

Czech Technical University in Prague

Faculty of Electrical Engineering

BACHELOR THESIS

Tomáš Zámostný

Supervisor: Ing. Bešťák Robert Ph.D.

summer 2021

Telemetry Data Collection, Analysis

and Representation

II

III

Declaration of Authorship

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all mate- rial and results

that are not original to this work.

Prague, date: Tomáš Zámostný

Prohlášení o autorství

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré

použité informační zdroje v souladu s Metodickým pokynem o dodržování etických

principů při přípravě vysokoškolských závěrečných prací.

Praha, dne: Tomáš Zámostný

IV

Acknowledgements

This project was made in a very short period of time between challenges and

difficulties, none of this would have been possible without the help and support of a

very special group of people.

"Thank you" to my family, who has supported me since day one in all my decisions

and achievements.

Finally, I would like to thank my thesis supervisor Ing. Robert Bešťák, PhD. of the

Department of Telecommunication Engineering at Czech Technical University in

Prague for proposing this thesis and giving me the opportunity to make it happen.

Tomáš Zámostný

Czech Technical University in Prague

V

Abstract

This thesis aims to search, analyse, and visualise real-time data in telemetry and log

data from various servers using open source products such as Elasticsearch, Logstash,

and Kibana. The log and data located on several different processing machines can be

challenging to handle as the volume of data increases with the scale of software

systems, networks, and services.

This thesis discusses the concepts of centralised logging, telemetry, and existing

software solutions for implementing such a system. It also allows you to search for

problems across multiple servers by connecting their telemetry data over a specific

period. These operations are valuable and essential in an environment with hundreds

of containers producing terabytes of data per day.

This thesis discusses the benefits of collecting and analysing all telemetry data from

the newly created system. The finished framework and additional results from the

implementation process are also described. The final setup worked well and did not

necessitate any improvements to our system.

Keywords: Telemetry, Data analysis, Collect data, Agent, Elasticsearch, Logstash,

Kibana, Real-time, ELK Stack, Metricbeat

VI

Abstrakt

Cílem této práce je vyhledávat, analyzovat a vizualizovat telemetrická data v reálném

čase a protokolovat data z různých serverů za pomoci open-source nástrojů jako je

Elasticsearch, Logstash a Kibana. Je komplikované sbírat data umístěná na mnoha

různých serverech, vzhledem k množství dat, které se zvyšuje s velikostí sítě.

Práce pojednává o konceptech centralizované telemetrie, a hledá vhodnou variantu ze

stávajících softwarových řešení, aby bylo možné hledat a analyzovat problémy na

serverech za delší časové období. Takové řešení je přínosné a klíčové v prostředí, které

se skládá z velkého množství serverů a generuje stovky terabajtů dat denně.

V dalších kapitolách se věnuji výhodám sběru a analýzy všech telemetrických dat

z našeho vytvořeného systému. Konečné nastavení fungovalo správně a nevyžadovalo

žádná další vylepšení našeho systému.

Klíčová slova: Telemetrie, Analýza dat, Sběr dat, Agent, Elasticsearch, Logstash,

Kibana, Real-time, ELK Stack, Metricbeat

VII

CONTENT

List of Figures .. X

List of Tables ... XI

Acronyms .. XII

1. Introduction .. 14

1.1 Aim of Bachelor Thesis ... 15

1.2 Structure... 16

2. ELK STACK ... 17

2.1 Elasticsearch .. 18

2.1.1 How Elasticsearch works ... 19

2.1.2 Applications of Elasticsearch ... 19

2.1.3 Advantages of Elasticsearch ... 20

2.1.4 Disadvantages of Elasticsearch .. 21

2.2 Beats .. 21

2.2.1 Metricbeat agent ... 22

2.3 Logstash ... 22

2.3.1 Logstash with ELK ... 23

2.4 Kibana .. 23

2.4.1 Kibana DEV Tool ... 24

2.5 Why ELK Stack ... 25

2.6 Finding the best solution.. 26

3. Used Environments .. 28

3.1 Debian .. 28

3.1.1 Desktop and Server .. 28

VIII

3.1.2 Stable version ... 28

3.1.3 Manage packages ... 28

3.2 CRON .. 29

3.3 Docker ... 29

3.3.1 Docker-Image ... 31

3.3.2 Docker-Volume .. 31

3.3.3 Docker Container ... 31

3.3.4 Service and Stacks .. 32

3.3.5 Base Image ... 32

3.3.6 Docker Volumes ... 32

3.3.7 Cluster and Nodes .. 32

3.4 Events, Logs & Metrics ... 33

3.5 Rsyslog .. 34

3.6 SSH/SCP .. 36

4. Data Characteristic .. 38

4.1 Telemetry data example ... 38

5. Experimental Setup .. 40

5.1 Configurations of virtual machines ... 41

5.2 PBX Server .. 42

5.2.1 Configuring docker-compose ... 42

5.2.2 Configuring Filebeat .. 43

5.2.3 Configuring Metricbeat agent .. 44

5.2.4 Configuring rsyslog .. 44

5.2.5 Configuring crontab ... 46

5.2.6 Configuring shell script .. 46

5.3 Collector, Data storage, visualisation server ... 47

IX

5.3.1 Configuring Docker-compose .. 47

5.3.2 Configuring Logstash ... 49

6. Results ... 53

7. Conclusion ... 61

Bibliography ... 63

X

LIST OF FIGURES

Figure 1 – Network structure ... 15

Figure 2 – System architecture ... 16

Figure 3 – ELK architecture ... 18

Figure 4 - Structure Beats and Elasticsearch .. 21

Figure 5 – Basic functioning of Logstash ... 22

Figure 6 – Screenshot of Kibana Dev-tool ... 25

Figure 7 – Docker structure .. 31

Figure 8 – Experimental Setup scheme .. 40

Figure 9 - Overview dashboard .. 53

Figure 10 - Dashboard gauges .. 54

Figure 11 - Load ... 55

Figure 12 – Network traffic .. 56

Figure 13 – Network traffic packets ... 56

Figure 14 – Load vs CPU usage ... 57

Figure 15 – Memory usage ... 58

Figure 16 – Basic CPU usage ... 58

Figure 17 – CPU usage by services .. 59

XI

LIST OF TABLES

Table 1 – Rsyslog command .. 34

Table 2 – Configuration of Virtual machine .. 41

XII

ACRONYMS

ELK Elasticsearch Logstash Kibana

PHP Personal Home Page

HTTP Hypertext Transfer Protocol

API Application Program Interface

JSON JavaScript Object Notation

GUI Graphical User Interface

VM Virtual Machine

UI User Interface

ISO International Organization for Standardisation

GPS Global Positioning System

RAM Random Access Memory

TCP Transmission Control Protocol

UDP User Datagram Protocol

SQL Structured Query Language

DAM Digital Asset Management

CTI Computer Telephony Integration

VOIP Voice Over Internet Protocol

PBX Private Branch Exchange

CSV Comma-separated values

UTC Coordinated Universal Time

14

1. INTRODUCTION

Telemetry data is data recorded and transmitted from a remote source and is later used for

monitoring [1]. The type of data measured can come in many forms, such as HTTP request

logs, CPU / Memory usage, etc. Once this data has been received, it can be used for many

important functions. For instance: monitoring of performance and security of a system,

examining the health of servers and ultimately improving the customer experience of the

product or service which is being monitored.

There are several professional softwares capable of analysing telemetry data, such as Hadoop

and ELK which means Elasticsearch Logstash Kibana. Each software has its own unique

advantages and disadvantages, with specific functions more compatible with particular

software. For example, Hadoop is more suitable for analysing big data (large volumes of data

that cannot be treated with conventional methods).

This thesis aims to describe and implement a solution for telemetry data collection and analysis

using the ELK stack. Namely, to implement a collector agent for Debian based PBX servers

(Private Branch Exchange), used in private telephone networks, to create a back-end service for

data storage and to create a web-based analytics dashboard. ELK is a collection of open-source

tools that work together to search and analyse data from multiple servers or a single location.

15

1.1 Aim of Bachelor Thesis

This thesis aims to implement the collection and subsequent analysis of telemetry data from

multiple PBX servers. This data is used for determining the state of a PBX server network. A

PBX network is often crucial for the daily operations of companies and other institutions

performing health checks. Preventing and minimising downtime is necessary for smooth

operations and cost avoidance. A diagram of a PBX network is shown in Figure 1.

Figure 1 – Network structure

To achieve our goal, we use the ELK stack and Beats (Metricbeat and Filebeat). Figure 2 shows

how ELK is used to centralise data management. Logstash is the component that receives logs

transmitted by Beats from remote servers, pre-process them and pass them on directly to

Elasticsearch. Elasticsearch serves as the database, search and analytics engine, and finally, we

use Kibana, a user interface component that displays Elasticsearch data in graphs, dashboards,

and charts. The whole stack is then run in a Docker container.

16

Figure 2 – System architecture

1.2 Structure

This document contains seven chapters and thirty-five subchapters.

• Chapter 1 - This chapter provides an introduction to the thesis and explains the Aim of

the thesis along with illustrations.

• Chapter 2 - This chapter introduces ELK, which is the main software used in this thesis.

• Chapter 3 - This chapter explains the used environments, which helps the reader to

understand more about ELK and its implementation in the deployed environment.

• Chapter 4 - This chapter has an explanation of the contents of the different datasets

which are being used for testing centralised telemetry monitoring.

• Chapter 5 - This chapter covers an in-depth explanation of creating and implementing

our system.

• Chapter 6 - This chapter consists of descriptions of visual output from Kibana.

• Chapter.7.- The thesis conclusion provides an overall review and suggests further

development possibilities.

17

2. ELK STACK

The architecture of software services has evolved from monoliths to microservices in the last

few years or decades. Microservices are easily scalable and can therefore be used very flexibly.

This development opens up many options for adapting the services to the required load for

operation in production.

Monitoring is an essential part of systems in production, especially finding errors in log files or

analysation telemetry data. While searching the data files in a single-system service, in which

there are only one or possibly several chronologically divided data files, is still relatively easy.

Things are very different with distributed microservices. An incoming request is forwarded

from one service to the next, so troubleshooting can be difficult and take up a lot of time.

We want to take a closer look at the ELK stack here, as it is becoming increasingly popular and

the technologies can be used free of charge. ELK stands for the technologies on which the

telemetry and logging framework is based: Elasticsearch, Logstash and Kibana. Logstash

collects data files from various sources, filters them, changes them, and passes them on to

several databases. One possibility is the Logstash, which receives data entries via TCP or UDP.

In the ELK stack, the data entries from Logstash are passed on to Elasticsearch and stored.

Elasticsearch is a document-based NoSQL database [2].

Elasticsearch is based on Apache Lucene and is highly efficient when searching for texts and

is therefore perfect for telemetry or log file entries. Kibana is a graphical user interface that

reads and displays the log entries from Elasticsearch. The aggregated telemetry and log data

can be visualised graphically with diagrams and summarised in a dashboard [3].

The ELK stack can also be built up a little differently. Logstash can react to TCP or UPD calls

and receive the data entries in this way and read them directly from a data file. In this setup,

Logstash must be installed for each service and one or more files are defined as input (shows

in Figure 3). Logstash monitors the specified data files, reacts to changes in the file and sends

new entries to Elasticsearch [4].

18

Figure 3 – ELK architecture

2.1 Elasticsearch

Elasticsearch is an open-source search engine based on Apache Lucene. It works with indices,

which consist of JSON documents in NoSQL format. The search engine works very quickly

and can be used to search in large amounts of data (big data) and support distributed

architectures for high availability. Together with Kibana and Logstash, Elasticsearch forms the

Elastic Stack [5].

Elasticsearch is a search engine released in 2010 and developed by Elastic (formerly

Elasticsearch N.V). It is based on Apache Lucene and enables full-text searches in various types

of structured and unstructured data such as text data, numerical data or geodata. Elasticsearch

works with indices, consisting of JSON documents in NoSQL format, and provides a REST

API for indexing and searching through the data. Due to the high search speed, Elasticsearch

can be used to search through large amounts of data, for example, in big data and business

intelligence applications.

The search engine supports distributed computer architectures and offers high availability.

Together with Kibana and Logstash, Elasticsearch forms the so-called Elastic Stack, also called

ELK-Stack. It is a collection of open-source software that can be used for analysing and

visualising data. Elasticsearch is one of the most widely used search software and is used for

searching websites, company data or log files [3].

The core software of Elasticsearch is subject to the Apache License 2.0. In addition, the

company Elastic offers commercial products and fee-based services related to Elasticsearch.

Elasticsearch is programmed in Java, and it is platform-independent.

19

2.1.1 How Elasticsearch works

The focus of the search with Elasticsearch is the data structure of the inverted index. The index

is created before the search by indexing the raw data and storing it in a database. The data that

is to be searched is stored there. The index is divided into types and documents. For the search

engine, types behave similarly to tables in a database. An index can be of many types. The

JSON documents with their properties are located below the types. They are the smallest unit

of the index and contain the actual data for the search. JSON documents are made up of pairs

of keys and values. Elasticsearch uses a REST API both for indexing the raw data and for

executing the search queries.

2.1.2 Applications of Elasticsearch

Elasticsearch can be used as a search engine for many different applications. Typical

applications are:

• Search on websites

• the search in application data

• the search in business data

• the search in log files

• the search in geospatial data as well

• the search in security and monitoring data

Elasticsearch uses a data structure called an inverted index designed to allow quick full-text

searches. An inverted index lists every unique word in any document and identifies all of the

documents each word occurs in. The architecture of the system is structured based on the

following concepts [6],[7]:

• Clusters: It is a collection of one or more nodes(servers) which are running the ELK

software components. All these nodes will hold the entire data and provides federated

indexing. The logs are stored in different nodes and search capability is across all nodes

and makes simple to output the requested document. A cluster is identified by a unique

name which shouldn't be matched with other cluster names.

• Node: It is a single server that is with Elasticsearch package installed into it. This server

is a part of a cluster with a unique identifier name inside the cluster. This node also

accesses the user to store, search and analyse the documents.

• Index: It is a collection of documents (logs) that have somewhat similar characteristics.

In a single cluster, many indexes can be declared and be defined.

20

• Document: It is a basic unit in Node which is information that can be indexed. Many

documents can be stored within an index/type. Although a document physically resides

in an index, a document actually must be indexed/assigned to a type inside an index.

• Shards and Replicas: Elasticsearch has the best facility to subdivide the index into

multiple pieces into shards. When there is large data, this facility acts more efficiently.

When an index is created, simply number of shards can be defined and each shard is in

itself a fully-functional and independent.

2.1.3 Advantages of Elasticsearch

The following points explain the various advantages of Elasticsearch:

1. Elasticsearch is fast. Since Elasticsearch is based on Lucene, it can play its trump cards,

especially with full-text searches. Elasticsearch is also a near-real-time search engine:

the time between indexing a document and finding the document through the search is

concise - usually only a second. This makes Elasticsearch particularly suitable for use

cases in which time plays a role, such as security analytics and infrastructure

monitoring.

2. Elasticsearch is naturally distributed. The documents stored in Elasticsearch are

distributed to various containers, the so-called shards, which are duplicated so that

redundant copies are available in the event of a hardware failure. The distributed nature

of Elasticsearch makes it possible to scale Elasticsearch to hundreds (or even thousands)

of servers and process data petabyte by petabyte.

3. Elasticsearch has a variety of features. In addition to its speed, scalability and resilience,

Elasticsearch has several powerful built-in functions that make it even more efficient to

store and search for data. This includes, for example, data rollups and index lifecycle

management.

4. The Elastic Stack makes it easy to ingest, visualise, and report on data. Thanks to the

Beats and Logstash integrations, data can be quickly processed before indexing in

Elasticsearch. Furthermore, Kibana offers real-time visualisation of Elasticsearch data

and functions for quick access to APM data, log data and infrastructure metrics.

21

2.1.4 Disadvantages of Elasticsearch

The following points explain the various disadvantages of Elasticsearch:

1. Language constraint: Elasticsearch does not have multi-language support in terms of

handling request and response data.

2. Structure specific: To run the queries correctly, you need to take care of a hierarchy of

indices, IDs, and types.

2.2 Beats

Data such as CPU utilisation or the network status of the server are also interesting for the

analysis. Elastic Stack offers so-called beats for this. Beats are lightweight platforms that act as

data shippers and transmit data files from various sources to Logstash or Elasticsearch. Many

beats are supported by Elastic Stack, such as Metricbeat, Filebeat, Packetbeat, Heartbeat, Win-

log beat, Libbeat (in Figure 4). Metricbeat collects the metrics about the system and services.

With the help of Metricbeat, you can quickly get an overview of CPU usage at a system level,

memory and file systems, the IO of hard drives, the network, etc. Metric Beat is part of Elastic

Stack and is easy to use with Logstash, Elasticsearch and Kibana integrable. With the default

setting, Metricbeat sends the data to Elasticsearch in localhost: 9200, but it is easy to configure

via the metricbeat.yml file which metrics we need and where the metrics should be sent.

Packetbeat collects the network data and database analysis. With Filebeat, you can send log

files to a central server. Libbeat is an open-source framework that makes it easier to create your

beat [8].

Figure 4 - Structure Beats and Elasticsearch [8]

22

2.2.1 Metricbeat agent

Metricbeat collects data about system resources and sends it to the monitoring cluster. The

advantage of using Metricbeat instead of the internal collection is that the monitoring agent

continues to function even if the Metricbeat instance is terminated. Because you will be

monitoring Metricbeat, you will need to run two instances of Metricbeat: one that collects

metrics from the system and services running on the Web server and another that collects

metrics only from Metricbeat. You can send monitoring data to a dedicated monitoring cluster

using a separate instance as a monitoring agent. The monitoring agent remains active even if

the leading agent fails [8].

2.3 Logstash

Logstash [9] processes and normalises telemetry and log files. The application draws its

information from various data sources that users define as input modules. Sources can be, for

example, data streams from Syslog or log files. In a second step, filter plug-ins process the data

according to user specifications - the phase can also be omitted, the material then moves on

unprocessed. Finally, the output modules output the results, everything goes to the Elasticsearch

service in the test environment. Figure 5 shows how the components interact.

Figure 5 – Basic functioning of Logstash [9]

Logstash is free and, like Elasticsearch, comes under the Apache license. The sources, Debian

and RPM packages, and information on the online repository can be found on the project page.

23

Logstash has a pluggable platform that supports over 200 plug-ins. This function facilitates the

mixing, matching, and arranging of various inputs, as well as the streaming of outputs to operate

in a pipeline. With its persistent queue, Logstash guarantees at least once delivery for in flight

events even in the case of node failure.

Logstash can efficiently minimise obtained data by removing only the useful information.

Logstash filters parse each occurrence, identifying named fields to create structure, and

transforming them to converge on a standard format for more efficient analysis and business

value. When it comes to data output, Logstash supports a wide variety of destination types. All

events are typically sent to Elasticsearch, but Logstash can also be used separately to save data

to a CSV file, a SQL database, or a data analytics algorithm [10].

2.3.1 Logstash with ELK

Indexing data in Elasticsearch can be done either by manually sending an HTTP request for

indexing with the data or using some data senders like the Elastic Beats family. If the data

comes from several different sources without a consistent data structure, a separate filter

pipeline such as Logstash may be required to normalise the data before indexing. Logstash is

an event processing pipeline that consists of three stages. The input stage is where the data

enters the pipeline, and an event is created. Possible inputs are via a UDP port or from a Beats

data sender. There is no rule in which format the data has to be available. The event is built

from fields that contain the data. From the input stage, the event is passed on to the filter stage.

A proper filter is the so-called Grok filter. It parses plain text from a field and recognises

patterns. This way, additional fields can be created and filled with the parsed data, and an

unstructured text from a field can be brought into a uniformly structured and queryable form

[2].

Additionally, the fields can be manipulated by the mutate filter. Several filters can be applied

to an event, one after the other. The final stage after the filter stage is the. Here one or more

outputs can be defined, where and in which format the data should be sent. For example, the

Elasticsearch output uses the convenient bulk index request to send a series of events at once

[4].

2.4 Kibana

The information that is now stored in the Elasticsearch database is visualised with the data

visualisation tool Kibana. Kibana is a web interface that was specially developed for

24

Elasticsearch. It also comes from Elastic and forms the third component of the ELK Stack. The

graphical user interface interacts with Elasticsearch via REST and offers the user the option of

visualising this data Figure 15 Kibana overview and filtering it as desired. With Kibana, the

data can be analysed, evaluated and visualised. Kibana offers the possibility to create different

types of visualisations. This includes histograms, graphs, pie charts, donut charts, and more. In

order to summarise the various visualisations and adapt them to your own search, Kibana offers

so-called dashboards (Figure 4 Kibana overview). A dashboard consists of any number of

visualisations that can be freely arranged next to one another and one below the other. You can

also interact with Kibana via a REST API. The user can call up the data directly from a

visualisation via the API. Certain processes can be automated connection with Kibana can be

established by external software products.

Kibana's interface can be accessed using: http://localhost:5601/. The default port on which

Kibana is available is 5601. The main view of Kibana is divided into 3 main components –

Discover, Dashboards and other managements. Discover allows to interactively browse and

analyse pure data entries. Elasticsearch documents are categorised based on Index patterns

defined in Management section. They can be easily searched and filtered by time or by

document properties using Apache Lucene query syntax. One can also see the number of

documents that match the search query or get field value statistics.

Kibana uses the data from Elasticsearch to represent the data to the user in the form of bar

graphs, pie charts, heat maps etc. Visualise section provides possibility to visualise data. When

we have the visualisations ready, all of them can be placed on one board – the Dashboard.

Observing different sections together gives you a clear overall idea about what exactly is

happening. Information can be shown in form of tables, charts, maps, histograms, and many

others. Large volume can be easily shown in form of pie charts, bar charts, line, or scatter plot

[11].

2.4.1 Kibana DEV Tool

Kibana is a front-end GUI for displaying and analysing data in Elasticsearch. It was created in

JavaScript and runs in a normal web browser. Located on the Dev Tools page the development

tools that are used to interact with Elasticsearch can. Kibana Dev Tool has a very simple user

interface and is in a request and divided an answer window (see figure below). Features like

syntax highlighting, auto-completion and automatic indentation make it easier to process search

queries in the request window considerably. In the answer window, the respective result of the

http://localhost:5601/

25

search query is shown as a JSON document presented. The folding and unfolding of document

parts are also here possible [11].

Figure 6 – Screenshot of Kibana Dev-tool

Figure 6 on the left side shows the beginning of an approximately 100-line long code with a

test request. In the answer window, the right of it is all that match the request Elasticsearch

documents clearly displayed. Because of this easy-to-use console uses Kibana Dev-Tools to

code them to test programmed Java applications or to trace errors that occur and to be able to

fix them.

2.5 Why ELK Stack

Each server in a network with several servers running different processes generates a different

set of log messages. It is difficult to decipher a large number of telemetry and log messages and

separate telemetry or log files scattered across each server. The Elastic Stack is a collection of

open-source tools that work together to search and analyse log messages from multiple servers

from a single location. Because the Elastic Stack's components are designed to be fully scalable,

the monitored infrastructure can expand without the Elastic Stack becoming a "bottleneck."

26

This is why the Elastic Stack has become so well-known in the IT sector and industry. The

Elastic Stack is used by companies such as Cisco, Docker, Microsoft, and eBay [7]. As a result,

a sizable community is dedicated to Elastic Stack's continued development and maintenance.

The popularity of open-source software like this one is growing every year.

The Elastic website has comprehensive documentation of the Elastic Stack tools. In addition to

platforms like Stack Overflow, which are a valuable source of help and inspiration, there is an

Elastic user forum that helps solve problems. Various blogs exist on the Internet that offer

advice on how to prevent administrators from falling into traps.

Other systems exist in addition to the Elastic Stack. The commercial software Splunk, which is

used (for example) by the ATLAS experiment, is probably the most common. Splunk only

offers a free licence with a data volume limit of 500 MB. When using Splunk, the costs rise as

the volume of data grows. The Elastic Stack basic licence comes with most of the necessary

tools and functionalities, as well as an unlimited data volume. However, when purchasing

extended licences, support and special plug-ins such as warning functions and security packages

are available. On top of that, other third-party open-source tools can be used to set up the tool

for the warning function, for example [3].

2.6 Finding the best solution

One of the most critical aspects of the choice is that both systems/tools are free and open source.

Kibana is easy to use, and there is a free trial version available to try it out. Since Kibana is

used to visualise data, it requires the use of Elasticsearch as the telemetry and log database,

which requires the log collecting system's ability to store data in Elasticsearch. A pure Rsyslog

based solution would not work in this thesis, though Rsyslog could be used to send data to

Logstash. An agent to collect several types of telemetry data, mainly CPU and Memory usage,

would be implemented Metricbeat. For collecting logs, Filebeat would be a better choice

because it can parse log data and detect multiline log messages. Filebeat, on the other hand,

would be a better choice for logs because it is capable of parsing log data and detecting multiline

log messages. In this case, Filebeat, Metricbeat and Logstash are used because they are very

similar. They can both send data to Elasticsearch, and Kibana can visualise any data stored in

the Elasticsearch database. However, this organisation has some experience with Filebeat and

Logstash. These software solutions have been used in the past. In the long run, choosing

something already familiar will make maintenance and software updates easier. Although either

Filebeat or Logstash could be removed from the centralised logging chain, both would be used.

27

Because multiple instances of the case can run on different servers, using Filebeat to collect log

data instead of Logstash can save memory and CPU resources. Following that a single Logstash

instance is used to parse and process the log data, process the log, which is the critical step for

this system, given the challenging nature of the process. Filebeat alone does not provide

adequate data processing capabilities, making sense to consolidate log processing in one place

to simplify configuration changes [12].

28

3. USED ENVIRONMENTS

As part of my work, I worked with various environments, which I describe in detail in this

chapter.

3.1 Debian

There are many Linux distributions such as Ubuntu, Red Hat, Deepin, Fedora, Black Arch,

Mageia. In this thesis, it has been chosen the distribution of the Debian operating system [13].

3.1.1 Desktop and Server

Debian is a popular open-source software and operating system that can be used on both a

desktop and a server. The open-source freeware from the Debian project includes desktops such

as KDE, GNOME, Mate and XFCE. LXDE is recommended for older computers with limited

RAM because it only takes a small amount of Memory. Older versions of Debian include

Iceweasel as a browser, while Debian 8 and later include Firefox as an ESR edition. Software

such as LibreOffice, Wireshark, machine tools, and multimedia tools are also available and

installed using the terminal command line or the Synaptic graphic package manager.

3.1.2 Stable version

Above everything, Debian has a positive reputation for server use since it must run consistently

for a long time without the need to load new versions continually. The stable version, which is

released every two years and receives security updates for five years, ensures this. Old stable is

the previous version of the new stable version, and it can be used until the end of support since

Debian can continue to provide security updates until then. There are also experimental,

unstable, and testing versions that are becoming stable version.

3.1.3 Manage packages

Debian uses the Advanced Packaging Tool (APT) as a package manager for installing software.

If the software was not installed during the installation, it could now be installed from the

command line. When you instal software, the package manager checks to see if all of the

required packages are present and, if not, install them as well. Furthermore, the APT updates

and removes packages and kernels.

29

To update Debian packages only a few command lines are needed. To begin, update the package

details with "sudo apt-get update." Only managers, who must enter their password after the

instruction, are permitted to perform an update. "sudo apt-get dist-upgrade" is used to download

new package versions and update the packages if the package information is up to date. After

that, use "sudo apt-get autoremove" to uninstall any packages that are no longer required. This

also removes old kernel versions, freeing up a significant amount of Memory. If you do not do

this, the hard disc partition will quickly fill up, and the file system will be unable to accept any

more files, despite the available storage space [13].

3.2 CRON

This is a feature in the operating system. In the different variants of Windows, defined as

Programmable Tasks, you can define the frequency and batch file or program to run through a

graphical interface. In the Linux systems, it varies a bit depending on the distribution, but

basically, you configure a particular text file, where the frequencies and program, command or

shell script to run. In either case, there is abundant documentation about it, and it is not a

complex task [PT-Win] and [Cron]. Besides, the same script or batch file must be run in both

cases, with tiny differences, but constantly invoking the same extension module described in

the next section. Care should be taken to establish how to refresh rate, the lowest possible

frequency of all tasks programmable. This means that if tasks are scheduled that must be

executed once a week and tasks need to be run once a day, the latter involves a particular

schedule. If this schedule is segmented by every 30 minutes, the task scheduled should have 30

minutes. If, on the other hand, this schedule use only exact hours, the scheduled task should

have 1 hour [13].

3.3 Docker

Docker is mainly a software development platform and a kind of virtualisation technology that

makes it easy for us to develop and deploy apps inside neatly packaged virtual containerised

environments. Meaning apps run the same, no matter where they are or what machine they are

running on. Docker containers can be deployed to just about any machine without any

compatibility issues, so your software stays system diagnostic, making the software more

straightforward to use, less work to develop, and easy to maintain and deploy. These containers

running on your computer or server act like little microcomputers with concrete jobs, each with

their operating system and its own isolated CPU processes, Memory, and Network resources.

30

Containers are similar to virtual machines (VMs), but they are far more specific and granular.

They separate a single application and its dependencies from all external software libraries

required to run the app, as well as the underlying operating system. The containerised

applications all run on the same operating system, but they are divided into compartments.

Containerized applications use significantly less Memory than virtual machines, boot up and

finish faster, and can be carried much more densely on their host hardware. Enterprise software

must be able to respond quickly to changing needs. That means easy scaling to meet demand

as well as easy updating to add new features as the project demands. Docker containers make

it simple to instal new software versions with custom features.

Docker allows for portability, and Docker containers contain everything an application requires

to run. They make it simple to move applications between environments. That application can

be run in a Docker container on any system that has the Docker runtime installed, such as a

developer's laptop or a public cloud. Docker and containers provide developers with more

independence while also allowing them to develop applications that respond quickly to

changing business conditions [14].

31

3.3.1 Docker-Image

The Docker image is built with the information from the Docker le. It's kind of a snapshot of a

system. Images are built up internally in layers, whereby each layer can be an independent

image. For example, the operating system is an image (base layer) that is loaded when another

image is built. If another image is created that is based on the same base layer, it does not have

to be reloaded. It is sufficient that reference is made to the base layer. This saves resources,

especially when there are several images based on the same layers. In summary, the image is

that element of Docker that is portable and can be distributed.

Figure 7 – Docker structure

3.3.2 Docker-Volume

One function of Docker is that a new container is set up when the software updates an image.

This then replaces the old container after a successful deployment. To avoid losing the files of

the old container, Docker volume is used. Volumes are directories in the host's file system that

are separate from the container. This is where the files are saved that are to be retained when a

container change takes place. By default, Docker automatically creates a volume as soon as a

container is created. This volume directory is provided with a UID, a unique ID. However, the

volumes can also be named with their own name. You can also choose your own storage

location. The information about a volume can be viewed with docker inspect [14].

3.3.3 Docker Container

In a Docker container, the software of an application becomes an invisible Box containing

everything the application needs to do. This includes Operating system, application code,

runtime, system tools, system libraries etc. Docker containers are created from Docker images.

Because images are read-only. Docker adds a read/write file system over the read-only. The file

system of the image to create a container. When creating the container, Docker also creates a

32

network interface so that the Container can communicate with the localhost. Available IP

address appended. After a container has been successfully created, it can be run in any

environment without making changes to have to [15].

3.3.4 Service and Stacks

If the aim is to distribute services over several computers, this increases the administrative effort

immensely. Services were therefore introduced to better scale Docker. A service describes a

task. As with a container, with a service, you specify which image you are referring to. The

difference is that you don't take care of running services yourself. Docker takes on this task

itself simplified. Such services are usually combined in groups. The stacks are used to manage

these service groups. simple. The prerequisite for using services and stacks is the creation of a

cluster.

3.3.5 Base Image

A base image is a basic image. Other images are mostly derived from them. The name and

version are specified with the FROM command. Here you should pay attention to o labeled

images. Examples of this would be Ubuntu, Alpine Linux or Debian.

3.3.6 Docker Volumes

The individual Docker containers are completely isolated from each other. So no Containers

access the host's file system or from other containers. In many cases, different containers need

data with each other or with the host change. In this case, volumes can be used. A volume is a

path which the host and one or more containers can access. The path to a host directory can be

specified when starting a Docker container with the Flag -v must be passed.

3.3.7 Cluster and Nodes

One of the advantages of ES is its ability to run as a distributed system across several nodes

(servers), allowing for a higher throughput of operations than a single machine could handle.

The Clusters acts as a single running system, scaled out horizontally when more space and

processing power is needed for additional data. The underlying processes of ES manage the

distribution of data among nodes in order to optimise the parallel execution of queries and

provide data redundancy, all while remaining transparent to the user [15],[16].

 A cluster consists of different types of nodes. A master node that controls the cluster, a data

node that contains the data and can perform operations related to the data such as read, writes,

33

update and delete, and a Client node that behaves as an intelligent router or coordinator,

rerouting data requests to the data nodes and cluster requests to the master node.

The data imported into the system is split into several packets called shards, which are the basic

scaling units in ES and can have zero or more replicas. The number of shards the data should

be split into can be defined in the configuration settings. These shards are then distributed across

multiple nodes, enabling several machines to work on parts of the same dataset in parallel.

There are two types of shards, primary and replica. The primary shard is the original data, and

the replica is an exact copy functioning as a backup. The primary and replica shard of the same

data are stored on different nodes to prevent any loss of information should a node fail. If a

node fails, the replica shard automatically becomes primary, and a new replica is created on a

separate node. A query can then be sent to any node, which in turn becomes the coordinator for

the request. That node decides which shards the request is routed to, according to the availability

of the shards and the specifications that the user has defined. Every node of every selected shard

processes the query, and the results are then returned to the coordinator. The coordinator then

combines the results and sends them to the user, along with the source of the documents used

[15].

3.4 Events, Logs & Metrics

The data collected as part of the monitoring is grouped into three categories:

• Logs

• Metrics

• Events

In the event of a malfunction, logs are mainly used for diagnostic purposes. They can give you

information about what is going on inside an operating system, an application, or a network

device. In most cases, data is exchanged via textual representation and stored in log files. As a

result, Syslog was created to manage logs in Linux distributions centrally. Syslog is a log

format that specifies how a log message should be constructed. The official RFC3164 standard

was released in 2001. Various services have been established, which receive and manage log

messages according to the Syslog protocol, i.e. make them available to operating system users.

Syslogd, rsyslog, and Syslog-ng are well-known examples. However, on all systemd-based

Linux distributions, the Syslog protocol has been replaced by the journal by default. RHEL,

34

CentOS, and Debian, for example, are all affected. Journal can also receive and send Syslog-

formatted messages. It also gives you more options for adding metadata to your logs [18].

Metrics make it possible to quantify the properties of software and hardware. Metrics must be

recorded regularly in order to be helpful. An observation or data point is a single acquisition.

One Timestamp, a value, and, if necessary, several additional descriptive character attributes

are included. A time series is a collection of data points that are primarily found in chronological

order. The number of visitors to a website is an example of a time series. The time of

measurement and the number of visitors are both included in a data point. The server name

could be an additional attribute.

Granularity or Resolution refers to the recording of data points at specific time intervals. At

design time, determining the granularity is a crucial decision. If the intervals are too long,

essential details may be missed. When intervals are too short, the amount of data that needs to

be stored and processed increases.

3.5 Rsyslog

For documentation and debugging purposes, user activities - for example, login attempts - and

system events are saved in the Rsyslog relation.

Identifier Data type Comment

id INT (PK) Item ID

stamp TIMESTAMP current timestamp

user INT (FK) ID of the acting user

si MEDIUMINT (FK) ID of the incident involved

action VARCHAR (40) carried out action

status ENUM OK, ERROR, INFO

details VARCHAR (255) Possibly parameters of the activities carried out

Table 1 – Rsyslog command

After the SSH / SCP method considered in the previous section, some If weak points are

noticed, the transfer of log data with rsyslog is considered here. For example, in many current

Linux distributions, Debian, rsyslog is the standard Syslog daemon, or, as with SUSE, it can be

installed via the respective package manager [rsy09]. With rsyslog, Syslog events over the

network on another. Log host. rsyslog supports both UDP and the more reliable transmission

via TCP. Likewise, to ensure the confidentiality of the log data, the transmission can be

35

encrypted via GSSAPI or TLS. Since data is only transmitted then, the method is generally

transmitted if a new log event is also transmitted. More economical with network resources

than the method via SSH [12].

After the SSH / SCP method considered in the previous section, some If weak points are

noticed, the transfer of log data with rsyslog is considered here. The rsyslog project homepage

is http://www.rsyslog.com. For example, in many current Linux distributions, Debian, rsyslog

is the standard Syslog daemon, or, as with SUSE, it can be installed via the respective package

manager [rsy09]. With rsyslog, Syslog events over the network on another. Log host. rsyslog

supports both UDP and the more reliable transmission via TCP. Likewise, to ensure the

confidentiality of the log data, the transmission can be encrypted via GSSAPI or TLS. Since

data is only transmitted then, the method is generally transmitted if a new log event is also

transmitted. More economical with network resources than the method via SSH [19].

For rsyslog to work correctly, the file in which rsyslog the log entries writes is not in the input

folder of LoginIDS. LoginIDS removes the file there regularly when it is processed. That

disturbs the function of rsyslog. For example, it is better, For example, the rsyslog log file via

a cron job, at intervals of several minutes ten into the input folder. In principle, too many log

entries are copied, but since the files are on the same host, the I / O overhead is not as high and

annoying as if the file were constantly being copied over the network. How often the log file

has to be copied depends on how often LoginIDS is evaluated.

Rsyslog is a high-performance and feature-rich log processing system. It is open-source, but

development and maintenance are mainly contributed by Adiscon. Adiscon also offers

enterprise support for rsyslog. Rsyslog started as a regular UNIX Syslog daemon but has

evolved into a system providing high-performance log processing, advanced security features,

modular design with a high number of inputs, outputs and transforming options.

At the time of writing, the currently available stable version of rsyslog is 8.25.0. Rsyslog runs

on Linux and can be used as a log originator, relay or Collector. It can read log messages from

a variety of local inputs like flat files, UNIX sockets, systemd journal but also receive messages

from remote systems over Transmission Control Protocol (TCP), User Datagram Protocol

(UDP) or Reliable Event Logging Protocol (RELP). Rsyslog can process log messages from

inputs using parser and message modification modules and output them using output modules.

RELP can provide reliable log transfer, using application layer acknowledgement, between

systems with rsyslog or other solutions supporting RELP installed. Rsyslog can also provide

36

log integrity by specifying the use of Guardtime's Keyless Signature. Infrastructure (KSI) in

file output module [19].

3.6 SSH/SCP

Using this method can be implemented on Unix operating systems with very little configuration

effort, since SSH / SCP is usually pre-installed. With a classic Linux file system rights

management, each service can deliver its log files via SCP If you would like to create your own

user on the LoginIDS host. If the distinction between the different service users is not important,

only one could be used Users are created and a different public key is available for each of the

service providers Authentication. All these users are then assigned to their own group, which

has write and execute rights on the LoginIDS input folder. This is the minimum of rights that

are required to copy a file into the folder allowed to. With this method it is unfortunately not

possible to completely prevent that too Files can be copied in the other direction, i.e. from the

LoginIDS host. The group should not hold any read rights on the folder, so the contents of the

folder not displayed or wildcards can be used for copying. Nevertheless, the file can be copied

if the exact file name is known. Since the scheme of the filename is given relatively strictly, it

must be assumed that there are only a few It is possible to try to guess the filenames of other

log files. The format to which the log file names must correspond was described in Section 4.1.

By implementing ¨ the real-time evaluation, in which the input folder is constantly monitored

by LoginIDS, ¨ Such an attack is only possible to a very limited extent via a race condition.

LoginIDS detects via Inotify when the process that copies a file into the input folder has its fi ¨

lehandle closes and is obviously finished with the copying process. Then will the file was

immediately moved to a working folder that no one except LoginIDS needs to have access to.

So to be able to copy log files from the input folder, the attacker would have to access the file

in this short period of time. Without further testing I suspect that the chances of success are

very slim, especially if the SSH access is limited to once per minute, for example by an iptables

rule. In case of doubt, the log file can be given a random file extension [20].

Another possible case that LoginIDS is not currently on the LoginIDS host is running and

therefore cannot remove the log files from the input folder, can be covered by the fact that

LoginIDS of the service group has wx rights when starting the input folder and removes it when

you exit. This enables services cannot access the folder at all while LoginIDS is not running.

This requires a certain amount of error handling on the service host, which in the event of a

failed transmission.

37

Furthermore, it must be considered how often log files are transferred with SCP. LoginIDS

performs a difference detection so that the same log file, can be copied several times to the

LoginIDS host without duplicating the first entries to be analysed. However, depending on the

network load, it does not make sense to copy the complete log file every minute without

knowing exactly whether new log entries have been written at all were. The SSH / SCP method

is therefore not suitable for real-time evaluation. Depending on The size of the network and the

log files was an hourly to daily transmission keep the network load within limits [21].

38

4. DATA CHARACTERISTIC

Telemetry data is textual data produced by software systems to record system runtime

information. Telemetry is often the only way to get detailed runtime information about a system.

Virtually any computer programme generates some kind of telemetry data.

Typically, this data consists of a timestamp, the message's verbosity, followed by a free-text

message that could contain any information capturing the state of the application.

Given we are monitoring multiple distributed sources, the volumes quickly become too large

and impractical to be analysed without a specialised telemetry monitoring system.

4.1 Telemetry data example

For the purpose of testing a test batch of data was required. This data was gathered over a span

of two days (7th – 8th April) and contains telemetry information from a virtual machine running

multiple applications (browser,..). The amount of data gathered for testing would not usually

require the use of ELK however it is sufficient to demonstrate the functionality.

This data entry consists of a timestamp, a system's hostname (where the message originated

from), a record ID, and a CPU message itself.

Below are two different examples of how RAW data looks like. Each message contains an

average of about 40 attributes. In our case, we use only a part of the parameters. In general,

incoming data characterises server performance, network usage, server load...

The first information in the message says which service created the record. In our case was

created by metricbeat_1 agent. The next parameter 2021-04-07T14:27:42.101Z represents the

time stamp when exactly the given record was created.

39

Example 1:

metricbeat_1|2021-04-07T14:27:42.101Z INFO [monitoring] log/log.go:145 Non-zero
metrics in the last 30s {"monitoring":{"metrics":
{"beat":{"cpu":{"system":{"ticks":79920,"time":{"ms":151}},"total":{"ticks":149740,"time
":{"ms":287},"value":149740},"user":{"ticks":69820,"time":{"ms":136}}},"hadles":{"limit":
{"hard":1048576,"soft":1048576},"open":7},"info":{"ephemeral_id":"2ef928e4-5e67-
4212-
819f583a025ff563","uptime":{"ms":13350140}},"memstats":{"gc_next":17176608,"memo
ry_alloc":13084216,"memory_total":22456700976},"runtime":{"goroutines":27}},"libbeat
":{"config":{"module":{"running":0}},"output":{"events":{"acked":60,"batches":22,"total"
:60},"read":{"bytes":132},"write":{"bytes":18088}},"pipeline":{"clients":2,"events":{"activ
e":1,"published":60,"total":60},"queue":{"acked":60}}},"metricbeat":{"system":{"cpu":{"e
vents":30,"success":30},"memory":{"events":30,"success":30}}},"system":{"load":{"1":0.0
5,"15":0.02,"5":0.06,"norm":{"1":0.0167,"15":0.0067,"5":0.02}}}}}}

Example 2:

metricbeat_1 | 2021-04-08T11:22:06.628Z INFO [monitoring] log/log.go:145 Non-zero
metrics in the last 30s {"monitoring": {"metrics":
{"beat":{"cpu":{"system":{"ticks":179890,"time":{"ms":290}},"total":{"ticks":325810,"tim
e":{"ms":564},"value":325810},"user":{"ticks":145920,"time":{"ms":274}}},"handles":{"lim
it":{"hard":1048576,"soft":1048576},"open":7},"info":{"ephemeral_id":"3e15220b-7287-
4557-a584-
63ca0bca063b","uptime":{"ms":18510821}},"memstats":{"gc_next":16782144,"memory_
alloc":10700704,"memory_total":37263831280},"runtime":{"goroutines":39}},"libbeat":{"
config":{"module":{"running":0}},"output":{"events":{"acked":243,"batches":27,"total":2
43},"read":{"bytes":162},"write":{"bytes":35954}},"pipeline":{"clients":5,"events":{"active
":3,"published":240,"total":240},"queue":{"acked":243}}},"metricbeat":{"system":{"core":
{"events":90,"success":90},"cpu":{"events":30,"success":30},"load":{"events":30,"success
":30},"memory":{"events":30,"success":30},"network":{"events":60,"success":60}}},"syste
m":{"load":{"1":0.05,"15":0.09,"5":0.09,"norm":{"1":0.0167,"15":0.03,"5":0.03

40

5. EXPERIMENTAL SETUP

This chapter describes the test setup used. It consists of two dockerised Debian servers run

locally on virtual machines, first acting as the source of data (imitation of a PBX server) second

implementing the centralised data collector and storage. The second also hosts the data

visualisation (Kibana).

Figure 8 – Experimental Setup scheme

In this thesis, the implemented centralised telemetry monitoring framework achieves its goals

and provides several benefits. Most importantly, all data is now accessible in a single location,

eliminating the need to search through multiple data files stored on multiple server machines,

which was the centralised telemetry section's sole purpose. Although the centralised telemetry

system did not introduce any significant additional issues to the overall setup, it did require

some manual configuration changes due to the possibility of data files being stored in multiple

locations.

41

The data analysis framework also achieves its goals and provides numerous benefits for system

telemetry monitoring. Kibana's time series visualisations show details about the overall system

health and whether data messages are present

5.1 Configurations of virtual machines

As mentioned above, the test setup components run on virtual machines that communicate with

each other and simulate a simplified production environment. The VMs parameters are

describes following in Table 2.

Data Collector & Storage server

Configuration

8GB Memory

4 processors

80GB disk

2 network adapters

IP address 192.168.1.78

Installed Software

Elasticsearch 7.7

Kibana 7.7

Docker

PBX server

Configuration

4GB Memory

3 processors

40GB disk

2 network adapters

Installed Software

Docker

Filebeat 7.7

Metricbeat

Apache Web Server

Free PBX 15

Table 2 – Configuration of Virtual machine

42

5.2 PBX Server

The following paragraph describes the configuration of the PBX server in Figure 8. This server

is the source of telemetry data.

5.2.1 Configuring docker-compose

Docker-compose can build a multi-component application by composing a set of components,

each of which is made up of an image and a set of options that determine how the component

shall behave. The same image can be used for multiple components, but the reused images will

create different components. To specify the composition of components, a configuration file

such as docker-compose.yml is used. A Docker Compose file is shown below, which assembles

a multi-component framework from the web components. A local image is used to represent

the web component, which is generated by a Docker file.

The following script aims to create two services. The first service is filebeat, which is used to

send telemetry data from a PBX server to the receiving server. The second service that runs

within the Docker-compose file is Metricbeat. This is an agent that downloads telemetry

information about the PBX server. An essential part of the script is setting volumes. If we did

not set the four lines under the volumes tag, the telemetry data would not be collected from the

PBX server but the Docker container.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

docker-compose.yml

version: '2.1'

services:

 filebeat:

 image: elastic/filebeat:7.7.0

 restart: always

 volumes:

 - ./filebeat/filebeat.yml:/usr/share/filebeat/filebeat.yml:ro

 - /home/tom/data:/usr/share/filebeat/data

 hostname: filebeat

 metricbeat:

 image: elastic/metricbeat:7.7.0

 restart: always

 volumes:

 - ./metricbeat/metricbeat.yml:/usr/share/metricbeat/metric-

beat.yml:ro

 - /var/run/docker.sock:/var/run/docker.sock:ro

 - /sys/fs/cgroup:/hostfs/sys/fs/cgroup:ro

 - /proc:/hostfs/proc:ro

 - /:/hostfs:ro

 hostname: metricbeat

43

5.2.2 Configuring Filebeat

Filebeat's job is to read log files and send the log messages across the network to a Logstash.

Filebeat's configuration lets you choose which fields appear in the JSON format messages it

sends to Logstash or elsewhere. Log parsing and field modifications must be done in Logstash

otherwise.

The example below demonstrates how to set up Filebeat to send logs to a Logstash. Configuring

Encryption and authentication is optional if the Filebeat and Logstash servers are connected to

a secure network.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

#/home/tom/filebeat.yml

filebeat.inputs:

 -type:log

 paths:

 -/usr/share/filebeat/data/sys-data*

 document_type:log

#setup.template.name:"filebeat-"

#setup.template.pattern:"filebeat-*"

#setup.dashboards.enabled:true

output.logstash:

 hosts:["192.168.1.70:5000"]

index: "filebeat-%{+yyyy.MM.dd}"

Filebeat requires complete file paths, which can be problematic if the log files are stored in

different locations. Because Docker-compose is usually run in the user's home folder who

installed it, the full path to the log files is frequently different. A new log file is created every

day, and each time the device is restarted. Because it's made to track all files with the .log

extension, Filebeat detects a new log file and starts following it.

1

2

3

4

2021-04-08T00:15:01Z debian INF (root) CMD (/root/scripts/copy.sh)
2021-04-08T00:17:01Z debian INF (root) CMD (/root/scripts/copy.sh)
2021-04-08T00:17:01Z debian INF (root) CMD (cd/&&run-report/etc/cron.hourly)
2021-04-08T00:18:01Z debian INF (root) CMD (/root/scripts/copy.sh)

44

5.2.3 Configuring Metricbeat agent

The Metricbeat configuration is straightforward. We set the Metricbeat to monitor the CPU and

memory usage. This telemetry data will then be essential to us when creating the graphical

output. The sampling frequency is set to 1 second. The configuration is similar to the previous

configuration of Filebeat.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

#metricbeat.yml
metricbeat.modules:
- module: system
 metricsets: ["cpu","memory","load","network","core","process","process_sum-

mary","socket_summary","filesystem","fsstat","uptime"]
 enabled: true

 period: 1s
 processes: ['.*']
 cpu.metrics: ["normalized_percentages"]

output.logstash:
 hosts: ["192.168.1.83:5000"]

5.2.4 Configuring rsyslog

The instructions for installing rsyslog can be found on the rsyslog home page. Because rsyslog

is Debian's default Syslog daemon, an update was performed rather than a fresh installation.

The repository for version eight was set up, and rsyslog 8.25 was installed alongside the

additional package rsyslog-help-8.25.0, which met the requirements. Rsyslog can read both the

log socket (/dev/log) and the system journal. Log socket input should be used instead of journal

input, according to the rsyslog documentation. In the Rsyslog configuration, it is necessary to

add line number 24. This line adds a timestamp in UTC format to the beginning of the log

record.

45

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

root@debian: /var/log# vim /etc/rsyslog.conf

/etc/rsyslog.conf configuration file for rsyslog

For more information install rsyslog-doc and see

/usr/share/doc/rsyslog-doc/html/configuration/index.html

#################

MODULES ####

#################

module(load="imuxsock") # provides support for local system logging

module(load="imklog") # provides kernel logging support

#module(load="immark") # provides --MARK-- message capability

provides UDP syslog reception

#module(load="imudp")

#input(type="imudp" port="514")

provides TCP syslog reception

#module(load="imtcp")

#input(type="imtcp" port="514")

###########################

GLOBAL DIRECTIVES ####

###########################

Use traditional timestamp format.

To enable high precision timestamps, comment out the following line.

$template Mytemplate,"%$year%-%$month%-%$day%T%timegenerated:12:19:date-rfc3339%Z

%HOSTNAME% %syslogseverity-text:0:3:uppercase% %msg%\n"

$ActionFileDefaultTemplate Mytemplate

Set the default permissions for all log files.

46

5.2.5 Configuring crontab

For our purposes, it was necessary to write a new script. The script runs every minute and

invokes our script "copy.sh".

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

#root@debian:~# vim /etc/crontab

SHELL=/bin/sh

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

Example of job definition:

.---------------- minute (0 - 59)

| .------------- hour (0 - 23)

| | .---------- day of month (1 - 31)

| | | .------- month (1 - 12) OR jan,feb,mar,apr ...

| | | | .---- day of week (0-6)(Sunday=0 or 7)OR sun,mon,tue,wed,thu,fri,sat

| | | | |

* * * * * user-name command to be executed

17 * * * * root cd / && run-parts --report /etc/cron.hourly

25 6 * * * root test-x/usr/sbin/anacron||(cd/&&run-parts--report/etc/cron.daily)

47 6 * * 7 root test-x/usr/sbin/anacron||(cd/&&run-parts--report/etc/cron.weekly)

52 6 1 * * root test-x/usr/sbin/anacron||(cd/&&run-parts--report/etc/cron.monthly)

* * * * * root /root/scripts/copy.sh

5.2.6 Configuring shell script

After each call by Crontab, this script downloads (line 5) the last entry from the rsyslog

(/var/log/syslog) and copies it to the filebeat folder (home/tom/data /sys-data folder).

1

2

3

4

5

#root@debian:~# vim scripts/copy.sh

#! /bin/bash

echo DEBUG >>/root/bla.txt

cp /var/log/syslog /home/tom/data/sys-data

47

5.3 Collector, Data storage, visualisation server

The following paragraph describes the configuration of the Collector, Data storage,

visualisation server. The server is depicted in Figure 9 on the right side. This server is the

receiver of telemetry data and logs data.

5.3.1 Configuring Docker-compose

The first step for getting an ELK Stack up and running is to install Collector, a Data storage

server on a virtual machine. The advantage of running Elasticsearch on the Debian server is

that much of the Elasticsearch optimisation work is done on Linux. Furthermore, most

documentation, including the official one on Elastic's website, assumes the user runs

Elasticsearch on Linux.

Java 8 is installed in the virtual machine because the entire ELK Stack is written in Java and

requires a Java runtime environment to function.

The applications are run in a Docker container. The benefit is that it starts all the applications

at once, eliminating the need to launch them separately. The configuration of the docker-

compose.yml file developed for this purpose is displayed in List (docker-compose.yml).

48

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#docker-compose.yml
version:'2.1'

services:

 kibana:

 image:docker.elastic.co/kibana/kibana:7.7.0

 ports:

 -"5601:5601"

 environment:

 -"ELASTICSEARCH_URL=http://localhost:9200"

 depends_on:

 -elasticsearch

 hostname:kibana

 elasticsearch:

 image:docker.elastic.co/elasticsearch/elasticsearch:7.7.0

 environment:

 -"discovery.type=single-node"

 hostname:elasticsearch

 ports:

 -"9200:9200"

 -"9300:9300"

 logstash:

 image:logstash:7.7.0

 hostname:logstash

 volumes:

 -./logstash/comm:/usr/share/logstash/comm:ro

 -./logstash/logstash.yml:/usr/share/logstash/config/logstash.yml:ro

 ports:

 - "5000:5000"

Elasticsearch does not need any modification because it automatically binds to loopback

addresses and listens on port 9200, and Logstash would be able to link to Elasticsearch if it is

running on the same server machine. By default, Kibana will use port 5601.

49

5.3.2 Configuring Logstash

A single Logstash instance running on a single server machine might be sufficient in a

centralised telemetry system if the telemetry processing throughput is not too high. Multiple

Logstash instances could also be run to scale them horizontally, allowing Metricbeat to

distribute data equally to each instance. Logstash aims to receive data events from one or more

Metricbeat instances and forward all of these events into a single Elasticsearch database.

Logstash, like Metricbeat, uses the same configuration file format. We can configure

parameters such as worker thread count and internal event queue settings. However, the other

configuration file is in a different format and is used to set inputs, output, and data message

processing. Again, inside a closed network, Encryption and authentication are not entirely

necessary. Set the input port for Collector at address 5000. This configuration is shown in the

example below:

1

2

3

4

5

6

7

//input.conf

input{

 beats{

 port=>5000

 ssl=>false

 }

The connection to Elasticsearch uses HTTP or HTTPS because Elasticsearch must be contacted

through its REST API. Although HTTPS can be used for secure connection and server

authentication, Elasticsearch and Logstash do not support it because HTTPS rarely enforces

client authentication. In a closed network, authentication is also unnecessary.

The example below shows the configuration with localhost and indexing data. Appropriate

filters are designed to analyse and process data. Based on the tag, the filters create a specific

index for Elasticsearch. For example, on lines 10 to 16, if the incoming data is in the system

memory tag, we will create index_memory plus the date.

50

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

output{

if "system log" in [tags] {

 elasticsearch{

 hosts=> ["elasticsearch:9200"]

 manage_template=> false

 document_type=> "log"

 index=> "index_log-%{+YYYY.MM.dd}"

 }

}

else if "system memory" in [tags] {

 elasticsearch{

 hosts=> ["elasticsearch:9200"]

 manage_template=> false

 document_type=> "log"

 index=> "index_memory-%{+YYYY.MM.dd}"

 }

}

else if "system cpu" in [tags] {

 elasticsearch{

 hosts=> ["elasticsearch:9200"]

 manage_template=> false

 document_type=> "log"

 index=> "index_cpu-%{+YYYY.MM.dd}"

 }

}

else if "system core" in [tags] {

 elasticsearch{

 hosts=> ["elasticsearch:9200"]

 manage_template=> false

 document_type=> "log"

 index=> "index_core-%{+YYYY.MM.dd}"

 }

}

else if "system load" in [tags] {

 elasticsearch{

 hosts=> ["elasticsearch:9200"]

 manage_template=> false

 document_type=> "log"

 index=> "index_load-%{+YYYY.MM.dd}"

 }

}

else if "system network" in [tags] {

 elasticsearch{

 hosts=> ["elasticsearch:9200"]

 manage_template=> false

 document_type=> "log"

 index=> "index_network-%{+YYYY.MM.dd}"

 }

}

else {

 elasticsearch{

 hosts=> ["elasticsearch:9200"]

51

A Logstash filter can be used to remove unnecessary data fields from a case. Furthermore, if

the file path is not needed, it makes sense to delete it from the source field and retain the

filename. However, telemetry and log files in separate directories have the same name, which

should be considered when developing the system. The Logstash configuration below

demonstrates how to use the grok filter to construct a state. The filter can be split up into many

configuration files. Filters are automatically sorted by file name. Elasticsearch is not very

resistant to errors, which the administrator must therefore handle.

Firstly, we check if the field "message" entry contains our UTC timestamp pattern at all. In case

it does, the message is tagged with the "correct timestamp" label. This can later be used to filter

out only the correctly formatted messages.

Secondly, the condition is used to convert the Timestamp to a different format for practicality.

Lastly, in case one of the two conditions fails, the message is stored in a new field,

"rest_message", to prevent data loss.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

filter{

 if [agent][type] in "filebeat" {

 if [message] {

 grok {

 match => {"message" => "%{TIMESTAMP_ISO8601:[@metadata][isotimestamp]} debian

%{GREEDYDATA:[@metadata][true_message]}"}

 break_on_match => false

 add_tag => ["system log"]

}

 if [@metadata][isotimestamp] {

 date {

 match=> ["[@metadata][isotimestamp]", "ISO8601"]

}

}

if [@metadata][true_message]

{

mutate {

add_field => {"rest_message" => "%{[@metadata][true_message]}"}

}

}

}

}

}

52

The script described below works similarly to the previous script. The following lines are

designed to map the "system memory" tag to when the filter condition is met. The telemetry

data in this tag describes how much RAM is occupied. For data processing, there is a problem

that all information is in bytes. Therefore, we will create a new field, "RAM_GB" on line 6,

and to which we will copy our original data from the field "[system] [memory] [used] [bytes]".

Then we use the ruby function and divide the data into a suitable format.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

memory_mapping

filter{

 if [agent][type] in "metricbeat" and [event][dataset] in "system.memory"

{

 mutate{add_tag => "system memory" }

 if [system][memory][used][bytes] {

 mutate{add_field => { "RAM_B" => "%{[system][memory][used][bytes]}"}}

 ruby {

 code => "ramgb = event.get('[RAM_B]').to_f/1000000000

event.set('[RAM_GB]', ramgb.round(2))

"

}

}

}

}

53

6. RESULTS

This chapter will showcase the results obtained in this bachelor's thesis - namely, the resulting

Dashboard. This Dashboard is generated from data gathered from a test PBX server and

collected and stored on a Collector, Data Storage Server. The setup is described in detail in

chapters Experimental setup.

Figure 9 - Overview dashboard

54

In Figure 9, we can see the whole Dashboard. The Dashboard displays essential information

about the PBX server. We chose the time window April 8 from 0:48 to 1:03 for this preview.

According to the user's needs, these parameters can be changed to select only a specific time

period (from-to).

Figure 9 is only illustrative to show what the entire Dashboard looks like. Only a subset of the

graphs can be seen in one view on the browser. This is due to the limited screen size. For this

purpose, I have combined several screenshots to create a better idea of the Dashboard.

The layout of the individual charts in the Dashboard was selected based on experience gained

while creating a graphic interface for a web application.

The purpose of the Dashboard is to provide the user with a comprehensive overview of the

selected PBX server. The information a user needs to know about the remote server is CPU,

RAM usage, network usage, load usage. In our case, we monitor only one PBX server. The

plotted graphs always concern only one server. Currently, there is no option to display multiple

servers at once. Displaying data from all servers at once will be a future task. At the moment,

we did not solve this due to time constraints. Another problem with displaying data from all

servers is the readability of the graphs. We select the appropriate server using filters in Kibana.

The rest of the chapter describes the selected graphs that I considered necessary or interesting

to bring to the reader.

Figure 10 - Dashboard gauges

55

Figure 10 depicts four gauges in the first row and four text information on the second row of

cells.

• The first indicator gives us data on how much RAM is currently used.

• The second gauge, "Disk used", shows the total capacity of the hard drive used.

• The third gauge shows the current CPU usage.

As you can see in our case, the total performance is 89%. The last gauge shows us the average

server load for the last 5 minutes.

The Memory usage vs total indicator shows us the data on how much Memory is used from the

total allocated RAM. This indicator shows the current load on the Internet. Here we can see that

78.5KB per second is currently being sent. The following indicator shows us how much data is

currently being received from the network (98.5KB per second).

Figure 11 - Load

Figure 11 shows the traffic (system load). The x-axis shows the timeline for the last 15 minutes

and the timestep set (10 seconds). Y-axis shows the volume of the traffic. With the maximum

value being 100%, there are three different curves in the graph. It is possible to see that all

waveforms show us a volume. However, they are averaged to a different value (1min, 5 min,

15min). At 00:59, there is sudden server traffic. While the load curve starts to rise sharply within

1 minute, the change in values in 5 and 15 minutes is smoother.

56

Figure 12 – Network traffic

Figure 12 depicts the use of the network interface on server PBX. The x-axis shows the timeline

for the last 15 minutes and the timestep set for 10 seconds. Y-axis shows how much data flowed

from our server or, vice-versa, how much data the server received. The data received from the

network is shown in blue colour. The purple part of the graph represents outgoing data from the

server. Based on the legend at the top right, we can see the current volume of data received and

data sent.

Figure 13 – Network traffic packets

57

Figure 13 directly correlates with Figure 12. When shows the number of packets received/sent.

Comparing these two graphs shows that the increased traffic of the network has increased the

volume of packets sent.

We can see a total of 3 peaks at the following times: 0:50, 0:53, 0:59. These sharp fluctuations

of the site were probably caused by a significant increase in incoming queries to our PBX

server. A pattern can be found in the signal, followed by a gradual attenuation after each peak.

Figure 14 – Load vs CPU usage

Figure 14 shows the CPU dependence on traffic (server load). The graph nicely shows a

corresponding increase in server performance in the case of an increase in workload (more

queries per one server).

In Figure 14, we can see the load peak, which started to increase at 0:59. As the workload

increases, so does the overall performance of the server. Performance reaches the limit of 40%,

which is constantly held until 1:04. It is essential to say that the CPU power value is averaged.

The actual current power curve would look a little different.

58

Figure 15 – Memory usage

Figure 15 describes the use of RAM. The y-axis shows the capacity in GB, where the

maximum value is 3.8 GB. The x-axis shows the timeframe of the last 15 minutes. The

correlation between used Memory and cache memory is well visible in the course. In our case,

the cache memory holds about 1 GB which meets the desirable values.

Figure 16 – Basic CPU usage

The following Figure 16 shows the simple use of CPU over time. The y-axis shows the

percentage of power utilisation. Here the scale is normalised up to 100% and cannot exceed this

limit (mentioning this fact since, e.g. in Figure 17, we go beyond this limit). The x-axis shows

the time window of the last 15 minutes. We can see a total of 3 peaks. The first occurred at 0:49

and the second at 0:53, and the third at 0:59. The most significant change was the third peak at

59

0:59 when the server was at maximum load. In our case, this is mainly since our server is

virtualised and the computing capacity is undersized compared to the actual physical server.

Therefore, it is not difficult to load our PBX server to the maximum. In a relational application,

such a flow would mean a redesign of the server and a change in hardware parameters.

Figure 17 – CPU usage by services

Figure 17 describes the distribution of performance between individual "services". In total, the

course consists of two services in our case. It clearly shows what percentage the system uses.

The green colour describes One level up, and the "user" CPU state offers CPU time used by

user-space processes. These are higher-level processes, like your application or the database

server running on your machine. In short, every CPU time used by anything other than the

kernel is marked "user", even if it was not started from any user account. If a user-space process

needs access to the hardware, it needs to ask the kernel, which would count towards the

"system" state.

The red colour shows how much power the server operation itself consumes. It is clear from

the figure that these are constant values ranging between 5% and 30%.

The x-axis shows the power in percentages. The monitored PBX server contains three cores.

Therefore, the maximum value would be 100%.

In this case, we can see a total of 2 large tips. The first occurred at 0:59 and the second at 1:11.

These peaks were caused by the launch of several applications that required these system

resources. As a result of undersizing our PBX server's parameters, the RAMs were relatively

60

fast at maximum filling (100%). In a practical application, we would solve this problem by

increasing the number of RAM memory.

61

7. CONCLUSION

This work qualified and investigated various solutions for the collection and analysis of

telemetry data. In addition to the input itself, a logs collection has been added to the metric data

collection. The overall goal is to create a robust solution for collecting data from a PBX Server

based on the Debian operating system. Implement a suitable data collection agent on this server.

Lastly, it was necessary to create a Server that will be used for centralised data collection and

storage. It is possible to filter, analyse and visualise data in real-time on this server.

In the first step of the solution, we qualified the OpenTelemetry system. This solution was found

to be very sophisticated. By the end of my work, my knowledge did not reach the level to fully

grasp the whole structure of the solution and implement it in another application.

OpenTelemetry is a tool containing a wide range of services. Examples are Prometheus, Zipkin

and Jaeger tools.

Next, I explored another way to see if communication between the two servers could be

resolved using SSH / SCP technologies. After educating myself in this technology, I created a

service between two Debian servers. I was able to send log data to another server. I sent the

data in text form. Even though the solution met the "communication between two servers" task,

it nevertheless had several disadvantages. For example, sending data was insecure - the solution

could not resolve duplicate data. Even though the applied technology was very unsuitable for

my application combined with Big Data, I found this experience very beneficial. In chapter 5,

Experimental setup, I decided to omit this methodology because it did not lead directly to a

successful solution to the given problem.

Based on this previous experience, I came to the consideration described in more detail in

Chapter 5. This chapter deals with detailed back-end implementation. After configuring and

creating all services, I managed to create a robust centralised data monitoring system. Whole

solution development took place in a closed virtual network in VirtualBox. After creating a

functional solution, it was possible to analyse incoming data in Kibana. The graphical output

was in the form of dashboards plotting incoming telemetry data in real-time. The final testing

showed that the communication occurred with a more negligible delay, which did not exceed

more than 10 seconds.

62

A centralised telemetry monitoring offers some obvious benefits. One of the advantages is the

ability to scale the created solution and deploy it to other instances of PBX servers based on the

Debian operating system. Another benefit is creating a service based on Docker containers

technology when it is possible to create an image of a given solution and deploy it on another

server.

Due to the short time period of the bachelor's thesis, together with security reasons, only testing

servers environments were used. Although our system did not work with big data that way, the

potential service was to process big data. In addition to the scope of the considered assignment,

I also collected logs from the PBX server. In my work, I describe the solution only marginally

because it was not the aim of the work. In any case, I can undoubtedly say that the solution

created for collecting logs is not optimal. The problem, for example, is the impossibility of

using a Docker container and a simple deployment.

Based on this work presented, it would be interesting to visualise data from multiple servers

PBX in one Dashboard. Another interesting thing would be to try out a deployment of the

service on a large number of PBX servers.

63

BIBLIOGRAPHY

[1] What is Telemetry? How Telemetry Works, Benefits, and Tutorial. Stackify [online].

26. April 2017 [cit. 2021-05-21]. Retrieved: https://stackify.com/telemetry-tutorial/

[2] The Complete Guide to the ELK Stack. Logz.io [online]. 1. April 2021 [cit. 2021-05-

21]. Retrieved: https://logz.io/learn/complete-guide-elk-stack/

[3] ELK Stack Tutorial: What is Kibana, Logstash & Elasticsearch? [online]. [cit. 2021-05-

21]. Retrieved: https://www.guru99.com/elk-stack-tutorial.html

[4] SHARMA, Vishal. Beginning Elastic Stack [online]. 1st ed. 2016. Berkeley, CA:

Apress : Imprint: Apress, 2016. ISBN 978-1-4842-1694-1. Retrieved: doi:10.1007/978-

1-4842-1694-1

[5] Elasticsearch: The Official Distributed Search & Analytics Engine. Elastic [online].

[cit. 2021-05-21]. Retrieved: https://www.elastic.co/elasticsearch

[6] Elasticsearch [online]. 2021 [cit. 2021-05-21].

Retrieved: https://en.wikipedia.org/w/index.php?title=Elasticsearch&oldid=102251823

3

[7] ZAMFIR, Vlad-Andrei, M. CARABAS, Costin CARABAS a N. TAPUS. Systems

Monitoring and Big Data Analysis Using the Elasticsearch System. 2019 22nd

International Conference on Control Systems and Computer Science (CSCS). 2019,

188–193.

[8] Beats: Data Shippers for Elasticsearch. Elastic [online]. [cit. 2021-05-21].

Retrieved: https://www.elastic.co/beats

[9] Logstash: Collect, Parse, Transform Logs. Elastic [online]. [cit. 2021-05-21].

Retrieved: https://www.elastic.co/logstash

[10] Logstash - Introduction - Tutorialspoint [online]. [cit. 2021-05-21].

Retrieved: https://www.tutorialspoint.com/logstash/logstash_introduction.htm

[11] Kibana: Explore, Visualize, Discover Data | Elastic [online]. [cit. 2021-05-21].

Retrieved: https://www.elastic.co/kibana

[12] Enterprise Support. rsyslog [online]. [cit. 2021-05-21].

Retrieved: https://www.rsyslog.com/professional-services/enterprise-support/

[13] Debian Reference [online]. [cit. 2021-05-21].

Retrieved: https://www.debian.org/doc/manuals/debian-reference/

64

[14] Why you should use Docker and containers | InfoWorld [online]. [cit. 2021-05-21].

Retrieved: https://www.infoworld.com/article/3310941/why-you-should-use-docker-

and-containers.html"

[15] VAUGHAN-NICHOLS, Steven J. What is Docker and why is it so darn popular?

ZDNet [online]. [cit. 2021-05-21]. Retrieved: https://www.zdnet.com/article/what-is-

docker-and-why-is-it-so-darn-popular/

[16] AGARWAL, Nitin. Docker Container's Filesystem Demystified. Medium [online].

30. January 2017 [cit. 2021-05-21].

Retrieved: https://medium.com/@BeNitinAgarwal/docker-containers-filesystem-

demystified-b6ed8112a04a

[17] Elasticsearch from the Top Down. Elastic Blog [online]. 15. October 2014 [cit. 2021-

05-21]. Retrieved: https://www.elastic.co/blog/found-elasticsearch-top-down

[18] VAN DONGEN, B F. A Meta Model for Process Mining Data. nedatováno, 12.

[19] RSyslog Documentation. rsyslog [online]. [cit. 2021-05-21].

Retrieved: https://www.rsyslog.com/doc/

[20] OpenSSH: Security [online]. [cit. 2021-05-21].

Retrieved: https://www.openssh.com/security.html

[21] How an SSH tunnel can bypass firewalls, add Encryption to application protocols, and

help access services remotely. [online]. [cit. 2021-05-21].

Retrieved: https://www.ssh.com/academy/ssh/tunneling

