
i

Czech Technical University in
Prague

Faculty of Electrical Engineering

Department of Computer Science

Field of Study: Software Engineering and Technology

Mobile application for
multiprojection system control

BACHELOR’S THESIS

Author: Victoria Savvateeva

Supervisor: Ing. Ivo Malý, Ph.D.

Date: May 2021

ii

iv

iv

v

Declaration

I declare that I have elaborated the submitted Thesis myself and only used the resources
quoted in the attached Bibliography list.

In Prague on

 Victoria Savvateeva

vi

Acknowledgements

I thank my supervisor, Ing. Ivo Malý, Ph. D., for giving me the opportunity to take part in the
mentioned project, for his guidance and valuable advice whenever I needed. I also express my
deepest gratitude to my family for supporting me throughout my studies.

Victoria Savvateeva

vii

Abstract

A multiprojection control system for managing digital presentations in the City
of Prague Museum is being developed at the Department of Computer Science. The
system includes three components: a web administration tool for CRUD operations
and data handling, a media player for performing the playback on several client
devices and a mobile application for remote control and daily usage. While the web
part is managed by the administrator, a mobile application is supposed to be used
by the presenters (museum employees). Although the first version of the mobile
application has been prototyped and implemented, it became clear that it needs to
be redesigned and upgraded. This Thesis aims at creating a completely new
version, both in terms of functionality and user interface design. The outcome is a
tested and fully functional application, preceded by a high-fidelity prototype, also
tested for its usability.

Keywords: mobile development, frontend development, multiprojection
system, digital exhibitions, client application

Abstrakt

Na katedře počítačů se vyvíjí multiprojekční systém sloužící ke správě
digitalizovaných výstav v Muzeu hlavního města Prahy, jako například Langweilův
model Prahy. Systém se skládá ze tří komponent - webové aplikace pro řízení
CRUD operací a ukládání dat, přehrávače pro reprodukci media souborů na
několika klientských zařízeních a mobilní aplikace pro vzdálené ovládání a
každodenní použití. Zatímco webová aplikace je řízená administrátorem, mobilní
aplikace je určená pro předváděče prezentací (zaměstnance). Přestože první verze
mobilní aplikace již byla implementována, při její vyhodnocení byla odhalená řada
nedostatků. Tato Teze má za cíl vytvoření kompletně nové verze, v rámci jak
funkcionality, tak i návrhu uživatelského rozhraní. Výsledkem je testovaná a plně
funkční aplikace, které předchází high-fidelity prototyp, také testovaný na
použitelnost.

Klíčová slova: mobilní vývoj, frontend vývoj, multiprojekční systém, digitalní
výstavy, klientská aplikace

viii

Table of Contents

1. Introduction ... 14

1. 1 Terms and Methodology ... 14

1. 1. 1 User Centered Design ... 14

1. 1. 2 Reactive Programming ..15

2. Motivation ... 17

2. 1 Issues of the existing version .. 17

2. 2 Goals ... 17

3. Analysis .. 19

3. 1 Existing Alternatives .. 19

3. 1. 1 Schweizerisches Nationalmuseum app – Swiss National Museum 19

3. 1. 2 Museum Barberini ... 20

3. 1. 3 Rijksmuseum .. 21

3. 1. 4 Summary ... 21

3. 2 Requirement Analysis and Specifications .. 22

3. 2. 1 Requirements ... 22

3. 2. 2 Technical Specifications .. 23

3. 3 Use Cases .. 24

4. Design .. 29

4. 1 Prototype Description .. 29

4. 1. 1 Launch & Authentication .. 29

4. 1. 2 Homepage with Display Sets .. 29

4. 1. 3 Playing Display Tracks ... 30

4. 2 Heuristic Analysis (Usability Testing) ... 31

4. 2. 1 Visibility of system status ... 31

4. 2. 2 User control and freedom .. 31

4. 2. 3 Consistency and standards .. 32

4. 2. 4 Error prevention .. 32

4. 2. 5 Recognition rather than recall ... 32

4. 2. 6 Flexibility and efficiency of use ... 32

4. 2. 7 Aesthetic and minimalist design .. 33

4. 2. 8 Help users recognize, diagnose, and recover from errors ... 33

4. 2. 9 Help and documentation ... 33

4. 3 Summary .. 33

5. Implementation ... 34

5. 1 Development Tools ... 34

ix

5. 2 Libraries ... 34

5. 3 Architecture .. 34

5. 3. 1 Function Components and Hooks .. 35

5. 3. 2 BLoC Pattern .. 36

5. 3. 3 Project Structure .. 37

5. 4 Consuming REST API .. 38

5. 5 Managing playback .. 39

5. 5. 1 Running autonomously .. 39

5. 5. 2 Playing chosen Tracks .. 39

5. 5. 3 Playing a Chapter ... 39

5. 6 Requirements Fulfillment Issues ... 39

5. 7 User Interface Improvements .. 40

6. Evaluation and Testing ... 41

6. 1 Test Strategy ... 41

6. 1. 1 Test Design Techniques .. 41

6. 2 Use Case Testing Report .. 41

6. 3 Usability Testing Report .. 54

6. 4 Summary .. 55

7. Conclusion ... 56

7. 1 Future Work ... 56

Bibliography .. 57

Appendices .. 59

A. Installation ... 59

A. 1 Android Studio ... 59

A. 2 Expo client ... 59

x

List of Tables

Table 1. Functional requirements .. 22

Table 2. Performance requirements .. 23

Table 3. Design requirements .. 23

Table 4. Derived requirements .. 23

Table 5. Use Cases - Signing in .. 24

Table 6. Use Cases - Opening Set ... 24

Table 7. Use Cases - Playing Set ... 25

Table 8. Use Cases - Pausing Set .. 25

Table 9. Use Cases - Playing Next Track .. 25

Table 10. Use Cases - Playing Previous Track.. 25

Table 11. Use Cases - Shuffling Tracks ... 26

Table 12. Use Cases - Looping Track ... 26

Table 13. Use Cases - Viewing Video files .. 26

Table 14. Use Cases - Creating chapter .. 26

Table 15. Use Cases - Playing chapter .. 27

Table 16. Use Cases - Switching Sets to grid view ... 27

Table 17. Use Cases - Switching to Dark mode .. 27

Table 18. Use Cases - Running autonomous ... 27

Table 19. Use Cases - Logging out .. 28

Table 20. Heuristics - Visibility of system status .. 31

Table 21. Heuristics - User control and freedom ... 32

Table 22. Heuristics - Consistency and standards ... 32

Table 23. Heuristics - Error prevention ... 32

Table 24. Heuristics - Recognition rather than recall ... 32

Table 25. Heuristics - Flexibility and efficiency of use .. 33

Table 26. Heuristics - Aesthetic and minimalist design .. 33

Table 27. Heuristics - Help users recognize, diagnoze, and recover from errors 33

Table 28. Heuristics - Help and documentation ... 33

Table 29. Testing design techniques .. 41

Table 30. Test Cases - 1: Login - Basic flow ... 42

Table 31. Test Cases - 2: Login - Alternate flow - Wrong input format ... 42

Table 32. Test Cases - 3: Login - Alternate flow - Wrong user data .. 43

Table 33. Test Cases - 4: Login - Exception flow - No sets to show ... 44

Table 34. Test Cases - 5: Display Tracks - Basic flow .. 45

Table 35. Test Cases - 6: Display Tracks - Alternate flow - No tracks to show 46

Table 36. Test Cases - 7: Play Track - Basic flow ... 46

xi

Table 37. Test Cases - 8: Pause Track - Basic flow... 47

Table 38. Test Cases - 9: Play Next Track - Basic flow .. 47

Table 39. Test Cases - 10: Play Previous Track - Basic flow .. 48

Table 40. Test Cases - 11: Play Previous Track - Exception flow - Playing from the first track 48

Table 41. Test Cases - 12: Play Track - Exception flow - Playing Track outside of the bottom bar 49

Table 42. Test Cases - 12: Shuffle Track - any flow ... 50

Table 43. Test Cases - 13: Loop Track - any flow ... 50

Table 44. Test Cases - 14: Video Files list - any flow ... 50

Table 45. Test Cases - 15: Create video chapter - Basic flow ..51

Table 46. Test Cases - 16: Create video chapter - Exception flow - End time before start time.............51

Table 47. Test Cases - 17: Play chapter - Basic flow ... 52

Table 48. Test Cases - 18: Dark mode - Basic flow .. 52

Table 49. Test Cases - 19: Run Autonomous - Basic flow .. 53

Table 50. Test Cases - 20: Run Autonomous - Alternate flow - Choosing another set 53

Table 51. Test Cases - 21: Logout - Basic flow .. 54

Table 52. Usability Testing - results .. 55

xii

List of Figures

Figure 1. Introduction - User-Centered Design phases [4] ..15

Figure 2. Introduction - Stream as a sqeuence of asynchronous events .. 16

Figure 3. Alternatives - Main page, Figure 4. Alternatives - Exhibition preview, Figure 5.
Alternatives - Tour started, Figure 6. Playing audio track .. 20

Figure 7. Use Cases - UML diagram ... 28

Figure 8. Prototype - Intro, Figure 9. Prototype - Authentication, Figure 10. Prototype - Wrong
user data ... 29

Figure 11. Prototype - Sets list, Figure 12. Prototype - Set checkboxed, Figure 13. Prototype - Run
Autonomous / Play .. 30

Figure 14. Prototype - Sliding menu, Figure 15. Prototype - Dark mode, Figure 16. Prototype - Sets
grid ... 30

Figure 17. Prototype - Open Track, Figure 18. Prototype - Name chapter, Figure 19. Prototype -
Chapter added .. 31

Figure 20. Implementation - React Native core concept .. 35

Figure 21. Implementation - Project structure .. 38

Figure 22. Evaluation - Sets as list, Figure 23. Evaluation - Sets as grid ... 42

Figure 24. Evaluation - Login, empty fields .. 43

Figure 25. Evaluation - Login, wrong user data .. 44

Figure 26. Evaluation - Waiting indicator ... 45

Figure 27. Evaluation - Tracks .. 46

Figure 28. Evaluation - Playing Track ... 47

Figure 29. Evaluation - Playing Next Track .. 48

Figure 30. Evaluation - Error .. 49

Figure 31. Evaluation - Alert.. 50

Figure 32. Evaluation - Chapter name, Figure 33. Evaluation - Chapter button51

Figure 34. Evaluation - Dark mode ... 52

Figure 35. Evaluation - Running autonomous .. 53

xiii

List of Listings

Code Listing 1. DisplaySetsScreen.tsx. Function components and hooks ... 36

Code Listing 2. AuthBloc.tsx. BLoC ... 37

Code Listing 3. api.wrapper.tsx. Fetch API .. 38

Code Listing 4. DisplayTracksScreen.tsx. Seek .. 39

14

1. Introduction

This Bachelor Thesis follows the 5D Projection System project carried out at the
Department of Computer Science at CTU FEE. In terms of the project, a
multiprojection system allowing both autonomous and guided presentation of
Langweil model of Prague on several client devices with 1-4 connected displays was
developed, including a web-based console for maintenance of the exhibition’s
playlists and the first version of a mobile application for remote control. The
system is designed as a lightweight and portable solution for the City of Prague
Museum and its main purpose is to establish an innovative way of creating and
implementing educational programs for children and students. I focused on
design, implementation, and testing of a brand-new version of a mobile application
with some significant user interface and functionality improvements. The
developed product is scaled for larger devices such as tablets and is supposed to be
used by the City of Prague Museum employees, responsible for managing,
controlling, and presenting the digital exhibitions to the visitors, the Langweil
Model of Prague in particular. The objective of the Thesis to report the results
achieved within the development process including all its phases covered step by
step. In this chapter, I define the basic terms and methodology concepts used. The
Motivation Section describes the main ideas behind the Thesis realisation and
states its goals. In the Analysis, I provide a detailed overview of the existing
alternatives available on the market, compare its core concepts with the mo-
tivation behind our project and, as a result, define the newly shaped requirements
and use cases. The Design Chapter represents my solution of the user interface and
the consequently originated high-fidelity prototype. The Implementation chapter
covers technical aspects, while the following, Evaluation and Testing, provides the
usability outcome. Finally, I make a conclusion and address the issues that could
be processed in the future.

1. 1 Terms and Methodology

1. 1. 1 User Centered Design

The term "User-Centered Design" was coined by Rob Kling in 1977 [1] and later

popularised in the Donald A. Norman's book User-Centered System Design: New
Perspectives on Human-Computer Interaction in 1986 [2].

The User-centered design (UCD) process outlines the phases throughout a
design and development life cycle all while focusing on gaining a deep
understanding of who will be using the product. The international standard 13407
is the basis for many UCD methodologies [3].

The process may be split into the following phases (Figure 1 [4]):

• Specify the context of use: Identify the people who will use the product,
what they will use it for, and under what conditions they will use it.

• Specify requirements: Identify any business requirements or user goals
that must be met for the product to be successful.

15

• Create design solutions: This part of the process may be done in stages,
building from a rough concept to a complete design.

• Evaluate designs: Evaluation - ideally through usability testing with
actual users - is as integral as quality testing is to good software
development.

Figure 1. Introduction - User-Centered Design phases [4]

The mentioned techniques are considered and applied throughout my work.

1. 1. 2 Reactive Programming

Reactive Programming is a paradigm in which declarative code is issued to
construct asynchronous processing pipelines. It is programming with asynchronous
data streams that sends data to a consumer as it becomes available, which enables
developers to write code that can react to these state changes quickly and
asynchronously.

A stream is a sequence of ongoing events (state changes) ordered in time

(Figure 2). Streams can emit three different things: a value (of some type), an
error, or a “completed” signal. The events are captured asynchronously, by defining
a function that will execute when a value is emitted, another function when an
error is emitted, and another function when ‘completed’ is emitted. “Listening” to
the stream is called subscribing. The functions we are defining are observers. The
stream is the subject (or “observable”) being observed.

16

Figure 2. Introduction - Stream as a sqeuence of asynchronous events

Reactive programming can be a useful implementation technique for managing
internal logic and data flow transformation locally within components through this
asynchronous and non-blocking execution [5].

1. 1. 2. 1 Reactive Extensions

Reactive programming deals with data flow and automatically propagates
changes via the data flow. This paradigm is implemented by Reactive Extensions.

Reactive extensions enable imperative programming languages to compose

asynchronous and event-based programs by using observable sequences. In other
words, it enables your code to create and subscribe to data streams
named observables. Reactive extensions combine the observer and iterator
patterns and functional idioms to give you a sort of toolbox, enabling your
application to create, combine, merge, filter, and transform data streams [5].

One of the examples is RxJS, which I used in my implementation (see

"Implementation" section).

17

2. Motivation

Within a multiprojection system used for presentation purposes, given our

project as an example, a remote control device is necessary. It is important that the
developed application is well-designed, robust, and highly reliable, as the presenter
always has limited time to perform and there is no place for a technical problem.
He cannot postpone a presentation due to an application flaw and there is no time
for bug fixing.

My application is scaled for tablets due to certain reasons. One major advantage

is resolution and screen size, which makes it suitable for targeting any audiences
from the young to the oldest. Middle-aged or elederly people may have trouble
reading small text during their presentations, so the larger screen size makes them
feel way more comfortable while working. Another great option is the battery life,
which is significantly extended in comparison with regular smartphones. It is
crucial that the device does not run out of battery during presentation and is able
to stay awake during the entire working day – there could be many visitor groups
coming to the Museum.

2. 1 Issues of the existing version

The primary source of motivation is the issues behind the user interface of the
proposed version. After conducting an analysis, the following problems were
determined.

Firstly, the design lacks contrast. Any application should come with a clear and

fresh contrast, so the information is more readable and understandable, and a user
is confident to proceed with operationa. Poor colour choices result in difficulties
reading and makes the application aesthetically unpleasant, which can further
deter a user form using it.

Secondly, the overall style is inconsistent. The Homepage, including display

sets, lists its items in a grid, while the following similar section, Display Tracks, is
designed as a list, which results in a visual conflict and confusion. Although it is
arguable whether the main body of both sections correlate directly, in my opinion,
they should be designed in the same way.

The next problem comes from the Heuristic analysis first set of rules - which is

visibility of the system status – and represent wrong heading description –
Homepage in particular. It does not say anything about the page contents. It
should be named as Display Sets.

2. 2 Goals

The goal of the Thesis is to design and build a product, which will bring a value
to the whole system and to the City of Prague Museum. This can be split into the
following phases:

18

Goal 1. Design an upgraded version of a mobile application scaled for tablets,
eliminate all the problems mentioned above and represent it with a high-
fidelity clickable prototype.

Goal 2. Implement the designed solution through creating a multi-platform
application mainly targeted at Android devices.

Goal 3. Test the application on four different presentations.

19

3. Analysis

The concept of online viewing first started to blossom in the late 2010s as

artists like David Zwirner and Pace Gallery began to offer access to their pricey
Koons and Hockney works in their online viewing rooms, which used a log-in
system. Now more and more galleries and museums around the globe are turning
to digital exhibitions and offering virtual tours [6]. Representing art works digitally
makes a huge contribution to broadening and enhancing a museum’s work
outreach to the public with its easy access via Internet or mobile applications and
creates a great additional base for education.

Multi-projection systems are systems with multiple projectors and multiple

projection surfaces. The term is strongly coupled with video mapping, which is
often combined with an audio track in order to create a more interactive user
experience [7].

3. 1 Existing Alternatives

I conducted an analysis on existing mobile applications dedicated to digital
presentations. Although no exact matches, including the same target audience and
overall purspose were found, three similarly structured Google Play Store apps, all
of which have 4+ stars ranking were analyzed. All of them share the same objective,
UI and do not imply any remote video playback control as they use audio tracks
instead.

3. 1. 1 Schweizerisches Nationalmuseum app – Swiss
National Museum

Developer and Publisher: Swiss National Museum (Schweizerisches
Nationalmuseum)

Platform: Android

Link:
https://play.google.com/store/apps/details?id=com.landesmuseum.snmch&hl=en_U
S&gl=US

The application is in several languages. Besides the exhibitions themselves,
includes a brief text preview and detailed 3D navigation from the very entrance to
the exhibits. Each item is provided with an audio recording telling the history of
the given showpiece. A user can pause the recording, play back and forward.

https://play.google.com/store/apps/details?id=com.landesmuseum.snmch&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.landesmuseum.snmch&hl=en_US&gl=US

20

 Figure 3. Main page Figure 4. Exhibition preview Figure 5. Tour started Figure 6. Playing audio track

Concept similarities:

• same objective – digital museum app

• a sliding menu on the left

• same component structure – a media set (playlist) consisting of tracks

• same media set preview principle

 Concept differences:

• no user authentication needed

• several languages support

• no videos – 3D navigation and audio instead

• no autonomous mode

• no color switching

• playback and playforward functions

• no shuffle and loop

3. 1. 2 Museum Barberini

Developer and Publisher: Museum Barberini gGmbH
Platform: Android
Link:
https://play.google.com/store/apps/details?id=com.barberini.museum.barberinidigita
l&hl=en&gl=US

The application has a completely different and simplified minimalistic-styled
UI and encapsulates rich exhibition database targeted at both adults and children.
Only audio tours are supported. Two of the outlined features, such as information

https://play.google.com/store/apps/details?id=com.barberini.museum.barberinidigital&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.barberini.museum.barberinidigital&hl=en&gl=US

21

about the exhibitions or a biographies collection, can be useful and are later to be
considired for adding as nice-to-have features in our application.

Features:

• Audio tours for children and adults

• Information about current and upcoming exhibitions

• 360° panoramas with multimedia content

• Tours archive

• Biographies

• Integrated ticketing

• Videos about artists and curators

• Opening times, offers, prices, location

• Information about the history of the building, the art and the founder

• Newsletter subscription

3. 1. 3 Rijksmuseum

Developer and Publisher: Rijksmuseum
Platform: Android
Link:
https://play.google.com/store/apps/details?id=nl.rijksmuseum.mmt&hl=en&gl=US

Offers paintings audio tours and a very comfortable dark-colored UI creating an
immersive digital museum antiquity environment.

Features:

• Follow a route or search for the numbers accompanying the works of art

• Iinteractive floor plans and directions

• 3D audio clips and animations

• Feedback or questions

3. 1. 4 Summary

 Android market has a lot to offer for museum visitors of any age. A similar
concept is widely used among developers and is well-known among users. All of the
mentioned products are unified by the idea of creating a vivid, enjoyable user
experience within a digitalized museum environment and may serve as a source of
inspiration as well as provide useful tips for further functionality. However, all of
the mentioned above products are targeted at museum visitors rather than internal
employees and do not implement any remote control device functionality. Our
application will primarily be used by the museum workers to remotely launch and
handle presentations.

https://play.google.com/store/apps/details?id=nl.rijksmuseum.mmt&hl=en&gl=US

22

3. 2 Requirement Analysis and Specifications

Here, I apply the first two User-Centered Design principles, which state:

• Specify the context of use: Identify the people who will use the product,
what they will use it for, and under what conditions they will use it.

• Specify requirements: Identify any business requirements or user goals
that must be met for the product to be successful.

As it was previously mentioned, the people who will use the product are the

Museum employees, or those who are supposed to perform presentations. They will use
the application daily for controlling the exhibitions playback performed on four client
devices (screens) remotely, as well as managing video chapters. Requirement analysis
is critical to the success or failure of a systems or software project [8]. It is the process
of determining user expectations for a new or modified product, involving defining
needs and objectives in the context of planned customer use, environments, and
identified system characteristics to determine requirements for system functions.

3. 2. 1 Requirements

One of the requirement analysis purposes is to define functional and performance
requirements based on customer provided measures of effectiveness. By community
agreement, Requirements Analysis should result in a clear understanding of:

• functions: what the system has to do,

• performance: how well the functions have to be performed,

• and interfaces: Environment in which the system will perform [9].

Requirements below are categorized according to the method described in the
“Systems Engineering Fundamentals” book by Defense Acquisition University Press
published in 2001 [9]. Based on the given business goals and demands, a set of
Functional (Table 1), Performance (Table 2), Design (Table 3) and Derived (Table 4)
requirements was defined.

3. 2. 1. 1 Functional

F1 System must provide connection to the exhibition using IP address and HTTP requests for
connection establishment.

F2 System must provide user authentication and authorization.

F3 System must provide requesting/querying available display sets.

F4 System must provide Controlling the video players through HTTP requests to the server.

F5 System must notify a user of errors and system state.

F6 System must support different light conditions.

F7 System must provide viewing all the tracks within a given display set.

F8 System must provide that the control panel of the exhibition contains Shuffle, Previous
track, Pause/Play, Next track, Loop current track functions within a given display set.

F9 System must provide Display track chapters creation.

F10 System must Playback from the start of a chosen chapter (e.g. chapter 0:40 - 1:10).

F11 System must provide viewing video files list within a given display track.

F12 System must provide Playback status querying and displaying periodically.

F13 System must have an Autonomous mode.

Table 1. Functional requirements

23

3. 2. 2. 2 Performance

P1 System shall have high performance.

P2 System shall have low latency and response time.

Table 2. Performance requirements

3. 2. 2. 3 Design

D1 System shall have a user-friendly and intuitive UI following UCD principles.
D2 System shall run on Android 5.0 and higher.
D3 System shall be designed following the SoC principle.
D4 System shall provide responsive design.
D5 System shall provide that display sets and tracks have both list and grid view.

Table 3. Design requirements

3. 2. 2. 4 Derived

De1 Whatever user input must be handled and validated.
De2 Data querying is done through a separated provider responsible only for server

HTTP requests and serialization of the received data.

Table 4. Derived requirements

3. 2. 2 Technical Specifications

The application will be developed for the Android platform and will be based on
Separation of Concerns (using the BLoC pattern) and Material Design principles. The
application will be scaled for tablets.

Robustness and reliability are put as main priorities while developing the further

application. Due to this, React Native was chosen as a framework because of its
performance and maturity level.

BLoC pattern handles the business logic of the application, separating the

responsibilities of individual components. Its principles, initially developed for Flutter,
will be applied to React Native environment.

Platform: Android

Programming Language: TypeScript

Framework: React Native with usage of ReactiveX and RxJS for reactive

programming and asynchronous programming with observable streams.

24

3. 3 Use Cases

The Use Case analysis is a bridge between the users (Actors) and the modelers to
determine the needs that the system must satisfy. It captures the functionality and
needs that the users of the new system want to have the system do. It also is done in a
way that the both the team and interested users can review and criticize [10].

The structure of each Use Case (Tables 5-19) comprises:

• an identifier consisting of an application type (MOB as mobile) and a number

• fulfilled requirements

• a goal to be achieved

• an Actor (User)

• the state of the system and conditions for the Use Case to be performed

• the state of the system after successful completion of the Use Case

• steps to be covered (Main/Alternate flow)

• exceptions that may occur and their handling.

ID: MOB-1

Requirement: F1, F2, F3, De1

Objective:  Signing in

Actor:  E*

Precondition:  -

Postcondition:  E is authenticated and authorized. U is redirected to the homepage with available
display sets

Main flow:  1) Open the app.

2) See the login page with login and password required.

3) Enter the login and password and click on the “Sign In” button.

Exceptions: 1.a) Connection is not established or a server-side error occurred. Related
notification is shown. Application exits. The use case ends.

Alternate flow: 3.a) Wrong input. Related notification is shown. Repeat 2) and 3).
3.b) Wrong data. Related notification is shown. Repeat 2) and 3).
3.b) No sets are available. Reload the page or exit.

Table 5. Use Cases - Signing in

*E = Employee

ID: MOB-2

Requirement: F3, F7

Objective:  Open a display set

Actor:  E

Precondition:  E is logged in, display set list is present

Postcondition:  Display set page is opened, all display tracks are listed

Main flow:  Click on a display set.

Exceptions: The display set cannot be opened. Related notification is shown. The use case
ends.

Alternate flow:

Table 6. Use Cases - Opening Set

25

ID: MOB-3

Requirement: F4, F5, F8, F12

Objective:  Play a display set

Actor:  E

Precondition:  E is logged in, display set is opened

Postcondition:  Display set is being played from the first track, playback status bar is showing
valid playback status

Main flow:  Click on the “Start” button

Exceptions: The display set cannot be played. Related notification is shown. The use case
ends.

Alternate flow:

Table 7. Use Cases - Playing Set

ID: MOB-4

Requirement: F4, F5, F8, F12

Objective:  Pause a display set

Actor:  E

Precondition:  E is logged in, display set is opened, display set is being played

Postcondition:  Display set is paused

Main flow:  Click on the “Pause” button

Exceptions: The display set cannot be paused. Related notification is shown. The use case
ends.

Alternate flow:

Table 8. Use Cases - Pausing Set

ID: MOB-5

Requirement: F4, F5, F8

Objective:  Play the next track

Actor:  E

Precondition:  E is logged in, display set is opened, display set is being played/paused

Postcondition:  The next track is being played

Main flow:  Click on the “Next track” button

Exceptions: The next track cannot be played. Related notification is shown. The use case ends.

Alternate flow:

Table 9. Use Cases - Playing Next Track

ID: MOB-6

Requirement: F4, F5, F8

Objective:  Play the previous track

Actor:  E

Precondition:  E is logged in, display set is opened, display set is being played/paused

Postcondition:  The previous track is being played

Main flow:  Click on the “Previous track” button

Exceptions: The previous track cannot be played. Related notification is shown. The use case
ends.

Alternate flow:

Table 10. Use Cases - Playing Previous Track

26

ID: MOB-7

Requirement: F4, F5, F8

Objective:  Shuffle tracks within a given display set

Actor:  E

Precondition:  E is logged in, display set is opened

Postcondition:  The tracks are ordered randomly within a given display set

Main flow:  Click on the “Shuffle” button

Exceptions: The display set cannot be shuffled. Related notification is shown. The use case ends.

Alternate flow:

Table 11. Use Cases - Shuffling Tracks

ID: MOB-8

Requirement: F4, F5, F8

Objective:  Loop currently played track

Actor:  E

Precondition:  E is logged in, display set is opened, display set is being played/paused

Postcondition:  The current track is being replayed when finished

Main flow:  Click on the “Loop current track” button

Exceptions: The currently played track cannot be looped. Related notification is shown. The use
case ends.

Alternate flow:

Table 12. Use Cases - Looping Track

ID: MOB-9

Requirement: F4, F11

Objective:  View video files list within a given display track

Actor:  E

Precondition:  E is logged in, display set is opened

Postcondition:  The video files belonging to particular screens are shown

Main flow:  Click on the “Open track” button

Exceptions: The currently played video files cannot be shown. Related notification is shown. The
use case ends.

Alternate flow:

Table 13. Use Cases - Viewing Video files

ID: MOB-10

Requirement: F4, F9

Objective:  Create a video chapter within a given display track

Actor:  E

Precondition:  E is logged in, display set is opened

Postcondition:  A video chapter is created within a given display track

Main flow:  1) Click on the “Create chapter” button.
2) Choose starting time.
3) Choose ending time.
4) Click “Save”.

Exceptions: The chapter cannot be saved. Related notification is shown. The use case ends.

Alternate flow:

Table 14. Use Cases - Creating chapter

27

ID: MOB-11

Requirement: F4, F10

Objective:  Play the current track from the stated time

Actor:  E

Precondition:  E is logged in, display set is opened, a video chapter is created within a given
display track

Postcondition:  Current track is being played from the stated time

Main flow:  Click on a chosen a chapter

Exceptions: The chapter cannot be played. Related notification is shown. The use case ends.

Alternate flow:

Table 15. Use Cases - Playing chapter

ID: MOB-12

Requirement: D5

Objective:  View display sets as a grid

Actor:  E

Precondition:  E is logged in

Postcondition:  Display sets are shown as a grid

Main flow:  Click on “Grid view” button

Exceptions: The display sets cannot be shown as a grid. Related notification is shown. The use
case ends.

Alternate flow:

Table 16. Use Cases - Switching Sets to grid view

ID: MOB-13

Requirement: F6

Objective:  Turn on dark mode

Actor:  E

Precondition:  -

Postcondition:  Dark mode is activated

Main flow:  Click on “Dark mode” button

Exceptions: Dark mode cannot be activated. Related notification is shown. The use case ends.

Alternate flow:

Table 17. Use Cases - Switching to Dark mode

ID: MOB-14

Requirement: F13

Objective:  Run the autonomous mode (loop a given display set)

Actor:  E

Precondition:  E is logged in

Postcondition:  Autonomous mode is run

Main flow:  1) Choose Set to be set as autonomous
2) Click on the “Run Autonomous” button

Exceptions: Autonomous mode cannot be run. Related notification is shown. The use case ends.

Alternate flow:

Table 18. Use Cases - Running autonomous

28

ID: MOB-15

Requirement: F2

Objective:  Log out

Actor:  E

Precondition:  E is logged in

Postcondition:  E is logged out and redirected to the Login page. Input data are prefilled.

Main flow:  Click on the "Logout" button on the right top menu.

Exceptions: Logout cannot be performed. Nothing happens.

Alternate flow:

Table 19. Use Cases - Logging out

Alternatively, for visualisation purposes, I provide a UML diagram (Figure 7) drawn

using the Sparx Enterprise Architect tool (version 15.2).

Figure 7. Use Cases - UML diagram

29

4. Design

The last two User-Centered Design principles are applied in this part. They claim:

• Create design solutions: This part of the process may be done in stages,
building from a rough concept to a complete design.

• Evaluate designs: Evaluation - ideally through usability testing with
actual users - is as integral as quality testing is to good software
development [3].

4. 1 Prototype Description

A high-fidelity prototype based on the Material Design principles was designed in
Figma. Material is an adaptable system of guidelines, components, and tools that
support the best practices of user interface design [11].

4. 1. 1 Launch & Authentication

The application starts with a City of Prague Museum logo and establishes server
connection (Figure 8). Once connected, it proceeds to a login page (Figure 9).

 Figure 8. Prototype - Intro Figure 9. Prototype - Authentication Figure 10. Prototype - Wrong user data

4. 1. 2 Homepage with Display Sets

Display Sets list is shown with a checkbox and a disabled Autonomous mode button

(Figure 11). When checkboxed, a number of Display Sets may be run autonomously
(playing continuously without any user interaction, Figure 12). Alternatively, a Display
Track list opens by clicking on a Display set name (Figure 13).

30

 Figure 11. Prototype - Sets list Figure 12. Prototype - Set checkboxed Figure 13. Prototype - Run Autonomous / Play

Settings (Figure 14), dark mode are available (Figure 15). A Grid view can be
switched when viewing the Sets (Figure 16).

 Figure 14. Prototype - Sliding menu Figure 15. Prototype - Dark mode Figure 16. Prototype - Sets grid

4. 1. 3 Playing Display Tracks

While playing Display Tracks, a track with information about its video files being
played on certain client devices can be opened and viewed (Figure 17).

Regardless of if the track is being played or not, a chapter can be added by
specifying a name, start time and end time (Figures 18 and 19).

31

 Figure 17. Prototype - Open Track Figure 18. Prototype - Name chapter Figure 19. Prototype - Chapter added

4. 2 Heuristic Analysis (Usability Testing)

Heuristic Analysis (or Heuristic Evaluation) was chosen as a usability testing

method. Heuristic evaluation involves having a small set of evaluators examine the
interface and judge its compliance with recognized usability principles (the
"heuristics") [12]. It is a helpful technique for identifying and specifying usability
problems and as, a result, improving future versions of the product.

Analysis below is based on the “10 Usability Heuristics for User Interface Design”

developed by Jakob Nielsen [13]. The template structure and question types reference
Xerox Usability Checklist [14].

4. 2. 1 Visibility of system status

The design should always keep users informed about what is going on, through
appropriate feedback within a reasonable amount of time.

Question Answer

Does every display begin with a title or header that describes

screen contents?
Yes

Is there a consistent icon design scheme and stylistic treatment

across the system?
Yes

Is a single, selected icon clearly visible when surrounded by

unselected icons?
Yes

Do menu instructions, prompts, and error messages appear in

the same place(s) on each menu?
Yes

Is there some form of system feedback for every operator action? No

Table 20. Heuristics - Visibility of system status

4. 2. 2 User control and freedom

Users often perform actions by mistake. They need a clearly marked "emergency
exit" to leave the unwanted action without having to go through an extended process.

32

Question Answer

When a user's task is complete, does the system wait for a

signal from the user before processing?
No

Are users prompted to confirm commands that have drastic,

destructive consequences?
Not considered

Can users cancel out of operations in progress? Yes

Table 21. Heuristics - User control and freedom

4. 2. 3 Consistency and standards

Users should not have to wonder whether different words, situations, or actions
mean the same thing. Follow platform and industry conventions.

Question Answer

Are icons labeled? No

Are there no more than twelve to twenty icon types? Yes

Does each window have a title? Yes

Does the menu structure match the task structure? Yes

Table 22. Heuristics - Consistency and standards

4. 2. 4 Error prevention

Good error messages are important, but the best designs carefully prevent problems
from occurring in the first place. Either eliminate error-prone conditions, or check for
them and present users with a confirmation option before they commit to the action.

Question Answer

Are instructions given to the user when taking ambiguous actions? No

Table 23. Heuristics - Error prevention

4. 2. 5 Recognition rather than recall

Minimize the user's memory load by making elements, actions, and options visible.

Question Answer

Has the same color been used to group related elements? Yes

Is color coding consistent throughout the system? Yes

Table 24. Heuristics - Recognition rather than recall

4. 2. 6 Flexibility and efficiency of use

Shortcuts — hidden from novice users — may speed up the interaction for the
expert user such that the design can cater to both inexperienced and experienced users.
Allow users to tailor frequent actions.

33

Question Answer

Does the system allow novice users to enter the simplest, most

common form of each command, and allow advanced users to add

parameters?

Yes

Does the system offer "find next" and "find previous" shortcuts for

database searches?
Yes

Table 25. Heuristics - Flexibility and efficiency of use

4. 2. 7 Aesthetic and minimalist design

Interfaces should not contain information which is irrelevant or rarely needed.
Every extra unit of information in an interface competes with the relevant units of
information and diminishes their relative visibility.

Question Answer

Does each icon stand out from its background? Yes

Is the structure of a data entry value consistent from screen to

screen?
Yes

Table 26. Heuristics - Aesthetic and minimalist design

4. 2. 8 Help users recognize, diagnose, and recover from errors

Error messages should be expressed in plain language (no error codes), precisely
indicate the problem, and constructively suggest a solution.

Question Answer

Is sound used to signal an error? No

Are prompts stated constructively, without overt or implied

criticism of the user?
Not considered

Table 27. Heuristics - Help users recognize, diagnoze, and recover from errors

4. 2. 9 Help and documentation

It may be necessary to provide documentation to help users understand how to
complete their tasks.

Question Answer

Are data entry screens and dialog boxes supported by navigation

and completion instructions?
No

Table 28. Heuristics - Help and documentation

4. 3 Summary

High-level prototyping makes for a true native app experience thanks to its user
interaction level and degree of detail. Source code for the presented above prototype
was generated and exported, usability testing involving multiple users was perfomed.
Results, reflecting the prevailed opinions were gathered. The method used for usability
testing has showed positive outcome in terms of the UI processing and, on the other
side, detected problems within such aspects as error handling and user awareness and
guidance.

34

5. Implementation

I developed the application in Expo and React Native with Typescript codebase. It is

essentially multi-platform and can run on Android 5 / iOS 10 and higher. As stated
earlier, the core development principles applied were Separation of Concerns (using
the BLoC pattern) and the Material Design. Although it was primarily made for tablets,
in the end it is fully responsive and can be used on any devices.

The code is written in the newest officially supported ECMAScript 2020

specification with JSX usage. The core libraries include RxJS and React Native Paper.

5. 1 Development Tools

• Visual Studio Code as a code editor for building and debugging

• Expo for cross-platform deployment using TypeScript codebase

• React Native for native UI management

• Swagger as a RESTful API documentation tool

• Android Studio as an Android emulator

• ESLint as a static code analysis tool

5. 2 Libraries

• RxJS - Reactive Extensions Library for JavaScript [15]

• React Native Paper - a collection of customizable and production-ready components for React
Native, following Google’s Material Design guidelines [16]

5. 3 Architecture

React Native provides its own UI abstraction layer over iOS and Android platforms.

React Native core and native components invoke the native views so that it is possible
to write the application UI with JavaScript or TypeScript, instead of Kotlin/Java or
Swift/Objective-C [17].

35

Figure 20. Implementation - React Native core concept

5. 3. 1 Function Components and Hooks

In React, there are two ways to define a component: using a class (as a ES6

standars) or a function. Because of their reputation of representing a cleaner a simpler
code, the Function components have become a new standard, so I fully relied on them
while creating my application.

Hooks allow us to reuse stateful logic without changing the component hierarchy

[18]. The hooks I use in my application are useEffect, which is a combination of
componentDidMount, componentDidUpdate, and componentWillUnmount, and
useState, which makes it possible to add React state to function components.

In Code Listing 1, I define a DisplaySetsScreen function component. I use the state

hook for initializing a sets object, which is either of Record array type whose property
keys are strings and whose property values are also strings, or of null type. The hook
does all the state management, so I do not need to write custom setters. The useEffect
hook, by its nature, gets called after each re-render. The second argument, called a
dependency array, provides a condition defining the next run. Since I do not need any
condition and need the hook to be run only after the first render, I provide an empty
array as the second argument. After each first render, the sets are being fetched from
the server and caught in a screen component with an Observable. In case of an error,
an animated activity indicator is shown.

const DisplaySetsScreen = ({navigation}: Props) => {

 // Display Sets fetched list

 const [sets, setSets] = useState<Record<string, string>[] | null>(null)

;

 useEffect(() => {

 const setsObservable = ItemsBloc.getSets()?.subscribe(setSets, () =>

(

36

 <Indicator />

));

 return function cleanup() {

 setsObservable.unsubscribe();

 };

 }, []);

Code Listing 1. DisplaySetsScreen.tsx. Function components and hooks

5. 3. 2 BLoC Pattern

BLoC (Business Logic Component) is a design pattern announced by Paolo Soares

in the Google Dart Conference 2018 and originally associated with Flutter as an
alternative way of managing states. The initial proposal was to reuse the code related to
the business logic in different platforms, in this case, Angular Dart and Flutter. Later, a
similar concept was adopted in the React and JavaScript environment.

According to official documentation [19], BLoC attempts to make state changes

predictable by regulating when a state change can occur and enforcing a single way to
change state throughout an entire application.

In Code Listing 2, I declare a BehaviorSubject, a subtype of an RxJS Subject which

stores the latest value emitted to its consumers. Whenever a new Observer (a value
consumer) subscribes, it will immediately receive the latest (or the current) value from
the BehaviorSubject. Such way, tokens are being stored using the AsyncStorage. Then, I
export an object containing a set of declared functions later to be used by the
LoginScreen.tsx component. Login function processes a POST response from the API
layer, which returns a Bearer token, and stores it in the BehaviorSubject stream.
Tokens are later used for sending any other requests to the server within a session.

import AsyncStorage from "@react-native-async-storage/async-storage";

import {BehaviorSubject} from "rxjs";

import {API} from "../core/api";

import {Bloc} from "../blocs/Bloc";

import {ControllerBloc} from "./ControllerBloc";

const currentUser: BehaviorSubject<unknown> = new BehaviorSubject<unknown

>(

 AsyncStorage.getItem("currentUser"));

export const AuthBloc = {

 login,

 logout,

 getToken

};

async function login(username: string, password: string) {

 await API.login(username, password).then(user => {

 AsyncStorage.setItem("currentUser", user);

 currentUser.next(user);

37

 getToken().subscribe(res => {

 if (typeof res === 'string') Bloc.setAuthToken(res);

 });

 });

}

function logout() {

 AsyncStorage.removeItem("currentUser");

 currentUser.next(null);

 ControllerBloc.close();

}

function getToken() {

 return currentUser;

}

Code Listing 2. AuthBloc.tsx. BLoC

BLoC was designed with three core values in mind of the authors [19]: simple,
powerful and testable.

Throughout the application, five BLoCs are used:

• Bloc.tsx as a root class component containing crucial information

• AuthBloc.tsx for authentication & token management using AsyncStorage as a
local repository

• ItemsBloc.tsx for handling collections

• ControllerBloc.tsx for controlling playback

• ThemeBloc.tsx for theme switching (light/dark)

5. 3. 3 Project Structure

The whole project is structured as a classical Expo application and consists of four

main modules: the source itself, configuration files, tests, and the assets directory for
media files. The source directory includes /blocs, /components, /core, /screens,
/styles, /utils directories, as well as the index.ts as an entry point for navigation.

38

Figure 21. Implementation - Project structure

5. 4 Consuming REST API

Nowadays, there are two mainstream approaches of consuming REST APIs in React

Native: the first is Axios, which is a promise-based HTTP client and Fetch API, which is
a browser in-built XMLHttpRequest alternative providing a more powerful and flexible
feature set [20]. Both share a similar functionality, with a difference that the Fetch does
not require including any additional libraries and can be called directly. It supports
such concepts as Cross-Origin Resource Sharing (CORS) and the HTTP Origin header
semantics.

The fetch method takes one mandatory argument, the path to the resource you

want to fetch. It returns a Promise that resolves to the Response to that request — as
soon as the server responds with headers — even if the server response is an HTTP
error status [20].

The wrapper from Code Listing 3 shows its usage.

async function get(url: string) {

 const token = Bloc.getAuthToken();

 const requestOptions = {

 method: "GET",

 headers: {Authorization: token}

 };

 return await fetch(url, requestOptions);

}

Code Listing 3. api.wrapper.tsx. Fetch API

39

5. 5 Managing playback

5. 5. 1 Running autonomously

After the sets are fetched from the server, it is possible to run a chosen set

autonomously in a loop. This is done by calling the /runautonomous function, which
starts playback of a set marked as "autonomous" on the server.

5. 5. 2 Playing chosen Tracks

When a set is chosen and tracks are fetched, the set is being prepared for playback
by two steps:

• triggering /addplaylist function

• updating the ControllerBloc for setting the current set.

The playback starts by triggering the Play button placed in the bottom bar. While it
is possible to play next and previous tracks, unfortunately, the shuffle and loop
functionality could not be implemented properly since it is not currently provided by
the server.

5. 5. 3 Playing a Chapter

Chapter adding is implemented using react-native-simple-time-picker package. A
track is being played starting from the given second by calling the /seek function shown
in Code Listing 4 and taking the number of seconds as a parameter.

const handleSeek = (track: Record<string, string>, second: number) => {

 ControllerBloc.seek(second)

 .then(() => {

 ControllerBloc.setCurrentTrack(track);

 const current = ControllerBloc.getCurrentTrack();

 if (current) handlePlay(current);

 })

 .catch(() => {

 showErrorMessage("Chapter cannot be played.");

 });

 };

Code Listing 4. DisplayTracksScreen.tsx. Seek

5. 6 Requirements Fulfillment Issues

During implementation, the development server was being redesigned and the API

routes and endpoints were changed significantly. The original VLC was changed to
MPlayer, some of the functionality, originally available for the clients and API
consumers were temporarily disabled. Such functionality include Shuffle and Loop
functions. The video files and track previews were implemented quite late and,
therefore, unfortunately, could not be included in the current mobile application
version and were postponed until future upgrades.

40

5. 7 User Interface Improvements

Since we follow agile iterative approach, changes may occur during any of the
applied stages. Thus, some changes in the user interface were approved and
implemented. Feedback and error messages for both successful and erroneous
operations were added. The side menu on the left was eliminated because of its
redundancy and its functionality was replaced to a more compact and lightweight triple
dot menu at the appbar. These changes resulted in improved heuristics and better
usability.

41

6. Evaluation and Testing

6. 1 Test Strategy

The goal of this section is to verify that all the requirements are fulfilled according

to business and technical specification. The specification itself is defined in the Analysis
section in the form of requirements.

6. 1. 1 Test Design Techniques

There are two standardized testing design techniques based on different scientific

models and widely accepted by many Quality Assurance professionals [21]:

• Static testing, which involves testing without program execution and can be
done either manually or using tools

• Dynamic testing, which is being performed by running the whole system and
after code deployment.

Some of the techniques I used are listed in Table 29:

Type Subtype

Static

Informal review

Static code analysis

Compliance to coding standard

Dynamic Use Case Testing

 System Testing

Table 29. Testing design techniques

6. 2 Use Case Testing Report

For each use case, I defined a test case (scenario) derived from it (Tables 30-51
provided with screenshots as Figures 22-35) . A test case has a specific structure and
can be defined as “a specification of the inputs, execution conditions, testing procedure,
and expected results that define a single test to be executed to achieve a particular
software testing objective, such as to exercise a particular program path or to verify
compliance with a specific requirement [22].”

The tests were executed on four different presentations (see Input data).

42

Test Case (ID: Name) 1: Login - Basic flow
Use Case ID MOB-1, MOB-12
Input data Username: admin

Password: nimda
Expected result Employee is authenticated and redirected to the

Display Sets page. Display Sets are readable either
as a list or grid. Server HTTP response status is
200.
Run Autonomous button is disabled, no
checkboxes are checked.

Real result PASS

Table 30. Test Cases - 1: Login - Basic flow

 Figure 22. Evaluation - Sets as list Figure 23. Evaluation - Sets as grid

Test Case (ID: Name) 2: Login - Alternate flow - Wrong input format
Use Case ID MOB-1
Input data Username: admin

Password:
Expected result A "Fields cannot be empty" notification is shown.
Status PASS

Table 31. Test Cases - 2: Login - Alternate flow - Wrong input format

43

Figure 24. Evaluation - Login, empty fields

Test Case (ID: Name) 3: Login - Alternate flow - Wrong user data
Use Case ID MOB-1
Input data Username: admin

Password: nimda3
Expected result A "Wrong userdata" notification is shown.

Status PASS

Table 32. Test Cases - 3: Login - Alternate flow - Wrong user data

44

Figure 25. Evaluation - Login, wrong user data

Test Case (ID: Name) 4: Login - Exception flow - No sets to show
Use Case ID MOB-1
Input data -
Expected result An animated activity indicator is shown.
Status PASS

Table 33. Test Cases - 4: Login - Exception flow - No sets to show

45

Figure 26. Evaluation - Waiting indicator

Test Case (ID: Name) 5: Display Tracks - Basic flow
Use Case ID MOB-2
Input data Presentation 1, 2, 3
Expected result Display Tracks are readable as a list, server HTTP

response status is 200.
Status PASS

Table 34. Test Cases - 5: Display Tracks - Basic flow

46

Figure 27. Evaluation - Tracks

Test Case (ID: Name) 6: Display Tracks - Alternate flow - No tracks to

show
Use Case ID MOB-2
Input data Presentation 4
Expected result An animated activity indicator is shown.
Status PASS

Table 35. Test Cases - 6: Display Tracks - Alternate flow - No tracks to show

Test Case (ID: Name) 7: Play Track - Basic flow
Use Case ID MOB-3
Input data Presentation 1, 2, 3
Expected result Display Track is being played, server HTTP response

status is 200.
Status PASS

Table 36. Test Cases - 7: Play Track - Basic flow

47

Figure 28. Evaluation - Playing Track

Test Case (ID: Name) 8: Pause Track - Basic flow
Use Case ID MOB-4
Input data Presentation 1, 2, 3
Expected result Display Track is paused, server HTTP response

status is 200.
Status PASS

Table 37. Test Cases - 8: Pause Track - Basic flow

Test Case (ID: Name) 9: Play Next Track - Basic flow
Use Case ID MOB-5
Input data Presentation 1, 2, 3
Expected result Next Track is being played, server HTTP response

status is 200.
Status PASS

Table 38. Test Cases - 9: Play Next Track - Basic flow

48

Figure 29. Evaluation - Playing Next Track

Test Case (ID: Name) 10: Play Previous Track - Basic flow
Use Case ID MOB-6
Input data Presentation 1, 2, 3
Expected result Previous Track is being played, server HTTP

response status is 200.
Status PASS

Table 39. Test Cases - 10: Play Previous Track - Basic flow

Test Case (ID: Name) 11: Play Previous Track - Exception flow - Playing

from the first track
Use Case ID MOB-6
Input data Presentation 1, 2, 3
Expected result An error alert is shown.
Status PASS

Table 40. Test Cases - 11: Play Previous Track - Exception flow - Playing from the first track

49

Figure 30. Evaluation - Error

Test Case (ID: Name) 12: Play Track - Exception flow - Playing Track

outside of the bottom bar
Use Case ID MOB-6
Input data Presentation 1, 2, 3
Expected result An error alert is shown.
Status PASS

Table 41. Test Cases - 12: Play Track - Exception flow - Playing Track outside of the bottom bar

50

Figure 31. Evaluation - Alert

Test Case (ID: Name) 12: Shuffle Track - any flow
Use Case ID MOB-7
Input data -
Expected result -
Status NOT EXECUTED (See subsection 5.6)

Table 42. Test Cases - 12: Shuffle Track - any flow
Test Case (ID: Name) 13: Loop Track - any flow
Use Case ID MOB-8
Input data -
Expected result -
Status NOT EXECUTED (See subsection 5.6)

Table 43. Test Cases - 13: Loop Track - any flow

Test Case (ID: Name) 14: Video Files list - any flow
Use Case ID MOB-9
Input data -
Expected result -
Status NOT EXECUTED (See subsection 5.6)

Table 44. Test Cases - 14: Video Files list - any flow

51

Test Case (ID: Name) 15: Create video chapter - Basic flow
Use Case ID MOB-10
Input data Presentation 1, 2, 3

Chapter name: Prague 1400
Start time: 0:15
End time: 2:04

Expected result Video chapter is created, the button is appeared,
the time is calculated correctly.

Status PASS

Table 45. Test Cases - 15: Create video chapter - Basic flow

 Figure 32. Evaluation - Chapter name Figure 33. Evaluation - Chapter button

Test Case (ID: Name) 16: Create video chapter - Exception flow - End

time before start time
Use Case ID MOB-10
Input data Presentation 1, 2, 3

Chapter name: Prague 1400
Start time: 0:10
End time: 0:02

Expected result Video chapter is not created, an error alert is
shown.

Status PASS

Table 46. Test Cases - 16: Create video chapter - Exception flow - End time before start time

52

Test Case (ID: Name) 17: Play chapter - Basic flow
Use Case ID MOB-11
Input data Presentation 1, 2, 3
Expected result The Track is being played from the stated time,

server HTTP response status is 200.
Status PASS

Table 47. Test Cases - 17: Play chapter - Basic flow

Test Case (ID: Name) 18: Dark mode - Basic flow
Use Case ID MOB-13
Input data Presentation 1
Expected result Dark mode is switched quickly with no delay.
Status PASS

Table 48. Test Cases - 18: Dark mode - Basic flow

Figure 34. Evaluation - Dark mode

53

Test Case (ID: Name) 19: Run Autonomous - Basic flow
Use Case ID MOB-14
Input data Presentation 1, 2, 3
Expected result A Set is checked, Run Autonomous button is enabled,

the button text changed to "Stop", server HTTP
response status is 200.

Status PASS

Table 49. Test Cases - 19: Run Autonomous - Basic flow

 Figure 35. Evaluation - Running autonomous

Test Case (ID: Name) 20: Run Autonomous - Alternate flow - Choosing

another set
Use Case ID MOB-14
Input data Presentation 1, 2, 3
Expected result Another Set is checked, all the others are unchecked.
Status PASS

Table 50. Test Cases - 20: Run Autonomous - Alternate flow - Choosing another set

54

Test Case (ID: Name) 21: Logout - Basic flow
Use Case ID MOB-15
Input data Presentation 1, 2, 3
Expected result Employee is logged out and redirected to the Login

page. Data are prefilled.
Status PASS

Table 51. Test Cases - 21: Logout - Basic flow

6. 3 Usability Testing Report

A usability test is intended to determine the extent an interface facilitates a user’s
ability to complete routine tasks. Users are asked to complete a series of routine tasks.
Sessions are recorded and analyzed to identify potential areas for improvement to the
product [23]. I conducted an onsite usability test using the current version of my
application with participation of three testers. All of them are of different age
categories, one of them was familiar with software testing. In every case, an Android
device of a version 5 or higher was used. The purpose of the test was to assess the
usability of the user interface design, information flow, and information architecture.

Three questions were put in front of the participants:

1. What parts of the mobile app did you like the most? Why?
2. What do you think about the way features and information were presented?
3. If you had a choice, why would you keep using this mobile app? Why would you

not [24]?

Table 52 contains the participant feedback, satisfactions ratings and

recommendations for improvements. A 5-point scale was used for the rating with 1 as
the worst up to 5 as the best.

Participant ID
Question

ID
Feedback Recommendations

Overall
satisfaction

rating

1

1
Color choices
and theming

Add more functionality,
make it more interactive

4
2

The grid view
is a bit messy

3

I would,
because I

enjoy its good
design

2

1
The fact that it
is scaled for a

tablet

No recommendations 5

2
Everything is

good

3

I would,
because I like

its big
resolution and
it is pleasant

to handle

3 1
Color choices
and theming

Add more functionality,

55

2

More
information
about tracks

could be
presented

make it more interactive

3

3

I would not,
because the
functionality
is limited and
it needs many

upgrades

Table 52. Usability Testing - results

6. 4 Summary

Several types of testing design techniques were applied in this work. Results of both

showed overall success and proved the application to be useful and as functional as it
could be at the moment of writing the Thesis. There were no significant drawbacks
detected in terms of user interface design, performance, or functionality. While Use
Case Testing showed no failure, usability methods helped to gain more insight into user
experience issues and gather qualitative data for future consideration and deeper
analysis.

56

7. Conclusion

A substantial upgrade has been made to the Multiprojection control system project

being currently developed at the Department of Computer Science. A completely new
version of a mobile application aimed at remote presentations management, which is
supposed to be performed by the City of Prague Museum employees, has been
implemented and tested. I consider the results of this work to be successful and
worthwhile, although not all of its parts was completed according to the initial plan.

The Thesis goals were achieved exactly as they were stated and all the problems

with the existing mobile application version mentioned in the Motivation section were
eliminated.

In this chapter, I will go through the Thesis goals' realization process.

Goal 1. Design an upgraded version of a mobile application scaled for tablets,
eliminate all the problems mentioned above and represent it with a high-
fidelity clickable prototype.

The goal completion is described in detail in the Design chapter.

Goal 2. Implement the designed solution through creating a multi-platform

application mainly targeted at Android devices.

The goal completion is described in detail in the Implementation chapter.

Goal 3. Test the application on four different presentations.

The goal completion is described in detail in the Evaluation and Testing
chapter.

7. 1 Future Work

For future development and upgrades, recommendations made in the Usability
Testing results table should be taken into account. Temporarily missing functionality
should be completed and new features may be implemented. The Android package size
should be reduced by removing unnecessary dependencies and cleaning out native
code generated by Expo framework.

57

Bibliography

[1] Kling, Rob, The Organizational Context of User-Centered Software Designs, MIS
Quarterly, 1977

[2] Norman, D. A., User-Centered System Design: New Perspectives on Human-
Computer Interaction, L. Erlbaum Associates Inc., 1986

[3] Usability.gov. https://www.usability.gov/what-and-why/user-centered-design.html,
accessed on 10.05.2021

[4] Interaction-design.org. https://www.interaction-design.org/literature/topics/user-
centered-design, accessed on 10.05.2021

[5] IBM. https://developer.ibm.com/depmodels/reactive-systems/articles/defining-the-
term-reactive/, accessed on 10.05.2021

[6] ArhitecturalDigest. https://www.architecturaldigest.com/story/digital-art-and-
design-exhibitions-get-lost-in-from-home accessed on 05.01.2021

[7] Bc. Ondřej Trojan, Multiprojection Control Systems, Czech Technical University in
Prague, 2020

[8] Alain Abran, James W. Moore, Pierre Bourque, Robert Dupuis, Guide to the software
engineering body of knowledge, Computer Society Press, 2004

[9] Systems Engineering Fundamentals, Defense Acquisition University Press, 2001

[10] Michael Jesse Chonoles, OCUP Certification Guide, Morgan Kaufmann, 2018

[11] Google. material.io, accessed on 25.11.2020

[12] Nielsen Norman Group. https://www.nngroup.com/articles/how-to-conduct-a-
heuristic-evaluation, accessed on 05.01.2021

[13] Nielsen Norman Group. https://www.nngroup.com/articles/ten-usability-heuristics,
seen on 05.01.2021

[14] Elaine Weiss, Making Computers People-Literate, Jossey-Bass Publishers, 1993

[15] RxJS. https://rxjs-dev.firebaseapp.com, accessed on 02.04.2021

[16] React Native Paper. https://callstack.github.io/react-native-paper, accessed on
08.04.2021

[17] Dev.to. https://dev.to/goodpic/understanding-react-native-architecture-22hh,
accessed on 03.04.2021

[18] ReactJS.org. https://reactjs.org/docs/hooks-intro.html, accessed on 10.03.2021

[19] BlocLibrary.dev. https://bloclibrary.dev/#/whybloc, accessed on 14.03.2021

[20] Mozilla.org. https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API,
accessed on 07.03.2021

https://www.usability.gov/what-and-why/user-centered-design.html
https://www.interaction-design.org/literature/topics/user-centered-design
https://www.interaction-design.org/literature/topics/user-centered-design
https://developer.ibm.com/depmodels/reactive-systems/articles/defining-the-term-reactive/
https://developer.ibm.com/depmodels/reactive-systems/articles/defining-the-term-reactive/
https://www.architecturaldigest.com/story/digital-art-and-design-exhibitions-get-lost-in-from-home
https://www.architecturaldigest.com/story/digital-art-and-design-exhibitions-get-lost-in-from-home
material.io
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation
https://www.nngroup.com/articles/ten-usability-heuristics
https://rxjs-dev.firebaseapp.com/
https://callstack.github.io/react-native-paper
https://dev.to/goodpic/understanding-react-native-architecture-22hh
https://reactjs.org/docs/hooks-intro.html
https://bloclibrary.dev/#/whybloc
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

58

[21] ArtOfTesting.com. https://artoftesting.com/test-design-
techniques#Static_Test_Design_Techniques, accessed on 12.05.2021

[22] 24765-2010 - ISO/IEC/IEEE International Standard - Systems and software
engineering -- Vocabulary, IEEE, 2010

[23] Usability.gov. Usability Test Report Template, accessed on 13.05.2021

[24] PlaybookUX.com. https://www.playbookux.com/usability-testing-questions,
accessed on 13.05.2021

https://artoftesting.com/test-design-techniques#Static_Test_Design_Techniques
https://artoftesting.com/test-design-techniques#Static_Test_Design_Techniques
https://www.playbookux.com/usability-testing-questions

59

Appendices

A. Installation

Applicable to Windows 10 environment.

A. 1 Android Studio

Build an APK file after Expo environment installation as described in subsection

A.2 with expo build:android -t apk command.
Open Android Studio and choose "Configure" --> AVD Manager. Create a virtual

device and run the emulator. Drag the APK file onto the emulator screen. An APK
Installer dialog will appear. When the installation completes, the application is
available in the apps list.

A. 2 Expo client

Node.js v. 14 or higher is required. No APK needed. Go the project's root directory

and run:

1. npm install --global expo-cli to configure Expo command line tools

2. npm install to configure all the necessary packages and dependencies

3. expo-start to start Metro Bundler (a HTTP server compiling the TypeScript
code)

Go to the specified server address and use the QR code to open the application on

an Android tablet device (Expo client needed) or choose the "Run on Android
device/emulator" option.

