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Abstract

This thesis contains a closer look at com-
parison correspondence search methods
used in 3D image reconstructions. Primar-
ily at their ability to tackle reconstruction-
problematic factors and areas that are de-
creasing the quality of reconstruction of
given datasets.
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Abstrakt

Tato bakaldiskd prace se zabyva srov-
nanim metod pro hledani korespondenci
mezi snimky, kterézto metody jsou potom
vyuzity v 3D rekonstrukci. Predevsim se
prace zaméiuje na jejich schopnost vy-
poradat se s tézko rekonstruovatelnymi
fakotry a oblastmi, které snizuji kvalitu
rekonstrukce na danych datasetech.
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Chapter 1

Introduction

The main goal of this work is a comparison of methods for image 3D re-
construction on specific scenes, which cause reconstruction problems even
to state-of-the-art commercial software. The 3D image reconstruction algo-
rithms are applied in various fields, e.g., self-driving industry vehicles, google
earth, the game and film industry, or augmented reality. These methods
are also used by companies such as Google, Facebook, or Matterport. The
reconstruction systems are also used in research projects such as SPRING, or
ARTWIN.

B 1.1 Motivation and objectives

This bachelor thesis focuses on the comparison of different feature extracting
and feature matching algorithms. This is motivated by the failures of the
3D reconstruction from images using the structure from motion (SfM) [10]
and multi-view stereo (MVS) [11] on the specific datasets. The problematic
features contained in these datasets are, e.g., textureless areas, under/over
exposed areas or illumination changes. One of the possible ways to improve
3D reconstruction results on challenging datasets is by choosing a more robust
and accurate feature extractor and feature matcher. This approach is adopted
in the thesis. Therefore we compare various methods of feature extraction
(FE) and matching (FM) and their results in the 3D reconstruction pipeline.
Another possible way to improve the reconstruction results would be by
changing other parts of the reconstruction pipeline, such as triangulation,
bundle adjustment, or whole incremental reconstruction. Nevertheless, these
methods are used in the industry without any significant improvements over
the recent years. On the other hand, feature extraction, description, and
matching are being regularly improved [12]. Besides new hand-crafted feature
extractors and matchers, does in the last years, these updates also include



1. Introduction

learnable neural networks (NN) [13] [14].

Popular pipelines providing 3D image reconstruction are COLMAP [10],
MeshRoom (MR) [15], and Capturing Reality (CR). The cornerstones of
these pipelines are SfM and MVS, where the latter builds on the results of
SfM.

As mentioned before, failures of 3D reconstructions are caused by scene-
specific factors, which are problematic even for state-of-the-art commercial
software such as CR. The reconstruction issues arise with the presence of
weakly textured, uniformly colored areas, scene transitions from dark to light
(e.g., the light goes on or off, or camera aperture changes in the dark corridor),
or reflective and repetitive surfaces. Mentioned problematic scene properties
often directly lead to low numbers of generated image matches. In addition,
they cause poor match distribution in the image, as most of the challenging
areas are almost matchless using classical methods, e.g., a combination of
SIFT [16] and geometric verification using RANSAC-based model estimator
[17]. This lack of matches then negatively affects the accuracy of position
estimates of registered cameras. The camera position inaccuracies then also
decrease 3D point positions’ precisions. The experiments in [18] shown the
relationship between poor matching and higher scene uncertainty. Not to
mention that poor matches reduce the number of registered cameras and
often cause the model to break down into more sub-models, or, in the worst
case, make the reconstruction completely fail, resulting only in one model
with a small fraction of registered cameras or no registered images at all.
Example of reconstruction failure on a dataset with problematic features
s captured in Figure 1.1, which captures part of the reconstruction result,
which broke into 3 models. This model used 5 out of 23 images, even though
the images were obviously overlapping with the images from other models.
The other models used 5 and 3 cameras The failure was probably caused by
the illumination change combination with plain walls. Reconstruction was
created with commercial software Capturing Reality.

The 3D image reconstruction algorithms are also used in industrial applica-
tions, e.g., in research projects such as SPRING and ARTWIN. ARTWIN'’s
main products include online factory digital 3D image and device localization.
SPRING uses 3D reconstruction for device localization, too. These projects
are mentioned because the industrial applications are especially sensitive to
the reconstruction breakdowns and are full hollow spaces and long corridors.
The corridors are further lined with weakly textured areas and illumination
changes. These problematic interiors are a substantial part of the mentioned
projects’ application environment, so the reconstruction breakdowns are not
rare. It often leads to loss of orientation, which is there a feature of utmost
importance. Another reason to mention ARTWIN is that the thesis is created
as a part of this project, and its results will find their use in the real industrial
environment.



1.2. Outline

Figure 1.1: Reconstruction created with CR commercial software resulting in
5/23 registered images in this model.

Visualisation of the interior in which we are trying to improve 3D recon-
struction is together with dense reconstruction captured in Figure 1.2. This
dataset is from ETH3D benchmark [2] and is used for comparison in § 5.2.

B 1.2 Outline

Before evaluating and examining the individual FM and FE methods, the
work begins with a definition of terms in the Chapter 2. Later in that chapter
are introduced principles of SfM pipeline - correspondence search in § 2.1 and
StM itself in § 2.2. The § 2.1 includes details of previously used methods
and algorithms, presenting both the hand-crafted state-of-the-art algorithms
in § 2.1.1 and learnable algorithms introduced in § 2.1.2. These parts serve
to unify terms and aim to pass on some basic understanding of principles
of the FE, FM and SfM and methods parameters. These are then used and
exmained in experiments, which are carried out in Chapter 4. Nonetheless,

3
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Figure 1.2: Example of environment, where are projects such as ARTWIN or
SPRING applied. On the picture is the delivery area dataset from ETH3D
datasets, which is then used in further comparisons. The dense reconstruction on
the image was created with the baseline SIFT correspondence search combined
with the COLMAP pipeline.

before the experiments is included Chapter 3, introducing shortcomings of
one of the methods, the SparseNCNet. In the chapter are also proposed
approaches to this issue in § 3.1.1 and we provide details about re-training
of this network in § 3.1.2. Then, the Chapter 4 begins with collection of
ground-truth data for FE and FM benchmarking, which is the described in
§ 4.2. Benchmarks are then used in experiments searching for best-performing
parameters of SIFT in § 4.3, Wallis filter in § 4.5.1 and CLAHE in § 4.5.2,
SparseNCNet in § 4.6, SuperGlue + SuperPoint in § 4.7 and comparison of
MAGSACH+ and LO-RANSAC in § 4.4. The best-performing parameters
and methods are eventually used in Chapter 5, which introduces the results
of two benchmarks. One is evaluating purely FE and FM performance in
§ 5.1 and the second results of complete 3D reconstruction pipeline with use
of ETH3D benchmark in § 5.2.

. 1.3 Codes

All codes used in this thesis are attached in file codes.zip. These are also
available in Gitlab repository at [19].



Chapter 2

Previous work

At the beginning of this section are defined the words frequently used in this
thesis. The definitions are included, as different authors assign the words
slightly different meanings. The words are: features, feature detection, feature
description (these two together are referred to as feature extraction), feature
matching, Structure from Motion (SfM) and Multi View Stereo (MVS). The
introduction of keywords is followed by a closer look at principles of the
feature extraction and matching algorithms, including the state-of-the-art
methods. Eventually, we describe the usage of these approaches in structure
from motion and the SfM pipeline itself.

The feature is a distinguishable local area of interest in the image. There-
fore it can be uniquely described and matched across several images. This
area, often a local neighborhood of point, corner or blob (area with shared
property among pixels, such as color, see Figure 2.1), can be described by a
vector descriptor, which should be invariant to rotation, translation, scale and
illumination changes in the ideal case. Even though images often capture the
same object, they are taken from different angles and positions. Thus they
are subject to rotation and translation. We need it to be invariant because
otherwise, we would not be able to create correct correspondences among
features in given images.

Feature extraction is a process that takes an image as an input and returns
a set of features with descriptors. At first, it detects points of interest, i.e.,
points that are unique and easily recognizable in the given image. This process
is called feature detection. Next follows feature description, which creates
a mathematical description (descriptors) of the detected points of interest.
The result is a set of features. Feature extraction is captured together with
feature matching in Figure 2.2.
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Figure 2.1: Detected blobs in sunflower image obtained by detecting Hessian
maxima in scale-space. Image taken from [1].

Feature matching stage provides a comparison of descriptors across given
images. As a result of this comparison, it identifies similar features. The
output of this stage is a set of tentative matches. These are based solely on
appearance and are not geometrically verified. Matched features are captured
in Figure 2.2.

Figure 2.2: Visualisation of feature matching stages. From top to bottom,
we visualised outputs from feature extraction, feature matching and geometric
verification.

Geometric verification stage provides filtration of incorrect matches by

6
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computing transformation between two matched images. Matches correspond-
ing to this transformation are considered valid.

Structure from Motion is an algorithm utilizing series of two-dimensional
images and creating a three-dimensional structure of the object or scene
captured in the images. The result of this process is a sparse 3D point
cloud. SfM is contained in pipelines as COLMAP and Meshroom, which are
not commercial, and as a representative of commercial pipelines, we name
Capturing Reality.

Multi view stereo is a successive step to SfM providing a dense 3D point
cloud similar to the one created by LIDAR (method of measuring ranges with
the use of a pulse laser). However, LIDAR is able to measure the points even
on textureless areas. Visualization of such point cloud is shown in Figure 2.3.

Feature detection, description, and matching are not used exclusively in
3D image reconstruction, which is the usage we are studying in this work.
Other applications include panoramic image stitching [20], image retrieval
and visual localization [21], i.e., pose estimation in large scale environment
[22], or object detection and instance segmentation [23].

Figure 2.3: Visualisation of dense point cloud produced after MVS. Images used
to create reconstruction are below point cloud. The images are part of ETH3D
dataset [2]. This dataset is also used in benchmark in § 5.2.
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B 2.1 Feature extraction and matching

Feature extraction and matching generally begins with a set of Ny images
T ={I;| I € REXWxece 5 = 1Ny}, where H x W is the resolution of
images, and cc is a number of color channels. We mostly start with RGB
images, where the cc = 3. Then, there are two most common approaches to
feature extraction and matching.

The first approach is employs hand-crafted mathematical algorithms. In
this case, all of the steps are separable, and their results can be assigned
unambiguous meaning. Nevertheless, all of the stages can be provided in a
single algorithm.

The second, trainable, approach is based on neural networks (NNs). This
approach has recently gained popularity in many research fields - because
it can achieve excellent results in a wide range of tasks in lots of different
fields besides computer vision. These are, e.g., language translation, semantic
segmentation, or automatic control. This approach does not necessarily need
to be composed of more separable stages, but some of the algorithms are.
However, we often can not assign an unambiguous mathematical interpretation
to the outputs of the network layers or even individual stages. In the case
of hand-crafted algorithms, the meaning of each parameter is connected to
some mathematical property such as rotation. However, in the case of the
NNs, we may not be able to say anything about the meaning of the numbers,
e.g., the vector descriptors.

B 2.1.1 Hand-crafted algorithms

Hand-crafted algorithms often begin with the feature extraction process.
There, the algorithm selects for every image I; € 7 a set of Np, features
Fj = { (xij, f5) | xi5 € R%,i = L...Np; }, where x;; are coordinates in image I;
and fj; is a related feature descriptor. Size of feature descriptor depends on
the feature description algorithm, common dimensions are fj; € R128 ¢ R256
or € R%2. The features are selected by finding the local extrema of some
feature selection function. These extrema are, in short, points with sufficient
color or pixel intensity gradients in the neighborhood of the points. Then
follows a description of the points with vector descriptors. The descriptors
can capture the color or intensity gradients, rotation or other description-
algorithm-specific parameters to a vector. These two steps can be covered
together in one algorithm. The output of such a merged approach is then
directly a set F};. One of the most cited feature detectors and descriptors is
SIFT (Scale-invariant feature transform) descriptor [16], which is a standard
in the industry for a long time and has been used in many applications, e.g.,

8
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mobile robot localization [24], or morphometry [25]. SIFT algorithm works
with gray-scale images. As our datasets ar collections mostly of RGB images,
a conversion of I; € REXW>3 ¢ I](-G) € RTXW is needed.

The basic component of feature selection function in this algorithm is the
scale-space defined with the notation from [3] as a function L(z,y, o). Scale-
space is produced by the convolution of an input image I ](-G) with a Gaussian
kernel G(z,y, o) with a variable scale o. The convolution * is performed in
2D image spatial coordinates (x,y). The scale space of the image is therefore
defined as

L(x,y,0) = G(z,y,0) * IJ(G) (z,y). (2.1)

The feature selection function is Difference of Gaussians (DoG), which is
approximation of Laplacian of Gaussian, defined as

D(z,y,0) = L(x,y, ko) — L(z,y,0). (2.2)

It is a difference of two adjacent scales L(x,y, o) differing by a constant
multiplicative factor k. The z and y are spatial coordinates in the image.

%
\l

sale | 2o
e | =

octave)

!

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

Figure 2.4: Initial image is in each octave convolved with Gaussians. Thus
are produced the sets of scale space images (on the left). Then are adjacent
convolved images subtracted and produce difference-of-Gaussian images (on the
right). Image was taken from [3].

The scale space is sectioned into octaves, where in each octave is the image
reduced in size by a factor of two. The Eq. 2.2 is repeated for each adjacent
pair of scales in each octave, as is depicted in image Figure 2.4. Than the
results D(z,y, o) of Eq. 2.1 are searched for extrema. Each scale-space point
is compared to its eight neighbors in the current scale as well as to nine
pixels in next scale and nine pixels in previous scale, as shown in Figure 2.5.
Local extrema are potential keypoints. However, not all extrema are stable or
sufficiently contrastive, so they have to be filtered to get more accurate results.

9



2. Previous work

Scale I

Figure 2.5: Extrema of the DoG images are detected by comparing a pixel (X)
to ts eight neighbors in the current scale as well as to nine pixels in next scale
and nine pixels in previous scale (circles). Image was taken from [3].

First, with the use of second-order Taylor series expansion of scale-space
D(z,y,o0) is found extrema location with subpixel precision. Then, if the
intensity at this extrema is smaller than a defined parameter peak threshold,
the point is rejected. The DoG function is responsive to edges, and the edge
points are often not uniquely describable. Therefore, edge keypoints need to
be filtered, too. For this is used an approximation of 2 x 2 Hessian matrix
H of D(z,y,0), where the two dimensions used are z and y coordinates.
The derivatives in Hessian are estimated by taking differences of adjacents
scale-space points. The eigenvalues A; and A9 of H are proportional to the
principal curvatures of D. Therefore, eigenvalues can be used to determine
whether the extrema is an edge. If the ratio of the eigenvalues is greater
than a parameter edge threshold, that keypoint is probably on edge and is
discarded. After the filtration, the remaining points are considered strong
interest points.

The keypoint descriptors of SIFT algorithm determine a location, scale,
and orientation. These are obtained using histograms, which are computed
from orientations and size of intensity gradients in the neighborhood of the
described keypoints. The SIFT results in set of features F); corresponding to
image I;, with descriptors fj; € R28 An example of SIFT described features
is visualized in Figure 2.6.

There is a similar alternative to SIF'T called SURF, which utilizes approxi-
mation of the determinant of Hessian blob detector. Note that SIFT is slow

10



2.1. Feature extraction and matching

in comparison with younger methods [12], such as MSER [26], FAST [27]
or ORB [28]. MSER extracts the regions of interest using the sequence of
thresholded images. FAST compares pixels on a circle of 16 pixels (with
radius 3) centered at the feature point. ORB is based on FAST and combines
it with feature descriptor BRIEF [29]. Mentioned algorithms are compared
by Miksik et al. in [12].

Figure 2.6: Visualisation of features detected and described by SIFT. picturing
feature orientation, position and histogram grid, pictured using library VLFEAT

[4].

As mentioned, hand-crafted algorithms are primarily based on the gradient
approach, so they are susceptible to color or intensity gradient changes. On
texture-less areas are gradients too small to create uniquely described feature
points, and therefore the matching, the next step of reconstruction, is usually
very challenging. The hand-crafted feature extractors have shown excellent
results on images taken with significant viewpoint changes, with almost
constant illumination. However, their robustness to illumination changes is
not as good. This is shown, e.g., in [30] or [31].

The step following feature extraction involves a comparison of the obtained
described features for defined image pairs. The comparison step is utilizing
the similarity metrics applied to the descriptors. These metrics can be L1, or
L2 norm [32]. The naive approach compares every two features in each image
pair. Aside from the naive algorithms, most common approaches are based
on types of the nearest neighbor search, e.g., FLANN [33]. After matching
by descriptors, we obtain so-called tentative matches. These matches are
based solely on appearance, and it is not guaranteed that all are correct
correspondences of one 3D point projected to two 2D images. Therefore, we
should geometrically verify them to find correct matches.

11
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LeftImage X1z Right Image
plane

Epipolar plane

Epipolar line Epipolar line

to X, to Xy,

Figure 2.7: Diagram of epipolar geometry. Half line going through camera
center Cy and point z1; in left image plane corresponds to possible positions of
3D point X; corresponding to x11. Projection of this line to right image plane
creates epipolar line. Image taken from [5].

The verification of the matches is performed by estimating a relative
pose. The first step is about assembling equations using epipolar geometry,
which projects points in one image to the lines in the second image. The
task of computation of the transformation parameters is called relative pose
estimation. Epipolar geometry without radial distortion diagram is shown
Figure 2.7.

Let’s suppose we have two images, I; and I3, where x37 and Xj2 are
projections of 3D point X; into the two images respectively. Their relation
can be described by fundamental matriz F € R3*3 as

xLFx12 = 0. (2.3)

As we are working with epipolar geometry, the rank of the fundamental
matrix F is two. Therefore, the part Fxjo represents a line in image ;. The
left side of Eq. 2.3 is then distance of x17 from this line. A fundamental
matrix is used in the case of unknown internal parameters of the camera. In
case we know the camera intrinsic parameters before reconstruction, we apply
calibrated matrix E € R3*3, called essential matriz and for which

E = (K)'FK, (2.4)

where K, K’ € R3*3 are the calibration matrices composed of the internal
parameters of the cameras. When we use the same physical camera for
both images, there is only one calibration matrix K. The computation can
be further extended by trifocal tensor T € R3*3X3  which incorporates all
geometries among three views observing the same point.

The relative pose is estimated using RANSAC-based algorithms. In short,
it iteratively selects random subsets of the set of points and uses solvers like
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f10e [34] to fit a model to assembled equations. The most feature-supported
model is considered correct, and the corresponding matches are then declared
valid. Feature-support is expressed with a number of inliers, which are points
closer to the epipolar lines than the threshold set as a parameter. Matches
not compatible with the transformation are dismissed. In later comparison in
§ 4.4, we use LO-RANSAC [35] and state-of the art algorithm MAGSAC++
[36] to cover robust model estimation.

B 2.1.2 Learned algorithms

The second approach to feature extraction and matching utilizes trainable
algorithms, usually neural networks. However, even among NN-based feature
extractors and matchers can be found a broad palette of solutions, including
combinations of hand-crafted algorithms and convolutional neural networks
(CNNs). CNNs are often the choice number one in image processing. One of
the most common approaches amidst image processing pipelines is encoder-
decoder architecture. Networks with this structure use encoders as the
first step. The encoders gradually reduce the image’s dimensionality and
encode information about the image’s features into channels instead of spatial
dimensions. Such architecture can be seen in the left part of Figure 2.8. The
encoders consist of convolutional layers, spatial downsampling performed by
max-pooling, and activation functions. Commonly used encoders are, e.g.,
VGG [37] or Resnet [38]. The output of the encoder can have various purposes
of use. This purpose is assigned by a decoder, which then processes the final
output or output from some of the previous layers of the encoder. FE.g., the
decoder in SegNet [39] can label encoded features by categories they belong to.
This is called image segmentation. State-of-the-art encoder-decoder pipeline
for image-segmentation is YOLO [40]. Another decoder-performed action
is description of encoded features, which is done within a network called
Superpoint [41], D2-Net [42] or R2D2 [14]. Note that these architectures
contain their own encoders.

224x224

Deconvolution network
56x56

14x14

P a 1x1 7 III//
== ==( ]
Maiing Unpooling
e ————t

Unpooling

~npooling
N

Figure 2.8: Encoder-decoder architecture used in image segmentation. Image
taken from [6]

This introduction suggests that one possibility of the NN use in the corre-
spondence search is to perform separate feature extraction. The features can
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then be matched by hand-crafted algorithms or by networks trained purely for
feature matching, as shown by Ranftl et al. [43], Yi et al. [44] or in Superglue
[13]. We have chosen the latter one in combination with SuperPoint to our
comparison as the representative of this category. Superglue also takes into
account the context in the images and not purely the descriptors. Another
possibility for the usage of NNs trained for feature matching could be to
match features extracted by some hand-crafted feature extractor, SIFT or
ORB. Results of these methods in comparison with NN extraction combined
with NN matching are shown in [13].

One of the other types of NNs combines all of the three steps, feature
detection, description, and matching, into one end-to-end-trainable corre-
spondence searching network. This approach is practiced by R2-Net [45],
NCNet [46] or SparseNCNet [7]. The latter achieves the best results [7].
Thus we have decided to use it as the representative of end-to-end trainable
approaches. Visualization of tentative matches produced by SparseNCNet
can be seen in Figure 2.9a. Some networks claim to produce already verified
matches - including SparseNCNet and SuperGlue. However, the features and
matches produced by NNs could carry significant errors. Thus, in order to
use them in 3D reconstruction, we apply geometric verification in this case,
too. Matches produced by SparseNCNet and verified by MAGSAC++ are
shown in Figure 2.9b.

(b) : Matches generated by SparseNCNet verified by MAGSAC++.

Figure 2.9: Comparison of geometrically verified matches produced by SparseNC-
Net with its matches without geometric verification.

As we have chosen to test SparseNCnet as main NN representative in this
work, we present a summary of this network’s principles using notation from

[7].
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SparseNCNet architecture diagram is captured in Figure 2.10. This network
is faster and less memory demanding enhancement of its predecessor, NCNet.
Nevertheless, they share many features.

i) yA A—B .
fA for ?a?h C?ird (0.9): y ; T Sparse Neighbourhood

g ’ Consensus Network

Jij
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e T e ——— J v' ~AB
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/matches me 2B yB ;“Cit,g“‘”g 0 v @)
r5Y + | o/

B
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pry
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7. — | o - -Q: correlation tensor 4D tensor of
B matching of raw matches filtered matches
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dense matches between one-sided sparse 4D
feature maps image features correlation tensors

Figure 2.10: Visualisation of SparseNCnet architecture, image taken from [7]

This algorithm consists of several internal stages. First of which is feature
extraction. Input to this stage is a pair of RGB images [4,Ig € Z. This
step results in L2-normalized dense feature maps fa, fg € RF*®*¢ which are
extracted via a fully convolutional network F'(-), where

fa=Fa), [fp=F(g). (2.5)

The ¢ means channels of features and h X w is a spatial resolution of the
feature maps. This resolution is obtained after downsampling the input
images by the factor 1/8 or 1/16. The fully convolutional network F'(-) used
as feature encoder in the implementation published with the SparseNCNet
paper is Resnet101 [38]. The dense features f4 and fp are then compared
and stacked into sparse correlation tensor ¢AB € RM*wxhxw —The sparse
correlation tensor is defined as a sum of two one-sided sparse correlation
tensors,

CAB — CA—)B + CB_>A. (26)

The one-sided sparse correlation tensor ¢A=5 holds for every feature from
one image only the top K nearest neigbors from the second image (this is
one of the differences to the NCNet). Specificaly, each feature descriptor f{}
on coordinates (i, j) in feature map f4 of image I4 is matched with only K
nearest descriptors fZ lying on coordinates (k,l) of fZ from image Ig. This
algorithm is not storing all the possible matches to achieve fastest and less

memory demanding performance. The coefficients of tensor ¢A75 are defined
as
A—B _ (f§; A By if fBisin K top NNb of
Cijkl . (2.7)
0 otherwise

and the similar apphes for ¢B74. In the follovvlng step is applied convolutional
neural network N (+) on the correlation tensor. N (+) consists of applying twice
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a sparse 4D convolutional network N(-) in order to get matches invariant to
the order of the input images. The final correlation tensor is then

P = N(e'P) = N(e'P) + (N (")), (2.8)

where by transposition is meant exchanging the first two dimensions with
the last two dimensions. The purpose of network N(-) is to perform the
neighbourhood consensus filtering. Then we compute matches as

S ~AB
m = ((¢,7), (k,1)) is a match if {(17‘]) B argmax(ayb)(cﬁ,gl) o . (2.9)
(k1) = argmax . ) (cl-jcd)

where (7, j) are coordinates running in all the size of feature map f4, and
(k,1) in the size of fp. Note, that this argmax operation is applied on the
rightmost picture in diagram Figure 2.10. As the individual features are
localized on the feature maps, which have the spatial resolution of a fraction
of the input images, the error of the localization is so significant, that in
this stage, the results would be inapplacble in the 3D reconstruction and in
most of the applications, too. Therefore, there is included relocalization as
a following step, to enhance accuracy of localization of the matches on the
high resolution image. The principle of relocalization is in upsampling of the
input images as the very first step. After applying convolutional network
F(-), we obtain feature maps fa, fp € R2x2wxe  Then after applying a
2 x 2 max-pooling operation with a stride of 2 we obtain f4 and fp. With
subsequent application of the aforementioned procedure we receive set of
matches m = ((4,7), (k,1)). Now we can perform hard relocalization, which
finds best matches in 2 x 2 sized patches in f 4 with corresponding 2 x 2 from
fB. The corresponding 2 x 2 patches are the ones, in which were located
values on indices ((,7), (k,1)) matched in m before downsampling. Then we
obtain relocalized matches

my, = 2m + ((8,5), (6k, 81)), (2.10)

where ((i,07), (0k, 61)) symbolize indices in the 2 x 2 patches from f4 and
fB respectively. The last step is soft relocalization, where samples from fl? ’L,

fﬁ’L of size 3 x 3 around both feature indices ((ip, jn), (kn,ln)) for each match
from my, are taken (in my, are indices ((ip,jn), (kn,(n)) already in 2w x 2h
range). Eventually, there is applied a softargmax function on these patches
which results in sub-pixel precision, the final matches (with floating point
indices) are computed as

ms = myp + Amg, (2.11)

where

(0ip, 07p) = softargmax(mb)((fﬁ;L, /ilb)

(Okn, 8l)) = softargmax. 4 ((fi;, » f5))

(2.12)
The coordinates (a,b) runs over 3 x 3 patch of ffijh and (¢, d) over patch of
fi’gh 1,- Whole relocalization process is fore better understanding visualized in
Figure 2.11.

Amg = ((dip, 0jn), (0kp, dlp)) {
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fAL., LfBL

(a) : Hard relocalization. (b) : Soft relocalization

Figure 2.11: SparseNCNet relocalization stages - image from [7].

B 2.1.3 Pre-processing

Image pre-processing algorithms are applied to enhance the suitability of the
images for subsequent utilization. Image pre-processing is used in wide range
of applications, e.g., medicine [47] or photogrammetry [48]. Gaiani et al. [8]
address the issue of the lack of correspondences on texture-less and issue
caused by significant illumination changes by pre-processing. Both of the issues
cause 3D reconstruction failures. The proposed approach provides greater
detail in over-exposed and under-exposed areas simultaneously. Specifically,
they have shown significant improvements in 3D reconstruction with the use
of pre-processing pipeline shown in Figure 2.12. Generally, pre-processing
methods take the set of input images Z and apply mathematical operations,
e.g., convolution with Gaussian kernel or RGB to grayscale conversion on
each image I; € Z. The pre-processing is applied before the feature extraction
begins or before the MVS stereo step in order to find better correspondence
between images. The main goal of the algorithm in [8] is to improve dense
image matching results. This strategy employs three steps to achieve the
improvement. First, to increase the number of correct image correspondences
in textureless areas. Then maximize the track length to increase the reliability
of the computed 3D coordinates and correctly orient the largest number of
cameras [8].

PRE-PROCESSING ENHANCEMENT
COLOR
BALANCING ADAPTATIVE
IMAGE RGB to GRAY MEDIAN
DENOISING conversion FILTER
EXPOSURE «WALLIS»
EQUALIZATION

Figure 2.12: Image preprocessing pipeline used in [8].
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The pipeline begins with global color enhancements, ensuring consistency
of subsequent color-to-gray conversion. However, this stage aims at im-
provements mainly during dataset acquisition. The datasets are collected
with GretagMacbeth ColorChecker [49] present in images at least after each
change of environment or lighting conditions. However, our datasets have
been collected without ColorChecker.

Color enhancements are followed by denoising. In this paper were compared
several hand-crafted denoising algorithms D(-). The image denoising is applied
to input image I;, as the color enhancement stage is skipped. The output is
then

1" = D(1y). (2.13)

The proposed approach applied in the denoising stage is called the Color Block
Matching 3D filter (CBM3D), which is an extension of the Block Matching
3D filter (BM3D). BM3D is a sliding-window-based algorithm and extends
the Discrete Cosine Transform [50] and NL-means algorithms [51]. Note,
that hand-crafted denoising approaches such as BM3D have been recently
outeprformed by denoising NNs [52], e.g., FfdNet [53] or CycleISP [54].

After denoising, images are converted from RGB space to grayscale, as
(@ _ (D)
I =r2g(1;7). (2.14)

Gaiani et al. proposed a conversion method called Bruteforce Isoluminants
Decrease (BID) based on Matlab rgb2gray formula.

As the last step is employed image content enrichment. In Gianini et al.
pipeline is this provided by Wallis filter [55]. Wallis filter is a local adaptive
median filter, 7.e., it adjusts pixel brightness values in local areas. In contrast,
a global filters use the same contrast values throughout an entire image, and
therefore can not enhance details in both high- and low-level-of-brightness
areas simultaneously. The inputs of Wallis filter are besides the denoised
gray-scale input image I J(G) also desired standard deviation M and desired
mean S. Moreover, Wallis filter has weight parameters A and B which control
how much are the computed values propagated to the output image.

The Wallis filter formula proposed in [8] is

ST19 (z,
1o,y = T 00)

BM+(1-B 2.1
] L BM (1 B)m, (215)

1 J(w) is pre-processed output image, s is the local mean, and m is the

local standard deviation. Wallis filter can be seen as a sliding window of
the user-defined size W. The amount of detail in the final image is inversely
proportional to the size of the window. Nonetheless, the values m and s are
computed for the window centred in (z,y).

where
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A similar locally adaptive filter to Wallis is the Contrast Limited Adap-
tive Histogram equalization (CLAHE) filter, which we also use in the later
comparison. It is based on adaptive histogram equalization (AHE). AHE
transforms each pixel using the histogram of a surrounding local square patch
of the pixel. This transformation is derived from histogram equalization.
Histogram equalization is, in short, mapping the patch histogram onto a
different scale in order to create an equally distributed histogram. The desired
uniform distribution could be replaced by exponential or Rayleigh distribu-
tion. CLAHE adds a limit contrast level, limiting the noise amplification by
clipping the histogram at a predefined level. The level is set as parameter
clip limit. Another parameter is tile number, which defines the number of
tiles the input image is divided to.

Both of the methods used for local contrast and detail enhancements are
shown as in the Figure 2.13.

Figure 2.13: From left: Original image, image after application Wallis Filter
and image after application after CLAHE filter.

. 2.2 Structure-From-Motion

The Structure from motion is a method used to create a sparse 3D model
from series of 2D images. These images can be seen as projections of the
original 3D objects into 2D from different viewpoints. The correspondences
among images are called tracks. As the images capture the same scene from
different angles, some 3D points are expected to be present in more images.
The output of this pipeline is a 3D structure in the form of colored point cloud
and camera poses, similar to the point cloud shown in Figure 2.14. In other
words, outputs are set of Ny points X = { X; | X; € R3,i = 1..Nx }, each of
them with assigned color, and camera poses P = {P; € R | j = 1.N; },
where Pj is a homogeneous transformation matrix, i.e., P; € SE(3), which
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includes rotation matrix of camera R; € R3*3 and coordinates of camera
center Cj € R3. This is a mathematical model which can, but doesn’t have
to consider radial distortion. In our model is radial distortion not considered.
With %35 € R? being projection of i-th 3D point X; to the j-th image I j applies

5. 1 0 00 X.

A [’ﬂ =10 1 0 o|P lll (2.16)
0010

where A coefficient secures the up-to-scale configuration on the left side, i.e.,

to secure that the Rj; is in the image plane, where the third value of projected

vecotr equals one.

Figure 2.14: Sparse 3D reconstruction output in the form of colored point-cloud
produced by SfM. The images from which the reconstruction was created are
under the reconstruction. There can also be seen reconstructed camera poses in
red. Images are from Tanks and Temples benchmarking dataset [9].

The reconstruction process consists of several sub-stages. It begins with the
correspondence search, which includes together feature extraction, matching,
and geometric verification. These are principles discussed in § 2.1. The
subsequent stage is the reconstruction itself. The reconstruction approach
covered here is composed of relative pose estimation, which is estimated
already during geometric verification, then absolute pose estimation, point
triangulation, and bundle adjustment [10], all applied gradually for each
camera.

The reconstruction principles are discussed as the main aim of this work is to
compare approaches to correspondence search in order to maximize the quality
of 3D reconstruction. Thus, it should be clarified how the reconstruction
methods utilize the correspondences. The reconstruction pipeline used in
experiments is COLMAP, so the principles below are consistent with the
methods used in this pipeline. SfM pipeline used by COLMAP is captured
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Images Correspondence Search Incremental Reconstruction Reconstruction

- Initialization =1
1

Matching Image Registration Outlier Filtering

Geometric Verification Triangulation Bundle Adjustment

Figure 2.15: Architecture of Structure-from-Motion pipline, used in COLMAP.
Image taken from [10].

in Figure 2.15. Nonetheless, this pipeline is common for most of the SfM
softwares.

An inseparable component of computation of the 3D model is camera
calibration, which is the determination of intrinsic parameters. The re-
construction may be highly imprecise, even with slightly wrong intrinsic
parameters. Generally, we can come across two main approaches to camera
calibration. In first, the parameters are determined before the reconstruction.
Therefore, calibration matrix K is known, and as the estimated transforma-
tion remains essential matrix E. In the other approach are the parameters
computed before the extrinsic parameters and 3D points from the assembled
equations. The approach used in this case is, i.e., f7 [10] and the estimated
transformation is a fundamental matrix F.

The reconstruction itself begins with a selection of an initial pair. There
are several heuristics to find a suitable initial pair [32]. The correct initial pair
selection is crucial, as the reconstruction is based on extending the initial pair
with other views. Therefore, we want the initial pair to be densely matched
with other images to secure robustness and reconstruction accuracy. The
wrong initial pair could cause the reconstruction to break down even though
the reconstruction course would be smooth with a different pair.

With selected initial pair starts the incremental part of the reconstruction
algorithm. Every iteration begins with the registration of a new camera
I;. The condition for registering another image is that it has to observe
some points of the already created 3D model. In the registration process
is the estimated position of camera P; using a RANSAC-based algorithm
and an absolute pose solver. In case of COLMAP is used approach of P3P
in combination with PnP [56] [10]. In the case of uncalibrated camera is
estimated position together with intrinsic parameters using, e.g., minimal
solvers [57]. To find the absolute pose of the registered camera, we have
to determine the central coordinate system, which is often defined as the
coordinate system of the first camera. The first camera position Cj is,
therefore, 0 and the rotation matrix is the unit matrix. Then, if a new image
is registered, we have obtained its pose, and at least some features in the
image observe the already existing 3D points. If any of the remaining features
are matched with features in other images, with the use of triangulation is
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added 3D point corresponding to this match to the overall reconstruction
- the track length of the feature needs to be at least 2. Methods for multi-
view triangulation are, e.g., [10] [58]. As mentioned, to extend the number
of already reconstructed 3D points is used triangulation, <.e., the process
of creating 3D point X; using more cameras observing the same 3D point
to estimate its position. In triangulation, it is, in short, searched for the
intersection of lines going through camera centers and mutually corresponding
features. However, as we work in the real world, with floating numbers with
limited precision and sensors with errors, the lines never come to the precise
intersections, and it is searched for the point closest to all lines.

Every iteration contains errors caused by imprecise point localization,
camera pose estimation, noisy matches, and imprecise calibration. Errors from
each iteration accumulate with the increasing number of registered images -
this effect is known as drift. The drift is reduced with a nonlinear optimization
method called bundle adjustment (BA). BA aims at jointly refining a set of
camera poses and 3D structure point estimates by minimization of reprojection
error. Let’s assume that ;5 is the projection of 3D point X; to image plane of
camera P; projected using Eq. 2.16. The reprojection error is then a distance
of %;; and original feature position in the image x;;. Therefore, the error is
generally defined as

E=Y %y — xyl3 (2.17)
J
where || - || is L2-norm. The reprojection error in COLMAP is then a variation
of previous equation defined as
E=3p; (I7(X:,Py) = x[13) . (2.18)

J

where p; is weight function for possible outlier down weighting and 7 is
projection function to image plane.

Note, that the reprojection error is invariant to scaling and rotation. In
COLMAP is BA also used to find radial distortion parameters #. This is
then used to undistort the features in input images, which can be and are
then used in P3P algorithm. As the bundle adjustment function is nonlinear,
the algorithms to solve this issue are nonlinear least-squares methods. For
solving problems of this type is often used library Ceres [59], which is also
used in COLMAP.
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Chapter 3

Proposed enhancements

In this chapter are discussed the drawbacks of SparseNCNet network and
proposed the solution to this issues in § 3.1.1. In § 3.1.2 is then discussed
re-training of the network.

B 31 SparseNCNet

B 3.1.1 Preecision and scores

As described in § 2.1.2 the SparseNCNet network takes as input two images
and performs feature extraction and matching in a single feed-forward run.
This results in a new set of keypoints determined with a sub-pixel precision
for each image I; with every image matching. This is a suitable property if
we aim at the feature matching task itself, for it returns the precise matches.
However, in the case of the feature matches further used in, 7.e., SfM, this
brings difficulties. We name two reasons for this. The first reason is that
in order to obtain a reconstruction, we need the track length higher than 2
for some keypoints, which is in this case often not achieved. Moreover, the
higher the track length, the higher accuracy in 3D point positions obtained
during the triangulation we gain. The second reason is that the results of
such an approach are not compatible with classical SfM approaches, which
assign arrays of keypoints to each image and then add matches, created as
lists pointing to these keypoints arrays and into the database. What is more,
the matches from SparseNCNet are sorted by the score, and the further
used matches are often the top-scored k,, matches. This approach could
possibly dismiss the slightly worse-scoring matches, thank the top k,, filter,
nonetheless, these matches could have higher track length. In figure Figure 3.1
are pictured some of the matches generated by SparseNCNet and colored by
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Figure 3.1: Visualisation of the top 100 matches between two images generated
by SparseNCNet. Matches are colored by their score, with green standing for
the highest score and red for the lowest.

assigned score. Note that the score for each match is computed from the
sparse correlation defined in § 2.1.2 tensor using the softargmax function.

To address all of the mentioned issues, we created a hashtable H; €
N(%WHX”W] of keypoints for each image I;. H x W stands for the resolution
of input image I; and n € R™ is a precision factor. To each H; corresponds a
list of keypoints K, = { (Xkj, 7kj» Skj) | Xxj € R2, ri; € No, sg; € RT, k=
1...Ng }, where 7; is number of match-references to the k-th keypoint in
i-th hashtable, s;; sum of scores of these matches, and Ny is a number of
keypoints in the list. The list is ordered by the index k. This index is assigned
to inserted keypoint in the time of adding it to the list and is computed from
the corresponding hashtable. The adding process is explained below.

These hash tables are initialized with zeros on all positions. Then are
the values of H; updated with every matching of corresponding image I;.
After feed-forward run of image pair I4, Ig we obtain Nsp keypoints x;a
corresponding to 14 and Nap keypoints x;g for Ig, where the i-th keypoints
create match. SparseNCNet also generated corresponding match-scores SEAB).
Let’s demonstrate further process only for x;4. However, it is performed for

both keypoint sets. At first is computed
XiH, = |Xian +0.5], (3.1)
what are coordinates in hashtable H 4. Then is taken
ide = Ha(xim, ), (3.2)

based on which we find the index of the keypoint as
_ idz if idx > 0 ' (3.3)
maxz(Hy) + 1 otherwise

If the k is assigned as in the second case, the point is added to the Ky, as
XA With unit rp4 and with score sp4 = SZ(AB). In this case we also assign
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value k = max(Ha) + 1 to Ha(Xit,), €.,

Ha(xim, ) <=k = max(Hy) + 1. (3.4)
If the k£ = idz, then for the k-th member of Kg,, Xka, is sy4 changed to
SkaA + sl(»AB) and 7,4 incremeted by one. The index k is then in both cases

from Eq. 3.3 used in the matches list to point to the keypoint in the set g,
corresponding to image [4.

This approach brings several advantages. Use of a hashtable is faster than
would be a similar approach of storing all previously detected keypoints in an
array and then searching this array, whether the keypoint is already registered.
Another positive change is that we monitor the track length of each keypoint,
and we also note the score, which has been the point evaluated throughout all
the matchings. The last enhancement, which the hash-table approach brings,
is the dynamic possibility of joint tuning of keypoint accuracy and the chance
of higher track lengths. With smaller values of y decreases the resolution
of hashtables and with it also decreases the maximal accuracy of keypoints.
However, as this approach merges more possible keypoint positions into one
hashtable cell, it increases the chance of higher track length and thus the
chance of successful 3D reconstruction.

B 3.1.2 Re-training

In order to use SparseNCNet in larger-scale 3D reconstruction applications
in industrial environments, we need to train it on the datasets suitable for
these purposes. In the [7] was this network trained mostly for day-night
correspondences as shown in image Figure 3.2 and a significant part of the
training data was from the exterior. Even though the illumination-change
robustness is, in our case, also very usable, the main focus is still on weakly-
textured-areas correspondence search. However, these data were not used in
SparseNNCenet training epochs.

The SparseNCNet training dataset contains overlapping image pairs, which
are divided into sets, based on the environment of capturing. The loss function
is always computed for the whole batch. The batch contains N, image pairs
14, Ip and the ids of the training sets they belong to. After the matching
each image pair 14, and Ip, from the batch is computed the score as

N,
1 &1
_ }:, (4;B5) (BjAj)
spos Nb ~ 2(3 +s )7 (3'5)

where s(4iBi) is score of T4, and I, matching and s(Bi4:)

with reversed order.

score of matching

25



3. Proposed enhancements

Figure 3.2: Day-night matches produced by SparseNCNet. Images are taken
from Aachen Day-Night dataset.

Then are the second images I, in all image pairs rolled around in the batch
by one, creating image pairs which are not overlapping. Then is repeated the
same process resulting this time in s,q4. Loss function is then defined as

l05S = Speg — Spos- (3.6)

The loss indicates, that by minimizing it, we aim at as much high-socring
positive matches as possible and at as least low-scoring negative matches as
possible.

As mentioned in § 2.1.2, the SparseNCNet utilizes feature encoder Resnet101
as feature encoder. One of the possible changes in re-training the SparseNCNet
would be to finetune the utilized network layers. Another re-trainable part of

the network is the sparse, neighborhood consensus filtering providing network
N(-), also introduced in § 2.1.2.

In our re-training attempt, we finetuned the last layer of the Resnet101
with whole N(-). Another parameters used for the re-training were batch size
b = 8, learning rate Ir = 5 - 10~% and as optimizer we used Adam Optimizer
[60]. Number of training image pairs was N; = 1180 and testing image pairs
N, = 415. However, results did not bring any significant improvements, as
can be seen in the Figure 3.3, because the re-training was conducted on
mostly the same data as it was in the paper. However, there could be spotted
slightly more emphasis on the wall correspondences in the re-trained case.
Nonetheless, as soon as we collect enough training data of challenging interior
spaces, the network is ready to continue re-training.

As we can see, the training is based only on the positiveness or negativeness
of image overlap. Thus, another enhancement besides the training dataset
could also be to improve the loss function to take into account the match
distribution or directly the match positions. However, this is out of the scope
of this work.
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3.1. SparseNCNet

(a) : Matches produced by SparseNCNet with original weights.

(b) : Matches produced by re-trained SparseNCNet.

Figure 3.3: Comparison of top-scoring 200 matches generated by SparseNCNet
with and without re-training.
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Chapter 4

Experiments

This chapter begins with section § 4.1, which covers the reasoning behind
ground-truth (GT) acquisition and describes the process of data collecting.
This is followed by the description of the bench-marking system used to
compare correspondence search approaches in § 4.2. Then is each of the
approaches gradually searched for the best-performing parameter combination
to be used on the challenging datasets. The first examined method is SIFT
extractor in § 4.3, followed by relative pose estimators in § 4.4, then by
preprocessing in § 4.5. The preprocessing experiments build on the results of
both previous sections. In the following sections are examined correspondence
search results of SparseNCNet in § 4.6 and SuperPoint + SuperGlue in § 4.7
both for various parameter combinations.

B 11 Gt acquisition

There are several reasons why ground-truth data is needed. The primary
goal of this work is to select the best-performing approach to correspondence
search in the 3D reconstruction pipeline. Without a 3D ground truth, it is
challenging to determine the accuracy of reconstruction. However, the device
we use does not produce exactly a high-quality 3D dense point cloud, and
it is out of the scope of this work to align all the points into a high-quality
3D dense point cloud. Therefore, to evaluate the reconstruction, we compare
correspondence search results alone. The number and distribution of matches
directly affect the uncertainty in camera poses and 3D point positions, as
was shown in experiments by Polic et al. [18]. To compare various methods
of feature operations, we needed to create an objective benchmarking system.

Results of each approach are verified with the ground-truth data matches
and then compared with other methods. The ground-truth acquisition is
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4. Experiments

Figure 4.1: Visualisation of colored point cloud produced by Hololens.

also motivated by the use of trainable NNs. With suitable training data, the
neural networks can be further trained in order to obtain better results on
the challenging datasets mentioned in the chapters before, namely the ones
containing plain walls and significant illumination changes. Specifically, the
SparseNCNet re-training loop is ready to be used after collecting a sufficient
amount of the training data to improve the results of 3D reconstruction on
challenging datasets.

A device used to gather ground-truth data is Microsoft Hololens first-
generation. Hololens is equipped with six cameras, of which four are tracking
cameras, and one is the primary photometric camera, and the sixth mounted
camera is a time of flight (TOF') depth camera. Therefore, the device produces
both RGB images and depth maps. We can also receive corresponding time-
stamp and position for each of produced images and depth maps. Note that
images from the primary camera are taken with a different frequency (which
is ~ 15fps) than the depth maps (with ~ 3fps). These two outputs we then
process to obtain a colored 3D point cloud, an example of which can be seen in
Figure 4.1. Another information provided by the device is calibration matrix
K. Our goal is to align all the depth images into one common coordinate
system p. In order to obtain 3D point in absolute coordinate system p, we

apply

A ﬁp] =pP;! [—Xf{loool : (4.1)
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4.1. GT acquisition

where also
P; ' = FrameToOrigin® (CameraViewTransform™) ™ (4.2)

and where X? is a 3D point in the depth camera coordinate system 4, and
the constant 1/ — 1000 is used in order to obtain results in meters. As the
Eq. 4.1 is defined as up-to-scale, A secures the fourth coordinate to equal
one. Our goal is a colored point cloud. Thus we have to assign to points a
color. For this, we project the 3D points into an image coordinate system
p. Image to project the 3D point into is chosen as the one with the closest
timestamp to the timestamp of the original depthmap of the point. The
points are projected as

100 0

u p

N [Xli]:K 0 1 0 0P ﬁ] (4.3)
0 01 0

The color of the resulting pixel z!' in the image is then assigned to 3D
point XP. The matrices FrameToOrigin and CameraViewTransform are
provided by Hololens API. The relations above are derived to follow standard
projective geometry equations defined in [32]. However, the Hololens API
does not explicitly provide such a matrices, therefore we had to experimentally
deduce the matrices, using the data provided by API.

Accuracy of Hololens camera positions and depth points has been examined
in [61]. The results are value 1.64+0.1cm drift in camera position and 2.2+0.3°
in camera angle, both per one second of tracking. These errors are then
carried into the images, too. Here, the absolute pixel error projected into the
images depends on the distance of the 3D point from the image plane. Thus,
we could compute the maximal error of projection coming from the point
0.8m right in front of the camera sensor, which is the closest point observed
in GT dataset. Another inaccuracy comes from the depth sensor, which is,
on the other hand, most inaccurate with distant pixels. The noise carried
by points as far from the sensor as 3.45m is 2cm, for the closest ranges at
0.8m it is 0.18cm. 3.45m is also the longest distance, which the depth sensor
can measure. Using the distance restrictions stated before, mean maximal
projection error between two neighboring ground-truth images brought by
3D point reconstruction inaccuracy is e, = 2.9px. This was computed as

N [’ﬂ — K'h2a [R/(H) t/]

o 1 +m , (4.4)

_——~ O O

with [ € {0.8, 3.45} denoting furthest and closest points to depth sensor,
6 € R3 being a vector of the angle error, t' € R3 error in camera position,
and s € R3 the error in distance measured by the depth sensor. K’ is
then used calibration matrix, in our case diagonal matrix, having focal
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4. Experiments

Figure 4.2: Error-causing camera positions and 3D point cloud combination.

lengths fi, fo and 1 on the diagonal. h2a is function transforming from
homogeneous coordinates to ordinary 3D coordinates. The mean maximal
error was obtained experimentally, where we gradually used elements from the
error normal distributions, parameters of which was obtained from [61] and
considered the mean value as the mean maximal error e,,. Approx. twice the
value of the e,, is then used as parameter egr = 6, defined in , to minimize
the number of incorrectly dismissed matches, because of GT errors.

Ground truth matches are obtained using projection of point cloud as
defined in Eq. 4.3. If the same 3D point is projected into different images, the
corresponding 2D projections are considered matches. As the 3D point cloud
created by Hololens is dense, the projected keypoints are dense, too. After
projection, ground truth 2D points are covering almost every pixel. Therefore
wherever a match is found, we can find a near GT point and confirm or reject
this match.

One potential flaw of this approach comes with more 3D points lying
on the same projection line, as pictured in Figure 4.2. This could cause
completely wrong matches to appear among ground truth. This case also can
be seen in Figure 4.2, where the X3 lies on the structure which is occluded
by structure with point X from the perspective of Co. Therefore, incorrect
correspondence of x17 and Xg2 is created.

This issue can be addressed in two ways. Exact solution would be to
create mesh from the point cloud, using, e.g., Meshroom [15] and then to
use a software such as Pyrender [62] to resolve the occlusions and project
only the visible faces from the selected viewpoint to the images. However,
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4.2. Benchmarking

creation of mesh from such data is challenging and out of the scope of this
work. Nonetheless, as we are aware of this potential glitch, the datasets
are collected with emphasis on avoiding such situations and image pairs are
manually inspected before being incorporated into benchmarking data.

B a2 Benchmarking

As the quality of final reconstruction is generally affected by several factors,
the benchmark system (BS) evaluates more aspects. The benchmarking data
are collected as mentioned in § 4.1. The overall strategy of the BS is to verify
feature matching results of individual algorithms using ground truth matches
from § 4.1.

The correct match is defined as a match, where both corresponding features
are closer then parameter egp to GT features which correspond to each other.
Le., set of correct matches S4p between images I4 and Ip

T)

G GT
Sap = { (xja,xjB) | XS —x5a]l < ear, Ixia” — xjll < ecr}, (4.5)

where (xl((iT), x}({C];T)) is a ground truth match between images I, and Ip.

This criterion is visualized in Figure 4.3.

Figure 4.3: Visualisation of correct matches (yellow), threshold epsilon, here
eqgr =9 (red), ground truth matches (green) and incorrect matches (cyan).
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4. Experiments
The correct matches are then evaluated in three aspects, which are

B absolute number of correct correspondences,

B relative number of correct correspondences, which is computed as a ratio
of number of correct matches to number of all matches returned by
evaluated algorithm. This ratio is also called Precision, what is generally
number of true positives to all positives (sum of true and false positives),
and

B correct match distribution, which is computed by dividing the image into
grid of size N x M and counting only k matches from each tile to the
final image match count.

These aspects are connected purely to the evaluation of correspondence
search. The 3D reconstruction results are then compared only using the best
approaches from the previous stage. These are then evaluated using ETH3D
benchmarking system [2], using publicly available datasets pipes and delivery
area with ground truth. These datasets contain challenging factors as weakly
textured areas.

B 43 siIFT parameter determination

As mentioned in § 4.1, the overall quality of final 3D reconstruction is
generally determined by the number and distribution of matches among input
images. Matches and their distribution over the image, obtained using SIFT
descriptor are directly affected by SIFT parameter values. The parameters
were introduced in § 2.1.1. Therefore, we carried out an experiment to find
the most suitable parameter combination for the challenging datasets.

The following experiments were performed as the baseline for further
comparison. For feature detection and extraction was used SIFT detector +
descriptor implemented in library VLFeat [4]. The matching was performed
with the algorithm proposed by D. Lowe in [3] implemented in the same library.
The purpose of the first experiment is to show the increasing sensitivity of the
feature detector with the right direction of parameter changes. The tested
parameters are peak threshold and edge threshold. The meaning of both
parameters is explained in § 2.1.1. As shown in Figure 4.4a, the number of
correct matches ng(pr, er) increases for decreasing peak threshold pr and
increasing edge threshold eT. The Figure 4.4b focuses on the best-performing
area.

However, with the increasing number of correct matches also comes a
greater number of wrong matches. This can be best seen in Figure 4.5a,
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4.3. SIFT parameter determination
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Figure 4.4: Visualisation of number of correct matches dependency on SIFT
parameters.

where is pictured a ratio of correct matches to all matches, i.e., the precision
Prs(pr,er). Figure 4.5b pictures an absolute number of all matches found by
feature extractor and matcher, ng,, (pr, er). By comparison of Figure 4.5b
and Figure 4.4a, we can see the reason of low precision for high-sensitivity
values. Also can be seen, that as the resulting numbers of matches of higher
peak thresholds (lower sensitivity) are in order of units or lower tens, there
suffice quite a low number of verified matches to gain high precision. See, e.g.,
(pr,er) = (5,10) in Figure 4.5a and Figure 4.5b. However, if the precision
is 60% with 3 verified matches out of 5 found by the matcher, this is not
sufficient to create the valid reconstruction. Note that these experiments are
visualised only for one image pair to illustratively show the dependency of
the number of matches on the parameters. The experiments using average
over all datasets are then conducted in following section, § 4.4. However, the
results are very similar for each image pair as the results visualised here.

Precision of all matches Abs. number of all matches

Num. of matches
@ 5 o
Num. of matches

1 M Edge thresholc 1 2 Edge thresholc

Peakthreshold ° Peak threshold °
(a) : Precision of correct matches depen- (b) : Absolute number of all matches
dency on SIFT parameters. dependency on SIFT parameters.

Figure 4.5: Visualisation of precision and abs number of all matches for SIFT
parameter combinations.
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B a4 Comparison of geometric verification methods

As shown before in § 4.3, the absolute number of matches increases with
rising sensitivity. However, it is for the price of the simultaneously growing
number of incorrect matches, often even with a higher rate, as shown in
Figure 4.5a. And as the reconstruction algorithms can access no ground-truth
data, the relative pose estimators’ task to identify correct transformation
becomes more challenging with higher numbers of incorrect matches and
almost impossible with a high incorrect-correct matches ratio. In other words,
if the precision of SIFT detector gets sufficiently low, the matches are so
outlier-contaminated that the relative pose is almost impossible to compute.
This is captured for one example image pair in Figure 4.6a, where can be
seen a low number of correct matches nys(pr, er) after geometric verification
despite the high-sensitivity parameter settings and the high number of correct
matches before geometric verification. The robust model estimator used in
this figure is a state-of-the-art algorithm MAGSAC++ [36]. This algorithm
does not explicitly state which relative pose solver does it utilize. Nonetheless,
the minimal number of points to estimate the Fundamental matrix is 7. We
also added another robust model estimator, LO-RANSAC [35], as a baseline,
with its numbers of matches ny (pr, er) shown in Figure 4.6¢c. Even though
the f10e relative pose solver [34] is available for LO-RANSAC, we used the
f7 [32] estimator, with the minimal number of points 7, to compare similar
algorithms. The Figure 4.6b then shows the performance of MAGSACH+,
focused on the best-performing region. The same then applies for Figure 4.6d
and LO-RANSAC.

Another measure for geometric verification is precision. The precision, in
short, shows a measure of the quality of verification output. The Figure 4.7a
pictures precision of MAGSAC+4 model estimator and the Figure 4.7b
precision of LO-RANSAC. In the figures, we can see sizeable improvement
in precision as opposed to high-sensitivity parameter combinations without
any geometric verification, which can be seen in Figure 4.5a. Therefore we
can see that we need geometric verification in order to use the SIF'T matches
in SfM pipeline. The improvement is the highest in the mid-sensitivity area,
which we then use in the further application.

The average numbers over Np GT image pairs for each bin on parameter
coodrinates (pr,er) are defined as

N
1 D
Navg (pr,er) = NiD Z nq(pr; er), (4.6)
d=1

where ng(pr, er)) is number of correct matches for parameters (pr,er)) in
d-th image pair. The Figure 4.8a then shows extension of previous equation.
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4.4. Comparison of geometric verification methods

Number of matches of MAGSAC++
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Figure 4.6: Comparison of number of correct SIFT features verified by
MAGSAC++ and LO-RANSAC on the same image pair.

This states the minus sign if difference of numbers of matches

dav(pr,er) = iy (PTs eT) — MLy e (PT, €T) (4.7)

is negative, zero in case of equal performance and plus signs suggest better
results of MAGSAC-++. Note that the equality of performances is not defined
exactly as dgy (pr, er) = 0, but we used threshold tgy, therefore, the zero
is written on coordinates (pr,er) if |dgv (pr,er)| < tgy. The Figure 4.8b
then pictures difference of average precisions defined the same way as the
difference of numbers of matches.

As can be seen in the comparison of two robust model estimators in
Figure 4.8, MAGSAC++ achieves overall higher numbers of correct matches
(captured in Figure 4.8a) with the same average precision as LO-RANSAC.
The similar performance of these two estimators in terms of precision can be
seen in Figure 4.8b. Therefore the MAGSAC++ is the estimator of choice
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average number of matches, defined in average precisions, defined in Eq. 4.7.
Eq. 4.7. Used threshold is tgyv = 0.1. Used threshold is tgy = 0.1.

Figure 4.8: Comparison of MAGSAC++ and LO-RANSAC.

for further experiments.

As the testing of parameters of SIFT together with parameters of other
methods, such as the methods used for preprocessing, would be highly time-
expensive, we choose the most suitable parameters of SIFT for the subsequent
experiments here. In the Figure 4.9 are shown best performing regions for
MAGSACH+ average precision and number of matches. We can see that
parameters (pr,er) = (0.3,12) bring a reasonable balance between good
precision and the number of matches.
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(b) : Average precision of cor-
rect matches over all image paris of
MAGSACH++.

(a) : Average number of correct matches
over all image paris of MAGSAC++.

Figure 4.9: Average results of MAGSAC++.

. 4.5 Preprocessing results comparison

It was mentioned in § 2.1.3 that the application of preprocessing pipeline
could significantly improve the results of 3D reconstruction. Our first goal
in this experiment is to replicate the pipeline proposed in [8], in order to
employ it in our comparison. The codes and dataset were not published
in [8]. Therefore, we do to have datasets collected with Color checker and
the color enhancement stage is skipped. Next follows the denoising stage,
where is employed CBM3D implemented in [63]. The RGB to gray-scale
conversion algorithm used is MATLAB rgb2gray, due to unavailable code or
implementation details of their BID color converter. However, the BID is
an extension of MATLAB rgb2¢gray anyway. As the last stage is employed
content enrichment. Approach proposed in [8] utilizes a Wallis filter, which is
tested in § 4.5.1. However, as the CLAHE filter offers a similar performance,
we decided to add it to the comparison as the content enrichment stage as
well. Results of which are captured in § 4.5.2.

B 4.5.1 Wallis filter results

The Wallis filter according to Gaiani et al. [8] is defined as Eq. 2.15. The
proposed best performing parameter-combination is A = 0.8, B is linearly
dependent on the mean pixel intensity of the input image, W is proportional
to image size. In our case W = 14, § = 127 and M = 60. The result after
application of accordingly set-up filter looks as it is captured in Figure 4.10a.
The result is not quite similar to the result obtained in the paper, shown in
Figure 4.10b.
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(a) : Results obtained after application of
Wallis filter by us with the same parame-
ters as in Figure 4.10b.

(b) : Results obtained after application
of Wallis filter shown in paper [8].

Figure 4.10: Comparison of our and paper Wallis filter application results.

Note, that Wallis filter is by Jazayeri et al. [64] defined as

_ SAL(z,y)

+ BM + (1 — B)m, 4.8
Ew (1= B)m (45)

(w)
Ij ($, y)

what is different formula than the one used by Gaiani et al. in [8]. Image
after application of Wallis filter defined according to Eq. 4.8 is pictured in
Figure 4.11a. Another published definition of Wallis filter is

_ Si(z,y)
S
A

+BM + (1 - B). (4.9)

The results of application result Eq. 4.9 of which can be seen in Figure 4.11b.
As the original paper published by Wallis [55] is not accessible online, we can
not compare the definitions to the original one and we stick to the version
defined in Eq. 2.15 as their pipeline is to be replicated. Nonetheless, all of
the implementations bring similar results, only with different parameter A.

Note that the experiments are performed using SIFT parameters obtaining
the highest overall score in Figure 2.5 and § 4.4, which is peak threshold
pr = 0.3 and edge threshold er = 12 in combination with MAGSAC++. In
Figure 4.12a are pictured results of comparison of number of matches found
among images preprocessed wit Wallis filter in the pipeline. The results are
pictured for various parameters A and B, i.e., ny (A, B), with number of

40



4.5. Preprocessing results comparison

(a) : Input image after application of (b) : Input image after application of
Wallis filter defined as in Eq. 4.8. Wallis filter defined as in Eq. 4.9.

Figure 4.11: Application of Wallis filter implemented as defined in other sources.

matches found with no preprocessing, i.e., ny. The figure states the minus
sign if absolute difference of numbers of matches

dw(A, B) = nw(A, B) — NN (4.10)

is negative, zero in case of equal performance and plus signs suggest better
results of preprocessed images. In some pictures is plus sign replaced by
percentage of improvement over image with no preprocessing pyw (A, B),
computed as

pw (A, B) = <M

nn

The Figure 4.12b, Figure 4.12¢ and the Figure 4.12d capture results of the
comparison for another image pairs.

- 1> -100. (4.11)

In this example can be seen that some parameter combinations of Wallis
filter yield improvement, but are not necessarily the same for all iamge pairs.

On one hand, as shown in Figure 4.13, the resluts of preprocessing for
some parameter combinations bring higher number of verified matches. But
on the other hand the matches are not found on textureless areas. These
were supposed to be found according to [8]. However, the additional matches
are found mostly in shadowed regions. The Figure 4.13 visualises results
for best-performing parameter combination on the image pair, on which the
experimets were realized.

The Figure 4.14a utilizes the equation Eq. 4.6 in combination with Eq. 4.11
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Figure 4.12: Comparison of results achieved with Wallis filter with results with-
out preprocessing on four different image pairs for several paremeter combinations
(pa,pB).

using coordinate space of parameters of Wallis filter, which is (A, B). The
Figure 4.14a thus shows percentage of improvement over ny,, ., what is
averaged number of vanilla matches throughout all Np image pairs. The
Figure 4.14b then shows rounded percentage of pairs, for which the parameter
combination (A, B) really improved the results.

As can be said from Figure 4.14b, Figure 4.12 and Figure 4.14a, there is
no universal combination of parameters, which improves the results for all of
the situations. Each dataset is unique and fits best with different parameters.
However, as the Wallis mostly improves the results, we could choose the
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4.5. Preprocessing results comparison

(a) : Correct geometrically verified matches found with no preprocessing.

(b) : Correct geometrically verified matches found with application of Wallis filter.

Figure 4.13: Comparison of correct verified matches found with preprocessing
and without.
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Figure 4.14: Average Wallis filter results over image pairs in all 5 datasets.

parameter combination yielding improvements of reasonable percentage in
most cases. This combination is according to the figures (A, B) = (2.1,0.7).

B 4.5.2 CLAHE results

As the implementation of the CLAHE filter, we used MATLAB adaphis-
teq. The experiments are again visualized in filter-parameter space, with
parameters clip limit CL, where CL € [0,1] and tiles number TS € NV*M,
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The implementation supports multiple distributions besides the uniform dis-
tribution in histogram equalization process. This was explained in § 2.1.3.
The other distributions are Rayleigh and exponential, both included in ex-
periments. The Figure 4.19 pictures results of one example image pair
obtained after application of CLAHE as content enrichment method in the
preprocessing pipeline from § 2.1.3 for different (7'S, C'L) combinations. The
Figure 4.16f pictures absolute number of correct matches na(7T'S, C'L) found
in preprocessed image pair. In Figure 4.15b is then shown a sign of difference
do(TS,CL) =nc(TS,CL) —ny, where ny is, as defined before, number of
matches on the image pair without preprocessing.

Abs. num. of CLAHE, rayleigh dist. Difference of matches, CLAHE, rayleigh dist.
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parameters (T'S,C'L), using rayleigh dis- ing (T'S,CL) minus matches of vanilla
tribution. images, using ray. dist.

Figure 4.15: Results for different CLAHE parameters on one example image pair.

Average results among all ground-truth image-pairs are pictured in Fig-
ure 4.16. This is visualized for each distribution separately. Left column
pictures percentages of preprocessed image pairs, which outperformed the
original image pairs for CLAHE parameter combination (7'S,CL). Right
column in Figure 4.16 then shows the sign of difference in absolute number
of matches dc(T'S,CL).

The best average performance appears for all distributions parameters
in bottom and left part of the parameter space, where are the parameter
combinations with the lowest preprocessing effect. T'S = 1 and CL = 0 means
no preprocessing at all. The trend in difference figures shows, that even
though some parameter combinations in some datasets show improvements,
the overall average performace does not improve with the application of
CLAHE filter. Therefore, we choose the Wallis filter as content enrichement
stage of preprocessing pipeline for further experiments.
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B 46 SparseNCNet

The only easily adjustable visibly-results-affecting parameter of the SparseNC-
Net from the user side without re-training, is the number of the used highest-
scoring matches, k,,. Beware, that this is not the constant K defined in
§ 2.1.2. Therefore, k,, could be computed after the NN’s feed-forward. This
fact we use to compute the best percentage of score-sorted matches p,, to keep
in order to obtain the best results. As the number of matches n,, produced
by SparseNCNet may vary for different image pairs from tens to thousands,
the absolute number would then be unusable for some image pairs. Thus the
experiments aim at computing the p,,, and then compute k,, as

_ Pm
kp, = round( 100 Nm,)- (4.12)

The average normalized number of matches is in Figure 4.17a and average
precision in Figure 4.17b, both for various values of p,,. The figures show
several lines, where blue is the value of the of precision or number of matches,
red is the same value filtered with moving average of window size 6 (MAG6)
and the pink, low-opacity lines picture values for each image pair, where all of
them are filtered with MA3. Note, that by normalization is meant dividing all
values corresponding to the same image pair by maximum of them. All of the
correct matches were found after geometric verification using MAGSACH++.

Abs. average no. of ver. matches, SPNet Average precision of ver. matches, SPNet
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Figure 4.17: Results of SparseNCNet experiments dependency on percentage of
used matches py,.

The percentage p,,, = 36% brings a suitable balance between the number
of correct, verified matches and the precision. Therefore is this value used in
further comparisons. In the Figure 4.22 are eventually show correct matches
found with SparseNCNet with found parameters. The image pair is the same
as in the Figure 4.13.
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Figure 4.18: SparseNCNet results on the same image pair as in Figure 4.13.

B a7 SuperGlue + SuperPoint

The last approach employed in comparison is the combination of learnable
feature detector SuperPoint and learnable feature matcher SuperGlue. The
first of the parameters examined in experiments is the parameter of SuperPoint,
point threshold pT', which works similarly to a combination of edge threshold
and peak threshold in the case of SIFT. This means that the value of point
threshold directly affects the sensitivity of the feature detector and, therefore
a number of detected keypoints. Another examined parameter is match
threshold mT, which is defined in SuperGlue, and it has an effect on a number
of matches, which are declared valid.

The results were tested in several aspects. The first criterion is captured in
Figure 4.19a, which captures average number ngg(pT, mT') of correct matches
returned by SuperGlue and verified by MAGSAC++ , computed as in Eq. 4.6,
just for each parameter space (pT, mT). Next aspect is shown in Figure 4.19b.
There can be seen average precision of the same matches Prgg(pT, mT).
Note that in both figures, the bottom-last row uses m7T = 0 and the most
left column employs pT" = 0. It is visualized this way because of logarithmic
scale.

SuperGlue is also network producing supposedly verified matches. However,
unlike SparceNCNet, the matches really strongly resemble the matches verified
with some hand-crafted model estimator. As can be seen in Figure 4.20,
the geometric verification process with MAGSAC-++4 removed also correct
matches produced by SuperGlue and shown in Figure 4.20a. The verified
version is then in Figure 4.20b.

Therefore, we decided also to show the performance of SuperGlue without
any geometric verification. This can be seen in Figure 4.21, where Figure 4.21a
shows absolute average number of matches and in Figure 4.21b is shown
precision of this approach without MAGSAC++.

From Figure 4.21 and Figure 4.19 we can say that the precision is worse in
the case of non-verified matches for most of the parameter space. However,
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Abs. avg. number of correct matches, SuperGlue Precision of verif. matches SuperGlue
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Figure 4.19: Average results for different SuperGLue and SuperPoint parameters,
using MAGSAC++.

(b) : Matches found using Superglue and additional geometric verification
MAGSACH+.

Figure 4.20: Comparison of matches found by SuperGlue with MAGSAC++
and without.

the absolute number of matches is on the other hand several times higher.

In the Figure 4.22 are captured results on the same image pair as in
Figure 4.13 and and Figure 4.22 this time using SuperPoint + SuperGlue.
The Figure 4.22a are shown correct matches obtained purely with SuperPoint
+ SuperGlue, the Figure 4.22b then shows correct matches after verification
with MAGSAC++. We can see obvious improvement in number of matches on
the weakly textured area in both of the cases using SuperPoint + SuperGlue
as opposed to the results of previous methods. This is probably because of
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4.7. SuperGlue + SuperPoint

Abs. avg. number of correct matches, SuperGlue, NV Precision of verif. matches SuperGlue, NV
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Figure 4.21: Average results for different SuperGlue and SuperPoint parameters,
not using MAGSAC-++.

precise context information incorporation in the SuperGlue network.

(a) : SuperGlue correct matches on the same image pair as previous methods
without MAGSAC++.

(b) : SuperGlue correct matches on the same image pair as previous methods with
MAGSAC++ verification.

Figure 4.22: SuperGlue correct matches shown on the same image pair as in
Figure 4.13 and Figure 4.22 for comparison.
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Chapter 5

Comparison of methods

In the previous chapter were examined various methods of correspondence
search for the best performing parameters, which can be used in challenging
datasets, such as factories. This chapter brings benchmark results, which
compared the previously examined methods using the obtained parameters.
The first part is a comparison of the same type as in the Chapter 4, i.e.,
using GT collected with Microsoft Hololens to verify matches between 2D
image pairs. This experiments are described in § 5.1. Another benchmark
is performed using benchmarking system ETH3D [2] in § 5.2. This is a
comparison of final 3D reconstruction after SfM and MVS with ground truth
collected with laser-scan.

B 51 Correspondence search benchmark

As was mentioned several times before, the quality of the final reconstruction
is determined by number and distribution of correct matches. Therefore,
following benchmark compares all of the approaches in terms of average
number of matches, average precision and average distribution, with all of
the evaluated aspects being defined in Chapter 4. The parameters used
for distribution evaluation, which were introduced in § 4.2 is a grid size
N x M =6 x 8 and counting only k = 10 matches per tile to final number.
The evaluated methods are

® SIFT 4+ MAG, what is SIFT extractor and descriptor used in combi-
nation with MAGSAC++ and with best parameters defined in § 4.4, as

(pr,er) = (0.3,12),

® Wal+4-SIFT+MAG, being preprocessing pipeline from [8], reconstructed
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5. Comparison of methods

Dataset no.
1 2 3
abs. pre. dis. abs. pre. dis. abs. pre. dis.
SIFT+MAG 12.0 271 11.5 6.5 21.2 6.5 32.0 52.7 223
Wal4-SIFT+MAG 90 250 7.8 9.3 30.2 9.3 20.7 395 10.8
SupGlue 61.5 42.2 52,5 144.3 69.6 112.9 107.0 62.6 92.3

SupGlue+MAG 60.5 394 56.0 655 T72.5 599 54.0 73.5 50.5
SpNCNet+MAG 55.0 13.7 248 91.3 41.1 598 71.3 455 46.8

Table 5.1: Average results for each aproach in three example datasets.

Average
abs. pre. dis.
SIFT+MAG 18.3 35.2 15.4
Wallis+SIFT+MAG 186 33.3 145
SuperGlue 126.8 57.6 100.0
SuperGlue + MAG 71.6 63.1 64.9
SparseNCNet 116.8 36.9 71.9

Table 5.2: Average results of correspondence search over all datasets.

in § 4.5.1 with suitable parameters obtained in the same section. THe
parameters are (A, B) = (21,0.7) in combination with MAGSAC++,

® SupGlue, standing for SuperPoint and SuperGlue combination without
geometric verification and with parameters (pT, mT) = (3-107°,0.3),

® SupGlue + MAG, what is Superpoit, SuperGlue and MAGSAC+—+
with the parameters (pT,mT) = (6 - 107°,0.03) in combination with
MAGSACH++,

# SpNCNet+ MAG, standing for SparseNCNet using parameter p,, =
36% in combination with MAGSAC++.

Average results for each aproach in five datasets are shown in Table 5.1. The
overall average results for all tested methods are then captured in Table 5.2.

. 5.2 3D reconstruction benchmark

3D reconstruction benchmarking is performed using benchmarking system
ETH3D [2]. This system is used because 3D models of our ground-truth
data are not sufficiently accurate as opposed to GT from ETH3D, which is
collected using laser scan. Another reason is that the implementation of such
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5.2. 3D reconstruction benchmark

a 3D benchmarking system would be out of the scope of this work. Thus,
we created an automated pipeline for dense 3D reconstruction, subsequent
to the correspondence-search methods. This pipeline is utilizing COLMAP,
namely, its SfM and MVS parts. The process begins with correspondence
search, where are employed the same methods as in § 5.1, i.e., SIFT +
MAGSAC++, Wallis + SIFT + MAGSAC++, Superpoint + SuperGlue,
Superpoint +SuperGlue + MAGSAC++, and SparseNCNet + MAGSAC++
plus SPNCNet, Wallis + SIFT, SIFT. The parameters used for the methods
are the same as in § 5.1, with just a note to SparseNCNet where we have
experimentally determined the best-performing precision parameter n = 0.13.
This parameter was defined in § 3.1.1. And note to the SIFT is that the
images feeded into SIFT were resized by scale 1/4. This is motivated by the
smaller resolution of the images on which we searched for the best parameters.

Results of this part are image keypoints, matches and in the case of
methods which including geometric verification, MAGSAC++, also two-view
geometries with fundamental matrices F. The results are then added to
the COLMAP database together with images and cameras with intrinsic
parameters given in GT. In the case of unverified matches, then follows
COLMAP stage exhaustive matcher, which performs geometric verification
on the calculated tentative matches. Afterwards are gradually executed
COLMAP stages. At first, the mapper, which results in sparse reconstruction,
followed by image undistorer, patch match stereo and stereo fusion. The

last three stages then provide the final dense pointcloud X(P) = {Xi(D) |

Xi(D) €eR3,i=1.N xp, }- Note that in order obtain comparison results of
COLMAP reconstruction and GT in the ETH3D benchmark, we need to
align our reconstruction with the GT. This is accomplished with the use of
the given GT camera positions. We find transformation mapping between
corresponding camera centers obtained in SfM part Cj to GT camera centers
C}’ . It is defined as

C{ = s"R7C; + t7, (5.1)
where s denotes scale, R? rotation matrix and t° translation vector. This
could also be written using a homogeneous matrix. Nevertheless, for simplicity,

it is written separately. This transformation is then applied on each point of
the obtained dense pointcloud, and we obtain aligned dense pointcloud, as

(A)

XM = o ROXP) 4 ¢o, (5.2)

i
This is the pointcloud, which we feed into the ETH3D benchmarking system.

Another parameter is array of tolerances in meters. The system then for each
of given tolerances returns three evaluated metrics which are

® accuracy|%)], the ratio saying how much of the reconstruction is closer
to the ground truth than the tolerance,

® completeness[%], the ratio saying how large part of ground truth is
closer to the reconstruction than the tolerance, and
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ETH3D Accuracy results [%)]

Dataset no. 1
tolerances[m] 0.02 0.5 0.0 0.20 | 0.02 0.05 0.10 0.20
SIFT 15.8 559 872 932 | 83.5 95.5 98.0 98.8
SIFT+MAG 37.0 658 84.5 90.5 | 0.2 2.5 512 854
Wal+-SIFT 64.5 89.8 95.7 97.9 | 656.6 89.7 959 98.1
Wal+SIFT4+MAG 7.8 178 33.6 595 | 584 86.3 954 98.1
SupGlue 75.1 89.2 929 958 | 88 195 324 478
SupGlue+Mag 65.3 82.6 88.1 93.8 | 37.7 5H9.2 69.7 83.7
SpNet 65.8 81.0 86.7 90.5 | 148 481 653 82.6
SpNet+MAG 0.0 0.0 0.0 0.0 44 11.6 21.8 31.5

Table 5.3: Accuracy evaluation of COLMAP pipeline with various correspon-
dence search methods using ETH3D benchmarking system and two ETH3D

datasets, electro and pipes.

® F1 score|%)], being the harmonic mean of accuracy and completeness

2].

In all of the metrics is the higher number the better. Results for all methods in
two ETH3D datasets pipes and delivery area are divided into three tables, each
evaulating one of the metrics. Accuracy metrics are evaluated in Table 5.3,
the Completeness ETH3D results are in Table 5.4 and the Fl-scores for all
correspondence search methods are captured in Table 5.5.
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5.2. 3D reconstruction benchmark

ETH3D Completeness results [%]

Dataset no. 1
tolerances[m] 0.02 0.056 0.10 0.20 ‘ 0.02 0.05 0.10 0.20
SIFT 3.0 13.1 239 35.3|52.1 739 84.1 91.8
SIFT+MAG 2.5 7.5 128 16.1 | 0.7 41.3 68.7 824
Wal+SIFT 7.0 15.6 23.8 328 | 434 71.1 833 91.2
Wal+-SIFT4+MAG 04 1.7 4.2 8.2 | 429 679 823 91.0
SupGlue 4.4 84 11.2 13.8 | 0.8 3.2 7.8 18.6
SupGlue+Mag 2.2 5.4 8.6 12.0 | 2.5 9.6 18.0 26.1
SpNet 3.5 8.1 11.9 168 | 6.8 249 457 64.1
SpNet+MAG 0.0 0.0 0.0 0.0 0.7 3.2 8.2 18.7
Table 5.4: Completenes evaluation of COLMAP pipeline with various corre-
spondence search methods using ETH3D benchmarking system and two ETH3D
datasets, electro and pipes.
ETH3D F1-score results [%)]
Dataset no. 1
tolerances[m] 0.02 0.05 0.10 0.20 ‘ 0.02 0.05 0.10 0.20
SIFT 5.1 213 376 51.2|64.2 83.3 90.5 95.1
SIFT+MAG 4.6 135 222 274 | 04 46 587 839
Wal+SIFT 12.7 26.6 38.1 49.1 | 52.2 793 89.1 945
Wal+SIFT+MAG 0.7 3.1 7.5 144 | 495 76.0 884 944
SupGlue 84 153 200 24.1 1.5 5.6 12.6 26.7
SupGlue+Mag 4.2 102 156 213 | 4.7 16.6 28.6 39.8
SpNet 6.7 14.8 209 284 | 94 328 53.7 722
SpNet+MAG 0.0 0.0 0.0 0.0 1.1 5.1 11.9 235

Table 5.5: Fl-score evaluation of COLMAP pipeline with various correspondence
search methods using ETH3D benchmarking system and two ETH3D datasets,

electro and pipes.
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Chapter 6

Conclusions

The goal of this thesis was to compare the performance of several corre-
spondence search methods in the 3D reconstruction pipeline used on specific
datasets, containing challenging factors such as weakly textured areas as walls
and illumination changes between images.

To conduct a comparison, we first introduced the methods of FE and FM in
a theoretical part. The approaches included in the introductory part were both
hand-crafted algorithms and NNs. We introduced the most common feature
extractor and descriptor, SIFT descriptor, and robust model estimators LO-
RANSAC and MAGSAC++. Further, we included the whole preprocessing
pipeline preceding the FE. This pipeline was created by denoising, RGB
to gray-scale conversion, and content enrichment stage, where we examined
the Wallis filter and CLAHE filter. From NNs, we introduced principles
applied in SparseNCNet. In the next part, we also proposed enhancements
for SparseNCNet. These enhancements were motivated by the low track
length of keypoints and thus failures of 3D reconstruction. We also provided
re-training information and results.

After the introductory part, we have shown our method of collecting
GT image matches of the challenging scenes using Microsoft Hololens. We
then used the GT matches to create an FM benchmarking system. This
system was then employed to search the methods for the best-performing
parameter combinations. Besides the parameters, we also chose between the
robust model estimators LO-RANSAC and MAGSAC++. We used the latter
for further benchmarking because the MAGSAC++ gave higher numbers of
correct matches with the same precision. Similarly, among content enrichment
methods utilized in preprocessing pipeline, we chose the Wallis filter over
CLAHE because of the higher benchmark scores.

With the obtained methods and parameters, we then proceeded to the main

o7



6. Conclusions

comparison. This comparison included two parts. The first part evaluated
the performance of all the methods on purely FE and FM results using
our collected GT matches. The evaluated metrics were the absolute average
number of correct matches, the average precision, and the average distribution
evaluation. The hand-crafted approaches were highly outperformed by the
NNs in all the categories in this part. The best results were brought by
Superpoint and Superglue combination, even finding correspondences on the
completely textureless areas.

The second part employed ETH3D benchmarking system using datasets
pipes and delivery area. First, we incorporated each of the matching methods’
results into the COLMAP pipeline, and the dense point clouds generated by
the pipeline were then aligned with the GT data. Such aligned data were
then fed into the ETH3D benchmark to evaluate the COLMAP-reconstructed
dense 3D point clouds using the ETH3D laser-scan-collected GT. Worth
mentioning is that all of the methods carried better results on the ETH3D
datasets without MAGSAC++ verification. These results mean either that
COLMAP provides a better robust model estimation than MAGSAC++ or
that the COLMAP model estimator is just better integrated into the 3D
reconstruction pipeline. The best overall scores in the second part were
achieved using the Wallis filter on the pipes dataset and pure SIFT on the
delivery area dataset, leaving the NN-based methods far behind.

Undoubtedly, this topic offers a lot of space for further improvement
and further work, mainly using NNs in the correspondence search. As we
found out in the thesis, these networks can create matches where the hand-
crafted approaches can not, and what to the number and distribution of
correspondences outperform the hand-crafted algorithms by far. However,
the overall quality of the 3D reconstruction is generally worse for NNS. The
worse reconstruction quality is probably caused mainly by the resizing of
images, which negatively affects the accuracy of keypoint locations. The
resizing is native in the case of SuperGlue, and the keypoints are not localized
with subpixel precision but only with the resolution of the resized image.
Although the SparseNCNet generates keypoints with subpixel precision, they
need to be rounded to a small grid in order to increase the track length and
create the reconstruction. When we used the grid with higher resolution, we
did not obtain any reconstruction at all due to the small track lengths of
keypoints. Note that we used 26 images in 5 datasets in the first part of the
benchmarking. However, more GT data would help to confirm or refute our
conclusions, for which are all the benchmark implementations ready.

Further work on this topic may also focus on redesigning the loss-function

of the SparseNCNet training network to create matches more suitable for 3D
reconstruction.
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