

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta elektrotechnická Katedra elektrických pohonů a trakce

Oživení pracoviště s měničem DCM a PLC SIMATIC

Workplace with Rectifier DCM and PLC SIMATIC

Bakalářská práce

Studijní program: Elektrotechnika, Energetika a Management Studijní obor: Aplikovaná elektrotechnika

Vedoucí práce: Ing. Jan Bauer, Ph.D.

Petr Zakopal Praha 2021

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Zakopal	Jméno: Petr	Osobní číslo: 483802			
Fakulta/ústav: Fakulta elektrotechnická						
Zadávající katedra/ústav: Katedra elektrických pohonů a trakce						
Studijní program: Elektrotechnika, energetika a management						
Specializace:	Aplikovaná elektrotechnika	I				

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Oživení pracoviště s měničem DCM a PLC SIMATIC

Název bakalářské práce anglicky:

Workpalce with Rectifier DCM and PLC SIMATIC

Pokyny pro vypracování:

1) Seznamte se s měničem řady DCM firmy SIEMENS

- 2) Oživte základní regulační smyčky měniče (otáčkovou, proudovou)
- 3) Prostudujte možnosti záznamu průběhů z měniče pomocí PLC nebo dotykového panelu
- 4) Pomocí PLC SIMATIC S1200 a dotykového panelu realizujte vzdálené ovládání a monitoring měniče
- 5) Na dotykovém panelu vytvořte obrazovku pro nastavování otáček nebo momentu motoru napájeného měničem

Seznam doporučené literatury:

[1] Weidauer J., Messer R. Electrical Drives, Publics Erlangen, 2014

[2] SCE Training Curriculum. Siemens AG, 2016

[3] Durry B. The Control Techniques Drives and Controls Handbook 2nd ed., IeT, 2009

[4] Pavelka J., Kobrle P. Elektrické pohony a jejich řízení. 3. přepracované vydání. Praha: České vysoké učení technické v Praze, 2016. ISBN 978-80-01-06007-0.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Jan Bauer, Ph.D., katedra elektrických pohonů a trakce FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Datum zadání bakalářské práce: 24.01.2021

Termín odevzdání bakalářské práce: 21.05.2021

Platnost zadání bakalářské práce: 30.09.2022

Ing. Jan Bauer, Ph.D. podpis vedoucí(ho) práce podpis vedoucí(ho) ústavu/katedry

prof. Mgr. Petr Páta, Ph.D. podpis děkana(ky)

III. PŘEVZETÍ ZADÁNÍ

Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

Datum převzetí zadání

Podpis studenta

PROHLÁŠENÍ

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne

Petr Zakopal

PODĚKOVÁNÍ

Tímto bych rád poděkoval vedoucímu této práce Ing. Janu Bauerovi, Ph.D. za skvělé vedení práce a cenné rady při vytváření. Dále bych rád poděkoval všem, kteří mě v mých dosavadních studijních aktivitách podporovali.

ABSTRAKT

Cílem této práce je realizovat pracoviště s měničem DCM ovládaným pomocí PLC a představit relevantní teorii k řešené problematice stejnosměrných cize buzených motorů, jejich řízení a základním schématům pro řízení těchto motorů pomocí usměrňovačů. Výsledky této práce popisují konfiguraci DCM měniče a vytvořený PLC a HMI program, potřebný pro ovládání pracoviště, a umožňují čtenáři získat základní teoretické vědomosti potřebné k možnému přístupu na realizované pracoviště s DCM.

Klíčová slova: ČVUT FEL, katedra elektrických pohonů a trakce, stejnosměrný cize buzený motor, čtyřkvadrantový reverzační usměrňovač, pracoviště s měničem DCM, PLC Siemens S-1200, HMI, zápis a čtení dat pomocí PLC, SINA_PARA komunikace

ABSTRACT

The goal of this thesis is to explain basic theory of direct current separately excited motors and their control with rectifiers. It aims to introduce the reader to a PLC program controlling Siemens DCM drive. Ending purpose of this text is to explain how to control motor with a Siemens DCM rectifier in a conjuction with PLC and HMI programs. Reading this text may equip reader with fundamental knowledge which can be used at workplace with DCM drive. This text explains configuration of DCM drive and creation of PLC and HMI programs used for controlling the drive.

Keywords: CTU FEE, Department of Electric Drives and Traction, direct current motor, four quadrant reverse rectifier, workplace with DCM Siemens Rectifier, PLC Siemens S-1200, HMI, reading and data writing via PLC, SINA_PARA block communication

OBSAH

	Úvod	1
1	Stejnosměrný motor s cizím buzením	2
1.1	Princip činnosti	2
1.2	Indukované napětí a elektromagnetický moment	3
1.2.1	Velikost indukovaného napětí	3
1.2.2	Elektromagnetický moment	6
1.3	Typické průběhy charakteristik	7
1.4	Řízení rychlosti	10
2	Napájení stejnosměrného cize buzeného motoru z tyristorového usměrňovače	12
2.1	Matematický model tyristorového můstkového usměrňovače	12
3	Napájení stejnosměrného cize buzeného motoru s cizím buzením z reverzač-	
	ního tyristorového usměrňovače	14
3.1	Řízení stejnosměrného cize buzeného motoru s konstatním buzením pomocí reverzač-	
	ního tyristorového usměrňovače způsobem bez okruhových proudů	14
3.2	Řízení stejnosměrného cize buzeného motoru s konstatním buzením pomocí reverzač-	
	ního tyristorového usměrňovače způsobem s okruhovými proudy	15
3.3	Řízení stejnosměrného cize buzeného motoru pomocí reverzačního usměrňovače v ob-	
	vodu kotvy a nereverzačního usměrňovače v budícím obvodu	17
4	Složení pracoviště s měničem DCM	20
4.1	PLC Siemens SIMATIC S7-1200	22
4.2	Měnič Siemens SINAMICS DCM	22
4.3	Propojení komponent Siemens	23
4.4	Prostředí STARTER	25
4.5	Prostředí TIA portal	25
4.6	Elektrický stroj	27
4.7	Tachodynamo	28
5	Realizace pracoviště s měničem DCM	29
5.1	Základní konfigurace měniče DCM	29
5.1.1	Konfigurace měniče pro řízení bez PLC	29
5.1.2	Konfigurace měniče pro řízení s PLC	31
5.2	Propojení a zprovoznění komunikace PLC, HMI a měniče	33
6	Realizace řídícího programu pro PLC v TIA portal	34
6.1	Konfigurace prvků v TIA portal	34
6.2	Tabulky tagů	34
6.3	Databázový blok UserDefinedVariables	36
6.4	× ·	27
	Čtení a zápis parametrů do měniče v prostředí TIA portal	31

6.4.2	Databáze SINA_PARA_READ a SINA_PARA_WRITE	41
6.5	Povolení činnosti pohonu	43
6.6	Řízení rychlosti	44
6.7	Řízení hodnoty budícího proudu	45
6.8	Momentová smyčka	46
6.9	Záznam dat do PLC	48
7	Realizace programu pro HMI	52
7.1	Hlavní obrazovka	52
7.2	Obrazovka ovládání	52
7.3	Obrazovka okamžitých hodnot	53
7.4	Obrazovka nastavení	54
7.5	Obrazovky okamžitých průběhů	55
7.6	Obrazovka alarmů a diagnostiky	56
7.7	Zápis dat pomocí HMI	56
8	Ukázka získaných dat z pracoviště	58
8.1	Rychlostní smyčka	58
8.2	Momentová smyčka	60
8.3	Skoková změna směru otáčení motoru	62
	Závěr	65
	Literatura	66
Příloha	A Seznam symbolů a zkratek	67
A.1	Seznam symbolů	67
A.2	Seznam zkratek	68

SEZNAM OBRÁZKŮ

1 - 1	Základní princip stejnosměrného stroje [1] (převzato a upraveno)	3
1 - 2	Průběh magnetického pole ve vzduchové mezeře, převzato z [1]	4
1 - 3	Zleva smyčkové vinutí, vlnové vinutí [1]	4
1 - 4	Uvažovaný průběh magnetické indukce ve vzduchové mezeře, převzato z [1]	5
1 - 5	Vysvětlení směru působícího momentu	6
1 - 6	Náhradní schéma stejnosměrného motoru	7
1 - 7	Mechanická charakteristika stejnosměrného cize buzeného motoru	8
1 - 8	Rychlostní charakteristika stejnosměrného cize buzeného motoru	9
1 - 9	Momentová charakteristika stejnosměrného cize buzeného motoru	9
1 - 10	Řízení rychlosti motoru při konstatním proudu	11
2 - 1	Obvodové schéma třífázového tyristorového usměrňovače v můstkovém zapojení	12
3 - 1	Obvodové schéma řízení stejnosměrného cize buzeného motoru s konstatním buzením	
	pomocí reverzačního usměrňovače	14
3 - 2	Blokové schéma řízení stejnosměrného cize buzeného motoru pomocí změny proudu	
	kotvy s možnou reverzací proudu kotvou a odbuzováním	17
3 - 3	Pracovní oblast pro řízení stejnosměrného cize buzeného motoru pomocí změny proudu	
	kotvy s je možnou reverzací proudu kotvou a odbuzováním	18
4 - 1	Topologické schéma propojení SIEMENS komponent na pracovišti s měničem DCM	20
4 - 2	Názorné schéma zapojení pracoviště s měničem DCM	21
4 - 3	Základní uspořádání pracoviště v laboratoři při jeho realizaci	21
4 - 4	Detail použitého PLC Simatics S-1200 s CPU 1212C AC/DC/RLY a modulu switch	22
4 - 5	Typický ISO/OSI model přeložený do češtiny, reprezentující jednotlivé vrtsvy komuni-	
	kace, Ethernet jsou vrstvy označené 1 a 2, PROFINET vrstva 7	23
4 - 6	Výřez z dokumentu Operating Instructions pro SINAMICS DCM zobrazující strukturu	
	STW1 telegramu 1, převzato z [7]	24
4 - 7	Zvýrazněné části pohledu project view v STARTER, modrá - navigace v projektu, žlutá -	
	hlavní pracovní plocha, zelená - dodatečná pracovní plocha a zprávy, fialová - navigační	
	a podpůrná nabídka	25
4 - 8	TIA Portal - pohled Portal	26
4 - 9	TIA Portal - pohled Project	26
4 - 10	Zvýrazněné části pohledu project view v TIA portal, modrá - projekt, červená - detaily	
	objektů, žlutá - pracovní plocha, zelená - konfigurace prvků, fialová - dodatečné možnosti	27
4 - 11	Motor Reliance Electric C1811ATCZ	28
4 - 12	Motor Reliance C1811ATZ	28
4 - 13	Stítek tachodynama nainstalovaného na motoru Reliance Electric C1811ATCZ	28
4 - 14	Stítek tachodynama nainstalovaného na motoru Reliance C1811ATZ	28
5 - 1	Názorné schéma pro nastavení parametrů měniče v programu STARTER, konkrétně pro	
	nastavení limitace hodnot proudu budícího obvodu, či jeho řídícího vstupu odpovídající	
	parametru zvýrazněnému na obr. 5 - 2	30

5 - 2	Expert list v programu STARTER pro nastavení parametrů měniče, konkrétně zvýrazněn parametr p50611[0] pro nastavení vstupní hodnoty budícího proudu do limitace, zvýraz-	
	něný parametr odpovídá vstupnímu v obr. 5 - 1	30
5 - 3	Prostředí pro nastavení komunikačního telegramu v programu STARTER pro funkční	
	komunikaci PLC a měniče DCM	31
5 - 4	Nastavení parametrů networkingu v programu STARTER pomocí expert list	32
6 - 1	Možná konfigurace komunikačního telegramu měniče DCM v prostředí TIA portal	34
6 - 2	Databázový blok UserDefinedVariables	36
6 - 3	Ukázka konfigurace SINA_PARA bloku v projektu autora textu	37
6 - 4	Ukázka konfigurace hardwareId SINA_PARA bloku	38
6 - 5	Ukázka databáze SINA_PARA_READ, zaměřeno na prametr r0063[1] - aktuální otáčky	
	(min ⁻¹), vyhlazená hodnota	38
6 - 6	Řešení bloku SINA_PARA_READ pomocí kontaktů spínacích, rozpínacích a časova-	
	cího členu	40
6 - 7	Řešení bloku SINA_PARA_WRITE pomocí kontaktů spínacích, rozpínacích a časova- cího členu	40
6 - 8	Přepínání bloku SINA_PARA_READ a SINA_PARA_WRITE	41
6 - 9	Část programu určená pro povolení výstupu DCM a rozběhu motoru, Enable a OFF1	44
6 - 10	Část programu určená pro řízení rychlosti motoru pomocí NSET_A telegramu	44
6 - 11	Část programu určená pro přidání či odebrání rychlosti dle požadovaného kroku hodnot, výstup této větve směřuje do části programu zobrazeného na obr. 6 - 10	45
6 - 12	Část programu určená pro ovládání budícího proudu první část pro zpracování zadané	10
0 12	hodnoty uživatelem, druhá pro redukci vztažného budícího proudu v měniči	46
6 - 13	Část programu určena pro přepínání mezi otáčkovou/proudovou-momentovou smyčkou	47
6 - 14	Část programu určena pro výpočet žádané hodnoty momentu a její následné vložení do	
	příslušné proměnné v SINA PARA WRITE databázi	48
6 - 15	Část programu určena pro redukci proudu kotvy motoru	48
6 - 16	Webové rozhraní PLC webserveru pro stažení souboru PLCDataLog.csv obsahující po-	
	žadovaný záznam dat	49
6 - 17	Databázový blok potřebný pro správnou funkci zápisu dat pomocí PLC	49
6 - 18	Část programu určena pro vytváření souboru logu PLCDataLog na PLC webserveru	50
6 - 19	Část programu určena na zápis dat do souboru PLCDataLog	50
6 - 20	Část programu určena k přesunu hodnot z proměných v programu do proměnných, které	
	jsou zapisovány do souboru PLCDataLog	51
6 - 21	Část programu určena pro aktivaci smazání souboru PLCDataLog na PLC webserveru	51
7 - 1	Hlavní navigační obrazovka programu v HMI	52
7 - 2	Obrazovka obsahující hlavní ovládací panel programu	53
7 - 3	Obrazovka zobrazující okamžité hodnoty vybraných veličin	54
7 - 4	Obrazovka obsahující nastavení programu	55
7 - 5	Obrazovka výběru zobrazení okamžitých průběhů vybraných veličin	55
7 - 6	Ukázka obrazovky obsahující okamžité průběhy vybraných veličin	56
7 - 7	Ukázka obrazovky alarmů	56

7 - 8	Ukázka obrazovky diagnostiky	56
7 - 9	Tabulka Data logs a související tabulka Logging tags obsahující vybrané tagy reprezen-	
	tující hodnoty zapisovaných veličin	57
8 - 1	Názorné blokové schéma uspořádání pracoviště při měření ukázkových průběhů	58
8 - 2	Závislost otáček řízeného motoru na čase při využívání rychlostní regulační smyčky	59
8 - 3	Závislost momentu řízeného motoru na čase při využívání rychlostní regulační smyčky,	
	nejdříve došlo k urychlování motoru 1 pomocí motoru 2, poté k brzdění motoru 1 pomocí	
	motoru 2	59
8 - 4	Vzájemná závislost rychlosti a momentu řízeného motoru při využití otáčkové regulační	
	smyčky	60
8 - 5	Závislost otáček řízeného motoru na čase při využívání momentové regulační smyčky	61
8 - 6	Závislost momentu řízeného motoru na čase při využívání momentové regulační smyčky	61
8 - 7	Vzájemná závislost rychlosti a momentu řízeného motoru při využití momentové regu-	
	lační smyčky	62
8 - 8	Závislost otáček řízeného motoru na čase při skokové změně smyslu otáčení	63
8 - 9	Závislost momentu řízeného motoru na čase při skokové změně směru otáčení	63
8 - 10	Vzájemná závislost rychlosti a momentu řízeného motoru při skokové změně směru otáčení	64

SEZNAM TABULEK

4 - 1	Vybrané parametry měniče, parametry získány z katalogu [5]	22
4 - 2	Významné štítkové parametry motoru Reliance Electric C1811ATCZ a Reliance C1811ATZ	28
5 - 1	Změřené parametry pomocí optimalizačního běhu motoru C1811ATCZ a C1811ATZ	29
5 - 2	Příklad nastavení parametrů základní konfigurace měniče a ovládací jednotky pro řízení	
	pohonu pomocí vstupů měniče	30
5 - 3	Ukázka automatické změny parametrů měniče při použití "Free Telegram with BICO"	32
5 - 4	Potřebná změna referenčních parametrů měniče pro správnou funkci přepočtů vybraných	
	sledovaných veličin	32
5 - 5	Nastavení parametrů PROFINET komunikace PLC, DCM, HMI	33
6 - 1	Tabulka tagů v programu pro PLC	35
6 - 2	Tabulka tagů v programu pro HMI	36
6 - 3	Popis vstupních a výstupních parametrů bloku SINA_PARA, část převzata a přeložena	
	z [10]	38
6 - 4	Popis struktury sxParameter[1] zobrazené na obr. 6 - 5, platí pro sxParameter[1 až 16]	39
6 - 5	Databázový blok SINA_PARA_WRITE, obsahující podstatné nastavení pro správný chod	
	programu	41
6 - 6	Databázový blok SINA_PARA_READ, obsahující podstatné nastavení pro správný chod	
	programu	42
6 - 7	Popis složení slova telegramu použitého pro Enable (přesun pohonu do stavu připraven)	
	a OFF1 (povolení běhu) signál pohonu	43

Úvod

Stejnosměrné motory se i přes jejich značnou nevýhodu nutnosti údržby komutátorů v praxi stále využívají. Jejich využití je možné pozorovat v těžních strojích, v lodní dopravě nebo také v laboratořích. Při použití vhodných měničů mají stejnosměrné stroje výhodu i ve snadnějším řízení momentu nebo také otáčivé rychlosti. Je možné je konstruovat pro vysoký rozsah provozních rychlostí, který není závislý na síťové napájecí frekvenci, ale na způsobu řízení těchto strojů.

První část této práce obsahuje představení základní teorie stejnosměrných cize buzených motorů a možností jejich řízení.

Cílem je vybavit čtenáře znalostmi, kterými je nutné disponovat při seznamování se s pracovištěm s DCM motorem a jeho následným využíváním.

Druhá sekce práce je zaměřena na realizaci pracoviště se stejnosměrným motorem RELIANCE, napájeným z měniče Siemens DCM. Měnič je řízen pomocí Siemens PLC S-1200, které je napojeno na Siemens HMI, jež slouží jako rozhraní mezi programem a uživatelem pracoviště.

V úvodu praktické části je představena konfigurace měniče potřebná pro řízení motoru pomocí PLC, která je pak rozvinuta částí zabývající se programem pro PLC. V navazujícím bloku je představena konfigurace ovládacích obrazovek HMI. V závěru práce je pomocí měřených dat a vykreslených průběhů potvrzeno chování otáčkové a momentové regulační smyčky.

Realizované pracoviště může přispět k demonstraci základních regulačních smyček, využívaných při řízení elektrických pohonů. Předmětem navazující práce může být realizace PLC programu, díky kterému bude pohon vykazovat funkci aktivní zátěže. Realizovaný PLC program není vhodný pro průmyslové aplikace, protože pro komunikaci PLC s měničem byla využita nestandardní komunikace pomocí SINA_PARA bloků.

1 Stejnosměrný motor s cizím buzením

1.1 Princip činnosti

Rotor stejnosměrného cize buzeného motoru se otáčí v elektromagnetickém poli, vytvořeném hlavními póly umístěnými na statoru. Tyto hlavní póly obsahují budící vinutí, které je protékáno stejnosměrným proudem. Pokud se jedná o malé motory, může být budící vinutí nahrazeno permanentními magnety. Komutátorem, tvořeným lamelami, na které dosedají kartáče, je veden stejnosměrný proud z napájecího zdroje do vodičů rotoru. Při otáčení rotoru, ve stálé poloze v prostoru, dochází vlivem působení komutátoru a dopadajících kartáčů k plynulému přepínání vodičů rotoru. Vodiče jsou přepínány tak, že smysl proudu tekoucího pod jedním pólem je stále stejný. Vodiče rotoru tvoří cívky, jejichž aktivní strany leží mezi průměry rotoru označenými stejným číslem. Cívky rotoru jsou spojeny do série a vyvedeny na lamely komutátoru. Magnetické pole, které je vytvořeno průchodem proudu těmito cívkami, má při otáčení rotoru v prostoru stále stejnou polohu. Tato poloha je vždy kolmá ke směru budícího magnetického pole statoru. [1]

Při naznačeném uspořádání, zobrazeném na obr. 1 - 1, působí na jednotlivé vodiče síla

$$\mathrm{d}\vec{F} = \mathrm{d}Q \cdot (\vec{v} \times \vec{B}) = \mathrm{d}Q \cdot \left(\frac{\mathrm{d}\vec{l}}{\mathrm{d}t} \times \vec{B}\right), \qquad (1-1)$$

kde d \vec{F} (N) je element síly, dQ (C) je element náboje, \vec{v} (m·s⁻¹) je rychlost pohybu nosičů náboje, \vec{B} (T) je indukce magnetického pole, d \vec{l} (m) je element dráhy nosiče náboje. [1]

Následně je vhodné pomyslně dt vytknout před závorku

$$d\vec{F} = \frac{dQ}{dt} \cdot (\vec{dl} \times \vec{B}) = i \cdot (\vec{dl} \times \vec{B}), \qquad (1-2)$$

kde i (A) je proud procházející vodičem kotvy. [1]

Při uvážení zjedodušujících předpokladů, že se rotor otáčí kolem své osy a zaujímá pevné místo v prostoru a že vektor magnetické indukce \vec{B} budícího pole statoru je vždy kolmý na směr pohybu nosičů náboje ve vodičích rotoru ($\alpha = \pi/2$) je možné dále psát

$$\vec{F} = i \int_{l} (\vec{dl} \times \vec{B}) \approx F = i \int_{l} dl \cdot B \cdot \sin(\alpha) = B \cdot i \cdot l, \qquad (1-3)$$

kde α je úhel mezi vektory d \vec{l} a \vec{B} . [1]

Integrálem by byly sečteny všechny elementy síly působící na cívky rotoru. Při zjednodušujících předpokladech lze dle [1] psát vztah

$$F = B \cdot i \cdot l. \qquad [1] \tag{1-4}$$

Stejnosměrný stroj může také pracovat v režimu dynama. Při realizaci pracoviště tento chod nastal během provádění kontrolních měření. Do vodičů otáčejícího se rotoru se indukuje napětí o velikosti $U_i = B \cdot l \cdot v$. Rotor se otáčí, protože je poháněn. Mezi tímto a elektromotorickým napětím platí vztah $U_i = -E$. Smysl indukovaného napětí může být určen podle pravidla pravé ruky. Vlivem komutátoru, který je mechanický měnič, se na sběračích komutátoru, resp. na kartáčích objeví stejnosměrné napětí. Je to způsobeno také tím, že se na kartáče připojují vždy vodiče o stejné pozici v prostoru. Toto je možné vidět na obr. 1 - 1. [1]

Obr. 1 - 1 Základní princip stejnosměrného stroje [1] (převzato a upraveno)

V této práci nebude podrobně rozebírána konstrukce stejnosměrných motorů. Pokud bude zmíněn některý z pojmů, bude vysvětlen v rozsahu pro potřeby textu.

1.2 Indukované napětí a elektromagnetický moment

Pro potřeby odvození indukovaného napětí U_i budou zavedeny zjednodušující předpoklady.

Předpoklad, že rotor je hladký, tzn. je zanedbáno drážkování rotoru, a že platí vztah $\mu_{\text{Fe}} \rightarrow \infty$, kde μ_{Fe} je permeabilita železa. Je tedy zanedbán magnetický odpor vzduchové mezery, protože magnetická vodivost železa je mnohonásobně vyšší než magnetická vodivost vzduchu. Proto magnetické napětí F_{m} je v celé pólové rozteči konstatní a jeho průběh po obvodu stroje ve vzduchové mezeře přibližně obdélníkový. Pod pólovými nástavci je vzduchová mezera podstatně menší, než mezi póly a proto vyplývá, že také velikost magneticke indukce *B* pod pólovými nástavci je vyšší. Poté průběh magnetické indukce mírně a následně prudce klesá do opačné polarity protože se rotor dostává pod pólový nástavec opačné polarity. Tento průběh je zobrazen na obr. 1 - 2. [1]

1.2.1 Velikost indukovaného napětí

Pro vypočtení indukovaného napětí v kotvě, je nutné sečíst jednotlivá indukovaná napětí ve vodičích, jež jsou zapojeny v sérii. Ve stejnosměrných strojích se používají hlavní dva druhy vinutí a rozdělují se podle tvaru cívek na vinutí smyčkové a vlnové. Že jsou jednotlivé cívky zapojeny v sérii je možné pozorovat na obr. 1 - 3. [1]

Obr. 1 - 2 Průběh magnetického pole ve vzduchové mezeře, převzato z [1]

Obr. 1 - 3 Zleva smyčkové vinutí, vlnové vinutí [1]

Z předchozího odstavce platí:

$$U_{i} = \sum_{2N} U_{ix} = \sum_{2N} B_{x} \cdot l_{i} v, \qquad (1-5)$$

kde U_i (V) je velikost indukovaného napětí v kotvě, 2N (N - počet závitů) dvojnásobek závitů neboli počet cívek, U_{ix} (V) je napětí ve sledovaném místě v rotoru, B_x (T) je velikost magnetické indukce působící ve sledovaném místě x, l_i (m) délka aktivního vodiče, neboli délka aktivních stran v jedné cívce (čela nejsou aktivní), v (m·s⁻¹) rychlost vodiče, neboli obvodová rychlost rotoru. [1]

Dále je zřejmé, že platí

$$\Phi = \iint_{S} \vec{B} \cdot \vec{dS} = \iint_{S} B \, dS \, \cos(\alpha), \qquad (1 - 6)$$

kde Φ (Wb) je magnetický indukční tok, \vec{dS} (m²) je vektorový element plochy, velikost tohoto vektoru má velikost plochy d*S*, vektorové elementy plochy mají směr normály k ploše, tedy jsou v každém bodě kolmé k ploše, s kladnou orientací, $\cos(\alpha)$ je cosinus úhlu, který svírají vektory magnetické indukce \vec{B} a elementů plochy d \vec{S} . [1]

Pro odvození indukovaného napětí v rotoru je uvažován průběh magnetické indukce ve vzduchové mezeře dle obr. 1 - 4.

Pro požadované využití rovnice (1 - 5) je nutné vhodně vyjádřit veličiny, vyskytující se v rovnici (1 - 7).

Obr. 1 - 4 Uvažovaný průběh magnetické indukce ve vzduchové mezeře, převzato z [1]

$$\Phi = l_i \int_0^{\tau_p} B_{\mathbf{x}} \, \mathrm{d}x. \tag{1-7}$$

Průběh z obr. 1 - 4 je pro zjednodušení nahrazen kvádrem o stejném objemu, délce l_i , šířce τ_p (pólová rozteč) a výšce $B_{stř}$. Nahrazení proběhne tak, aby velikost magnetického indukčního toku Φ byla zachována. Při obdélníkovém průběhu magnetické indukce jsou napětí ve všech závitech stejná a součet napětí, má-li stroj v rotoru 2N aktivních vodičů zapojených v 2a paralelních větvích, je možno nahradit integrál násobením. [1]

Rovnice (1 - 7) tedy při těchto zjednodušeních přejde na tvar

$$\Phi = B_{\rm st\check{t}} \cdot l_{\rm i} \cdot \tau_{\rm p}. \tag{1-8}$$

Nyní je nutné vyjádřit magnetickou indukci Bstř dle předpokladu aproximace průběhu 1 - 4

$$B_{\text{stř}} = \frac{\Phi}{l_{\text{i}} \cdot \tau_{\text{p}}} = \frac{\Phi}{l_{\text{i}} \cdot \frac{2 \cdot \pi \cdot r}{2m}}.$$
(1 - 9)

Následuje dosazení (1 - 9) do rovnice (1 - 5) a úprava na požadovaný tvar

$$U_{\rm i} = \frac{2N}{2a} B_{\rm stf} \cdot l \cdot v = \frac{\Phi}{1 \cdot \frac{2 \cdot \pi \cdot r}{2p}} \cdot l \cdot v = \frac{2N}{2a} \frac{\Phi 2p}{2\pi r \ l} \ \Omega \ r \ l = \frac{N \ p \ \Phi \ \Omega}{\pi \ a} = k \ \Phi \ \Omega, \tag{1-10}$$

kde N je počet závitů, 2N je počet aktivních vodičů, 2a je počet paralelních větví Φ (Wb) magnetický indukční tok, l (m) je délka aktivní strany vodiče, která při zjednodušení je u všech vodičů stejná, $v = \Omega r$ (m·s⁻¹) je rychlost otáčení rotoru, Ω (s⁻¹) je úhlová rychlost otáčení rotoru, r (m) je poloměr rotoru. Někdy je pro přehlednost místo úhlové rychlosti rotoru používána rychlost v otáčkách za minutu $\Omega = (2\pi n)/60$. [1]

Po dosazení do rovnice (1 - 10) a upravení konstanty je možné psát předpis pro velikost indukovaného napětí v rotoru dle (1 - 11).

$$U_{\rm i} = k_{\rm e} \, \Phi \, n.$$
 [1] (1 - 11)

1.2.2 Elektromagnetický moment

Moment působí u motoru v ose rotoru. Toto lze odvodit ze známého vztahu

$$\vec{M} = \vec{r} \times \vec{F} = r \ F \ \sin(\alpha), \tag{1-12}$$

kde \vec{F} (N) je vektor působící síly, \vec{r} (m) je vektor určující bod, ke kterému je moment vypočítáván, v tomto případě poloměr rotoru od osy rotoru k jeho vnějšku.

Obr. 1 - 5 Vysvětlení směru působícího momentu

Pro odvození velikosti vnitřního elektromagnetického momentu je využito toho, že síla \vec{F} je vždy kolmá na \vec{r} a proto $\sin(\alpha) = \sin(\pi/2) = 1$.

Nyní je možné odvodit velikost momentu působící na jeden vodič v obvodu kotvy motoru.

$$M_{\rm iv} = r \ F_{\rm iv} = r \ B_{\rm st\tilde{t}} \ I_{\rm iv} \ l. \tag{1-13}$$

Namísto l_i v rovnici 1 - 13 je využita délka l_i protože délka aktivní strany vodičů je při zjednodušení u všech vodičů stejná. Rovnice je dále upravena do tvaru

$$M_{iv} = r \ B_{\text{str}} \ I_{iv} \ l = r \ \frac{\Phi}{\tau_{p \ l}} \ I_{iv} \ l = r \ \frac{\Phi}{\frac{2\pi r}{2p}} I_{iv} = \frac{\Phi p}{\pi} \ I_{iv}.$$
(1 - 14)

Celkový vnitřní elektromagnetický moment je dán součtem momentů působící na všechny vodiče 2N. Za proud v jednom vodiči I_{iv} je vhodné dosadit celkový proud rotoru dělený počtem paralelních větví do kterých se dělí $I_{iv} = I/2a$. Toto dosazení je demonstrováno v rovnici (1 - 15).

$$M_{\rm i} = 2N \ M_{\rm iv} = \frac{2N}{2a} \ \frac{\Phi}{\pi} \ I \ p = \frac{p \ N}{\pi \ a} \ \Phi \ I = k \ \Phi \ I, \tag{1-15}$$

kde k je stejná konstanta jako v ronici (1 - 10), I (A) je proud kotvy motoru. [1]

Z rovnice (1 - 10) je zřejmé, že smysl elektromagnetického momentu je možné změnit smyslem magnetického indukčního toku buzení, nebo smyslem proudu kotvy. [1]

1.3 Typické průběhy charakteristik

Pro odvození základních vztahů, ze kterých budou plynout charakteristiky a možnosti řízení stejnosměrných motorů s cizím buzení, bude využito zjednodušené náhradní schéma zobrazené na 1 - 6.

Obr. 1 - 6 Náhradní schéma stejnosměrného motoru

Na obr. 1 - 6 L_{dM} je označení pro induktor reprezentující indukčnost vinutí kotvy, R_{dM} je označení pro rezistor reprezentující odpor kotvy, R_s je označení pro nastavitelný rezistor sloužící např. při způsobu spouštění zařazením předřadných odporů do obvodu kotvy, U_i je indukované napětí na kotvě, U je napájecí napětí, I je proud kotvy, U_f napájecí napětí budícího obvodu, I_f je budící proud, L_f je označení pro induktor reprezentující indukčnost obvodu buzení, R_f je označení pro rezistor reprezentující odpor budícího vinutí. [1]

Ve schématu 1 - 6 a rovnici 1 - 16 nejsou zahrnuty úbytky na kartáčích, které dopadají na komutátor. Dle 2. Kirchhoffova zákona je možné pro obvod kotvy stejnosměrného motoru (při neuvažování L_{dM} a R_s) psát

$$U = R_{\rm dM} I + U_{\rm i}.$$
 [1] (1 - 16)

Veškeré charakteristiky předpokládají chod při zatížení, pokud není uvedeno jinak. Je vhodné využít obvodové rovnice (1 - 16).

$$U = U_{\rm i} + R_{\rm dM} I = k \Phi \Omega + R_{\rm dM} \frac{M}{k\Phi}.$$
 (1 - 17)

Následuje upravení rovnice na vhodnější tvar. Nejdříve je rovnice 1 - 17 upravena pro zobrazení mechanické charakteristiky $\Omega = f(M)$ dle 1 - 18.

$$\Omega = \frac{U}{k\Phi} - \frac{R_{\rm dM}M}{(k\Phi)^2}.$$
 [1] (1 - 18)

Dle rovnice (1 - 18), která popisuje závislost úhlové rychlosti otáčení motoru na momentu motoru, je možné zobrazit její průběh. Průběh 1 - 7 je vynesen při I_f = konst. a U = konstatní.

Obr. 1 - 7 Mechanická charakteristika stejnosměrného cize buzeného motoru

Charakteristika $\Omega = f(M)$ je vynesena při $I_f =$ konst. a U = konst. na obr. 1 - 7. Tvaru této charakteristiky bude velmi podobná, svým průběhem, rychlostní charakteristika n = f(I), protože závislost momentu na proudu je ve velkém rozsahu téměř lineární. Průběh **a** se dostává nad hodnotu otáček naprázdno příčinou toho, že při vyšších hodnotách momentu motoru roste také proud kotvy. Při růstu tohoto proudu se začíná více uplatňovat demagnetizace vlivem reakce kotvy. Charakteristika **b** je zidelizovaný průběh, který nezahrnuje nelinearity vlivem demagnetizace. Skutečný průběh $\Omega = f(M)$ může taktéž vypadat jako charakteristika **c**. V tomto případě nedošlo k takové demagnetizaci, aby otáčky narostly nad Ω_0 . [1]

Při odvozování vztahu popisující závislost n = f(I) je nutné upravit vztah (1 - 16) na vhodný tvar zahrnující požadované proměnné.

$$U = U_{\rm i} + R_{\rm dM} I = k \Phi \Omega + R_{\rm dM} I \rightarrow \Omega = \frac{U - R_{\rm dM}I}{k \Phi}.$$
 (1 - 19)

Následně je možné využít vztahu mezi Ω a *n*.

$$\frac{2\pi n}{60} = \frac{U - R_{\rm dM}I}{k\Phi} \rightarrow n = \frac{U - R_{\rm dM}I}{k_{\rm e}\Phi} = \frac{U}{k_{\rm e}\Phi} - \frac{RI}{k_{\rm e}\Phi}.$$
 (1 - 20)

Na obr. 1 - 8 je možné pozorovat teoretický průběh odvozené závislosti n = f(I).

Obr. 1 - 8 Rychlostní charakteristika stejnosměrného cize buzeného motoru

Průběh závislosti, zobrazený na obr. 1 - 8, je vynesen při $I_f = \text{konst.}$ a U = konstantní. Je možné vidět, že její průběhy jsou skutečně podobné závislosti $\Omega = f(M)$ na obr. 1 - 7. Ohyb průběhu **a** je způsoben demagnetizací vlivem reakce kotvy při vysoké hodnotě proudu, proudící vinutím rotoru. Při průběhu **b** nedošlo k tak razantnímu působení demagnetizace vlivem reakce kotvy a proto charakteristika nepřesáhla otáčky naprázdno. Charakteristika **c** je idealizovaný průběh, tedy bez uvažování vlivu reakce kotvy. [1]

Závislost M = f(I) je již odvozená v rovnici (1 - 15).

Obr. 1 - 9 Momentová charakteristika stejnosměrného cize buzeného motoru

Průběh momentové charakteristiky je ve velkém rozsahu proudu lineární. Při vysokých proudech kotvy I opět zapůsobí demagnetizace vlivem reakce kotvy a nárůst zpomalí, tudíž je možné pozorovat nelineární průběh. M_i je průběh vnitřního elektromagentického momentu nezahrnující mechanické ztráty (ventilační, ložiskové). Průběh momentu M již zahrnuje tyto ztráty a je snížen o tzv. moment ztrát naprázdno M_0 . [1]

1.4 Řízení rychlosti

Možnosti řízení otáček motoru vychází z rovnice (1 - 18). Rychlost lze řídit změnou napájecího napětí kotvy U, změnou magnetického budícího toku Φ , neboli změnou budícího proudu I_f , případně odporem v obvodu kotvy R_s . Je nutné vnímat skutečnost, že pokud je snižován budící proud, tedy budící magnetický tok, dochází současně k nárůstu proudu kotvou. Pro ověření tohoto teoretického předpokladu je vhodné vycházet ze vztahu (1 - 16).

$$U = (R_{\rm s} + R_{\rm dM}) I + U_{\rm i} = R I + k\Phi\Omega, \qquad (1 - 21)$$

kde $R(\Omega)$ je rezistor reprezentující součet R_{dM} a R_s .

Rovnice (1 - 21) je následně upravena do vhodného tvaru

$$I = \frac{U - k\Phi\Omega}{R}.$$
 (1 - 22)

Pro indukované napětí obvykle platí $U_i = k \Phi \Omega \approx 0.9 U$. Při poklesu Φ o 20% bude poměr proudů kotvy po odbuzení I_2 oproti plnému buzení I_1

$$\frac{I_2}{I_1} = \frac{U - 0,90,8U}{U - 0,9U} = \frac{1 - 0,80,9}{1 - 0,9} = 2,8.$$
(1 - 23)

To znamená, že při poklesu budícího proudu o 20 % dojde ke zvýšení proudu kotvy 2,8x. Zvýší se tedy moment dle (1 - 15) a motor se urychlí až do ustálené rychlosti a proud poklesne. Při snižování budícího toku také klesá maximální moment motoru. Ve vztahu (1 - 22) se zvýší otáčivá rychlost motoru. [1]

Optimální řízení rychlosti motoru je při maximáním momentu, kterého je možné dosáhnout při maximálním přípustném proudu kotvy I a při plném nabuzení motoru. Řízení při konstantním proudu kotvy lze realizovat specifickým postupem. Nejprve, při plném nabuzení budícím proudem, I_f zvyšujeme napájecí napětí kotvy U. Ze vztahů (1 - 24)

$$U = k \Phi \Omega \quad a \quad M = k \Phi I \quad a \quad P_{i} = M_{i} \Omega \tag{1-24}$$

plyne, že při zvyšování napětí ale konstantním zatížení a tedy proudu I a I_f je konstantní i moment M_i . Tento způsob řízení rychlosti se nazývá řízení při konstantním momentu. Výkon P_i a úhlová rychlost Ω rostou lineárně. Při I = konst. a dosažení jmenovitého napájecího napětí kotvy U_N se již vnitřní výkon dále nemění. Pokud je potřeba dále zvyšovat otáčky, je možnost začít odbuzovat, neboli snižovat budící proud I_f . Moment v závislosti na rychlosti klesá dle rovnoosé hyperboly. Ovšem vnitřní výkon P_i = konst., to je vidět ze vztahu (1 - 25).

$$P_{i} = M_{i} \cdot \Omega = k \Phi I \frac{U_{i}}{k \Phi} = I U_{i}. \qquad (1 - 25)$$

Ve vztahu (1 - 25) se stejnou mocninou klesá M_i se kterou Ω roste. Proto je P_i konstantní. Řízení rychlosti budícím proudem se nazývá řízení při konstantním vnitřním výkonu. [1]

Při řízení rychlosti změnou napájecího napětí je stroj plně magneticky využit, ale je třeba řiditelného zdroje napětí, jež napájí kotvu. Řízení při konstantním vnitřním výkonu je méně technicky náročné, protože je měněn relativně menší proud $I_{\rm f}$. Při tomto způsobu řízení není stroj plně magneticky využit a při odbuzování, klesá maximální moment. Průběhy $M_{\rm i}$ a $P_{\rm i}$ jsou naznačeny na obr. 1 - 10. [1]

Obr. 1 - 10 Řízení rychlosti motoru při konstatním proudu

2 Napájení stejnosměrného cize buzeného motoru z tyristorového usměrňovače

Pro potřeby textu bude nutné vysvětlit co je tyristorový usměrňovač, jaké má vlastnosti, blokové schéma a na konci jeho použití v zapojení reverzačního tyristorového usměrňovače pro cize buzený motor.

Tyristorový usměrňovač je řízený měnič, jež mění střídavé konstantní napětí o konstantní frekvenci f_2 na výstupní stejnosměrné napětí o proměnné amplitudě $U_{d(AV)}$. K této přeměně usměrňovač využívá tyristory. [2]

Tyristory mohou v usměrňovačích být zapojeny více způsoby ale nejběžnější zapojení pro využití v elektrických pohonech je zapojení můstkové. Typické schéma můstkového zapojení usměrňovačů je na obr. 2 - 1.

Obr. 2 - 1 Obvodové schéma třífázového tyristorového usměrňovače v můstkovém zapojení

Je nutné dodat, že naznačené směry napětí a proudu I_{2e} (A) a U_{2e} (V) jsou pouze orientační, neboť se jedná o střídavou třífázovou síť. Označení "s" značí, že se jedná o sdružené napětí, "e", že se jedná o efektivní hodnoty. Na výstupu můstku je označení $I_{d(AV)}$ (A) a $U_{d(AV)}$ (V). Označení "d", vyjadřuje označení napětí a proud zátěží, "(AV)" střední hodnotu.

Pro další popis je vhodné využít matematický model tohoto můstku.

2.1 Matematický model tyristorového můstkového usměrňovače

Pro obecný popis střední hodnoty usměrněného výstupního napětí můstku se využívá $U_{d(AV)} = f(\alpha)$ vztahu, kde α je řídící úhel. Tento řídící úhel se udává ve stupních nebo radiánech. Úhel α je časové zpoždění od okamžiku průchodu okamžité hodnoty střídavého napětí tzv. okamžikem přirozené komutace, do vyslání řídícího impulzu tyristoru. Okamžik přirozené komutace u třífázového tyristorového můstku odpovídá $\pi/3$ (60 °).

Pro všechny plně řízené tyristorové usměrňovače platí v režimu nepřerušovaných proudů vztah (2 - 1).

$$U_{d(AV)} = U_{d(AV)0} \cos(\alpha), \qquad (2-1)$$

kde $U_{d(AV)0}$ (V) je střední hodnota usměrněného napětí pro řídící úhel $\alpha = 0$ (0 °). [2]

Pro možnost řízení tyristorů je nezbytnou součástí vybavení také generátor řídících impulzů, který s určitým časovým zpožděním (úhlem α) vysílá impulzy na řídící elektrody tyristorů.

Vstupem do generátoru řídících impulzů je řídící napětí $u_{\tilde{t}}$ (V). Toto napětí může nabývat maximální hodnoty $U_{\tilde{t}max}$ (V), které odpovídá maximálnímu otevření tyristorů a tedy minimálnímu úhlu α . Proto je možné tvrdit $\alpha = f(u_{\tilde{t}})$. Dále by bylo vhodné aby platilo

$$U_{\mathsf{d}(\mathsf{AV})} = f(u_{\check{\mathsf{r}}}) = U_{\mathsf{d}(\mathsf{AV})0} \cos(f(u_{\check{\mathsf{r}}})) = U_{\mathsf{d}(\mathsf{AV})0} \frac{u_{\check{\mathsf{r}}}}{U_{\check{\mathsf{r}}\mathsf{max}}}.$$
(2 - 2)

Po vydělení rovnice (2 - 2) členem $U_{d(AV)0}$ a následné úpravě

$$\cos(f(u_{\check{\mathbf{r}}})) = \frac{U_{\mathsf{d}(\mathsf{AV})0}}{U_{\mathsf{d}(\mathsf{AV})0}} \frac{u_{\check{\mathbf{r}}}}{U_{\check{\mathsf{f}}\max}} = \frac{u_{\check{\mathbf{r}}}}{U_{\check{\mathsf{f}}\max}} \Rightarrow \arccos(\cos(f(u_{\check{\mathbf{r}}}))) = \arccos\left(\frac{u_{\check{\mathbf{r}}}}{U_{\check{\mathsf{f}}\max}}\right)$$
(2 - 3)

je možné získat funkci $f(u_{\tilde{r}})$ (2 - 4).

$$f(u_{\tilde{\mathbf{r}}}) = \arccos\left(\frac{u_{\tilde{\mathbf{r}}}}{U_{\tilde{\mathbf{r}}\max}}\right).$$
 (2 - 4)

Dle [2] má většina generátorů řídících impulzů funkci $f(u_{\rm f})$ realizovanou pomocí lineární závislosti (2 - 5).

$$\alpha = \frac{\pi}{2} \left(1 - \frac{u_{\check{\mathsf{f}}}}{U_{\check{\mathsf{f}}\mathsf{max}}} \right). \tag{2-5}$$

Jak je možné z rovnice (2 - 5) vidět, pro $u_{\tilde{r}} = U_{\tilde{r}max}$ bude $\alpha = 0$ a výstupní napětí proto maximální kladné. Pro $u_{\tilde{r}} = 0$ bude $\alpha = \pi/2$ a výstupní napětí nulové. Když bude řídící napětí maximální záporné, tedy $u_{\tilde{r}} = -U_{\tilde{r}max}$, pozorovatelné výstupní napětí bude maximální a záporné. [2]

Z předchozích úvah je tedy možné pro závislost $U_{d(AV)} = f(u_{\tilde{t}})$ psát odvození (2 - 6).

$$U_{d(AV)} = U_{d(AV)0} \cos\left(\frac{\pi}{2} \left(1 - \frac{u_{\tilde{r}}}{U_{\tilde{r}max}}\right)\right) = U_{d(AV)0} \cos\left(\frac{\pi}{2} - \frac{\pi}{2} \frac{u_{\tilde{r}}}{U_{\tilde{r}max}}\right) = U_{d(AV)0} \left[\cos\left(\frac{\pi}{2}\right) \cos\left(\frac{\pi}{2} \frac{u_{\tilde{r}}}{U_{\tilde{r}max}}\right) + \sin\left(\frac{\pi}{2}\right) \sin\left(\frac{\pi}{2} \frac{u_{\tilde{r}}}{U_{\tilde{r}max}}\right)\right] = U_{d(AV)0} \left[0 + 1 \sin\left(\frac{\pi}{2} \frac{u_{\tilde{r}}}{U_{\tilde{r}max}}\right)\right] = U_{d(AV)0} \sin\left(\frac{\pi}{2} \frac{u_{\tilde{r}}}{U_{\tilde{r}max}}\right).$$

$$(2 - 6)$$

V rovnici (2 - 6) se ze závislosti cosinusové pomocí matematických úprav stala závislost sinusová, popisující závislost $U_{d(AV)} = f(u_{\tilde{t}})$. [2]

Ovšem výstupní napětí $U_{d(AV)}$ je m.j. závislé na velikosti procházejícího proudu usměrňovačem a je proto snížené o komutační úbytek, zmiňovaný v [3] a [2].

3 Napájení stejnosměrného cize buzeného motoru s cizím buzením z reverzačního tyristorového usměrňovače

Při zapojení řízení stejnosměrného obvodu dle obr. 3 - 1 se používá hlavních dvou způsobů řízení stejnosměrného motoru. Řízení bez okruhových proudů a řízení s okruhovými proudy.

Obr. 3 - 1 Obvodové schéma řízení stejnosměrného cize buzeného motoru s konstatním buzením pomocí reverzačního usměrňovače

3.1 Řízení stejnosměrného cize buzeného motoru s konstatním buzením pomocí reverzačního tyristorového usměrňovače způsobem bez okruhových proudů

Tento způsob řízení se používá v pohonech, kde není důležitá vysoká dynamika pohonu. Není tedy použit například u válcovacích strojů nebo tam, kde jsou vyžadovány rychlé a časté změny směru otáčení a hnacího momentu.

Princip řízení spočívá na tom, že tyristorové usměrňovače A_{TU1} a A_{TU2} zapojené antiparalelně nepracují společně ale vždy pouze jeden z usměrňovačů. Druhý má zablokované vstupy řídících impulzů z generátoru řídících impulzů (na chématu naznačen GŘI). Aby při tomto řízení bylo dosaženo určité dynamiky, využívá se reverzační logika. Reverzační logika dodržuje určitý sled událostí tak, aby bylo dosaženo co nejvyšší rychlosti změn v co nejkratším čase při minimalizaci možnosti toku okruhových proudů. Sled událostí je následující:

- 1. Získání požadavku na reverzaci pohonu, tudíž změnu směru působení momentu a tedy proudu kotvou motoru, tedy směru proudu I_{qM} .
- Zablokování regulátoru proudu pro právě pracující usměrňovač. Regulátor již nebude regulovat výstupní proud můstku podle regulační odchylky skutečného a žádaného proudu kotvy. Současně se nastaví řídící napětí právě pracujícího můstku na nulu.
- 3. Skoková změna řídícího napětí právě pracujícího usměrňovače na $-U_{\text{řmax}}$. Tím přejde právě pracující můstek do invertorového režimu, a původní proud procházející kotvou motoru začne klesat k nule tedy strměji.
- 4. Zjištění nulového proudu kotvou motoru I_{qM} . Čidla používaná na zjištění této nulové hodnoty obvykle mají jen dva stavy. Indikují, že proud teče nebo neteče. Ovšem disponují taktéž určitou chybou. Proto, aby se předešlo možnému okruhovému proudu, se zařadí do obvodu tohoto čidla blok

zpoždění. Tento blok zpoždění zajistí, že se zmenší možnost výskytu okruhových proudů v obvodu kotvy nesprávným otevíráním zatím nepracujícího můstku. A také se zajistí, že nedojde k odtržení proudu takovým způsobem, který by měl za následek naindukování napětí na indukčnostech v obvodu. Kdyby se toto nedodrželo, mohlo by být napětí vytvořené indukčnostmi nebezpečné pro prvky v obvodu.

- 5. Po celkovém vyhodnocení nulového proudu obvodem kotvy dojde k zablokování řídících impulzů prozatím pracujícího můstku.
- 6. Následuje odblokování řídících impulzů do této doby nepracujího můstku. Protože z kroku 3 bylo nastaveno řídící napětí usměrňovačů na –U_{řmax} a proud I_{qM} je nulový, bude proud stále nulový. Proud nemůže protékat, protože na výstupu tohoto můstkového usměrňovače je napětí proti směru vodivosti tyristorů. Tento stav by mohl být připodobněn k invertorovému chodu, ale bez průchodu proudu.
- Odblokování regulátoru pro můstek, který právě začíná pracovat. Regulátor proudu následně reguluje proud kotvou podle regulační odchykly a přejde z invertorového do usměrňovačového režimu. Proud kotvou I_{qM} nyní prochází v opačném směru než v kroku 1.

Je vidět, že tento způsob řízení je relativně časově náročný. Stejný postup řízení bez okruhových proudů je možné použít při napájení stejnosměrného cize buzeného motoru pomocí nereverzačního řízeného tyristorového usměrňovače v kotevním obvodu při napájení budícího obvodu z reverzačního tyristorového usměrňovače. [2]

3.2 Řízení stejnosměrného cize buzeného motoru s konstatním buzením pomocí reverzačního tyristorového usměrňovače způsobem s okruhovými proudy

Při rozvoji moderní výkonové elektroniky bylo umožněno při řízení stejnosměrného cize buzeného motoru bez okruhových zvýšit přesnost nulových indikátorů proudu a také jejich rychlost až na řád několik milisekund. V určitých případech tato rychlost změn nestačí a proto je nutné řídit motor způsobem s okruhovými proudy. Zapojení zůstává stejné jako v případě řízení bez okruhových proudů. Avšak nyní se účinně uplatní tlumivky L_{d1} a L_{d2} jako jedna z možností omezení okruhových proudů. Tlumivky indukují protinapětí a brání se změně, kterou reprezentuje možný narůstající okruhový proud.[2]

Při tomto způsobu řízení pracují oba můstkové usměrňovače A_{TU1} a A_{TU2} společně. Pokud je žádáno, aby mezi usměrňovači netekl okruhový proud, musí platit následující rovnice.

$$U_{d1(AV)} + U_{d2(AV)} = 0 \tag{3-1}$$

nebo případně

$$U_{d1(AV)} + U_{d2(AV)} \le 0. \tag{3-2}$$

Nyní není značeno, zda se jedná o napětí před započtením komutačního úbytku. Pro úplnost by bylo nutné s ním počítat. Avšak pro odvození základní teorie řízení s okruhovými proudy lze toto označení vynechat.

Po vyjádření středních hodnot jednotlivých napětí dle rovnice (2 - 6) a úpravě platí

$$U_{d1(AV)} = U_{d(AV)0} \sin\left(\frac{\pi}{2} \frac{u_{f1}}{U_{fmax}}\right) \le -U_{d(AV)0} \sin\left(\frac{\pi}{2} \frac{u_{f2}}{U_{fmax}}\right) = U_{d2(AV)}.$$
 (3 - 3)

V rovnici (3 - 3) bylo předpokládáno, že jednotlivé tyristorové můstky usměrňovače jsou shodné a mají tedy stejnou hodnotu $U_{d(AV)0}$. Díky tomuto se rovnice (3 - 3) zjednoduší na tvar

$$\sin\left(\frac{\pi}{2}\frac{u_{\check{r}1}}{U_{\check{r}\max}}\right) \le -\sin\left(\frac{\pi}{2}\frac{u_{\check{r}2}}{U_{\check{r}\max}}\right),\tag{3-4}$$

kterou je možné dále upravit tak, aby pro jednotlivé strany rovnice a velikosti výstupních napětí platilo

$$\arcsin\left(\frac{\pi}{2}\frac{u_{\check{\mathsf{f}}1}}{U_{\check{\mathsf{f}}\mathsf{max}}}\right) \le -\arcsin\sin\left(\frac{\pi}{2}\frac{u_{\check{\mathsf{f}}2}}{U_{\check{\mathsf{f}}\mathsf{max}}}\right) \Rightarrow \frac{\pi}{2}\frac{u_{\check{\mathsf{f}}1}}{U_{\check{\mathsf{f}}\mathsf{max}}} \le -\frac{\pi}{2}\frac{u_{\check{\mathsf{f}}2}}{U_{\check{\mathsf{f}}\mathsf{max}}} \tag{3-5}$$

a konečné její řešení je tvaru

$$u_{\check{r}1} \le -u_{\check{r}2}.\tag{3-6}$$

Splnění podmínky rovnosti v (3 - 6) $u_{t1} = -u_{t2}$ zajistíme vložením bloku negace do přívodu řídícího napětí pro generátor impulzů druhého můstkového usměrňovače. [2]

Nyní je vhodné zjistit, zda se obvod bude chovat dle předpokladů. Ve schématu 3 - 1 je naznačena orientace napětí na kotvě stroje U_i , která bude nyní využita. Pro řídící napětí $u_{\tilde{t}} = u_{\tilde{t}1} > 0$ je výstupní střední hodnota $U_{d1(AV)} > 0$. Pokud je indukované napětí v kotvě motoru $U_{iM} < U_{d1(AV)}$, protéká proud značený v obr. 3 - 1 $I_{d2(AV)}$ ve stejném směru jako I_{qM} a usměrňovač pracuje v usměrňovačovém režimu. Usměrňovačem A_{TU1} teče proud ve směru vodivosti tyristorů. Platí vztah

$$U_{d1(AV)} - U_i = R_{dM} I_{qM}.$$
 (3 - 7)

Pro můstek A_{TU2} platí

$$U_{d2(AV)} + U_{iM} = -U_{d1(AV)} + U_{iM} = -(U_{d1(AV)} - U_{iM}) = R_{dM}I_{d2(AV)}.$$
 (3 - 8)

Z (3 - 8) vychází, že R_{dM} být záporné nemůže. Aby platila rovnost pro $U_{iM} < U_{d1(AV)}$ vychází proud $I_{d2(AV)}$ záporný a nemůže tedy dle obr. 3 - 1 protékat přes tyristory můstkového usměrňovače A_{TU2} . Pro případ invertorového chodu, kdy je $U_{iM} > U_{d1(AV)}$ vychází dle (3 - 8) proud $I_{d2(AV)}$ kladný, tedy $I_{d2(AV)} = -I_{qM}$ a proud usměrňovačem A_{TU2} protéká ve směru vodivosti tyristorů. [2]

Podobné odvození by platilo i pro řídící úly α_1 a α_2 , kde

$$U_{d1(AV)} = U_{d(AV)0} \cos(\alpha_1) = -U_{d1(AV)} = U_{d(AV)0} \cos(\alpha_1), \qquad (3-9)$$

proto

$$\cos(\alpha_1) = -\cos(\alpha_2), \tag{3-10}$$

a poté

$$\alpha_1 = 180^\circ - \alpha_2 \Rightarrow \alpha_1 + \alpha_2 = 180^\circ. \tag{3-11}$$

Kde α_1 (°, rad) je řídící úhel A_{TU1} , α_2 (°, rad) je řídící úhel A_{TU2} . Tyto odvození platí pro výstupní střední hodnoty můstkových usměrňovačů. Ovšem okamžité výstupní hodnoty napětí usměrňovačů A_{TU1} a A_{TU2} se liší. Tento rozdíl vyvolá rozdíl napětí a ten vyvolá okruhový proud $i_{okruhový}$, který se neuzavírá přes obvod kotvy motoru ale okruhem přes oba můstky. Tento okruhový proud se omezuje tlumivkami L_{d1} , L_{d2} a způsobem řízení tyristorových můstků. Okruhový proud je závislý na veliksti tlumivek v obvodu,

na řídícím úhlu tyristorových můstků (tedy okamžitých hodnot jejich výstupních napětí), počtu pulzů usměrňovače a velikosti odporů v obvodu. [2]

3.3 Řízení stejnosměrného cize buzeného motoru pomocí reverzačního usměrňovače v obvodu kotvy a nereverzačního usměrňovače v budícím obvodu

Je vhodné představit způsob čtyřkvadrantového řízení stejnosměrného cize buzeného motoru s odbuzováním, který je možné využít na pracovišti s DCM.

Hlavní částí je reverzační řízení stejnosměrného cize buzeného motoru s realizací reverzace v obvodu kotvy. Při požadavku dalšího zvyšování otáček je prováděno odbuzování. Při odbuzování dochází ke snižování budícího proudu se současným poklesem maximálního momentu. Blokové schéma tohoto řízení je na obr. 3 - 2.

Obr. 3 - 2 Blokové schéma řízení stejnosměrného cize buzeného motoru pomocí změny proudu kotvy s možnou reverzací proudu kotvou a odbuzováním

Regulace změny otáček je prováděna v obvodu kotvy, protože z konstrukce běžných stejnosměrných cize buzených motorů vyplývá, že indukčnost kotvy je několikanásobně menší, než indukčnost budícího vinutí. Proto také pro časovou konstantu obvodu kotvy platí

$$\tau_d < \tau_f, \tag{3-12}$$

kde τ_d (s) je časová konstanta obvodu kotvy motoru, τ_f (s) je časová konstanta obvodu buzení. [2] Kotva motoru je napájena z dvou antiparalelně zapojených tyristorových nereverzačních můstků, označeno A_{TUK} . Vstupním řídícím signálem do můstků je signál z generátoru řídících impulzů (1), který je řízen regulátorem proudu R_I (2). Ve skutečnosti má každý nereverzační můstek svůj vlastní generátor řídících impulzů, ve schématu nejsou jednotlivě zakresleny. Vstupem do regulátoru proudu je regulační odchylka tvořená rozdílem žádané hodnoty kotevního proudu i_{qM}^* a skutečného proudu kotvy i_{qM} . Skutečná hodnota proudu procházející kotvou se získá pomocí měřidla proudu (12) a následný přizpůsobením v bloku (4) pro vhodné tvoření regulační odchylky pro regulátor kotevního proudu. Signál žádané hodnoty proudu i_{qM}^* je vytvářen v regulátoru otáček R_{Ω} (3). Vstup do společného regulátoru R_{Ω} je regulační odchylka vytvářená rozdílem zadávané hodnoty otáček a skutečných otáček motoru. Zadávaná hodnota otáček může být oboupolaritní, tzn. že je možné vybrat, zda otáčení motoru bude určeným kladným nebo opačným směrem. Ze snímače otáček motoru T je signál přeměňován v bloku 6 na vhodný tvar pro regulátor a dochází v něm k přepočtu na Ω . Z přeměněného kotevního proudu z bloku 4 je následně signál upraven blokem 10 na úbytek napětí na rotorovém odporu $R_d i_{qM}$. Tento signál je odečítán od hodnoty napětí kotvy motoru u_{qM} . V bloku absolutní hodnota (11) se tento oboupolaritní signál přemění na jednopolaritní a dále se odečítá od žádané hodnoty indukovaného napětí kotvy motoru U_i^* . Tímto odečtem je získán signál Δu_i . Ten je dále přepočten v bloku nelinearita (8) na žádaný budící proud i_f^* . Tento blok, m.j. způsobí, že žádaná hodnota budícího proudu při řízení odbuzováním neklesne pod nastavenou minimální hodnotu, aby nedošlo k nepřípustně velkému odbuzení. Pro velké Δu_i má výstup bloku 8 maximální povolenou hodnotu žádaného budícího proudu. Regulátor budícího proudu R_{I_F} udržuje budící proud podle regulační odchylky, vytvořené rozdílem žádané hodnoty budícího proudu z bloku 8 a změřeného budícího proudu. Výstupem z regulátoru budícího proudu je vstupní signál pro generátor řídících impulzů pro řízený nereverzační tyristorový můstkový usměrňovač, který napájí budící obvod. Blok 14 a 15 slouží k nastavení žádané hodnoty regulované veličiny, v tomto případě k nastavení žádané otáčivé rychlosti, resp. žádaného indukovaného napětí kotvy. [2]

Zobrazení roviny $\Omega - M$ a v ní vyznačená pracovní oblast výše popsaného řízení pohonu dle schématu 3 - 2 je na obr. 3 - 3.

Obr. 3 - 3 Pracovní oblast pro řízení stejnosměrného cize buzeného motoru pomocí změny proudu kotvy s je možnou reverzací proudu kotvou a odbuzováním

V rozsahu rychlostí $+\Omega_p$ a $-\Omega_p$ pracuje motor s plným magnetickým tokem a je tedy plně nabuzen. Proto je schopen vyvinout maximální moment $+M_{max}$ a $-M_{max}$. Pokud je motor napájen jmenovitým napájecím napětím kotvy a je třeba dále zvyšovat otáčky Ω , je možné používat odbuzování. Při odbuzování se zvýší otáčky až k hranicím $+\Omega_{max}$ a $-\Omega_{max}$, které jsou dány mechanickými vlastnostmi stroje. Při odbuzování a zvyšování otáček klesá maximální moment s otáčkami podle hyperboly. [2]

Tento pokles je možné odvodit z předpisu pro mechanickou charakteristiku cize buzeného stejnosměrného motoru, pokud je uvažována práce v lineární části magnetizační charakteristiky

$$\Omega = \frac{U}{k\Phi} - R_{\rm dM} \frac{M}{(k\Phi)^2},\tag{3-13}$$

kde U (V) je napájecí napětí kotvy, k je konstanta stroje, Φ (Wb) magnetický indukční budící tok, M (Nm) elektromagnetický moment stroje, R_{dM} (Ω) rezistor reprezentující odpor kotevního obvodu. Pokud klesá budící proud, tak klesá magnetický budící tok. Je vidět, že v rovnici (3 - 13) se snižujícím se budícím tokem s druhou mocninou roste druhý člen pravé strany.

4 Složení pracoviště s měničem DCM

Na využívaném laboratorním pracovišti se nachází prvky, jež je třeba pro praktickou část stručně přiblížit.

Jednou z hlavní částí je Programmable Logic Controller, dále označován jako PLC. Pomocí tohoto PLC je řízen měnič, který přímo ovládá myšlený stejnosměrný motor. PLC je mnoho druhů, které se liší svými možnostmi a složením. Nejzásadnější rozdíl lze pozorovat v použitím Central Processing Unit, dále jen CPU. V praktické části této práce je využit modulární systém Siemens SIMATIC S7-1200.

Pokud je využit PLC od firmy Siemens, pro bezproblémovou kompatibilitu je výhodné použít měnič Siemens. Měničů je mnoho druhů a liší se především jejich technologií. Pro řízení stejnosměrného motoru je použit čtyřkvadrantový usměrňovač SINAMICS DCM, který bude blíže popsán v části *měnič siemens SINAMICS DCM*.

Pro zobrazení požadovaných hodnot pohonu byl původně využit HMI KTP600 Basic color PN Siemens, který byl v závěru práce změněn na HMI KTP700 Basic Siemens. Tato změna byla nutná, protože KTP600 neumožňoval záznam požadovaných hodnot sledovaných veličin.

Snadnější propojení všech SIEMENS komponent pomocí PROFINETu je realizováno pomocí switch SIEMENS CSM 1277. Topologické propojení jednotlivých komponent v prostředí TIA portal je znázorněno na obr. 4 - 1.

Názorné schéma reprezentující skutečné propojení jednotlivých prvků je zobrazeno na obr. 4 - 2. Na tomto schématu je možné pozorovat napájecí stůl dodávající napětí 3x230/400 V použité pro napájení silového obvodu měniče DCM. V silovém napájejícím obvodě kotvy je umístěna třífázová vyhlazovací tlumivka L_{ism} (input - smoothing) 6RX1800-4KD01 DDK0, 4S900, velikost indukčnosti 160 mH ± 10 %, výrobce trafo modern. V napájecím obvodu, poskytující energii do budícího obvodu motoru, je umístěna jednofázová vyhlazovací tlumivka L_{fsm} (field - smoothing) typu 6RX1800-4DE01 DEK0, 06S900, velikost indukčnosti 10,19 mH ± 10%, výrobce trafo modern. V kotevním obvodu motoru je umístěna jednofázová vyhlazovací tlumivka L_{qsm} (armature - smoothing), velikost indukčnosti 1,75 mH. Ovládací část DCM měniče a PLC je napájana pomocí rozvodu 230 V AC. Komunikace mezi komponentami switch, PLC a HMI je provedena pomocí PROFINETu. HMI panel je napájen z PLC pomocí 24 V DC.

Skutečné uspořádání pracoviště v laboratoři je možné pozorovat na obr. 4 - 3. Označený "motor 2" je využit při testovacích měření a také jako zátěž při realizaci momentové smyčky pohonu.

Obr. 4 - 1 Topologické schéma propojení SIEMENS komponent na pracovišti s měničem DCM

Obr. 4 - 2 Názorné schéma zapojení pracoviště s měničem DCM

Obr. 4 - 3 Základní uspořádání pracoviště v laboratoři při jeho realizaci

4.1 PLC Siemens SIMATIC S7-1200

Systém PLC Siemens SIMATICS S7-1200 je modulární systém, skládající se z CPU, signálních, komunikačních a technologických modulů.

Jak již bylo zmíněno v části *pracoviště s měničem DCM*, nejdůležitější částí PLC systému je CPU. Značnou část práce představuje vytvoření programu pro CPU, podle kterého bude vykonávána požadované činnost na základě analogových, digitální vstupů či vnitřních proměnných. CPU systém Siemens je možné spravovat v programu Totally Integrated Automation Portal, dále jen jako TIA Portal.

TIA Portal je komplexní program určený pro správu PLC CPU. V tomto portálu je možné vytvářet řídící programy několika způsoby. Mezi hlavní patří SCL jazyk, žebříkový diagram, diagram blokových funkcí a STL.

Použité PLC a modul switch, připojený k PLC pro snadnější propojení použitých PROFINET komponent, je možné pozorovat na obr. 4 - 4.

Obr. 4 - 4 Detail použitého PLC Simatics S-1200 s CPU 1212C AC/DC/RLY a modulu switch

4.2 Měnič Siemens SINAMICS DCM

Jedná se o měnič, jehož způsob funkce a obecný způsob řízení motoru byly představeny v části *napájení stejnosměrného cize buzeného motoru s cizím buzení z reverzačního tyristorového usměrňovače.* V této práci byl využit čtyřkvadrantový usměrňovač označen "Siemens SINAMICS DCM Series 30A Four Quadrant DC Thyristor Drive for 400V Supply with 230V or 400V Control supply" typu 6RA8018-6DV62-0AA0. [4]

Vybrané parametry použitého měniče jsou zobrazeny v tab. 4 - 1.

$I_{c_{\rm DC}}$	$I_{q_{\rm DC}}$	If	$U_{q_{\mathrm{AC}}}$	$U_{\mathrm{f}_{\mathrm{AC}}}$	$U_{\rm DC}$	P_{2n}
30	25	5	400	400	420	12,6

Tab. 4 - 1 Vybrané parametry měniče, parametry získány z katalogu [5]
4.3 Propojení komponent Siemens

Pro propojení PLC a měniče bude využit průmyslový Ethernet kabel, který oproti klasickému Ethernet kabelu obsahuje kvalitní stínění vodičů. Jednotlivé komponenty budou spolu komunikovat pomocí PRO-FINETu.

Při využití PROFINETu je nutné, aby se každému zařízení v TIA portalu přiřadila unikátní IP adresa v rámci subsítě. Kdyby tak nebylo učiněno, došlo by ke konfliktu adres a požadovaná komunikace by nebyla funční.

Je vhodné si uvědomit, že nelze porovnávat Ethernet a PROFINET. Tento rozdíl je možné pozorovat díky referenčnímu modelu ISO/OSI. Ethernet je tvořen vrstvou Physical (fyzickou) a Data link (linkující) vrstvou. Oproti tomu PROFINET je aplikační vrstva. Tudíž je nejvýše v tomto modelu a k jeho funkci využívá všech podvrstev vyskytující se v ISO/OSI modelu na obr. 4 - 5. [6]

Obr. 4 - 5 Typický ISO/OSI model přeložený do češtiny, reprezentující jednotlivé vrtsvy komunikace, Ethernet jsou vrstvy označené 1 a 2, PROFINET vrstva 7

Komponenty mezi sebou mohou komunikovat různými způsoby. V této práci bude využita cyklická komunikace pomocí telegramu. Výběr telegramu závisí na tom, co je měniče a PLC požadováno. Pro základní rozběh motoru je možné využít třeba standardní telegram 1, PZD-2/2. Kde PZD značí "place-holder" dat, které se liší podle výběru druhu PLC.

Označení 2/2 má význam "počet zaslaných slov dat z PLC/počet přijatých slov" dat do PLC. V tomto případě jedno slovo odpovídá 2 bytům, neboli 16 bitům. Tudíž délka odeslaných dat může být až 32 bitů.

Struktura jednotlivých odesílaných slov se liší dle typu vybraného telegramu. Například pro standardní telegram 1, který se používá pro řízení rychlosti motoru, obsahuje STW1 strukturu dle obr. 4 - 6. [7]

Označení STW1 pochází z německého "Steuerwort", v překladu zmanenající "Control word". Směřuje tedy od PLC do měniče a slouží k ovládání měniče. Oproti tomu ZSW1 znamená "Zustandswort" neboli "Status word" a směřuje od měniče do PLC a poskytuje informaci o aktuálním stavu odesílatele. Jeho struktura pro standardní telegram 1 je popsána v [7].

STW1 (control word 1)

Table 10- 8 Control word 1 (STW1)

Bit	Meaning	Explanation	Operating	BICO
0	0 = OFF1 (OFF1)	0: Deceleration on the down ramp, then pulse inhibit, line contactor (if present) is opened	1	BI: p0840
	0 → 1 = ON	Pulse enable possible	1	
1	0 = Coast down (OFF2)	0: Pulse inhibit, line contactor (if present) is opened	1	BI: p0844 BI: p0845
	1 = Do not coast down	Enable possible	1	
	Note: Control signal OFF2 is	generated by ANDing BI: p0844 and BI: p0845.		
2	0 = Quick stop (OFF3)	0: Deceleration on the quick stop ramp, then pulse inhibit, line contactor (if present) is opened.	1	BI: p0848
	1 = No quick stop	Enable possible		
	Note: Control signal OFF3 is	generated by ANDing BI: p0848 and BI: p0849.		
3	0 = Inhibit operation	0: Pulse inhibit. The motor coasts down. The "Ready for Operation" state remains set.	1	BI: p0852
	1 = Enable operation	1: Pulse enable, ramp-up with active setpoint		
4	0 = Inhibit ramp-function generator	0: The ramp-function generator output is set to setpoint "0".	1	BI: p1140
	1 = Enable ramp-function generator			
5	0 = Stop ramp-function generator	0: The current setpoint is frozen at the ramp- function generator output.	1	BI: p1141
	1 = Start ramp-function generator			
6	1 = Enable speed setpoint	1: The speed setpoint at the input of the ramp- function generator is enabled.	1	BI: p1142
	0 = Inhibit speed setpoint	0: The speed setpoint at the input of the ramp- function generator is set to zero. The drive brakes in accordance with the set ramp-down time.		
7	0 → 1 = Acknowledge fault	A positive edge change acknowledges all the current faults.	-	BI: p2103
	Note: Acknowledgement is re	ealized with a 0/1 edge via BI: p2103 or BI: p2104 or	Bl: p2105.	
8	Reserved		-	-
9	Reserved		-	-
10	1 = Control via PLC	1: PROFIBUS control words and setpoints are analyzed.	1	BI: p0854
		0: PROFIBUS control words and setpoints are not analyzed.		
	Note: This bit should not be s = "1".	set to "1" until the PROFIBUS slave has returned an	appropriate status	via ZSW1.9
11	Reserved		-	-
12	Reserved		-	-
13	1 = Motorized potentiome- ter, higher	Only when p0922 = 1 or 352, otherwise reserved	-	BI: p1035
14 1 = Motorized potentiome- ter,		Only when p0922 = 1 or 352, otherwise reserved	-	BI: p1036
	lower			
	Note: If "Motorized potentiometer, I current setpoint is frozen.	nigher" and "Motorized potentiometer, lower" are bol	th 0 or 1 at the sam	ne time, the
15	1 = CDS bit 0 (only with telegrams p0922	1: Command data set changeover (CDS) bit 0 is active.	-	BI: p0810
	= 20!)	0: Command data set changeover (CDS) bit 0 is inactive.		
	Reserved	When p0922 = 1 or 352	-	-

Obr. 4 - 6 Výřez z dokumentu Operating Instructions pro SINAMICS DCM zobrazující strukturu STW1 telegramu 1, převzato z [7]

4.4 Prostředí STARTER

Pro prvotní konfiguraci měniče DCM je možné využít program STARTER. Tento program slouží k tzv. Commissioning neboli k nastavení parametrů měniče a řídící jednotky, k nastavení funkce analogových a digitálních vstupů apod.

Programová obrazovka se skládá z hlavních čtyřech částí vyznačených na obr. 4 - 7.

STARTER - snad_DCM - [Drive_unit_1.Drive_1 - E	apert list]				- a ×
Project Edit Target system View Optio	rs Window Help 19				- 6
Real snad DCM ∧	🛐 🎥 🛐 🛛 Enter search text 🔹 👪 🗹 🛱 😁 hexadecimal 🗨 ঝ				
📩 Insert single drive unit	Expetiist				
Drive_unit_1	OPeram Data Decemptar fast	Offline value Drive 4	linit Modifiable to	Access level	tinimum Maximum A
> Overview		V AI		Accessiever	
B→ ➤ Communication	116 (m r4660) CO: Measuring gear encoder raw value absolute. Encoder 1			1	
— > Commiss. interface	117 @ r4870 Disgnostic encoder control word Gn_STW, Encoder 1	OH		3	
> Telegram configuration	118 p491 Motor encoder fault response ENCODER	(0) Encoder fault resul	Ready to run	3	
— > Topology	119 p492 Square-wave encoder maximum speed difference per sampling cycle	0.00	rpm Operation	3 0	210000
Control_Unit	120 p595 Technological unit selection	[1] %	Commissionin.	. 1	
- Insert DCC chart	121 p596 Technological unit reference quantity	1.00	Ready to run	1 0	0.01 3.40282E
Configuration	122 p601(0) M Motor temperature sensor type	(0) No sensor	Operation	2	
— > Expert list	123 (B proto) C Macro Binedor Input (BI)	0	Ready to run	1 0	999999
-> Communication	124 p806 Bt Inhibit master control	0	Ready to run	3	
Operator papels	120 BT0V DV. Master Cellular dutre 120 B0000 D Conc Concernand Data Set CDS Source Command Data Set	UN D	Ready to nun	2 (16
	127 DECEMPT DECEMPTION DECEMPTION DE DECEMPTION DE DECEMPTION DE DECEMPTION DE DECEMPTION DE DE DECEMPTION DE DE DECEMPTION DE DE DE DECEMPTION DE	0	Ready to run	3	
E Diagnostics	122 (m o81900) Conv Drive Data Set DDS. Source Drive Data Set		Commissionin	2	31
> Interconnections	129 m p820(0) C Bt Drive Data Set selection DDS bit 0	Drive_1 : r2093.0	Ready to run	3	
> Alexen kintern	130 m p82100 C Bt Drive Data Set selection DDS bit 1	Drive_1 : r2093 1	Ready to run	3	
- / Alarm history	131 Br835 CO/BO: Data set changeover status word	OH		2	
hput/output components	132 Br836 CO/BO: Command Data Set CDS selected	OH		3	
	133 Brd37 CO/BO: Drive Data Set DDS selected	OH		2	
	134 @ p840[0] C B: ON / OFF (OFF1)	Drive_1 : r2090.0	Ready to run	3	
— > Configuration	135 B p844[0] C Bt: No coast-down / coast-down (OFF2) signal source 1	Drive_1 : r2090.1	Ready to run	3	
— > Expert list	136 @ p845[0] C Bt: No coast-down / coast-down (OFF2) signal source 2	1	Ready to run	3	
	137 (e) p646(0) C Bi: No Quick Stop / Quick Stop (OFF3) signal source 1	Drive_1 : r2090.2	Ready to run	3	
— > Control logic	133 (E) p649(0) C Br. No Cuck Stop / Curk	The second se	Ready to run	3	
⊖-≫ CUD input/output term	139 (b) posely C B: Charles operation/white operation	Drive_1 - 12090 3	Ready to run	3	
— > Digital Inputs	141 (m. paced) C Brillenow by recommon by rec	0	Ready to run	3	
— > Digital outputs	12 m possibility of the internet of the second seco	1	Ready to run	3	
— > Digital in/out bidirect	143 m p55800 C Bt Unconditionally close holding brake	0	Ready to run	2	
— > Line contactor contro	144 @ r898 CO/BO: Control word sequence control	1466H		2	
Analog inputs	145 Br899 CO/BC: Status word sequence control	A281H		2	
Analog outputs	146 p922 IF1 PROFidrive PZD telegram selection	[3] Standard telegram	Ready to run	1	
	147 Br924[0] ZSW bit pulses enabled, Signal number	0		3	
	148 r944 CO: Counter for fault buffer changes	0		2	×
Project	🖀 Control_Unit. 📓 Drive_1				
👔 🔽 0 error(s) 🔽 0 warning(s)	₩ 16 information				
Level Message					^
Al					*
7 Information Loading terminal/signal	interconnections!				
8 Information Drive_unit_1: Word so	arcesOK				
9 Information Terminal/signal intercor	inections are being updated				
10 Information Drive_unit_1: Control_I	Jnt25%				
11 Information Drive_unit_1: Drive_1					
12 Information Unive_unit_1: Control_I	1006				
13 mormation Drive_unt_1: Drive_1 14 information Terminalitienal intercon	100% sealos setadad				
15 Information Drive un# 1 Drive 1	595.				
16 Information Drive unit 1 Drive 1	100%				
					v
BICO					
H noo seriei					
ress F1 to open Help display.		Intel(R) 82574L Gigabit Network Conne	c Offline mode		NUM

Obr. 4 - 7 Zvýrazněné části pohledu project view v STARTER, modrá - navigace v projektu, žlutá - hlavní pracovní plocha, zelená - dodatečná pracovní plocha a zprávy, fialová - navigační a podpůrná nabídka

Modře zvýrazněná část slouží k navigaci v projektu a připojených zařízeních, pomocí této nabídky se vstupuje do jednotlivých nastavitelných sekcí. Žlutá sekce zobrazuje hlavní pracovní plochu a možnosti nastavení jednotlivých vybraných sekcí. Zeleně označená sekce uživateli nabízí dodatečné nastavení a možnosti. Fialově zvýrazněná sekce je stabilní nabídka uložení projektu, připojení k měniči, zobrazení dodatečných sekcí apod.

4.5 Prostředí TIA portal

TIA portal sdružuje Siemens software do jednoho balíku, kde je možné např. konfigurovat měniče, PLC, HMI (human-machine interface) aj. V TIA portal existují hlavní dva pohledy, pohled označený jako "portal", zobrazený na obr. 4 - 8, a pohled "project", zobrazený na obr. 4 - 9.

"Portal" pohled je zaměřený na kofigurace pomocí akcí a pro konfiguraci je nutné se "proklikat" k požadované obrazovce konfigurace. "Project" pohled je zaměřený na provádění konfigurace v jednom okně. V "project" pohledu je využívána hierarchická struktura projektu, oproti "klikací" blokové v "portal" pohledu. V případě této práce bude využíván převážně pohled "project", dále označován jako project view.

Obr. 4 - 8 TIA Portal - pohled Portal

Obr. 4 - 9 TIA Portal - pohled Project

Project view, který bude nejvíce využit, se skládá z hlavních 5 částí. Tyto části jsou barevně vyznačeny na obr. 4 - 10.

Modře zvýrazněná část zobrazuje všechny součásti projektu v hierarchickém uspořádání. Červeně označený blok podává relevatní detaily o vybraném prvku z projektu. Žlutě zvýrazněná část je pracovní plocha. V této ploše je převážně možné programovat PLC. Zeleně označený blok slouží ke konfiguraci vybraných komponent a prvků. Fialově zvýrazněná část se mění dle vybraných prvků a umožňuje využívat dodatečné možnosti v TIA portalu.

Obr. 4 - 10 Zvýrazněné části pohledu project view v TIA portal, modrá - projekt, červená - detaily objektů, žlutá - pracovní plocha, zelená - konfigurace prvků, fialová - dodatečné možnosti

4.6 Elektrický stroj

Pro finální fázi vytváření pracoviště s měničem DCM byl využit motor Reliance Electric s konstrukčním rámem typu C1811ATCZ (motor dále označován pouze jako C1811ATCZ), jehož štítek je zobrazen na obr. 4 - 11. K prvotní konfiguraci měniče, řízeného bez použití PLC, byl využit motor Reliance s konstrukčním rámem C1811ATZ (motor dále označován jako C1811ATZ), jehož štítek s odlišnými parametry je zobrazen na 4 - 12.

Konečným stavem pracoviště, který je možné realizovat v navazující práci, je řízení motoru MEZ Židenice takovým způsobem, že bude vykazovat chování aktivní zátěže. Motor MEZ Židenice je v práci označován jako motor 2.

Významné parametry ze štítků motorů pro konfiguraci měniče jsou zobrazeny v tab. 4 - 2.

Obr. 4 - 11 Motor Reliance Electric C1811ATCZ

Obr. 4 - 12 Motor Reliance C1811ATZ

veličina (jednotka)	hodnota pro C1811ATCZ	hodnota pro C1811ATZ
jmenovité otáčky $n_n (\min^{-1})$	1750,00	1750,00
napájecí napájecí napětí obvodu kotvy U_q (V) DC	240,00	240,00
jmenovitý proud obvodu kotvy I_{qn} (A)	11,00	19,20
jmenovité napájecí napětí obvodu buzení U_{fn} (V) DC	240,00	150,00
jmenovitý proud obvodu buzení I_{fn} (A)	0,99	1,77

Tab. 4 - 2 Významné štítkové parametry motoru Reliance Electric C1811ATCZ a Reliance C1811ATZ

4.7 Tachodynamo

Pro realizaci měření otáček motoru C1811ATZ bylo využito tachodynamo MEZ Náchod K5A7 č. 133980/89. Převod využitého tachodynama je 1000 min⁻¹ a odpovídající výstupní napětí 20 V.

Na motoru C1811ATCZ, bylo využito tachodynamo atas Náchod K5A7-00 č. 741172 s totožným převodem.

Obr. 4 - 13 Štítek tachodynama nainstalovaného na motoru Reliance Electric C1811ATCZ

Obr. 4 - 14 Štítek tachodynama nainstalovaného na motoru Reliance C1811ATZ

5 Realizace pracoviště s měničem DCM

V této sekci bude představena realizace pracoviště pomocí PLC, měniče, HMI a také realizace požadované funkce pracoviště programy STARTER a TIA portal.

5.1 Základní konfigurace měniče DCM

Protože v TIA portal není možná prvotní konfigurace měniče DCM, bylo nutné realizovat inicializační nastavení v programu STARTER.

Prvotní nastavení proběhlo v základním průvodci vkládání měniče. Toto vložení měniče proběhlo offline. Další nutnou součástí konfigurace je navázání online spojení s měničem pomocí PROFINETu. S tím měl autor problém, protože ve vyhledávání dostupných zařízení nebylo možné měnič DCM nalézt. Na nalezení a změnu potřebné IP adresy měniče bylo potřeba využít odlišný počítač s totožným systémem STARTER. Po navázání připojení bylo nutné provést optimalizační běh motoru a připojeného měniče.

Optimalizační běh měniče a motoru slouží k tomu, aby měnič získal potřebné údaje o parametrech motoru, které nejsou k dispozici na štítku a je nutné je změřit. Toto měření je automatické.

Před prvotním rozběhem je nutné provést optimalizační běh pro změření parametrů budícího a kotevního obvodu. Při využití motoru C1811ATZ a C1811ATCZ byly optimalizačním během získány parametry zobrazené v tab. 5 - 1.

veličina (jednotka)	hodnota pro C1811ATCZ	hodnota pro C1811ATZ
odpor obvodu kotvy $R\left(\Omega ight)$	2,031	1,250
odpor obvodu buzení $R_{\rm f}(\Omega)$	272,101	175,41
indukčnost obvodu kotvy L_{dM} (mH)	37,17	29,167
indukčnost obvodu buzení $L_{\rm f}$ (mH)	101218,8	17514,1

Tab. 5 - 1 Změřené parametry pomocí optimalizačního běhu motoru C1811ATCZ a C1811ATZ

5.1.1 Konfigurace měniče pro řízení bez PLC

V první části zprovoznění pracoviště bylo nutné konfigurovat měnič pro řízení pomocí analogových a digitálních vstupů bez použití PLC.

Pro funkční komunikaci s měničem je důležité nastavit jeho správnou IP adresu, PROFINET jméno a způsob komunikace. Při řízení bez PLC byl využit ke komunikaci s měničem a jeho řídící jednotkou (CU) "Free telegram configuration with BICO". Tento telegram umožňuje využití analogových a digitálních vstupů měniče.

Konfigurace může probíhat pomocí názorných schémat (příklad zobrazený na obr. 5 - 1) nebo přímo pomocí parametrů v Expert listu (příklad na obr. 5 - 2). Při prvotním seznámení je vhodné využívat schémat, poté je však rychlejší nastavovat parametry v Expert listu s použitím [8] a [9].

Parametry, jejich nastavené hodnoty a poznámky pro tuto možnou základní konfiguraci jsou zobrazeny v tab. 5 - 2.

Obr. 5 - 1 Názorné schéma pro nastavení parametrů měniče v programu STARTER, konkrétně pro nastavení limitace hodnot proudu budícího obvodu, či jeho řídícího vstupu odpovídající parametru zvýrazněnému na obr. 5 - 2

Expert list									
	🕀 Param	Data	Parameter text	Offline value D	rive_1 Unit	Modifiable to	Access level	Minimum	Maximum
12	Al 🔳	A 🕶	All 💌	All	▼ AI ▼	AI 💌	All	AI	AI T
1050	■ p50594[0]	С	Ct: Messages polarity speed setpoint signal source	Drive_1 : r52	170	Ready to run	2		
1051	p50595		CI: Signal source for overspeed messages	Drive_1 : r52	167	Ready to run	2		
1052	p50596		CI: Messages for set/act val dev 2 signal source for speed setpoint	Drive_1 : r52	174	Ready to run	2		
1053	p50597		CI: Messages for set/act val dev 2 signal source for speed act val	Drive_1 : r52	167	Ready to run	2		
1054	p50598[0]	С	CI: Messages polarity speed actual value signal source	Drive_1 : r52	179	Ready to run	2		
1055	p50600[0]		CI: Signal source for armature gating unit input	Drive_1 : r52	102	Ready to run	3		
1056	p50601[0]		CI: Signal source for speed limiting controller setpoint	Drive_1 : r52	141	Ready to run	3		
1057	p50602		CI: CI-loop arm current control sig source for arm current act val	Drive_1 : r52	117	Ready to run	3		
1058	p50603[0]		CI: Current limitation current limit torque direction I	100%		Ready to run	3		
1059	p50604[0]		CI: Current limitation current limit torque direction II	Drive_1 : r521	35[0]	Ready to run	3		
1060	p50605[0]		CI: Torque limiting signal source for positive torque limit	Drive_1:r52	002	Ready to run	3		
1061	■ p50606[0]		CI: Torque limiting signal source for negative torque limit	Drive_1 : r521	38[0]	Ready to run	3		
1062	p50607[0]	С	CI: Torque limiting signal source for master drive t_set	Drive_1 : r52	148	Ready to run	3		
1063	p50608		CI: Auto-reversing stage signal source for torque direction setpoint	Drive_1 : r52	119	Ready to run	3		
1064		С	CI: Signal source for speed controller actual value	0		Ready to run	3		
1065	p50610		CI: Signal source for field gating unit input value	Drive_1 : r52	252	Ready to run	3		
1066	p50611[0]		Ct: Field curr setp limiting setpoint sig source	Drive_1 : r52	015	Ready to run			
1067	p50612[0]		Ct: Ct-loop field current ctrl sig source for field current act val	Drive_1 : r52	266	Ready to run	3		
1068	p50613[0]		Ct: Field current setpoint limiting sig source for var upper limit	100%		Ready to run	3		
1069	p50614[0]		Ct: Field current setpoint limiting sig source for var lower limit	100%		Ready to run	3		
1070	p50615[0]		CI: EMF controller setpoint signal source, Setpoint 0	Drive_1 : r52	289	Ready to run	3		
1071	p50616		Ct: EMF controller actual value signal source	Drive_1 : r52	286	Ready to run	3		
1072	p50618		Ct: Field gating unit signal source for field direction	Drive_1 : r52	268	Ready to run	3		
1073	p50619		Ct: Acceleration value for inertia compensation	Drive_1 : r52	191	Ready to run	3		
1074	p50620		CI: Speed controller setpoint/actual value difference signal source	Drive_1 : r52	165	Ready to run	3		
1075	p50621		CI: Speed controller setpoint 1 signal source	Drive_1:r52	176	Ready to run	3		
1076	p50622		CI: Speed controller setpoint 2 signal source	Drive_1:r52	174	Ready to run	3		
1077	p50623		Cl: Signal source for speed controller actual value 1	Drive_1 : r52	179	Ready to run	3		
1078	p50624		Cl: Signal source for speed controller actual value 2	0		Ready to run	3		
1079	p50625[0]	С	Cl: Signal source for speed controller setpoint	Drive_1 : r52	170	Ready to run	3		
1080	p50626[0]	С	CI: Signal source for speed controller actual value smoothing	Drive_1 : r52	167	Ready to run	3		
1081	p50627		Ct: Derivative-action element signal source	Drive_1 : r52	178	Ready to run	3		
1082	p50628		Cl: Band-stop 1 signal source	Drive 1:r52	179	Ready to run	3		

Obr. 5 - 2 Expert list v programu STARTER pro nastavení parametrů měniče, konkrétně zvýrazněn parametr p50611[0] pro nastavení vstupní hodnoty budícího proudu do limitace, zvýrazněný parametr odpovídá vstupnímu v obr. 5 - 1

parametr	hodnota	poznámka
p840[0]	Drive_1: r53010.2	ON/OFF (OFF1)
p844[0]	Drive_1: r53010.4	No coast-down
p848[0]	Drive_1: r53010.4	No Quick Stop
p852[0]	Drive_1: r53010.4	Enable operation/inhibit operation
p1140[1]	Drive_1: r53010.4	Enable ramp-function generator/inhibit ramp-function generator
p1141[1]	Drive_1: r53010.4	Continue ramp-function generator/freeze ramp-function generator
p1141[1]	Drive_1: r53010.4	Enable setpoint/inhibit setpoint

Tab. 5 - 2 Příklad nastavení parametrů základní konfigurace měniče a ovládací jednotky pro řízení pohonu pomocí vstupů měniče

Po konfiguraci parametrů měniče dle tab. 5 - 2 a 5 - 2 je možné pomocí analogového vstupu AI 0 ovládat rychlostní setpoint v rozmezí - 100 % až 100 % rychlosti, kde mínus znamená opačný smysl otáčení. Je možné pomocí AI 1 ovládat hodnotu proudu v budícím obvodu. Díky nastavenému omezení (při využití motoru Reliance C1811ATZ) je možné bezpečně regulovat hodnotu budícího proudu v rozmezí 11,30 % až 100 %, neboli 0,2 až 1,77 A. Je tedy zajištěno, že při chodu motoru nedojde ke snížení budícího proudu na takovou hodnotu, že by došlo k nebezpečnému zvýšení proudu kotvou. Situace nežádoucího zvyšování proudu je také kontrolována měničem a jako opatření proti nežádoucímu zvyšování proudu kotevním obvodem dochází ke snižování napájecího napětí obvodu kotvy. Problematika zvýšení proudu v kotevním obvodu při odbuzování byla představena v teoretické části *řízení rychlosti*. Konfigurace dle tab. 5 - 2 také umožňuje přípravu motoru k chodu pomocí DI 2, X177.13, Enable a jeho uvedení do provozu pomocí DI 1, neboli kontaktu X177.12, OFF1/.

5.1.2 Konfigurace měniče pro řízení s PLC

Pro funkční komunikaci měničeme s PLC je nutné nastavit parametry v expert listu ovládací jednotky dle 5 - 4. Také je možné změnit v sekci "Telegram configuration" výběr komunikace u měniče z "Free telegram configuration with BICO" na "Standard telegram 3, PZD-5/9" či jiný požadovaný telegram z nabídky dle požadovaného rozsahu komunikace. Pro možnosti nastavení určitých parametrů měniče byl zachován "Free telegram configuration with BICO". V této práci bylo využito nastavení telegramů dle obr. 5 - 3. Je nutné nastavit odpovídající PROFINET jméno měniče, které bude dále využíváno v TIA portal. Bylo zvoleno automaticky přiřazované jmémo v TIA portalu "sinamics-dcmaster-cbe20", IP adresa "192.168.0.2", maska podsítě "255.255.255.0" a výchozí brána "0.0.0.0". Tuto konfiguraci je možné nastavit pomocí parametrů *p8940* (PROFINET název), *p8941* (IP adresa), *p8942* (výchozí brána), *p8943* (maska podsítě). Nastavení je nutné aktivovat vložením hodnoty 2 do parametru *p8945*, odpojením měniče od napájení 230 V AC a jeho opětovným připojením.

ſ				Telegram type		Input data	Output data			
	Object	Drive object	-No.			Length	Length			
Γ	1	Drive_1	2	Free telegram configuration with BICO		9	5			
	2 Control_Unit 1			Free telegram configuration with BICO		0	0			
Ī	DOs that are not assigned to a slot. (No cyclic data exchange)									

Obr. 5 - 3 Prostředí pro nastavení komunikačního telegramu v programu STARTER pro funkční komunikaci PLC a měniče DCM

Díky konfiguraci komunikace dle 5 - 4 je možné se připojit k měniči přes PLC a použitý switch. Pro požadované funkce řízení pracoviště pomocí PLC je nutné zmínit, že při správném nastavení výběru komunikační metody pomocí "Free Telegram with BICO" dojde k automatické změně některých parametrů měniče. Vybrané významné změny je možné pozorovat v tab. 5 - 3.

V realizaci pracoviště je požadováno řízení otáček motoru pomocí telegramu. Pro odpovídající nastavení otáček pomocí PLC a HMI je nutné v měniči upravit parametr *p50644[0]* (Setpoint processing signal source for main setpoint) na hodnotu 0. Kdyby parametr nebyl změněn, tak by při nastavení otáček pomocí NSET A nastavená hodnota neodpovídala skutečnosti a byla by ovlivňována vstupem AI 0.

Popis způsobu změny a čtení potřebných parametrů měniče je součástí *realizace řídícího programu* pro PLC v TIA portal.

Pro správnou funkci přepočtů vybraných sledovaných veličin, při řízení motoru C1811ATCZ, je nutné nastavit parametry měniče v programu STARTER dle tab. 5 - 4.

📮 p8940	CBE2x Name of Station	
- p8940[0]	CBE2x Name of Station	s
- p8940[1]	CBE2x Name of Station	i
- p8940[2]	CBE2x Name of Station	n
- p8940[3]	CBE2x Name of Station	a
- p8940[4]	CBE2x Name of Station	m
- p8940[5]	CBE2x Name of Station	i
- p8940[6]	CBE2x Name of Station	c
- p8940[7]	CBE2x Name of Station	s
- p8940[8]	CBE2x Name of Station	-
- p8940[9]	CBE2x Name of Station	d
- p8940[10]	CBE2x Name of Station	c
- p8940[11]	CBE2x Name of Station	m
- p8940[12]	CBE2x Name of Station	a
- p8940[13]	CBE2x Name of Station	S
- p8940[14]	CBE2x Name of Station	t
- p8940[15]	CBE2x Name of Station	e
- p8940[16]	CBE2x Name of Station	r
- p8940[17]	CBE2x Name of Station	-
- p8940[18]	CBE2x Name of Station	c
- p8940[19]	CBE2x Name of Station	b
- p8940[20]	CBE2x Name of Station	e
- p8940[21]	CBE2x Name of Station	2
- p8940[22]	CBE2x Name of Station	0
Ģ p8941	CBE2x IP Address of Station	
- p8941[0]	CBE2x IP Address of Station	192
- p8941[1]	CBE2x IP Address of Station	168
- p8941[2]	CBE2x IP Address of Station	0
^L p8941[3]	CBE2x IP Address of Station	2
📮 p8942	CBE2x Default Gateway of Station	
- p8942[0]	CBE2x Default Gateway of Station	0
- p8942[1]	CBE2x Default Gateway of Station	0
- p8942[2]	CBE2x Default Gateway of Station	0
^L p8942[3]	CBE2x Default Gateway of Station	0
📮 p8943	CBE2x Subnet Mask of Station	
- p8943[0]	CBE2x Subnet Mask of Station	255
- p8943[1]	CBE2x Subnet Mask of Station	255
- p8943[2]	CBE2x Subnet Mask of Station	255
^L p8943[3]	CBE2x Subnet Mask of Station	0
p8945	CBE2x interface configuration] No function 💌
(E) r8950[0] (0)	CBE2x Name of Station active	No function
(€ r8951[0]	CBE2x IP Address of Station active	Save and activate configuration
⊕ r8952[0]	CBE2x Default Gateway of Station active	Delete configuration

Obr. 5 - 4 Nastavení parametrů networkingu v programu STARTER pomocí expert list

parametr	hodnota bez plc	hodnota s plc	poznámka
p840[0]	1	Drive_1: r2090.0	ON/OFF (OFF1)
p844[0]	1	Drive_1: r2090.1	No coast-down
p848[0]	1	Drive_1: r2090.2	No Quick Stop
p852[0]	1	Drive_1: r2090.3	Enable operation/inhibit operation
p845[0]	1	Drive_1: r2090.10	Control by PLC/no control by PLC
p1140[1]	Drive_1: r53010.4	Drive_1: r2090.4	Enable ramp-function generator/inhibit ramp-function generator
p1141[1]	Drive_1: r53010.4	Drive_1: r2090.5	Continue ramp-function generator/freeze ramp-function generator
p1141[1]	Drive_1: r53010.4	Drive_1: r2090.6	Enable setpoint/inhibit setpoint

Tab. 5 - 3 Ukázka automatické změny parametrů měniče při použití "Free Telegram with BICO"

parametr	hodnota	jednotka	poznámka
p2000[0]	1000	\min^{-1}	vztažná rychlost - převod analog. tachodynama
p2001[0]	240	V	vztažné napětí
p2002[0]	11	А	vztažný proud
p2003[0]	12,22	Nm	vztažný moment
r2003[0]	hodnota dopočítána automaticky	kW	vztažný výkon

Tab. 5 - 4 Potřebná změna referenčních parametrů měniče pro správnou funkci přepočtů vybraných sledovaných veličin

5.2 Propojení a zprovoznění komunikace PLC, HMI a měniče

Pro funkční komunikaci jednotlivých propojených zařízení je třeba vhodně konfigurovat PROFINET spojení použitých prvků.

V tab. 5 - 5 jsou uvedené jednotlivé IP adresy, masky podstítě a výchozí brány měniče, PLC, HMI. Switch použitý k propojení zařízení není třeba konfigurovat. Adresy v tab. 5 - 5 je dle potřeby možné měnit v konfiguraci jednotlivých zařízení.

zařízení	IP adresa	subnet mask	gateway	PROFINET jméno
PLC	192.168.0.1	255.255.255.0	0.0.0.0	plc_1
DCM	192.168.0.2	255.255.255.0	0.0.0.0	sinamics-dcmaster-cbe20
HMI	192.168.0.3	255.255.255.0	0.0.0.0	hmi_1 (converted name = hmixb110d0)

Tab. 5 - 5 Nastavení parametrů PROFINET komunikace PLC, DCM, HMI

Pokud uživatel, připojený k PLC pomocí PROFINETu a PC, používá totožnou masku podsítě jako jednotlivá zařízení, je možné IP adresy zkontrolovat v příkazovém řádku pomocí kódu 5 - 1.

1	arp	- a 🕴	# Vypsani	vsech	zarizeni	pripojenycł	n na	stejne	siti	jako	PC,	jejich	IP	a MAC
2	ping	adre - t	s xxx.xxx.	XXX.XXX	c#Zjiste	ni odevzvy	prij	oojeneho	zar	izení	s~IP	adreso		xxx . xxx
		. xxx	. xxx											

Kód 5 - 1 Příkaz na zobrazení připojených zařízení a jejich IP a MAC adres

Funkční komunikace mezi měničem a PLC je indikována na měniči pomocí LED označené "OPT" a LED "Fault" dle [7].

6 Realizace řídícího programu pro PLC v TIA portal

Před vlastním vytvoření řídícího programu pro PLC v TIA portalu je nutné vložit a nakonfigurovat jednotlivé použité prvky. Poté vytvořit požadovaný program a k němu správně popsanou tabulku tagů.

6.1 Konfigurace prvků v TIA portal

Před samotnou konfigurací je nutné vytvořit prázdný projekt, do kterého budou vloženy potřebné prvky. V případě této práce byly v menu "Devices & networks" pomocí hardware catalogu vloženy PLC SIMA-TIC S7-1200 s CPU 1212 AC/DC/Rly 6ES7 212-1BE40-0XB0,

Měnič SINAMICS-DCMaster-CBE20 V1.4.1 6RA8018-6DV62-0AA0-Z, HMI KTP700 Basic 6AV 123-2GB03-0AX0 a switch CSM 1277 6GK7 277-1AA00-0AA0. Tyto komponenty byly propojeny pomocí spojení PN/IE_1.

Důležité je vložit správné verze firmware jednotlivých komponent. Verze firmware zařízení v tomto projektu jsou PLC: V4.2, DCM: V1.40, HMI: 12.1.0.0. Po vytvoření projektu v TIA portalu a vložení potřebných komponent je vhodné vyzkoušet, zda je možné vyhledat připojené zařízení na síti pomocí položky "Accessible devices". Pokud, jako autorovi textu, se nepodaří žádné zařízení vyhledat, je nutné řešit problém s konfigurací sítě. Je také možné, že je vše nastaveno správně a přesto není možné zařízení vyhledat. Pokud nastane tento problém a uživatel si je jistý správným nastavením sítě a jednotlivých komponent, je možné se připojit k PLC a HMI přímo pomocí položky "Go online" a připojit se přímo na IP adresu určenou při konfiguraci komponenty.

Pro další komunikaci mezi PLC a měničem je nutné měniči přiřadit požadovaný telegram. Je použit "Standard telegram 3", který lze při dalším rozvíjení práce zaměnit za rozsáhlejší. Možná konfigurace měniče v TIA portalu je zobrazena na obr. 6 - 1.

M	odule	Rack	Slot	I addr	Q add	Туре
•	SINAMICS-DCMaster-CBE20	0	0			SINAMICS DC MASTER CBE20 V1.4.1
	CBE20-PN-IO	0	0 X14			SINAMICS-DCMaster-CBE20
•	DO with standard telegr. 3_1	0	1			DO with standard telegr. 3
	Parameter Access Point	0	11			Parameter Access Point
	Standard telegram 3, PZD-5/9	0	1 2	6885	6473	Standard telegram 3, PZD-5/9

Obr. 6 - 1 Možná konfigurace komunikačního telegramu měniče DCM v prostředí TIA portal

Po základní konfiguraci je možné projekt zkompilovat a pokusit se nahrát do PLC a zapnout online režim. Pokud všechny vložené součásti vykazují zelené označení, je možné pokračovat ve vytváření programu.

6.2 Tabulky tagů

Tabulka tagů použitých v programu PLC je zobrazena v tab. 6 - 1. Pro funkční HMI je nutné vytvořit tabulku HMI tagů, jež je zobrazena v tab. 6 - 2. Tabulka Logging tags pro Data logs zápis požadovaných dat do souboru pomocí HMI je představena v části *zápis dat pomocí HMI*.

název	datový typ	adresa	poznámka
STW1in	Word	%QW64	STW1 vstupní slovo
ZSW1input	Word	%IW68	ZSW1 vstupní slovo z měniče do PLC
ZSW1memory	Word	%MW201	paměť ZSW1
StopDrive	Bool	%M204.3	aktivace STW1 pro stav klid pohonu
EnableDrive	Bool	%M203.0	STW1 aktivace pro Enable signál
NSET_A	Word	%QW66	NSET_A pro nastavení rychlosti
SinaParaWriteReady1	Bool	%M212.0	SINA_PARA_WRITE #1 ready tag
SinaParaReadReady1	Bool	%M212.1	SINA_PARA_READ #1 čtení parametrů - ready tag
SinaParaWriteEnable1	Bool	%M212.2	SINA_PARA_WRITE # aktivace funkce
SinaParaReadEnable1	Bool	%M212.3	SINA_PARA_READ #1 aktivace funkce
ONDrive	Bool	%M203.1	STW1 OFF1
SinaParaWriteDone1	Bool	%M212.4	SINA_PARA_WRITE #1
StartWritingDataViaSinaPara	Bool	%M212.5	aktivace zápisu SINA_PARA_WRITE #1
SinaParaWriteBusy1	Bool	%M212.6	SINA_PARA_WRITE #1 status
MemorySinaParaWriteDone1	Bool	%M212.7	SINA PARA WRITE #1 Busy Memory
SinaParaReadError1	Bool	%M213.1	SINA_PARA_READ #1 Error
SinaParaReadErrorMemory1	Bool	%M213.2	SINA_PARA_READ #1 Error Memory
SinaParaWriteError1	Bool	%M213.3	SINA_PARA_WRITE #1 Error
MemorySinaParaWriteError1	Bool	%M213.4	SINA_PARA_WRITE #1 Error Memory
SpeedSetpointUserInputValue	Real	%MD215	RAW hodnota vstupu požadované rychlosti
SinaParaReadBusy1	Bool	%M213.5	SINA_PARA_READ #1 Busy
SinaParaReadDone1	Bool	%M213.6	SINA PARA READ #1 Done
MemorySinaParaWriteBusy1	Bool	%M214.1	SINA PARA WRITE #1 Busy
FieldCurrentUserInputValue	Real	%MD230	vstupní RAW hodnota žádaného budícího proudu
TorqueSetpointUserInputValue	Real	%MD220	vstupní RAW hodnota požadovaného momentu
SpeedTorqueLoop	Bool	%MD214.2	přepínání otáčková/momentová smyčka
FieldCurrentMemoryValue	Real	%MD240	mezivýpočty požadované hodnoty budícího proudu
TorqueSetpointMemory	Real	%MD244	mezivýpočty požadovaného momentu
Speed/TorqueActualLoopIndicator	Int	%MW248	indikace aktivní smyčky
DeviceRatedArmatureCurrentReductionMemory	Real	%MD250	mezivýpočty poměrné hodnoty proudu měniče
SpeedSetpointStepActivatePlus	Bool	%M214.3	aktivace přičtení požadované hodnoty otáček
SpeedSetpointActivateMinus	Bool	%M214.4	aktivace odečtu požadované hodnoty otáček
SpeedSetpointValue	Real	%MD255	přičtení/odečtení žádané hodnoty otáček
SpeedSetpointActivePlusMemory	Bool	%M214.5	paměť na hranu
SpeedSetpointActivateMinusMemory	Bool	%M214.6	paměť na hranu
Clock_Byte	Byte	%MB0	PLC Clock
Clock_10Hz	Bool	%M0.0	PLC Clock
Clock_5Hz	Bool	%M0.1	PLC Clock
Clock_2.5Hz	Bool	%M0.2	PLC Clock
Clock_2Hz	Bool	%M0.3	PLC Clock
Clock_1.25Hz	Bool	%M0.4	PLC Clock
Clock_1Hz	Bool	%M0.5	PLC Clock
Clock_0.625Hz	Bool	%M0.6	PLC Clock
Clock_0.5Hz	Bool	%M0.7	PLC Clock
DataLogCreateStart	Bool	%M1.0	spuštění vytvoření logu v PLC
IsDataLogCreateDone	Bool	%M1.1	kontrolní bit dokončení vytváření logu v PLC
DataLogDelete	Bool	%M1.2	spuštění odstraňování logu v PLC
DataLogWrite	Bool	%M1.3	spuštění zápisu logu v PLC
DataLogDeleteDone	Bool	%M1.4	kontrolní bit dokončení smazání logu v PLC

Tab. 6 - 1 Tabulka tagů v programu pro PLC

název	datový typ	přidružený PLC tag
StartDrive	Bool	EnableDrive
UserDefinedVariables_InverseRatedMotorSpeed	Real	UserDefinedVariables.InverseRatedMotorSpeed
ONDrive	Bool	ONDrive
ActualSpeed	Real	SINA_PARA_READ.sxParameter[1].srValue
ActivePower	Real	SINA_PARA_READ.sxParameter[3].srValue
ArmatureCurrent	Real	SINA_PARA_READ.sxParameter[4].srValue
FieldCurrent	Real	SINA_PARA_READ.sxParameter[5].srValue
ArmatureVoltage	Real	SINA_PARA_READ.sxParameter[6].srValue
ActualTorque	Real	SINA_PARA_READ.sxParameter[2].srValue
UserDefinedVariables_RatedMotorSpeed	Real	UserDefinedVariables.RatedMotorSpeed
SinaParaReadReady1	Bool	SinaParaReadReady1
SinaParaWriteReady1	Bool	SinaParaWriteReady1
SpeedSetpointUserInputValue	Real	SpeedSetpointUserInputValue
FieldCurrentUserInputValue	Real	FieldCurrentUserInputValue
MotorRatedExcitationCurrent	Real	SINA_PARA_READ.sxParameter[9].srValue
MinimumMotorExcitationCurrent	Real	SINA_PARA_READ.sxParameter[10].srValue
SpeedTorqueLoop	Bool	SpeedTorqueLoop
StartWritingDataViaSinaPara	Bool	StartWritingDataViaSinaPara
TorqueSetpointUserInputValue	Real	TorqueSetpointUserInputValue
Speed/Torque Actual Loop Indicator	Int	"Speed/TorqueActualLoopIndicator"
MemorySinaParaWriteBusy1	Bool	MemorySinaParaWriteBusy1
SpeedSetpointStepValue	Real	SpeedSetpointStepValue
SpeedSetpointStepActivatePlus	Bool	SpeedSetpointStepActivatePlus
SpeedSetpointStepActivateMinus	Bool	SpeedSetpointStepActivateMinus
SafelyRemoveHardware	Bool	<no value=""></no>
ConnectionToPlc	Bool	Clock_1Hz
DataLogDelete	Bool	DataLogDelete
DataLogDelete	Bool	DataLogCreateStart
DataLogWrite	Bool	DataLogWrite
TorqueOverloadPlus	Real	UserDefinedVariables.TorqueOverloadPlus
TorqueOverloadMinus	Real	UserDefinedVariables.TorqueOverloadMinus
TorqueOverload	Real	UserDefinedVariables.TorqueOverload

Tab. 6 - 2 Tabulka tagů v programu pro HMI

6.3 Databázový blok UserDefinedVariables

Pro určité části programu je výhodnější využívat databázový blok obsahující proměnné programu, jež jsou velmi málo přepisovány a je vhodné je zachovávat i po restartu PLC. Pro tyto proměnné je využit vytvořený databázový blok *UserDefinedVariables* zobrazený na obr. 6 - 2.

	UserDefinedVariables									
		Name	Data type	Start value	Retain	Accessible f	Writa	Visible in	Setpoint	Comment
1		▼ Static								
2		 TelegramSpeedConsta. 	Real	16384.0						Constant of reference max speed from manual
З	-00	SpeedSetpointAfterDi	Real	0.0						Speed Setpoint after dividing SpeedSetpointU.
4	-00	SpeedSetpointOutput	Int	0			~	\checkmark		Speed Setpoint after processing
5		DeviceRatedDirectCurr	Real	5.0			~			Basically r50073[0], rated current of Drive, it i
6		DeviceReducedDirect	Real	0.0						Basically r50076[1], from fraction making to
7		InverseRatedMotorSpe	Real	-1750.0						Rated motor speed input by user by HMI or de
8	-00	RatedMotorSpeed	Real	1750.0				\checkmark		Inverse Rated motor speed input by user by H
9		 RatedMotorTorque 	Real	0.0			~			Rated motor torque from drive, basically p2003
10		InverseRatedMotorTor	Real	0.0			~			Inverted rated motor torque
11	-00	TorqueOverload	Real	1.5						Allowed overload AllowedOverload/100, defa
12		TorqueOverloadPlus	Real	0.0			~			Plus value overload = RatedMotorTorque x Tor
13	-	TorqueOverloadMinus	Real	0.0						Minus value overload = minus rated x = Inver

Obr. 6 - 2 Databázový blok UserDefinedVariables

6.4 Čtení a zápis parametrů do měniče v prostředí TIA portal

Velmi často je nutné v programu PLC pracovat s hodnotami parametrů měniče. V tomto programu bylo ke čtení a zápisu využito *SINA_PARA* bloků, jež umožňují v jednom bloku číst, nebo zapisovat 16 parametrů.

Nejdříve je nutné stáhnout a rozbalit potřebnou knihovnu z [10] a poté jí vložit do projektu pomocí menu "Libraries" - "Open library". Postup vkládání knihoven je podrobně popsán v [10]. Autor textu silně doporučuje importovat knihovnu s možností úprav. Tudíž odškrtnout možnost "open as read-only". Poté, v navigaci knihoven, vybrat dle použitého PLC (v případě této práce S7-1200) blok *Drive_Lib_S7_1200_1500/Master copies/03_SINAMICS/SINA_PARA* a přesunout jej do pracovního organizačního bloku. Po přesunu bude nabídnuta možnost vytvoření automatické databáze. Tu je nutné potvrdit. Nyní je vhodné přesunutý blok v organizačním bloku *SINA_PARA* a vytvořenou databázi smazat. Dále otevřít *SINA_PARA* function block a v části nastavení proměnných tohoto bloku změnit datový typ *Static/sxParameter/sxParameter[1]/siParaNo* z typu Integer (Int) na Unsigned Integer (UInt). Tato změna je nutná, aby bylo možné zapisovat čísla parametrů do hodnoty 65535, tudíž větší než 32767. Poté je doporučeno *SINA_PARA* blok zkompilovat. Následně je již možné přesunout function block z navigace projektu do organization block a automaticky vytvořit databázi.

Základní nastavení *SINA_PARA* bloku záleží na nastavení komunikace PLC - měnič. Tudíž konfigurace bloku, která bude představena je specifická pro toto pracoviště a nastavení projektu v TIA portal.

Obr. 6 - 3 Ukázka konfigurace SINA_PARA bloku v projektu autora textu

Na obr. 6 - 3 je možné pozorovat možnou konfiguraci SINA_PARA bloku. Tato konfigurace je využí-

vána na čtení parametrů. V tab. 6 - 3 je vysvětlen význam jednotlivých vstupů a výstupů. Na obr. 6 - 4 je zobrazen výběr hardwareId konfigurace *SINA_PARA* bloku. Světle modře zvýrazněný submodul je využit v případě této práce.

proměnné	popis
EN	základní povolení funkce bloku
Start	spuštění procesu bloku, 0 = nepovolení procesu nebo zrušení procesu, 1 = spuštění procesu
ReadWrite	0 = čtení, 1 = zápis
ParaNo	počet parametrů, se kterými SINA_PARA blok bude pracovat min. 1, max. 16
AxisNo	při použití technologického objektu = č. osy, jinak většinou platí 1 = parametry ovl. jednotky, 2 = parametry měniče
hardwareId	ID využitého přístupového bodu/telegramu, výběr tohoto parametru je klíčový, výběr zobrazen na obr. 6 - 4
ENO	enable signál do další části networku
Ready	kontrolní signál při spojování s prostředím LacyCom na komunikaci s měničem, 1 = proces ukončen či zrušen
Busy	1 = proces právě běží
Done	náběžná hrana signálu 0->1 = proces ukončen
Error	1 = výskyt chyby
Status	typ DWORD, 1. slovo = binárně kódovaný typ parametru, jehož přístup byl neúspěšný, 2. slovo = typ chyby
DiagId	komunikační chyba, chyba volání SFB (System Function Block)

Tab. 6 - 3 Popis vstupních a výstupních parametrů bloku SINA_PARA, část převzata a přeložena z [10]

🔳	Busy → sy1" %M213.6 "SinaParaReadDo One → ne1" %M213.1 "SinaParaReadErr				
SINAMICS-DCMaster-CBE20~CBE20-PN-IO		Hw_Interface		^	J
SINAMICS-DCMaster-CBE20~CBE20-PN-IO~Port_1		Hw_Interface			
SINAMICS-DCMaster-CBE20~CBE20-PN-IO~Port_2		Hw_Interface			
SINAMICS-DCMaster-CBE20~CBE20-PN-IO~Port_3"		Hw_Interface			
SINAMICS-DCMaster-CBE20~CBE20-PN-IO~Port_4		Hw_Interface			
SINAMICS-DCMaster-CBE20~DO_with_standard_te	legr_3_1"	Hw_SubModule			
"SINAMICS-DCMaster-CBE20~DO_with_standard_te	legr_3_1~Parameter_Access_Point"	Hw_SubModule			
"SINAMICS-DCMaster-CBE20~DO_with_standard_te	legr_3_1~Standard_telegram_3PZD-5_9"	Hw_SubModule			ļ
SINAMICS-DCMaster-CBE20~Head		Hw_SubModule			l
SINAMICS-DCMaster-CBE20~Proxy"		Hw_SubModule		≡	
UserDefinedVariables"		Global DB	D	»_	
				~	F

Obr. 6 - 4 Ukázka konfigurace hardwareId SINA_PARA bloku

Požadované parametry zapisované/čtené pomocí *SINA_PARA* bloků je třeba specifikovat v odpovídající přidružené databázi. V případě použitého bloku v autorově projektu se jedná o databázi *SINA_PARA_READ*. Na obr. 6 - 5 je možné pozorovat výřez z databáze *SINA_PARA_READ*, jež specifikuje čtení parametru č. 63 (*r0063*) s indexem 1 (*r0063[1]*). Dle [9] se jedná tedy o aktuální otáčky motoru (min⁻¹) (vyhlazená hodnota). V této práci je specificky nastaveno pomocí spínacích a rozpínacích kontaktů, aby čtení parametrů probíhalo kontinuálně. Funkčnost čtení a zápisu parametrů je možné ověřit pomocí Watch Table.

-00	 sxParameter[1] 	Struct		V	V	V	List of parameter (max. 16 parameter)
-00	siParaNo	UInt	63	 V		\checkmark	Speed actual value
	silndex	Int	1	V	Image: A start and a start	\checkmark	1 = Smoothed, 0 = Unsmoothed
-00	srValue	Real	0.0	V	V	\checkmark	Speed actual value Smoothed
-00	sdValue	Dint	0	V	\checkmark	\checkmark	Value of parameter
-00	syFormat	Byte	BYTE#16#00	V		\checkmark	Format of value (Format 0x400x44)
	swErrorNo	Word	WORD#16#0000		 Image: A start of the start of		Error number (see table below)

Obr. 6 - 5 Ukázka databáze SINA_PARA_READ, zaměřeno na prametr r0063[1] - aktuální otáčky (min⁻¹), vyhlazená hodnota

Tabulka tab. 6 - 4 popisuje význam jednotlivých položek struktury *sxParameter*[1].

proměnná	popis
siParaNo	číselné označení žádaného parametru
siIndex	index požadovaného parametru
srValue	hodnota parametru, pokud parametr má datový typ FloatingPoint32
sdValue	hodnota parametru, pokud parametr má datový typ Integer16
syFormat	formát parametru
swErrorNo	označení vzniklé chyby při čtení/zápisu parametru

Tab. 6 - 4 Popis struktury sxParameter[1] zobrazené na obr. 6 - 5, platí pro sxParameter[1 až 16]

Způsob zápisu parametrů pomocí *SINA_PARA* bloku je totožný se čtením, krom nutnosti přepnutí vstupního parametru *ReadWrite* na hodnotu 1 dle 6 - 3.

6.4.1 Popis realizace komunikace pomocí SINA_PARA bloků

V této práci byla vytvořena komunikace pomocí dvou hlavních *SINA_PARA* bloků. Blok, jehož databáze je označená *SINA_PARA_READ*, slouží ke čtení a blok s databází *SINA_PARA_WRITE* k zápisu. Tento způsob je vytvořen z toho důvodu, že není možné jedním blokem zároveň číst a zapisovat parametry do měniče. Bylo by možné změnit veškeré záznamy v databázovém bloku *SINA_PARA* a komunikaci znovu spustit, ovšem toto řešení se zdá být poněkud komplikované. Dalším možným řešením je rozšíření vybraného telegramu v TIA portalu a STARTER rozhraní a "mapovat" jednotlivá slova komunikace na požadované parametry. Tato komunikace by byla nejspíše výhodnější než pomocí dvou *SINA_PARA* bloků a je možné ji v rámci jiné práce realizovat.

Nevýhoda použití dvou SINA_PARA bloků spočívá v tom, že se jedná o celkově nově vytvořenou cyklickou a acyklickou komunikaci. SINA_PARA_READ představuje cyklickou komunikaci (je provedena prakticky každý cyklus) a SINA_PARA_WRITE acyklickou (je provedena pouze při požadavku zápisu). Při této nově vytvořené komunikaci dochází k tomu, že za určitých podmínek cyklu a proměnných dojde k zablokování SINA_PARA_WRITE a není možné zápis tohoto bloku ukončit. Dochází k tomu, že není signalizován kladný výstup Done ani Error, ale dochází stále k přepínání výstupu Busy. Autorovi se nepodařilo tuto chybu analyzovat a jejímu vytvoření zamezit. Proto implementoval do HMI tlačítko s názvem ComError, které při stisknutí a podržení odpojí vstupy ReadWrite do obou SINA_PARA bloků. Při delším podržení a uvolnění dojde k obnovení komunikace bloku SINA_PARA_READ a blok SINA_PARA_WRITE úspěšně dokončí zápis. Tato představená chyba klomunikace je na HMI znázorněna stálým označením nápisu "alert", umístěným nad tlačítkem ComError. Nápis "alert" obecně signalizuje práci bloku SINA_PARA_WRITE. Úspěšné dokončení komunikace je signalizováno zneviditelněním upozornění. Při chybě komunikace nedojde k jeho zneviditelnění.

Zapojení bloků *SINA_PARA_READ* a *SINA_PARA_WRITE* je znázorněno na obr. 6 - 6 a obr. 6 - 7. Celková sekvence zápisu se spouští tlačítkem *Write* na HMI. To je napojeno na tag v PLC označený *StartWritingDataViaSinaPara*. Při požadavku o zápis je nutné odstavit blok pro čtení. Po úspěšném zápisu parametrů naopak vypnout zápis a spustit čtení. Toho je docíleno pomocí části programu zobrazeném na obr. 6 - 8.

SinaParaReadEnable1 a SinaParaWriteEnable1 jsou PLC tagy sloužící k vzájemné, předem zmiňované, blokaci SINA_PARA bloků pro čtení a zápis. Blok TON je do vstupu Start bloku SINA_PARA vložen pro zpoždění, které vylepšuje vytvořenou komunikaci. Rozpínací kontakty SinaParaWriteReady1 a SinaParaReadReady1 ve vstupu Start jsou pro "zacyklení" příkazu čtení a zápisu. Po dokončeném zápisu

Obr. 6 - 6 Řešení bloku SINA_PARA_READ pomocí kontaktů spínacích, rozpínacích a časovacího členu

požadovaných parametrů je pomocí kontaktu reagujícího na hranu v obr. 6 - 8 vypnuto napájení bloku pro zápis a resetované napájení pro blok čtení.

Obr. 6 - 7 Řešení bloku SINA_PARA_WRITE pomocí kontaktů spinacích, rozpinacích a časovacího členu

Obr. 6 - 8 Přepínání bloku SINA_PARA_READ a SINA_PARA_WRITE

6.4.2 Databáze SINA_PARA_READ a SINA_PARA_WRITE

Důležité hodnoty pro *SINA_PARA* blok, určený pro zápis, je možné pozorovat v tab. 6 - 5, kde proměnné a řádky označené světle modře jsou vstupem komunikace. Hodnoty databáze bloku *SINA_PARA*, určeného pro čtení, je možné pozorovat v tab. 6 - 6. Proměnné a řádky označené světle modře jsou výstupním produktem komunikace.

proměnná	hodnota	poznámka
sxParameter[1].siParaNo	50772	LED test/volný parametr na testování
sxParameter[1].siIndex	0	
sxParameter[1].sdValue		
sxParameter[2].siParaNo	50401	fixní hodnota pro vstup do bloku field current limiting
sxParameter[2].siIndex	0	
sxParameter[2].srValue	100.0	
sxParameter[3].siParaNo	50076	redukce budícího proudu
sxParameter[3].siIndex	0	
sxParameter[3].srValue	100.0	
sxParameter[4].siParaNo	50084	otáčková/proudová-momentová smyčka
sxParameter[4].siIndex	0	
sxParameter[4].srValue	1.0	
sxParameter[5].siParaNo	50402	žádaná hodnota momentu
sxParameter[5].siIndex	1	
sxParameter[5].srValue		
sxParameter[6].siParaNo	50076	redukce proudu obvodu kotvy
sxParameter[6].siIndex	0	
sxParameter[6].srValue		

Tab. 6 - 5 Databázový blok SINA_PARA_WRITE, obsahující podstatné nastavení pro správný chod programu

proměnná	hodnota	poznámka
sxParameter[1].siParaNo	63	aktuální otáčky, vyhlazená hodnota
sxParameter[1].siIndex	1	
sxParameter[1].srValue		
sxParameter[2].siParaNo	80	aktuální moment, vyhlazená hodnota
sxParameter[2].siIndex	1	
sxParameter[2].srValue		
sxParameter[3].siParaNo	82	aktuální výkon, vyhlazená hodnota
sxParameter[3].siIndex	1	
sxParameter[3].srValue		
sxParameter[4].siParaNo	27	aktuální proud kotvy, vyhlazená hodnota
sxParameter[4].siIndex	1	
sxParameter[4].srValue		
sxParameter[5].siParaNo	52952	aktuální hodnota budícího proudu, nevyhlazená hodnota
sxParameter[5].siIndex	1	
sxParameter[5].srValue		
sxParameter[6].siParaNo	50038	aktuální napájecí napětí kotevního obvodu, nevyhlazená hodnota
sxParameter[6].siIndex	0	
sxParameter[6].srValue		
sxParameter[7].siParaNo	2000	vztažné otáčky analogového tachodynama
sxParameter[7].siIndex	0	
sxParameter[7].srValue		
sxParameter[8].siParaNo	50072	vztažný proud kotvy
sxParameter[8].siIndex	0	
sxParameter[8].srValue		
sxParameter[9].siParaNo	50102	vztažný budící proud
sxParameter[9].siIndex	0	
sxParameter[9].srValue		
sxParameter[10].siParaNo	50103	minimální hodnota budícího proudu
sxParameter[10].siIndex	0	
sxParameter[10].srValue		
sxParameter[11].siParaNo	2003	vztažný moment
sxParameter[11].siIndex	0	
sxParameter[11].srValue		
sxParameter[12].siParaNo	50084	indikace otáčková/proudová-momentová smyčka
sxParameter[12].siIndex	0	
sxParameter[12].srValue		
sxParameter[13].siParaNo	50100	jmenovitý proud obvodu kotvy
sxParameter[13].siIndex	0	
sxParameter[13].srValue		
sxParameter[14].siParaNo	50073	jmenovitý proud budícího obvodu dodávané měničem
sxParameter[14].siIndex	0	
sxParameter[14].srValue		

Tab. 6 - 6 Databázový blok SINA_PARA_READ, obsahující podstatné nastavení pro správný chod programu

6.5 Povolení činnosti pohonu

Pro "Enable" a uvedení silového výstupu měniče DCM do provozu je využita část programu zobrazená na obr. 6 - 9.

EnableDrive tag slouží k povolení pohonu, nebo také k přesunu pohonu do stavu připraven. Při jeho sepnutí dojde k přemístění slova 16#4FE do výstupního tagu PLC *STW1in*, který je nasměrován do adresy QW64. Adresa QW64 je prvním slovem použitého telegramu v PLC a měniči. Jeho struktura je zobrazena na obr. 4 - 6. Pro přehlednost je toto slovo přepsané do binární podoby v tab. 6 - 7. Následně se ve stejné větvi nachází blok časování, který je zahrnut pouze pro bezpečnost programu. Zpoždění je nastaveno na 200 ms, které by bylo pro zvýšení bezpečnosti možné zvýšit. Pokud dojde k tomu, že tag *ONDrive* je sepnut a je nastavena nenulová rychlost otáčení, dojde k okamžitému rozběhu motoru. To může být v některých situacích nebezpečné a v jiných, např. při testování, požadované. Autor si je vědom možných následků a proto je ponecháno zpoždění 200 ms. Po časovém bloku je umístěn spínací kontakt tagu *ONDrive*, který při nastavení na hodnotu 1 aktivuje blok *MOVE*, který vloží potřebné slovo pro celkové spuštění pohonu na požadovanou telegram adresu. Složení slova pro spuštění pohonu je demonstrováno v tab. 6 - 7.

Pokud dojde k nastavení tagu *ONDrive* a *EnableDrive* na 0, je aktivován blok *MOVE*, který přenáší slovo obsahující pouze bit 10 nastavený na 1 na požadovanou adresu telegramu. Při vložení slova 16#400 dochází k přesunutí pohonu do stavu klidu.

bit	Enable slovo	OFF1 slovo	poznámka
0	0	1	OFF1
1	1	1	OFF2
2	1	1	OFF3
3	1	1	Inhibit/Enable operation
4	1	1	Ihnibit/Enable ramp-function generator
5	1	1	Stop/Start ramp-function generator
6	1	1	Inhibit/Enable speed setpoint
7	1	1	Acknowledge fault
8	0	0	Reserved
9	0	0	Reserved
10	1	1	Control via PLC
11	0	0	Reserved
12	0	0	Reserved
13	0	0	Motorized potentiometer
14	0	0	Motorized potentiometer
15	0	0	CDS

Tab. 6 - 7 Popis složení slova telegramu použitého pro Enable (přesun pohonu do stavu připraven) a OFF1 (povolení běhu) signál pohonu

Obr. 6 - 9 Část programu určená pro povolení výstupu DCM a rozběhu motoru, Enable a OFF1

6.6 Řízení rychlosti

Na obr. 6 - 10 je zobrazena část programu pro řízení otáček motoru.

Před převzetím informace o požadovných otáčkách od uživatele, dochází k získání informace o jmenovitých otáčkách motoru z databáze *UserDefinedVariables*, kam je tato hodnota zadána uživatelem pomocí HMI nebo TIA portalu. Výchozí hodnota jmenovitých otáček, při řízení motoru Reliance C1811ATCZ, je 1750 min⁻¹. Protože na HMI je možné řídit otáčky motoru v rozmezí $\pm n_n$, je hodnota jmenovitých otáček, zadaná do HMI, negována a vložena do příslušné proměnné v databázi *UserDefinedVariables*. Poté dochází k porovnání uživatelem zadané žádané hodnoty otáček a zadaných jmenovitých otáček. V případě, že je uživatelem žádaná hodnota v určených mezích, je možné pokračovat. Je předpokládáno ovládání pomocí HMI, tudíž v HMI tagu zadávání otáček je nastavena obdobná limitace jako v PLC tagu, která při nastavování otáček neumožňuje nastavení vyšší hodnoty, než jsou určené limity. Pokud ovšem dochází ke krokování hodnoty pomocí části programu zobrazené na obr. 6 - 11, omezení v HMI tagu není aktivováno a je třeba tuto validaci provádět v části programu na obr. 6 - 10.

Po validaci zadávaných hodnot je uživatelem zadaná hodnota dělena vztažnými otáčkami a převedena pomocí konstanty určené v [7] dle telegramu, v tomto případě konstanty 16#400, nebo 10#16384, na hodnotu, která je pomocí *MOVE* bloku přenesena na požadovanou adresu použitého telegramu.

Obr. 6 - 10 Část programu určená pro řízení rychlosti motoru pomocí NSET_A telegramu

Na obr. 6 - 11 se nachází část programu, která zajišťuje krokování požadované rychlosti o uživatelem definovaný krok. Krok je možné definovat v HMI. Důležité je, že na *EN* vstupu bloků *CALCULATE* je nutné použít kontakty tagů, jež jsou připojeny na tlačítka v HMI, které reagují na hranu signálu. V práci je využito náběžných hran signálu stisknutí tlačítka. Pokud by byly využity pouze normální spínací kontakty, došlo by k tomu, že by byly přičítány hodnoty kroku v každém cyklu programu.

Do *CALCULATE* bloků vstupuje velikost požadovaného kroku a aktuální hodnota požadovaných otáček motoru. Výstupy z *CALCULATE* bloků směřují do části programu zobrazeného na obr. 6 - 10. Větev krokování rychlosti by bylo možné zakomponovat do společné větve nastavení otáček motoru, ale pro přehlednost programu v TIA portalu bylo zvoleno toto oddělené řešení.

Obr. 6 - 11 Část programu určená pro přidání či odebrání rychlosti dle požadovaného kroku hodnot, výstup této větve směřuje do části programu zobrazeného na obr. 6 - 10

6.7 Řízení hodnoty budícího proudu

Protože je složení pracoviště uzpůsobené potřebám měření ve studentských laboratořích, bylo nutné vyřešit odbuzování motoru. V praxi je v mnoha aplikacích provozován motor plně nabuzen, zvláště pak při rozběhu. U tohoto pracoviště je předpokládáno, že bude využíváno uživatelem, jež si je vědom, že odbuzením motoru klesá maximální možný moment motoru a při požadavku dodání stejně velkého momentu dochází k nárůstu kotevního proudu. Pokud by došlo ke zvýšení kotevního proudu nad únosnou mez, měnič automaticky chod motoru ukončí. V takovém případě je nutné odpojit měnič od napájení 230 V a znovu připojit. Nestačí pouze aktivovat bit 7 v STW1. Měnič je možné také softwarově vyresetovat pomocí parametru *p972* v programu STARTER, který je nutné nastavit na hodnotu 1. Tento reset systému není do programu této práce zahrnut.

Obr. 6 - 12 Část programu určená pro ovládání budícího proudu, první část pro zpracování zadané hodnoty uživatelem, druhá pro redukci vztažného budícího proudu v měniči

Na obr. 6 - 12 je v první větvi možné pozorovat kontrolu, zda se uživatelem zadávaná hodnota budícího proudu nachází v mezích daných minimální a maximální hodnotou budícího proudu nastaveného v měniči pomocí parametrů *p50102[0]* (maximální hodnota budícího proudu) a *p50103[0]* (minimální hodnota budícího proudu) v prostředí STARTER. Následně dochází k převedení zadávané hodnoty budícího proudu na procentuální vyjádření z maximální hodnoty budícího proudu. Tato upravená hodnota je vložena do tzv. fixed value 1 (parametr *p50401*), kde je možné uchovávat procentuální hodnoty, jež je možné přesměrovat do požadovaného parametru, reprezentující vstup do limitace budícího proudu. Toto přesměrování je provedeno v STARTER.

Adresa výstupu bloku *MUL*, *SINA_PARA_WRITE.sxParameter[2].srValue*, je směřována do parametru *p50401*, který reprezentuje použitou fixní hodnotu. Obraz fixní hodnoty *r52401* je napojen do parametru *p50611[0]*, který je zdrojem do bloku limitace hodnoty budícího proudu.

Protože měnič DCM pracuje na principu poměrných jednotek je výhodné této skutečnosti využívat a redukovat vztažné hodnoty v měniči na odpovídající jmenovité hodnoty vybraných veličin použitého motoru. Spodní větev na obr. 6 - 12 zajišťuje dříve zmíněnou redukci vztažné hodnoty budícího proudu.

6.8 Momentová smyčka

Moment je v měniči vypočítáván pomocí poměrných jednotek proudu kotvy a magnetického toku (budícího proudu). Z experimentů provedených při vytváření programu bylo zjištěno, že momentová smyčka je uzpůsobena tomu, aby při jejím používání byl motor stále nabuzen. Pokud dojde k nastavení všech potřebných parametrů využívání momentové smyčky, měnič požadovanou hodnotu momentu automaticky převede na kotevní proud a ten udržuje na žádané hodnotě. Pokud dojde ke snížení budícího proudu, nedojde ke zvýšení kotevního proudu ale ke snížení momentu, který má být udržován smyčkou. Tudíž je nutné v režimu momentové smyčky provozovat motor jmenovitě nabuzen.

Regulace pomocí momentové smyčky je možná pouze pokud dojde k nakonfigurování měniče v prostředí STARTER. Před potřebnou změnou parametrů je nutné provést optimalizační běh pro odbuzování "Field weakening control". Pro aktivaci tohoto běhu je možné využít menu "Optimization run" ve STAR-TER, nebo parametr *p50051* nastavit na hodnotu 27 a provést potřebné navazující kroky.

Po provedení optimalizace je již možné efektivně měnit parametr p50084 (rychlostní, nebo proudovámomentová smyčka), p50169[0] (0 - limitace momentu proudová/1 - momentová) a p50170[0] (0 - proudová/1 - momentová smyčka). Před zadáním požadavku na změnu hodnoty parametru p50084 z 1 na 0 je nutné, aby p50169[0] = 0, p50170[0] = 1.

Na obr. 6 - 13 je možné pozorovat část programu, která zajišťuje přepínání mezi otáčkovou a momentovou smyčkou. Součástí této větve programu je čtení skutečné hodnoty parametru *p50084*. Převod skutečné hodnoty *p50084* z datového typu Real na Int je realizován z důvodu funkčnosti zobrazování informace o výběru regulace v HMI na *obrazovce ovládání*.

Druhá část programu na obr. 6 - 14 zajišť uje výpočet poměrné hodnoty žádaného momentu a její následné vložení do požadované proměnné v databázi *SINA_PARA_WRITE*. Aktivace momentové smyčky a žádané hodnoty momentu se projeví po úspěšném dokončení zápisu hodnot parametrů pomocí bloku *SINA_PARA_WRITE*.

Obr. 6 - 13 Část programu určena pro přepínání mezi otáčkovou/proudovou-momentovou smyčkou

Obr. 6 - 14 Část programu určena pro výpočet žádané hodnoty momentu a její následné vložení do příslušné proměnné v SINA_PARA_WRITE databázi

Aby došlo ke správnému výpočtu požadované a aktuální hodnoty momentu v měniči, je třeba zredukovat vztažný proud kotvy. Tato redukce je zajišťována větví programu na obr. 6 - 15. Požadované redukce jsou zapisovány pomocí tlačítka *Write* v HMI. Jsou tedy zapsané při každém požadavku zápisu pomocí bloku *SINA_PARA_WRITE*.

Program by bylo možné zefektivnit, pokud by byl vytvořen samostatný *SINA_PARA_WRITE* blok určený pouze pro jednorázové konfigurační zápisy na začátku využívání pracoviště po odpojení měniče od napájení.

Obr. 6 - 15 Část programu určena pro redukci proudu kotvy motoru

6.9 Záznam dat do PLC

Zápis hodnot vybraných veličin je možné provést pomocí programu v HMI, který je představen v sekci zápis dat pomocí HMI, nebo lépe pomocí programu v PLC. Výhoda programu v PLC je, že umožňuje zápis dat do formátu CSV. Nevýhoda tohoto zápisu spočívá v tom, že vybrané PLC má pro tento zápis malou paměť a neumožňuje zapisovat hodnoty všech požadovaných veličin ve formátu Real. Tento problém je možné vyřešit vložením SD karty do PLC. Tato karta musí být PLC podporována. V realizaci pracoviště byla využita SD karta dodaná výrobcem Siemens. S ohledem na předpokládané využití pracoviště byl zvolen pro hodnotu žádaných otáček motoru datový typ Int.

Pro možnost získání dat z PLC je nutné povolit PLC webserver a vybraným uživatelům přiřadit administrátorská práva ovládání serveru. S ohledem na předpokládané využití pracoviště byly tyto práva přiřazena všem uživatelům připojující se na webserver.

Přístup na webserver je možný pomocí zadání IP adresy PLC (v této práci 192.168.0.1) do URL

adresního řádku ve webovém prohlížeči. Při správně konfigurovaném PLC webserveru je možné přejít do sekce *File Browser/DataLogs*, kde dochází k vytváření souboru *PLCDataLog.csv*. Rozhraní obsahující možnost stažení souboru *PLCDataLog.csv* je zobrazené na obr. 6 - 16.

Pro správnou funkci části programu zápisu dat v PLC je nutné vytvořit databázový blok, jež bude poskytovat použitým funkčním blokům potřebné informace. Snímek obrazovky databázového bloku je možné pozorovat na obr. 6 - 17.

SIEMENS	S7-1200 station_1 / PI	_C_1				
					11:38:07 pm 1/23/2012 UTC	✓ English ✓
Username	File Browser					
Login						😂 <u>oit</u> 🚨
Start Page	S7-1200 station 1 / DataLogs					
Disconting	Name	Size	Changed	Delete	Rename	
▶ Diagnostics	Di CDatal an anu	210	11/27/54 pm 1/22/2012	s)		
 Diagnostic Buffer 	<u>r coonacoy.cor</u>	010	Thoras pin hearene	4	ν. ·	
Module Information	Directory operations: Choose file No file chose	n	Upload file			
 Communication 						
▶ Tag status						
 Watch tables 						
 Online backup 						
 User-defined pages 						
File Browser						
Introduction						

Obr. 6 - 16 Webové rozhraní PLC webserveru pro stažení souboru PLCDataLog.csv obsahující požadovaný záznam dat

	DataLogging										
		Name			Data type	Start value	Retain	Accessible f	Writa	Visible in	Setpoint
1	-00	-	St	atic							
2	-00	•		Records	UDInt	10000			\sim	\checkmark	
3	-00	•		Name	String	'PLCDataLog'		\checkmark	\sim	\checkmark	
4	-00	•		ID	DWord	1		\checkmark			
5	-00	•		Headers	String	'SpeedInput,Ac		\checkmark		\checkmark	
6	-00	•	•	Data	Struct			\checkmark		\checkmark	
7	-00		•	SpeedInput	Int	0		\checkmark		\checkmark	
8	-00		•	ActualSpeed	Real	0.0		\sim			
9	-00		•	TorqueInput	Real	0.0		\checkmark			
10	-00		•	ActualTorque	Real	0.0		\sim			
11	-00		•	FieldCurrentInput	Real	0.0		\checkmark	~		
12	-00		•	ActualFieldCurrent	Real	0.0		\checkmark		\checkmark	
13	-00		•	ActivePower	Real	0.0		\sim		\checkmark	
14	-00		•	ArmatureCurrent	Real	0.0		\checkmark	\sim	\checkmark	
15	-00		•	ArmatureVoltage	Real	0.0		\sim	 Image: A start of the start of	\checkmark	
16	-00	•		Done	Bool	false		\checkmark	\sim	\checkmark	
17	-00	•		Error	Bool	false					
18	-00	•		Busy	Bool	false		\checkmark		\checkmark	
19	-00	•		Status	Word	16#0		\checkmark		\checkmark	

Obr. 6 - 17 Databázový blok potřebný pro správnou funkci zápisu dat pomocí PLC

Na obr. 6 - 18 je možné pozorovat funkční blok z "Recipe and data logging" rozšířené knihovny TIA portal instrukcí sloužící k vytvoření požadovaného souboru pro zápis. Vytváření souboru je spuštěno pomocí tlačítka *PLC Log Create* na HMI obrazovce na obr. 7 - 4, které je spojeno s PLC tagem *DataLo-gCreateStart*. Po úspěšném vytvoření dochází k odblokování možnosti zápisu dat, jež je realizováno částí programu zobrazené na obr. 6 - 19. Zápis dat se aktivuje pomocí tlačítka *PLC Log Start* v HMI obrazovce zobrazené na obr. 7 - 4. Ukončení zápisu je možné provést na téže obrazovce pomocí tlačítka *PLC Log Start Stop*.

Obr. 6 - 18 Část programu určena pro vytváření souboru logu PLCDataLog na PLC webserveru

Obr. 6 - 19 Část programu určena na zápis dat do souboru PLCDataLog

Na obr. 6 - 20 je možné pozorovat část programu, jež zajištuje přesun hodnot sledovaných veličin z bloku *SINA_PARA_READ* a z PLC tagů do požadovaných proměnných v databázovém bloku *DataLogging*.

Obr. 6 - 20 Část programu určena k přesunu hodnot z proměných v programu do proměnných, které jsou zapisovány do souboru PLCDataLog

Pro smazání souboru *PLCDataLog.csv* slouží část programu na obr. 6 - 21. Místo celkového smazání souboru by bylo možné použít funkční blok na pouhý výmaz souboru, ale z důvodu ušetření místa v PLC byl zvolen přístup smazání souboru. Odstranění souboru je možné aktivovat na obrazovce nastavení, zobrazené na obr. 7 - 4, pomocí tlačítka *PLC Log Delete*. Po úspěšném smazání souboru je možné opět aktivovat vytvoření souboru *PLCDataLog.csv*.

Obr. 6 - 21 Část programu určena pro aktivaci smazání souboru PLCDataLog na PLC webserveru

Ukázka výstupu dat z PLC ve formátu CSV je zobrazená v kódu 6 - 1.

1	Record , Date , UTC Time , SpeedInput , ActualSpeed , TorqueInput , ActualTorque ,
	FieldCurrentInput, ActualFieldCurrent, ActivePower, ArmatureCurrent,
	ArmatureVoltage
2	1, 1/23/2012,23:57:09, 0, -7.342849E-01, 0.000000E
	+00, -1.316896E-38, 9.900000E-01, 9.489775E-03, 2.621107E
	-08, $5.603434E-03$, $2.579634E-02$

Kód 6 - 1 Ukázka CSV logu dostupného z PLC webserveru

7 Realizace programu pro HMI

Pro uživatelsky příjemný způsob ovládání pomocí dotykového panelu je nutné vytvořit grafické rozhraní, které bude umožňovat ovládání vytvořeného PLC programu. V části programu pro HMI je také realizovaný zápis čtených dat z měniče.

Program pro HMI je v této práci rozdělen na část obrazovek a konfiguraci zápisu dat. Obrazovky slouží převážně pro interakci uživatele s PLC či DCM a byly vytvořeny tak, aby navigace v nich byla jednoduchá a intuitivní.

Pro správnou funkci HMI programu je nutné, aby tabulka PLC a HMI tagů byla provázána. Tagy, použité pro HMI, jsou představeny v tab. 6 - 2.

7.1 Hlavní obrazovka

Hlavní obrazovka, v programu označená MainScreen, slouží jako hlavní rozcestník do navazujících obrazovek. Po kliknutí na příslušné tlačíko se uživatel přemístí do odpovídající sekce.

Tlačítko *Control* směřuje do *obrazovky nastavení*. Tlačítko *LiveData* směřuje do obrazovky na obr. 7 - 3, obsahující zobrazení aktuálních hodnot vybraných sledovaných veličin. *Trend* tlačítko směřuje do obrazovky na obr. 7 - 5, určené pro výběr zobrazení průběhů vybraných sledovaných veličin. Tlačítko *Settings* do *obrazovky nastavení*.

Obr. 7 - 1 Hlavní navigační obrazovka programu v HMI

7.2 Obrazovka ovládání

Obrazovka sloužící pro ovládání pohonu se nachází na obr. 7 - 2.

Tlačítka *Enable OFF* a *OFF* jsou využívána k uvedení pohonu do stavu chod. *Speed Loop* je určené pro přepínání mezi otáčkovou a momentovou-proudovou smyčkou. Pokud uživatel zadává velikost požadovaného momentu, budícího proudu nebo přepíná regulační smyčky je třeba výběr potvrdit pomocí tlačítka *Write*. Toto tlačítko aktivuje zápis pomocí *SINA_PARA_WRITE* bloku. Při zápisu se nad tlačítkem *ComError* objeví nápis "alert", který po úspěšném ukončení zápisu a aktivity bloku *SINA_PARA_WRITE* zmizí. Pokud k ukončení zápisu nedojde do tří sekund, signál alert situaci signalizuje a je nutné podržet tlačítko *ComError* a tím odpojit *Write* vstupy bloku *SINA_PARA*. Pokud k ukončení zápisu nedojde, je třeba stisknutí tlačítka ComError opakovat.

Žádaná velikost otáček motoru se zadává v poli "set". Pokud uživatel požaduje krokování otáček je nutné požadovaný krok zapsat do pole s označením "step" a aktivovat tlačítka označená "+", nebo "-".

Tlačítka *Trend*, *LiveData* a *MainScreen* slouží k rychlé navigaci mezi předpokládanými potřebnými obrazovkami.

Zadávací pole požadovaných hodnot rychlosti a momentu jsou provázané s HMI tagy, které obsahují omezení maximálních hodnot. Maximální hodnoty rychlosti jsou ve výchozím stavu nastaveny jako jmenovité. Maximální hodnoty požadovaného momentu jsou variabilní dle požadavku uživatele. Povolený násobek jmenovitého momentu je možné nastavit v *obrazovce nastavení*.

Obr. 7 - 2 Obrazovka obsahující hlavní ovládací panel programu

7.3 Obrazovka okamžitých hodnot

Obrazovka LiveData, představená na obr. 7 - 3, zobrazuje okamžité hodnoty vybraných veličin. Na této obrazovce je možné vyslat signál Enable i OFF.

Obr. 7 - 3 Obrazovka zobrazující okamžité hodnoty vybraných veličin

7.4 Obrazovka nastavení

Obrazovka Settings, zobrazená na 7 - 4 slouží k zobrazení doplňujících informací.

Na této obrazovce se nachází tlačítko pro bezpečné odebrání připojeného média, které je doporučeno použít před odebráním připojeného USB zařízení pro zápis dat. Pokud je zařízení připravené k odebrání, zobrazí se zelený nápis informující uživatele o možnosti odebrání. Pokud zařízení není z jakéhokoliv důvodu možné odebrat, zobrazuje se kontinuálně nápis červený.

Na informační obrazovce se nachází rozhraní pro dva možné způsoby zápisu dat. Na levé části obrazovky jsou umístěna tlačítka ovládající zápis dat do HMI ve formátu TXT, který je popsán v části *zápis dat pomocí HMI. OpenAllLogs* tlačítko slouží k otevření souboru pro zápis hodnot. Tlačítka *StartLog* a *StopLog* spustí a zastaví zápis vybraných zobrazených veličin. *CloseAllLogs* slouží k uzavření zapisovaných souborů. Tlačítko *SafelyRemoveHardware* slouží k bezpečnému odebrání připojeného média. Na pravé části obrazovky je možné nalézt tlačítka ovládající PLC zápis dat do CSV, kterému je věnována část programu v PLC popsaná v části *zápis dat pomocí PLC*.

Ve spodní části je umístěno tlačítko *StopRuntime*, které slouží k ukončení programu pro HMI. Kruh s nápisem "connection with PLC" při funkčí komunikaci HMI a PLC se s frekvencí 1 Hz zbarvuje do zelené barvy. Možné momentové přetížení, neboli povolený násobek jmenovitého momentu motoru, je nastavitelné v části "torque overload". Základní povolené přetížení je 1,5 násobek jmenovitého momentu. Jmenovitá hodnota momentu motoru je vložena jako vztažný moment do programu STARTER. Na této obrazovce je v části "rated rpm" možné nastavit jmenovitou hodnotu otáček použitého motoru. Ve výchozím nastavení je použita hodnota 1750.

Obr. 7 - 4 Obrazovka obsahující nastavení programu

7.5 Obrazovky okamžitých průběhů

Obrazovka TrendSelect, zobrazená na obr. 7 - 5, slouží k výběru jednotlivých okamžitých průběhů vybraných veličin. Obrazovka obsahující prostředí pro zobrazení okamžitých průběhů je zobrazena na obr. 7 - 6. Aby bylo možné pozorovat odezvu pohonu, tak na jsou na příslušných obrazovkách zobrazeny hodnoty žádané a skutečné.

Obr. 7 - 5 Obrazovka výběru zobrazení okamžitých průběhů vybraných veličin

100				
50				
0				
10:57:59 AM 12/31/2000	10:58:24 AM 12/31/2000	10:58:49 AM 12/31/2000	10:59:14 AM 12/31/2000	10:59:39 AM 12/31/2000
Trend	Tag	connection Value	Date/time	• •
3 Control	Trend	LiveData	2 Ma	inScreen

Obr. 7 - 6 Ukázka obrazovky obsahující okamžité průběhy vybraných veličin

7.6 Obrazovka alarmů a diagnostiky

Obrazovky alarmů, obr. 7 - 7, a diagnostiky, obr. 7 - 8, slouží pouze pro přehled některých chyb a úkonů PLC a HMI. Při stlačení tlačítka *ClearAlarmBuffer* dojde ke smazání zásobníku alarmů, který je uživateli zobrazován.

Obr. 7 - 8 Ukázka obrazovky diagnostiky

7.7 Zápis dat pomocí HMI

Zápis hodnot vybraných veličin na médium, vložené do HMI USB vstupu, je možné spustit z obrazovky Settings. Po spuštění dochází k zápisu dat do souboru TXT, ukládaného na médium.

HMI KTP700 umožňuje zápis maximálně jednoho datalogu do souboru TXT. Maximální počet zapsaných hodnot je 10000. Konfigurované tabulky Data logs a Logging tags je možné pozorovat na obr. 7 - 9. K zápisu dat dochází s frekvencí 1 Hz. Ukládání hodnot do souboru probíhá pomocí uzavřené smyčky. V kódu 7 - 1 je možné pozorovat relativně nepřehledný TXT výstup HMI logu. Jednotlivé proměnné jsou zapisovány po řádcích. V tomto TXT dokumentu je vkládáno mnoho neviditelných znaků, jež komplikují analýzu dat. Firmware a typ použitého HMI panelu v této práci neumožňuje přehledný zápis dat do CSV.

Data logs												
Name 🔺	Storage location	Data records	Path			Logging method		Number of sequen	Fill level	1	Enable logging	
. LogAll	TXT file (Unicode) 💌	10000	USB_X60.1\		•	Circular log	-	10	90			/
<add new=""></add>												
<												>
•												-
Logging tags												
Name 🔺	Process tag	Ac	quisition mode	Logging cycle	н	ligh limit		Low limit		Range	for logging lin	n
🛵 Active Power	"SINA_PARA_DB_sxPai	rameter[Cyc	:lic	1 s						Within	deadband	
🛵 Actual Speed	"SINA_PARA_DB_sxPa	rameter[Cyc	lic	1 s						Within	deadband	
🛵 Actual Torque	"SINA_PARA_DB_sxPa	rameter[Cyc	lic	1 s						Within	deadband	
🚂 Armature Current	"SINA_PARA_DB_sxPa	rameter[Cyc	:lic	1 s						Within	deadband	
🚂 Armature Voltage	"SINA_PARA_DB_sxPa	rameter[Cyc	:lic	1 s						Within	deadband	
🏣 Field Current	"SINA_PARA_DB_sxPa	rameter[Cyc	lic	1 s						Within	deadband	
🚂 User Input Field Current	FieldCurrentUserInpu	tValue Cyc	:lic	1 s						Within	deadband	
🚂 User Input Speed	SpeedSetpointUserIn	nputValue Cyc	:lic	1 s						Within	deadband	
🏣 User Input Torque	TorqueSetpointUserIn	nputValue Cyc	lic	1 s						Within	deadband	
<add new=""></add>												

Obr. 7 - 9 Tabulka Data logs a související tabulka Logging tags obsahující vybrané tagy reprezentující hodnoty zapisovaných veličin

1	VarName TimeString VarValue Validity Time_ms
2	TorqueSetpointUserInputValue 2012-04-22 11:01:42 0.000000 1
	41021459518.506943
3	ActualSpeed 2012-04-22 11:01:42 -0.734285 1 41021459518.518517
4	ActualTorque 2012-04-22 11:01:42 -0.000000 1 41021459518.518517
5	ActivePower 2012-04-22 11:01:42 0.000000 1 41021459518.530090
6	ArmatureCurrent 2012-04-22 11:01:42 0.006513 1 41021459518.530090
7	FieldCurrent 2012-04-22 11:01:42 0.017481 1 41021459518.530090
8	ArmatureVoltage 2012-04-22 11:01:42 0.097285 1 41021459518.564812
9	SpeedSetpointUserInputValue 2012-04-22 11:01:42 0.000000 1
	41021459518.564812
10	FieldCurrentUserInputValue 2012-04-22 11:01:42 0.990000 1
	41021459518.564812

Kód 7 - 1 Ukázka TXT zápisu dat dostupného z HMI

8 Ukázka získaných dat z pracoviště

Data, získaná pomocí zápisu PLC do CSV, je možné dále zpracovat a analyzovat. Této skutečnosti je možné využít při studentských laboratorních měření.

Kontrolní měření byla realizována na sestavě řízeného motoru 1, mechanicky spojeného s motorem 2 (dynamometr). Názorné uspořádání a červeně označená mechanická vazba jsou zobrazeny na obr. 8 - 1.

Obr. 8 - 1 Názorné blokové schéma uspořádání pracoviště při měření ukázkových průběhů

8.1 Rychlostní smyčka

Při využívání otáčkové smyčky je požadováno, aby při změně zátěžného momentu, měnič DCM stále udržoval stejné otáčky motoru. Bylo provedeno kontrolní měření při kterém, pomocí mechanicky spojeného dynamometru (motoru 2) s řízeným motorem (motor 1), docházelo k mechanickému zatěžování řízeného motoru 1 pomocí motoru 2.

Ze získaných hodnot byly ve Wolfram Mathematica vytvořeny a exportovány požadované průběhy.

Průběh, zobrazený na obr. 8 - 2, je závislost otáček motoru na čase. Protože se jedná o rychlostní smyčku, je rychlost otáčení motoru udržována regulátorem na zadané hodnotě 750 min⁻¹. Je vidět, že by bylo vhodné upravit konstanty PID otáčkového regulátoru tak, aby docházelo k menším odchylkám od požadované hodnoty otáček. Na grafu 8 - 3 je vidět, že nejdříve docházelo k urychlování řízeného motoru 1 pomocí motoru 2. Proto měnič musel nastavit moment v opačném směru, než ve kterém působil moment motoru 2. Poté docházelo ke snižování rychlosti a také momentu motoru 2 a proto, aby byla udržována hodnota požadovaných otáček řízeného motoru, bylo nutné zvýšit moment řízeného motoru v odpovídajícím směru.

Na grafu 8 - 4 je zobrazena závislot momentu motoru na otáčkách. V případě tohoto průběhu se nejedná o funkci a nebylo možné interpolovat hodnoty. Proto byl využit bodový graf, na kterém je možné situaci snadněji analyzovat. Je vidět, že docházelo k mírným odchylkám rychlosti vlivem konstant regulátoru a ke změnám momentu motoru, jež odpovídají zmiňovanému průběhu měření.

Zatěžování motoru při rychlostní smyčce, závislost otáček na čase

Obr. 8 - 2 Závislost otáček řízeného motoru na čase při využívání rychlostní regulační smyčky

Zatěžování motoru při rychlostní smyčce, závislost momentu na čase

Obr. 8 - 3 Závislost momentu řízeného motoru na čase při využívání rychlostní regulační smyčky, nejdříve došlo k urychlování motoru 1 pomocí motoru 2, poté k brzdění motoru 1 pomocí motoru 2

Závislost momentu na otáčkách motoru, při rychlostní smyčce

Obr. 8 - 4 Vzájemná závislost rychlosti a momentu řízeného motoru při využití otáčkové regulační smyčky

8.2 Momentová smyčka

Analýza chování momentové regulační smyčky probíhala opět s využitím dynamometru (motoru 2).

Nejdříve byla nastavena požadovaná hodnota momentu řízeného motoru (motoru 1) na 5 Nm. Poté docházelo, pomocí motoru 2, k vytváření opačného smyslu momentu než který vyvozoval řízený motor. Při působení opačného smyslu momentu docházelo ke snižování otáček řízeného motoru dle grafu 8 - 5. Díky regulační momentové smyčce docházelo k udržování požadovaného momentu řízeného motoru po celou dobu analýzy. Časová závislost momentu řízeného motoru, při využití momentové smyčky, je zobrazena na obr. 8 - 6.

Na obr. 8 - 7 je zobrazena závislost momentu řízeného motoru na jeho otáčkách. Opět je splněn teoretický předpoklad chování momentové regulační smyčky a moment motoru je udržován, v určitých mezích, na požadované hodnotě.

Zatěžování motoru při momentové smyčce, závislost otáček na čase

Obr. 8 - 5 Závislost otáček řízeného motoru na čase při využívání momentové regulační smyčky

Zatěžování motoru při momentové smyčce, závislost momentu na čase

Obr. 8 - 6 Závislost momentu řízeného motoru na čase při využívání momentové regulační smyčky

Závislost momentu na otáčkách motoru, při momentové smyčce

Obr. 8 - 7 Vzájemná závislost rychlosti a momentu řízeného motoru při využití momentové regulační smyčky

8.3 Skoková změna směru otáčení motoru

Analýza rychlostní a momentové regulační smyčky je doplněna o průběhy otáček a momentu při skokové změně směru otáčení motoru.

Na obr. 8 - 8 je možné pozorovat změnu směru otáčení motoru v rovině Ω - t (čas). Na obr. 8 - 9 je zobrazena reverzace pohonu v rovině moment - čas. Vzájemnou závislost momentu řízeného motoru a otáček při reverzaci je možné pozorovat na obr. 8 - 10.

Na obr. 8 - 10 je vidět, že ke změně smyslu otáčení motoru je třeba aby došlo k postupnému zvýšení momentu motoru v požadovaném směru a tudíž k jeho urychlení na požadovanou rychlost. Poté, při neaplikování zátěžného momentu, moment řízeného motoru klesne na určitou ustálenou hodnotu. Při požadavku na reverzaci je opět nutné, aby moment motoru působil v požadovaném smyslu a nejdříve motor zabrzdil. Po poklesu otáček na nulu dochází k rozběhnutí motoru na požadovanou rychlost v požadovaném směru.

Skoková změna otáček (dva směry otáčení) v čase při rychlostní smyčce

Obr. 8 - 8 Závislost otáček řízeného motoru na čase při skokové změně smyslu otáčení

Rychlostní smyčka, skoková změna otáček (dva směry otáčení) v čase

Obr. 8 - 9 Závislost momentu řízeného motoru na čase při skokové změně směru otáčení

Závislost momentu na otáčkách motoru při skokové změně otáček (dva směry otáčení)

Obr. 8 - 10 Vzájemná závislost rychlosti a momentu řízeného motoru při skokové změně směru otáčení

Závěr

V úvodu této práce byla představena teorie stejnosměrných cize buzených motorů včetně základních matematických modelů, popisující tyto stroje.

V navazující části jsou shrnuty teoretické poznatky o práci usměrňovačů, které slouží k napájení stejnosměrných cize buzených motorů. Teoretické informace o nereverzačním můstkovém usměrňovači byly následně aplikovány při sestavení teorie reverzačních usměrňovačů, používaných v praktické části práce.

V sekci řízení stejnosměrných cize buzených motorů byla vyzdvihnuta metoda řízení motorů s okruhovými a bez okruhových proudů.

Teoretická část textu obsahuje základní poznatky potřebné pro praktickou realizaci pracoviště s DCM měničem Siemens.

Praktická část práce je zaměřena na využití DCM měniče Siemens, využívající tyristorový můstkový usměrňovač, pro řízení stejnosměrného cize buzeného motoru pomocí PLC S-1200 SIMATIC. V této části je představena realizace programu PLC, jež je využit pro ovládání pohonu pomocí ovládacího panelu. Na ovládacím dotykovém panelu je možné zobrazit okamžité hodnoty vybraných sledovaných veličin. Součástí vytvořeného programu v TIA portal je zápis dat pomocí PLC na webserver, umístěný v paměti PLC. Data, která jsou získávána z měniče, je možné dále analyzovat a zpracovávat. V závěru práce byla provedena kontrolní meření potvrzující funkčnost realizovaných otáčkových a momentových smyček.

Realizované pracoviště přináší možnost demonstrovat chování základních regulačních smyček, používaných při regulaci elektrických pohonů. Dalším možným stupněm této práce je vylepšení vzájemné výměny dat mezi PLC a měničem. Toto vylepšení je možné realizovat pomocí propojení komunikačního telegramu a parametrů měniče. Pracoviště je možné v budoucnu, při vytvoření příslušného PLC programu, aplikovat na řízení motoru MEZ Židenice a využívat jej jako aktivní zátěž v laboratořích.

Literatura

- [1] VOŽENÍLEK, Petr; NOVOTNÝ, Vladimír; MINDL, Pavel. *Elektromechanické měniče*. 2. vyd. Praha: České vysoké učení technické v Praze, 2011. ISBN 978-80-01-04875-7.
- [2] KOBRLE, Pavel; PAVELKA, Jiří. *Elektrické pohony a jejich řízení*. 3. přepracované vydání. V Praze: České vysoké učení technické, 2016. ISBN 978-80-01-06007-0.
- [3] PAVELKA, Jiří; ČEŘOVSKÝ, Zdeněk. *Výkonová elektronika*. Vyd. 2. přeprac. Praha: Vydavatelství ČVUT, 2000. ISBN 80-01-02094-0.
- [4] SUPERMARKET, Inverter Drive. Siemens SINAMICS DCM 30A 4Q 400V 3ph AC to DC Converter [online]. 2021 [cit. 2021-03-09]. Dostupné z: https://inverterdrive.com/group/DC-Thyristor-Drives/Siemens-SINAMICS-6RA8018-6DV62-0AA0/.
- [5] AG, Siemens. SINAMICS Drives SINAMICS DCM DC Converter, Control Module Catalog D 23.1
 [online katalog]. 2014 [cit. 2021-03-11]. Dostupné z: https://assets.new.siemens.com/siemens/ assets/api/uuid:8473bb40-23f9-4980-93dc-779ee6d92b4a/catalogo-sinamics-dcm.pdf.
- [6] AYLLON, Nelly. PROFINET vs Ethernet: Definitions and a comparison [online]. 2020-07-26 [cit. 2021-03-09]. Dostupné z: https://us.profinet.com/profinet-vs-ethernet-definitions-and-acomparison/.
- [7] AG, Siemens. SINAMICS DCM DC Converter, Operating Instructions [online manuál] [cit. 2021-03-12]. Dostupné z: https://cache.industry.siemens.com/dl/files/240/109478240/att_851818/v1/manual-DC-Converter_en.pdf. A5E34763375/RS-AA/001.
- [8] AG, Siemens. SINAMICS DCM DC Converter, List Manual, Firmware version 1.5 (based on 5.1 SP1) [online manuál] [cit. 2021-04-02]. Dostupné z: https://cache.industry.siemens.com/dl/files/ 564/109763564/att_972544/v1/DCM_lists_man_1218_en-US.pdf. A5E34800804A.
- [9] AG, Siemens. SINAMICS DCM DC Converter, List Manual, Firmware version 1.4 SP1 (based on 4.7) [online manuál] [cit. 2021-03-24]. Dostupné z: https://cache.industry.siemens.com/dl/ files/564/109763564/att_972544/v1/DCM_lists_man_1218_en-US.pdf. 6RX1800-0ED76, A5E34800804/RS-AA/001.
- [10] AG, Siemens. SINAMICS communication blocks DriveLib for reading and writing drive data within TIA Portal Context [online manuál a zdrojové soubory] [cit. 2021-04-10]. Dostupné z: https://support.industry.siemens.com/cs/document/109475044/sinamics-communication-blocksdrivelib-for-reading-and-writing-drive-data-within-tia-portal-context?dti=0&lc=en-WW.

Příloha A: Seznam symbolů a zkratek

A.1 Seznam symbolů

- \vec{F} (N) vektor síly
- $Q(\mathbf{C})$ elektrický náboj
- $\vec{v} \,(\mathrm{m}\cdot\mathrm{s}^{-1})$ rychlost
- \vec{B} (T) vektor magnetické indukce
- \vec{l} (m) vektor dráhy
- t (s) čas
- i (A) elektrický proud
- $S(\mathbf{m}^2)$ plocha
- Φ (Wb) magnetický indukční tok
- τ_p pólová rozteč
- r poloměr
- 2p počet pólů stroje
- 2a počet paralelních větví v rotoru stroje
- Ω (s⁻¹) úhlová rychlost otáčení rotoru

 $n \,({\rm min}^{-1})$ otáčky

- \vec{M} (Nm) vektor momentu
- $R_{\rm dM}\left(\Omega\right)$ rezistor reprezentující odpor obvodu kotvy motoru
- $R_{\rm s}\left(\Omega\right)$ rezistor reprezentující proměnný odpor pro zvýšení odporu v obvodu kotvy motoru
- L_{dM} (H) induktor reprezentující indukčnost vinutí kotvy motoru
- $R_{\rm f}(\Omega)$ rezistor reprezentující odpor budícího vinutí
- $L_{\rm f}$ (H) indukčnost reprezentující indukčnost budícího vinutí
- $I, I_{qM}(A)$ proud kotvy motoru
- U, U_{qM} (V) napájecí napětí kotevního obvodu motoru
- $U_{\rm f}$ (V) napájecí napětí budícího obvodu
- $k=pN/\pi a\;$ konstanta stejnosměrného stroje
- $k_{\rm e} = k\,60/2\pi\;$ upravená konstanta
- $R = R_{\rm s} + R_{\rm dM} \left(\Omega \right)$ celkový odpor v obvodu kotvy motoru
- P_i (W) vnitřní výkon stroje
- $M_{\rm i}$ (Nm) vnitřní moment stroje
- I2e (A) napájecí proud můstkového usměrňovače
- U2se (V) napájecí napětí můstkového usměrňovače
- $I_{d(AV)}(A)$ střední usměrněná hodnota výstupního proudu můstkového usměrňovače
- $U_{d(AV)}$ (V) střední usměrněná hodnota výstupního napětí můstkového usměrňovače respektující komutační úbytek
- α (°, rad) řídící úhel usměrňovače
- $u_{\check{r}}$ (V) řídící napětí usměrňovače
- Uřmax (V) maximální hodnota řídícího napětí usměrňovače
- $L_{\rm d1},\,L_{\rm d2}\,$ indukčnosti reprezentující tlumivky používané k omezení okruhových proudů
- $\tau_d\left(s\right)\,$ časová konstanta obvodu kotvy motoru
- $\tau_{f}\left(s\right)$ časová konstanta budícího obvodu motoru

 $\Omega^*_{\rm M}~({\rm s}^{-1})$ žádaná hodnota otáčivé rychlosti motoru, "*" značí žádanou hodnotu

 $I_{c_{DC}}$ (A) jmenovitý celkový stejnosměrný proud měniče

 $I_{q_{DC}}$ (A) jmenovitý stejnosměrný proud výstupní proud měniče DCM napájející kotvu motoru

 $I_{\rm f}$ (A) jmenovitý stejnosměrný výstupní proud DCM měniče napájející budící obvod motoru

 $U_{q_{AC}}$ (V) jmenovité střídavé trojfázové napájecí napětí měniče DCM pro obvod kotvy

 $U_{f_{AC}}$ (V) jmenovité střídavé napájecí napětí měniče DCM pro budící obvod

U_{DC} (V) jmenovité DC výstupní napětí měniče DCM

P2n (kW) jmenovitý výkon měniče DCM

L_{ism} (H) vyhlazovací tlumivka v napájecím obvodě DCM (input - smoothing)

 $L_{\rm fsm}$ (H) vyhlazovací tlumivka v obvodě napájející obvod buzení v DCM (field - smoothing)

 L_{qsm} (H) vyhlazovací tlumivka v kotevním obvodě motoru (armature - smoothing)

A.2 Seznam zkratek

DCM DC Master HMI Human Machine Interface PLC Programmable Logic Controller TIA Totally Integrated Automation Portal DC Direct Current AC Alternating Current GŘI Generátor Řídících Impulzů **IP** Internet Protocol ISO International organization of Standardization OSI Open Systems Interconnection STW Steuerwort, Control word ZSW Zustandswort, Status word CU Control Unit AV Average Value, Střední hodnota **DI** Digital Input AI Analog Input LED Light-Emitting Diode CPU Central Processing Unit **PROFINET** Process Field Net PN PROFINET IE Industrial Ethernet TAG, tag proměnná, symbol v PLC RAW bez zpracování CSV Comma-Separated Values URL Uniform Resource Locator TXT Text File USB Universal Serial Bus PID Proporcionálně Integračně Derivační, Proportional Integral Derivative MEZ Moravské elektrotechnické závody