authorization in Trello, because Trello
developers provide us a front-end library for it, so all authorization flow is
done on front-end side and we use back end only for storing PAT by sending
the POST request on http://localhost:8080/att/tokens/user-id

Jira

Firstly user should start his OAuth dance by triggering /jiraAuth endpoint.
It will return an access link, where the user should confirm that he is granting
access for his account to the ATT application.

Listing 4.5: Endpoint for getting granting access link
@GetMapping("/jiraAuth")
public ResponseEntity<?> jiraAuth() throws Exception {

return ResponseEntity.ok(new
AuthResponese(tokenService.jiraAuth()));

}

After that, he will get the code which he should paste to the front-end form,
submitting this form will trigger /jiraAuth-id endpoint. As id it has the
id of a user who has started the authorization flow and in the body of the
HTTP request it has code, which was pasted by the user.

25

4. Implementation....................................
Listing 4.6: Endpoint for exchanging code on PAT

@PostMapping("/jiraAuth-{id}")
public ResponseEntity<?> jiraAuth(@RequestBody String code,

@PathVariable Integer id) throws Exception {
return ResponseEntity.ok(

new AuthResponese(tokenService.jiraAuth(code,id)));
}

It will call the jiraAuth() method from tokenService class.

Listing 4.7: jiraAuth method in tokenService
@Transactional
public String jiraAuth(String code,Integer id) throws Exception {

JiraAuth jiraAuth=new JiraAuth();
String accessToken=jiraAuth.auth(new

String[]{"accessToken",code});

Token token=new Token();
token.setName("Jira");
token.setUser(userService.find(id));
token.setToken(accessToken);
if(tokenPersits(id,"Jira")==false) persist(token);
return accessToken;

}

Here we divide the process into two parts - exchange the token for PAT and
store the token in DB. After the token was successfully exchanged we can
create a new Token object and store it, but before that, we should check if
the token with the same name of PM is already saved for this user. If not -
we can return the PAT and save it to local storage on our front-end part.

Asana

Asana is quite the same as Jira but has some differences. To start the OAuth
dance we should trigger the /asanaAuth endpoint and as the response, we
will get the authorization URL where we should confirm that we are providing
access. After it was done the front-end automatically will send the code to
the /code-id endpoint. The main difference with Jira is that there is no
need for manually copying and pasting the code.

Listing 4.8: asanaAuth method in tokenService
@Transactional
public String asanaAuth(String code,Integer id) throws IOException {

Token token=new Token();
token.setName("Asana");
token.setUser(userService.find(id));
String accessToken="";
if(code.indexOf("&state=")==-1){

accessToken=app.fetchToken(code);
refreshToken=app.credential.getRefreshToken();

26

................................4.4. Fetching tasks from PM

}else{
code=code.substring(0,code.length()-7);
accessToken=app.fetchToken(code);
refreshToken=app.credential.getRefreshToken();

}
String refreshToken=app.credential.getRefreshToken();
token.setToken(accessToken);
token.setRefreshToken(refreshToken);
if(tokenPersits(id,"Asana")==false){

persist(token);
}else{

List<Token> tokenList=tokenDao.findAllForUser(id);
for (Token key:tokenList){

if(key.getName().equals("Asana")){
key.setToken(accessToken);
tokenDao.update(key);

}
}

}
return accessToken;

}

After this step was done, we will have PAT and refresh token stored in our
DB and also the PAT will be sended to the front-end side.

4.4 Fetching tasks from PM

When the authorization step is done, we can move forward and try to fetch
some data from PMs using their REST API. The main idea is to parse only
task assigned to the signed-in user - there is no need to fetch all possible
tasks. The application should provide as much data as it is possible, so the
application will fetch - description, members of the task, comments, because
in comments may be stored critical information, and of course, due date. I
will try to explain all the details in the next sections.

4.4.1 Trello

When the Trello account is connected to the ATT app, there were no issues
with getting all cards which were assigned to authenticated users.

Listing 4.9: Fetching tasks from Trello
if (localStorage.getItem(’trello_token’) != null) {

this.http.get(
"https://api.trello.com/1/members/me/cards?key="+this.appKey

+"&token=" + localStorage.getItem("trello_token"))
.subscribe(

data => {
for (let i in data) {

let temp = {

27

4. Implementation....................................
projectManager: "Trello",
name: data[i].name,
due: data[i].due,
id: data[i].id,
desc: data[i].desc

}
this.listOfAllTasks.push(temp);

}
}

);
}

First of all, the ATT application should check if the Trello PAT is in local
storage or not. After that, using the endpoint from the example above, the
ATT app will get all cards assigned to the user. As query parameters it
has key - this is the API key of the ATT application (which allows making
API calls) and token - is Personal Authorization Token (PAT) which shows
that the user is authorized and allows access to his data in Trello. After the
API call is done ATT app will serialize the Trello issue object and add it to
listOfAllTasks.

4.4.2 Jira

When the Jira account is connected to the ATT app, There were a lot of
issues with getting all cards assigned to authenticated Jira account users.. Because the authentication part is based on the back end side, the

front-end (browser) didn’t store the cookies indicating that the user was
authorized. It makes API calls from the front-end side impossible.. There were new rules for authentication requests. I spent a lot of time
figuring out how I should add a personal token to the requests, so they
could pass.. Problems with building AQL query to get only cards which are assigned
to me. Problem with CORS

The final solution was to build a personal endpoint on the ATT back end,
allowing to make authenticated API calls.

Listing 4.10: Fetching tasks from Jira
if (localStorage.getItem("jira_token") != null) {

this.http.get<any>("http://localhost:8080/att/jira/tasks", {
headers: {

Authorization: ‘Bearer ${this.authService.getToken()}‘,
Accept: "application/json"

}
}).subscribe(

data => {

28

................................4.4. Fetching tasks from PM

for (let i in data.issues) {
let temp = {

projectManager: "Jira",
name: data.issues[i].fields.summary,
due: data.issues[i].fields.duedate,
id: data.issues[i].id,
key: data.issues[i].key,
desc: data.issues[i].fields.description,
members: [data.issues[i].fields.assignee.

displayName]
}
this.listOfAllTasks.push(temp)

}
}

);
}

It is a regular request to ATT back end side, with no parameters, except of the
JWT token in the request header. Jira Controller calls JiraService.getAllAssignedTasks()
method which is implemented as shown on listing above.

Listing 4.11: Fetching tasks from Jira
@Transactional
public String getAllAssignedTasks() throws Exception {

JiraAuth jiraAuth=new JiraAuth();
JSONObject json = new JSONObject(jiraAuth.auth(new String[]{
"request",
"https://aggregating-tasks.atlassian.net/rest/gadget/1.0/currentUser"
}));
String query="assignee="+json.getString("username");
query= URLEncoder.encode(query,"UTF-8");
String tasks = jiraAuth.auth(new String[]{
"request",
"https://aggregating-tasks.atlassian.net/rest/api/2/search?jql="+query});
return tasks;

}

First, it makes the first API call to get a current authorized user, then builds
a new query with the username and makes a new API call to get assigned
tasks. When the front end gets a response with all tasks, it is added to the
list with Jira cards, which will be displayed later.

4.4.3 Asana

When the Asana account is connected to the ATT app, there were no issues
with getting all cards that were assigned to authenticated users. The first
step was to get all workspaces the user has access to, then using their id’s
make a new API call to get cards from them and add the cards to the list
of Asana cards. The difficulty was to synchronize those API calls because
usual requests are made asynchronously. I implemented one API call inside

29

4. Implementation....................................
another and when the last one will be made the data will be serialized and
added to the list.

Listing 4.12: Fetching tasks from Asana(back end side)
if (localStorage.getItem(’asana_token’) != null) {
this.http.get<any>("https://app.asana.com/api/1.0/workspaces", {

headers: {
Authorization: ‘Bearer

${localStorage.getItem("asana_token")}‘,
},
observe: ’response’

}).subscribe((response) => {
let data = response.body.data
for (let i in data) {

this.http.get<any>(
"https://app.asana.com/api/1.0/tasks?assignee=me&workspace="

+ data[i].gid, {
headers: {
Authorization: ‘Bearer

${localStorage.getItem("asana_token")}‘
}

}).subscribe(
data => {

for (let card of data.data) {
let temp = {

projectManager: "Asana",
name: card.name,
id: card.gid

}
this.listOfAllTasks.push(temp)

}
}

)
}

},
(error) => {

if (error.status !== 200) {
this.tokenHasExpired = true;
localStorage.setItem(

"tokenHasExpired", this.tokenHasExpired.toString());

}
});
}

30

............................. 4.5. Displaying Tasks in front-end

4.5 Displaying Tasks in front-end

The most important design goal of the front-end UI was the ability to display
tasks from all task managers on a single page, without making the impression
of being overloaded or confusing. The first version of the design displayed
tasks as clickable cards showing full task information upon mouse click.
This idea was later abandoned as cards didn’t provide optimal filtering and
searching functionality. The last version of the front-end displays tasks as an
accordion control element comprising a vertically stacked list of tasks. Each
item can be expanded or collapsed to reveal the details of the given task.
This control provides also a filtering option.

Figure 4.8: Filled table with tasks from Trello/Jira/Asana

After some initial experiments, I have decided to optimize the task fetching
process described in the previous sections. To reduce the time getting the task
overview, properties of task (list of assigned users, comments, and description)
visible only after opening the detailed look, are fetched only when needed –
i.e. after clicking the affected section of the task list accordion control by the
user.

31

4. Implementation....................................

Figure 4.9: Opened task with description

Figure 4.10: Opened task with filled comments

32

............................. 4.5. Displaying Tasks in front-end

Figure 4.11: Filtered table by PM’s name (Trello)

As we can see in the figure above - there is a table displaying assigned
tasks by PM’s name, in our case - Trello. The figure below shows us one of
the Trello boards with tasks. Assigned tasks to me are marked by green circle
and initials AS in it.

Figure 4.12: One of Trello Boards with assigned tasks

33

34

Chapter 5
Testing

5.1 Artem Hurbych (CTU, FEE, OI 3rd year
student) first version testing

During the UX testing performed by the author, several issues were identified.
Firstly, author pointed out on validation issues in login and registration pages.
The application didn’t have any validation for input with spaces and etc.
However, as the application was in a development phase, this was acceptable
for the time being. Secondly, there were no error alerts. Also, there were
certain problems with Asana tasks, user should wait before task will be
displayed, and there were issues with displaying connection status to task
managers.No other issues were not found. The application looked promising
and potentially useful.

35

36

Chapter 6
Conclusion

In the following section, I would like to sum up all my experience and problems
which I faced in this project. In the beginning, the ATT app was planned
as a client only app implemented on the Angular framework. However,
architecture which makes direct access to DB from the front-end may cause
a lot of security problems, and because of that I created back end side of
the ATT application. As back-end technology, I choose Java Spring, because
I have a lot of experience with it. After the back end was done, I started
implementing connections to different task managers in order to acquire and
store their access tokens (PAT).

With Trello there weren’t problems, documentation for their API was very
detailed. Documentation for Jira was not so exhaustive, as for Trello, so I
had many issues reaching the above goal. First of all, Jira is not a centralized
platform like Trello, it is a product, which creates a new instance for every
team or organization that uses it. According to this, I set it up just for one
instance of Jira, but in the future, I would like to add an option to connect
it to different Jira workspaces to expand the ATT use case. The second
difficulty was the strange OAuth “dance”. Firstly user starts on the front end,
then the back end generates an access link and sends it to the front-end, user
grant access to his personal data from the ATT app, and get the code, which
user should paste in a specific form and send it to back end after back end
verify the code, it stores and send to front-end PAT. So user should initiate
the process on the front-end, then the front-end will send HTTP request on
back end endpoint for Jira authorization and response with access link, the
user will be redirected to granting access page where he will get a code, which
he should copy and paste on a specific form in ATT. After that will be the
second part of authorization, the front-end will change that code on PAT.
Asana also provides a library, which we can use to simplify getting PAT. It is
connected to it via dependency in pom.xml When all tokens were saved in
DB and LS, we can make API calls using it to get issues/tasks assigned to
users.

37

6. Conclusion......................................
For now, my application provides the following functionality:. New user registration. Login. Connecting all PM (Trello, Jira, Asana). Fetching tasks from PM. Displaying all assigned to user tasks. Providing more details to users about the displayed tasks, user can
click on the row with the tasks and it will expand and display more
information, such as description, assigned members and comments. User can leave the comment which is then sent to original PM via API. Fixed a “token was expired” issue, which happens because Asana provides
a token, which can be usable only for a limited time.

Finally we can declare, that the goal the goal of this bachelor thesis
was achieved - I created an application that combines 3 PMs in one. UI
is user friendly and understandable for every user, it is not overloaded
with unnecessary and potentially distracting information and provide basic
operation with tasks. Usability of the application will be extended in the
future to allow to connect more PMs, more operations with it, or connect all
tasks to the user’s Outlook calendar to increase the effectiveness.

38

Appendix A
Application setup instructions

To start using the application firstly you should clone the git repository from
QR code above (also you can click on it). Instructions how to run and serve
the application you can find below.

39

https://gitlab.fel.cvut.cz/striaant/aggregating-task-from-multiple-task-management-tools
https://gitlab.fel.cvut.cz/striaant/aggregating-task-from-multiple-task-management-tools

A. Application setup instructions
A.1 How to run and serve application

.Open application.properties file. Set up you database there. You should have Postgres installed, when it is done open the Postgres
command line. Add your credentials to 10/11 lines in application.properties
file. Use create database att; command to create the DB which will
be connected to the ATT application. Run the att.java in the back/src/cz/att folder. Try to open http://localhost:8080/att/current for initializing script

which will create all tables (this step is need only in first set up). You should have Node.js and npm package manager. You can download Node.js from (https://nodejs.org/en/), it will install
Node.js and npm. Then run the npm install -q @angular/cli command in terminal
window.Open the front folder with your favorite ide/text editor (my choice is
VS code). Use npm i command for installing all dependencies from package.json. To start the application use ng serve –o

40

Appendix B
List of Abbreviations

. CRUD - Create Read Update Delete. API - Application Programming Interface. REST - Representational State Transfer. HTML - HyperText Markup Language. SCSS - Sassy CSS. CSS - Cascade Style Sheets. SQL - Structured Query Language. JSON - JavaScript Object Notation. JWT - JSON Web Token. XSS - Cross-Site Scripting. CSRF - Cross-Site Request Forgery. DB - Database. PM - Project Manager. CORS - Cross-Origin Resource Sharing. UI - User Interface. ATT - Aggregation Tasks from different Task managers application

41

42

Appendix C
Bibliography

[1] Angular project website [online]. ©2010-2020 Google [27.12.2020]. https:
//angular.io/

[2] Trello Developer Guides [online]. ©2020 Atlassian [15.12.2020].
https://developer.atlassian.com/cloud/trello/rest/
api-group-actions/

[3] API Introduction [online]. ©2020 Atlassian [15.12.2020]. https:
//developer.atlassian.com/cloud/trello/guides/rest-api/
api-introduction/s

[4] Authorizing With Trello’s REST API [online]. ©2020 Atlas-
sian [15.12.2020].https://developer.atlassian.com/cloud/trello/
guides/rest-api/authorization/

[5] Jira Server Developer Guides [online]. ©2020 Atlassian [17.11.2020]. https:
//developer.atlassian.com/server/jira/platform/rest-apis/

[6] Asana Developers - Projects [online]. ©2020 Asana, Inc. [23.11.2020]
https://developers.asana.com/docs/projects

[7] Jobin Kuruvilla. Jira Development Cookbook [online]. Packt Pub-
lishing Ltd,©2016 [17.11.2020]. https://books.google.sk/books?id=
ioZcDgAAQBAJ

[8] Hibernate One to Many Annotation Tutorial [online] https://www.
baeldung.com/hibernate-one-to-many

[9] Jira Rest API description ©2021 Atlassian https://developer.
atlassian.com/cloud/jira/platform/rest/v3/intro/

[10] Authorization in Jira REST API with OAuth ©2021 Atlassian https:
//developer.atlassian.com/server/jira/platform/oauth/

[11] ReactJS © 2021 Facebook Inc.https://reactjs.org/

[12] Bootstrap documentation https://getbootstrap.com/

43

https://angular.io/
https://angular.io/
https://developer.atlassian.com/cloud/trello/rest/api-group-actions/
https://developer.atlassian.com/cloud/trello/rest/api-group-actions/
https://developer.atlassian.com/cloud/trello/guides/rest-api/api-introduction/
https://developer.atlassian.com/cloud/trello/guides/rest-api/api-introduction/
https://developer.atlassian.com/cloud/trello/guides/rest-api/api-introduction/
https://developer.atlassian.com/cloud/trello/guides/rest-api/authorization/
https://developer.atlassian.com/cloud/trello/guides/rest-api/authorization/
https://developer.atlassian.com/server/jira/platform/rest-apis/
https://developer.atlassian.com/server/jira/platform/rest-apis/
https://developers.asana.com/docs/projects
https://books.google.sk/books?id=ioZcDgAAQBAJ
https://books.google.sk/books?id=ioZcDgAAQBAJ
https://www.baeldung.com/hibernate-one-to-many
https://www.baeldung.com/hibernate-one-to-many
https://developer.atlassian.com/cloud/jira/platform/rest/v3/intro/
https://developer.atlassian.com/cloud/jira/platform/rest/v3/intro/
https://developer.atlassian.com/server/jira/platform/oauth/
https://developer.atlassian.com/server/jira/platform/oauth/
https://reactjs.org/
https://getbootstrap.com/

C. Bibliography
[13] Java Spring Boot documentation © 2002 - 2021 Pivotal, Inc. All

Rights Reserved. https://docs.spring.io/spring-framework/docs/
current/reference/html/

[14] Angular Material Powered by Google LLC ©2010-2021. https://
material.angular.io/

44

https://docs.spring.io/spring-framework/docs/current/reference/html/
https://docs.spring.io/spring-framework/docs/current/reference/html/
https://material.angular.io/
https://material.angular.io/

	Introduction
	Done research
	REST API
	Trello
	Jira
	Asana

	Authorization in provided REST API from Trello, Jira, Asana
	Trello
	Jira
	Asana

	Fetching tasks from PM
	Used technologies
	Summary

	System architecture
	System overall diagram
	Database UML diagram
	Trello Authorization flow
	Jira Authorization flow
	Asana Authorization flow

	Implementation
	Authorization
	Internal Authorization
	Database
	Front-end
	Back end

	Authorization in PM's
	Database
	Front-end
	Back end

	Fetching tasks from PM
	Trello
	Jira
	Asana

	Displaying Tasks in front-end

	Testing
	Artem Hurbych (CTU, FEE, OI 3rd year student) first version testing

	Conclusion
	Application setup instructions
	How to run and serve application

	List of Abbreviations
	Bibliography

