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Helisová, Ph.D., for such an interesting assignment and for all the help she provided,
especially for keeping me on the right course during this thesis. Also, I’d like to thank
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Abstract

In recent years, random sets have become a very important tool for modelling various
phenomena in biology, geology, medicine, material sciences etc. Usually, we try to find
a suitable model for their observed realisations, but there are situations when it is not
necessary, because our goal is only to compare the realisations and decide whether they
come from the same process without knowledge of the process. This thesis aims to sum-
marise the methods that already exist and propose a new algorithm for assessing the
(dis)similarity of random sets. The suggested two-step algorithm focuses on the compo-
nents inside the pattern rather than on pattern as a whole and evaluates respective border
curvatures and ratios of perimeters and areas for each component. Finally, a simulation
study has been performed that justifies the proposed procedure.

Keywords: Convex compact set, Curvature, Envelope test, N-distance, Permutation
test, Random set, Similarity, Stochastic geometry

Abstrakt

Náhodné množiny jsou v posledńıch letech velmi d̊uležitým prostředkem pro modelováńı
r̊uzných jev̊u v biologii, geologii, v lékařstv́ı, materiálových vědách atd. Obvykle je sna-
hou nalézt pro jejich realizace vhodný model, ale jsou situace, kdy to neńı nutné, neboť je
ćılem pouze porovnat dvě realizace a rozhodnout, zda pocházej́ı ze stejného procesu, i bez
znalosti tohoto procesu. Ćılem této práce je shrnout již existuj́ıćı metody a navrhnout
nový algoritmus pro rozlǐseńı náhodných množin. Navržený dvoukrokový algoritmus je
soustředěn na komponenty uvnitř vzor̊u a vyhodnocuje př́ıslušná zakřiveńı hranice a
poměry obvod̊u a ploch pro každou komponentu. Nakonec je provedena simulačńı studie,
která navrhovaný postup ověřuje.

Kĺıčová slova: Konvexńı kompaktńı množina, křivost, obálkový test, N-vzdálenost, per-
mutačńı test, náhodná množina, podobnost, stochastická geometrie
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Chapter 1

Introduction

In the last years, modelling and statistical analysis of random sets have been rapidly

developing due to the fact that neither traditional methods for comparing random sets

(e.g. covariance function or contact distribution function) nor technologically advanced

image-processing tools (i.e. dilation, erosion, opening and closing) seem to be satisfactory

for the problem of distinguishing between different natural processes. Geometrical pat-

terns that occur in nature, for example, the position of trees in a forest or the distribution

of cancer cells or soil cracks, are very complicated and, in most cases, random. The ran-

domness and variability of data constantly forces scientists to develop new methods for

processing the data.

In order to describe a particular phenomenon, we do not need to have knowledge

about the generating process. Instead, it is enough to be able to determine whether two

realisations come from the same process or not. The problem arises due to the fact that

in nature, there is usually only one realisation of each considered process to work with.

For that reason, statisticians and data scientists put emphasis on statistical modelling.

The process of making a model includes one essential step: analysing the data and

choosing what is important and what would be of relevance. This step leads to the loss of

information, some of which may be crucial. It is important to stress that the models that

will be discussed in this thesis are not the models of this type due to the straightforward

fact that we do not have enough data to feed the algorithm with, but the models built on

the theory of random processes.

Random sets, the primary and potent tool of stochastic geometry, can be used for

modelling various phenomena. They have been used over the past few decades, for mod-

elling populations in ecology [1], roots in biology [2], and particles or gaps in material

science [3]. Different types of applications can be looked up in books by Illian et al. [4],

Baddeley and Jensen [5], and Chiu et al. [6]. In recent years, random sets have found

applications in biomedicine for analysing cell patterns and tissues, see [7], [8] and [9].
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2 Introduction

It is interesting and important to note that the same principle that is used for analysing

biological cells can be applied to wireless networks [10].

In this thesis, my goal will be to summarise already existing methods for assessing

(dis)similarity of random sets, used primarily in biomedicine, and to suggest and im-

plement a new algorithm that will be verified using simulated data. Consequently, the

procedure will be applied to images of two types of mammary tissue in order to test its

applicability in practice. In conclusion, the results obtained during writing this thesis will

be compared to previous works by other authors.

The presented thesis is organised as follows. In Chapter 2, theoretical background is

introduced. In Chapter 3 we provide a review of the most notable papers in the field

focusing on the proposed methods and the results obtained. In Chapter 4 we present our

approach which focuses on the shape of the components of the random sets. The algorithm

is based on evaluating the curvature of the boundary and the ratio of the perimeter and

the area of each component. In Chapter 5 we justify the procedure using simulated data

and apply it to real data, that is, to two types of mammary tissue. In Chapter 6 we

compare the presented method with the methods from Chapter 3, summarising the bases

of their approaches, their advantages and disadvantages. In Chapter 7 we review the

results and suggest possible topics for future research.



Chapter 2

Theoretical Background

In this chapter, general random set theory and stochastic geometry terms will be intro-

duced in order to build an apparatus for achieving the goals of this work.

2.1 Random Set Theory

All definitions in this section can be found, with slightly different notation, in the book [6],

unless stated otherwise.

Definition 2.1.1 (Metric space). A metric space is an ordered pair (X, d), where X

is usually X ⊆ Rd and d is a mapping d : X × X −→ R which satisfies the following

conditions:

• d(x, y) ≥ 0,

• d(x, y) = 0 iff x = y,

• d(x, y) = d(y, x),

• d(x, z) ≤ d(x, y) + d(y, z),

for any x, y, z ∈ X. The function d is called metrics on X or simply distance.

Example. [Euclidean and Manhattan distance] Let us consider Euclidean plane with two

points p = [p1, p2] and q = [q1, q2]. The Euclidean distance between p and q is then

defined by

dE =
√

(p1 − q1)2 + (p2 − q2)2. (2.1)

For the same points, their Manhattan distance is given by

dM = |p1 − q1|+ |p2 − q2|. (2.2)

3



4 Theoretical Background

Definition 2.1.2 (Ball). Suppose (X, d) is a metric space and let a be a point in X.

For each r ∈ R+ we define

• the closed ball in X centered at a with radius r as

D(a, r) = {x ∈ X : d(a, x) ≤ r}, (2.3)

• the open ball in X centered at a with radius r as

Dint(a, r) = {x ∈ X : d(a, x) < r}, (2.4)

• the sphere as the difference between a closed and a concentric open ball

Dsph(a, r) = {x ∈ X : d(a, x) = r}. (2.5)

Definition 2.1.3 (Bounded set). A set A ⊂ Rd is said to be bounded if there exists a ball

D(x, r) ⊂ Rd, such that A ⊂ D(x, r).

Definition 2.1.4 (Open and closed sets). A set A is said to be open if ∀x ∈ A there

exists a positive number ε such that D(x, ε) ⊂ A. A set A is said to be closed if its

complement Ac in Rd is open. The system of all closed subsets of Rd will be denoted

as F.

Definition 2.1.5 (Interior, closure, and boundary). The interior Aint of the set A is the

union of all open sets contained in A. The closure Acl of the set A is the intersection of

all closed sets containing A. The difference ∂A = BA = Acl−Aint is called the boundary

of A.

Definition 2.1.6 (Compact set). A set K ⊂ Rd is said to be compact if it is both closed

and bounded. The system of all compact subsets of Rd shall be denoted as K.

Definition 2.1.7 (Topology). Let (T, T ) be an ordered pair, where T is a set and T is

a collection of open subsets of T satisfying:

• ∅ ∈ T and T ∈ T ,

•
⋃
i Ti ∈ T , for any sets Ti ∈ T , i ∈ N,

•
⋂
i Ti ∈ T , for any sets Ti ∈ T where i is finite.

Then the couple (T, T ) is called topological space and the collection T is called the topology

on (T, T ).
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Definition 2.1.8 (Connected set). Let (T, T ) be a topological space. A subset X ⊂ T

is called a connected set if it cannot be separated into two nonempty subsets such that

each subset has no common points with the set closure of the other [11].

Definition 2.1.9 (σ−algebra, Borel and Effros σ−algebras). For each set X, a system

X of its subsets is called σ-algebra if it satisfies the following:

• X ∈ X ,

• if A ∈ X , then Ac ∈ X ,

• if A1,A2, ... ∈ X , then
⋃∞
i=1 Ai ∈ X .

The smallest σ−algebra on Rd containing all open subsets of Rd is called Borel

σ−algebra and is denoted by B.

The smallest σ−algebra on Rd containing all closed subsets of Rd is called Effros

σ−algebra and is denoted by F .

Definition 2.1.10 (Measurable function). A function f : X −→ R is said to be X− mea-

surable if for each Borel set B ∈ B the inverse image f−1(B) belongs to σ−algebra X
associated with X.

Definition 2.1.11 (Lebesgue measure). For Q = [u1, w1] × ... × [ud, wd] ⊂ Rd Lebesgue

measure is defined by

vd(Q) = |Q| = (u1 − w1) · ... · (ud − wd), (2.6)

i.e. it is characterised by the volume of a d-dimensional hypercube.

Definition 2.1.12 (Convex set). A set K ⊂ Rd is said to be convex if for every x, y ∈ K

and every 0 < α < 1 we have αx + (1 − α)y ∈ K. Convex sets, which are also compact

are called convex bodies.

Definition 2.1.13 (Convex body functional). A convex body functional assigns a real

value h(K) for every K ∈ C, where C denotes the system of all convex bodies.

Example. Some of the most important convex body functionals of a set K ∈ C in different

dimensions are:

• length of a curve l(K),

• boundary length L(K) and area A(K) of a planar set,

• surface area S(K) and volume V (K) of a 3D body.



6 Theoretical Background

Definition 2.1.14 (Hausdorff metric). For two convex compact sets A,B ∈ C we define

their Hausdorff distance as

dH(A,B) = max{sup
x∈A

inf
y∈B

dE(x, y), sup
y∈B

inf
x∈A

dE(x, y)}. (2.7)

Definition 2.1.15 (Support function). For every convex K there is a unique support

function defined by

s(K, u) = sup
x∈K
〈u, x〉, u = Dsph(0, 1), (2.8)

where Dsph(0, 1) is a unit sphere in Rd [12].

Example. Identifying the points u ∈ Dsph(0, 1) with angles u ∈ 〈0, 2π), we get support

functions as shown in Figure 2.1. Note that for a circle (disc) the support function is

constant with the value equal to the radius, while for another set containing the origin,

the interpretation of the support function is such that in each direction given by the angle,

it is the distance of the origin and the so-called support plane, i.e. the line perpendicular

to the direction which is as far as possible having nonempty intersection with the set. In

other words, it describes a kind of a reach of the set in all directions.
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Figure 2.1: Support functions for a disc and a square [13]

Definition 2.1.16 (Random closed set). Let (Ω,Σ, P ) be a probability space. A measur-

able mapping X : (Ω,Σ, P ) −→ (F,F) is a random closed set if for every compact K ∈ K
we have {ω ∈ Ω : X ∩K 6= ∅} ∈ Σ.

If we replace K by the system of convex bodies C in Definition 2.1.16, we get the

definition of a random convex compact set.

Definition 2.1.17 (Probability distribution of a random set). The probability distribution

PX of a random set X is defined by

PX(F ) = P (X−1(F)) = P (X ∈ F), (2.9)

for every F ∈ F .
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Definition 2.1.18 (Independent random sets). Two random sets X and Y are indepen-

dent if and only if for any F1 and F2 in F we have

P (X−1(F1) ∩Y−1(F2)) = P (X−1(F1)) · P (Y−1(F2)). (2.10)

We can find this definition in [14].

Definition 2.1.19 (Stationarity, isotropy). A random closed set X is stationary if its

distribution PX(F) = P (ω ∈ Ω : X(ω) ∈ F) for F ∈ F is invariant under translation.

A random closed set X is isotropic if its distribution is invariant under rotation. If a ran-

dom closed set is both stationary and isotropic, it is called motion invariant.

Theorem 2.1.1 (Lavie [14]). Two random convex compact sets X1 and X2 are identi-

cally distributed if and only if their support functions share identical finite-dimensional

distributions.

Definition 2.1.20 (Neighbourhood). Consider a finite union of disjoint random sets

{X1, ...,Xn} within an observation window W ⊂ Rd. Every set Xi generates a neighbour-

hood

Hi
M = {y ∈W : dM({y},Xi) ≤ dM({y},Xj) for all i 6= j}. (2.11)

Similarly, we can define neighbourhoods using Hausdorff metric

Hi
H = {y ∈W : dH({y},Xi) ≤ dH({y},Xj) for all i 6= j}. (2.12)

2.2 Point Processes

Multidimensional point processes are fundamental entities studied in stochastic geometry.

They materialise in nature and our surroundings in the form of collections of cells, par-

ticles, spores, trees, or mobile phones, more precisely as a group of characteristic points

in these bodies, such as centroids, centres of mass, or geographical locations. They are

closely related to and play a role in both the theory and the applications of random sets.

Definition 2.2.1 (Point process). Let (Ω,Σ, P ) be a probability space. Consider G, the

system of locally finite subsets of Rd, with the σ-algebra G = σ({x ∈ G : #(x ∩ A) =

m} : A ∈ B,m ∈ N0), where B denotes the system of bounded Borel sets and #(x)

represents the number of points in the configuration x. A point process Φ defined on Rd

is a measurable mapping from (Ω,Σ) to (G,G).

Definition 2.2.2 (Distribution of a point process). The distribution PΦ of the point

process Φ is given by the relation PΦ(G) = P ({ω ∈ Ω : Φ(ω) ∈ G}) for G ∈ G.
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Definition 2.2.3 (Intensity and homogeneity of a point process). A measure Λ on B
satisfying Λ(A) = Φ(A) for all A ∈ B, where Φ(A) denotes the number of points in A,

is called the intensity measure. If there exists a function λ(x) for x ∈ Rd such that

Λ(A) =
∫
A
λ(x)dx, then λ(x) is called the intensity function. If the intensity function

λ(x) is constant, λ(x) = λ, the point process is called homogeneous with the intensity λ.

Otherwise, it is said to be inhomogeneous.

Definition 2.2.4 (Poisson point process). Let Λ be a locally-finite non-null measure

on Rd. The Poisson point process Φ of intensity measure Λ is defined using its finite-

dimensional distributions:

P (Φ(A1) = m1, ...,Φ(Ak) = mk) =
k∏
i=1

e−Λ(Ai) · Λ(Ai)
mi

mi!
, (2.13)

for every k = 1, 2, ... and all bounded, disjoint sets Ai, i = 1, 2, ..., k, such that Ai ⊂ Rd.

If Λ(Ai) = λ · |Ai| = λ · vd(Ai), where λ is a constant, then Φ is called a homogeneous

Poisson point process [10].

Since we work mainly with homogeneous Poisson point process Φ, we can say, in order

to summarise, that it is characterised by:

• Poisson distribution of the number of points in each A ∈ B with the parameter Λ(A),

• independent scattering, i.e. the numbers of points in disjoint sets are independent

random variables.

One of the operations that are occasionally applied to the Poisson point process is

thinning. It is characterised by retention function p, where p = p(x) denotes the proba-

bility that the point x ∈ Φ will not be deleted. It means that we can construct a thinned

Poisson process Φp from Φ by randomly and independently removing points. If the orig-

inal Poisson process is homogeneous with intensity λ, then the retained process is also

homogeneous Poisson process with intensity λp = p · λ. This property can be generalised

for inhomogeneous Poisson process with intensity λ (the result is known as Prekopa’s the-

orem): retained points will form either homogeneous or inhomogeneous Poisson process

of intensity λp = λ · p(x). It should be noted that the thinned and the retained process

are mutually independent [15].

Example. An example of thinning of a homogeneous Poisson process with retention factor

p = 0.75 is shown in Figure 2.2. In this case, retained points are represented with blue

colour, while deleted points are red.
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Figure 2.2: Thinning of a homogeneous Poisson process with retention factor p = 0.75 [15]

Definition 2.2.5 (Boolean model). Let Y = {y1, y2, ...} be a stationary Poisson point

process in Rd and {B1,B2, ...} be a sequence of independent identically distributed (i.i.d.)

random compact sets in Rd that are mutually independent and independent of Y. If

E|B1 ⊕K| <∞ for all compact sets K, then the random set

B =
∞⋃
i=1

(yi + Bi) (2.14)

is called the Boolean model.

Figure 2.3: Boolean model: random discs (left) and random ellipses (right)

Boolean model is sometimes called Poisson germ-grain model [6]. It can be easily

modelled using the Poisson point process with the intensity λ, where around each point

of the Poisson process we construct a random geometrical object (e.g. a line segment,

a disc, a polygon, a ball etc.). The resulting union is an example of a Boolean model.

The name germ-grain model comes from the point of view that the points of the

Poisson process form the germs, while the geometrical objects are their corresponding
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grains. The Boolean model is an extremely powerful tool for modelling various natural

and artificial phenomena, see [6].

Definition 2.2.6 (Random disc Quermass-interaction process). Consider a planar ran-

dom disc Boolean model. The random disc Quermass-interaction process is a random

set whose probability measure is absolutely continuous with respect to the probability

measure of the given Boolean model and the density of its probability measure is given by

fθ(D) =
1

cθ
exp{θ1A(UD) + θ2L(UD) + θ3χ(UD)}, (2.15)

for each finite disc configuration D = {D1,D2, ...,Dn}, where A, L and χ are, respectively,

the area, the perimeter and the Euler–Poincaré characteristic (the number of holes sub-

tracted from the number of connected components) of the union of discs UD =
⋃n
i=1 Di,

θ = (θ1, θ2, θ3) is a three-dimensional vector of parameters, and cθ is the normalising

constant [16].

Figure 2.4: Quermass-interaction process: cluster (left) and repulsive (right)

Definition 2.2.7 (Marked point process). A marked point process is a random sequence

Ψ = {xk;mk} where xk are points of an unmarked point process (known in the literature

as a ground process [6]) and mk are the marks corresponding to the points xk coming from

a given space of marks M.

2.3 Random Sets in 2D Image Processing

Sets in Euclidean space can be equipped with following operations:

• Multiplication by real numbers

αA = {α · x : x ∈ A}. (2.16)

If α = −1, then αA is called reflection and denoted as Ǎ.
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• Translation

Ax = {x+ y : y ∈ A}. (2.17)

• Minkowski-addition

A⊕B = {x+ y : x ∈ A, y ∈ B} =
⋃
y∈B

Ay. (2.18)

• Minkowski-subtraction

A	B =
⋂
y∈B

Ay. (2.19)

When used for image processing, e.g. for processing data acquired by microscopes,

scanners, or tomographs, random set theory is represented by operations used primarily to

modify the structure of the image. Even though most of them lead to loss of information,

they are still quite helpful in determining quantitative and qualitative characteristics of

the image. Numerous examples of applications of these operations in medical imaging are

introduced in [17].

Definition 2.3.1 (Operations for image processing). These definitions come from [17].

• Thresholding

Thresholding is a process used to convert grey-scale images to binary images, as

shown in Fig 2.5. The procedure is very primitive: a constant τ (threshold) is

given. If the intensity Ii of a pixel z�i is less than τ , then the pixel will be replaced

by a black pixel, and similarly, if the intensity is greater than τ , the pixel will be

replaced by a white pixel, see Figure 2.5. The authors of [18] categorise thresholding

methods into six groups based on the information they use.

Figure 2.5: Grey-scale image transformed into a binary image using thresholding [19]

• Dilation

Dilation is the process of enlarging or thickening without changing the shape. It is
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a non-linear operation defined by

A −→ A⊕ B̌ (2.20)

If set B is a ball, then dilation will smooth the resulting image. It is important to

mention that dilation is not simple scaling – dilation fills in craters and orifices and

connects separated fragments, see Figure 2.6.

Figure 2.6: Dilation [20]

• Erosion

Erosion is the process of shrinking or thinning, see Figure 2.7. It is defined by

A −→ A	 B̌ (2.21)

Again, we should mention that it is not mere scaling – connected components can

be turned into fragments and some useful information, alongside noise and defects

might be lost if set B is chosen unwisely. However, it is still the most used method

for counting particles or other 3D objects which appear to be overlapping when

projected to a 2D image.

• Opening

Opening smooths the boundary of the object, eliminating defects and noise. It is

achieved by applying dilation on a previously eroded set

A −→ A ◦B −→ (A	 B̌)⊕B (2.22)

We could say that the opening is achieved by fitting as many sets B inside A, see

Figure 2.8.
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Figure 2.7: Erosion [20]

Figure 2.8: Opening [20]

• Closing

Closing is operation dual to opening: it is dilation followed by erosion,

A −→ A •B −→ (A⊕ B̌)	B) (2.23)

Oppositely to opening, closing is achieved by fitting as many sets B outside of

borders of A, see Figure 2.9.

2.4 Statistical Testing

In Chapters 3, 4 and 5, we use two statistical tests. The tests described in this section

are developed on Monte Carlo goodness-of-fit test. The main idea is that if the null hy-
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Figure 2.9: Closing [20]

pothesis is true, then the observed (functional) test statistics T1 and Nperm independently

simulated test statistics T2, ..., TNperm+1 are identically distributed. That means that the

null hypothesis can be rejected with the exact probability α if T1 is among α(Nperm + 1)

extremal values of Ti, i = 1, 2, ..., Nperm + 1 [21].

2.4.1 Testing Equality in Distribution Based on N−distance of

Probability Measures

For more information about the theory of N−distance, see [22].

Definition 2.4.1 (Negative definite kernel). Let X be a nonempty set. A map

L : X×X→ C (2.24)

is called negative definite kernel if for any n ∈ N, arbitrary c1, ..., cn ∈ C such that∑n
i=1 ci = 0 and arbitrary x1, ..., xn ∈ X it holds

n∑
i

n∑
j

L(xi, xj)cic̄j ≤ 0. (2.25)

Definition 2.4.2 (Strongly negative definite kernel). Let X be a nonempty set and sup-

pose that the map L is a real continuous function. The negative definite kernel

L : X×X→ R (2.26)

is called strongly negative definite kernel if for an arbitrary probability measure µ and an
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arbitrary real function f : X→ R such that
∫
X
f(x)dµ(x) = 0 holds and∫

X

∫
X

L(x, y)f(x)f(y)dµ(x)dµ(y) (2.27)

exists and is finite, the relation∫
X

∫
X

L(x, y)f(x)f(y)dµ(x)dµ(y) = 0 (2.28)

implies that f(x) = 0 µ-almost everywhere.

For a map L : X×X→ R, denote ML the set of all measures µ such that∫
X

∫
X

L(x, y)dµ(x)dµ(y) (2.29)

exists.

Theorem 2.4.1 (Klebanov [22]). Let L : X × X → R be a map satisfying L(x, y) =

L(y, x). Then N -distance of the measures µ and ν is given by equation

N (µ, ν) =2

∫
X

∫
X
L(x, y)dµ(x)dν(y)−

∫
X

∫
X
L(x, y)dµ(x)dµ(y)

−
∫
X

∫
X
L(x, y)dν(x)dν(y) ≥ 0 (2.30)

which holds for all measures µ, ν ∈ML, where ML denotes the set of all measures µ such

that ∫
X

∫
X

L(x, y)dµ(x)dµ(y) (2.31)

exists, with equality in the case µ = ν if and only if L is a strongly negative definite

kernel.

The process of testing equality of distributions then consists of two parts:

• Estimating N -distance.

• Deriving the p-value of the test.

Suppose that we have m1 (functional) characteristics from objects X1, ...,Xm1 (e.g.

m1 support functions derived from m1 parts of a realisation of a random convex compact

set X) with distribution µ and m2 (functional) characteristics from objects Y1, ...,Ym2

with distribution ν. We want to test if they come from the same distribution. The null

hypothesis is H0: X1, ...,Xm1 and Y1, ...,Ym2 come from the same distribution, against

HA: the distributions are not the same. For calculation of N -distance, an arbitrary
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strongly negative definite kernel can be used. Many examples of kernels for testing one-

dimensional characteristics are introduced in [22]. Special kernels used for testing equality

of distribution of random functions are derived in [9].

Definition 2.4.3 (Empirical estimate of N -distance). Assume we have an observation

X1, ...,Xm1 from a distribution µ and Y1, ...,Ym2 from a distribution ν. The N -distance

of the measures µ and ν is then estimated as

N̂1 =
2

m1m2

m1∑
i=1

m2∑
j=1

L(Xi,Yj)−
1

m2
1

m1∑
i=1

m1∑
j=1

L(Xi,Xj)−
1

m2
2

m2∑
i=1

m2∑
j=1

L(Yi,Yj). (2.32)

This value plays the role of the test characteristic.

Then, a Monte Carlo permutation test [23] is used to make Nperm permutations of all

observed values X1, ...,Xm1 ,Y1, ...Ym2 . After that, each permutation is divided into two

groups of the lengths m1 and m2, and, analogously to (2.32), N̂i is calculated for the i-th

permutation, i = 2, ..., Nperm + 1.

The p-value of the statistical test based on N -distance is given by

p =
#{i ∈ {2, ..., Nperm + 1} : N̂i ≥ N̂1}+ 1

Nperm + 1
. (2.33)

The p-value is the value that can be used as a measure of similarity. However, note

that due to the randomness following from random permutations in Monte Carlo method,

it can be smaller than 1, even for identical shapes.

2.4.2 Testing Equality in Distribution Using Envelope Test

The envelope test examined here is described in detail in [21].

Definition 2.4.4 (Extreme rank depth measure). Consider a group of Nperm + 1 random

geometrical objects, where each object i = 1, 2, ...., Nperm + 1 is described by a character-

istic Ti(u), u ∈ I, I being a finite index set. Let R↑i (u) and R↓i (u) denote the ranks of the

values Ti(u), ordered from the smallest (with rank 1) to the largest (with rank Nperm+1),

and from the largest (with rank 1) to the smallest (with rank Nperm + 1), respectively.

For each u ∈ I point-wise ranks of Ti(u) are defined by

R∗i (u) = min(R↑i (u), R↓i (u)), i = 1, ..., Nperm + 1. (2.34)

Extreme rank measure is then defined as

Ri = minR∗i (u). (2.35)
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Definition 2.4.5 (Rank lengths). Rank length and its vector are defined by

Li,k =

∫
I

1(R∗i (u) = k)du and Li = (Li,1, ..., Li,b(Nperm+1)/2c). (2.36)

For testing hypothesis H0 that T1(u) has the same distribution as Ti(u), where

i = 2, ..., Nperm + 1, we have to define p-value.

The p-value is given by

p =
1

Nperm + 1
(1 +

Nperm+1∑
i=1

1(Li ≺ L1)), (2.37)

where Li ≺ Lj is a reverse lexical ordering of rank length vectors Li used for ordering Ti

Li ≺ Lj ⇐⇒ ∃n ≤ b(Nperm + 1)/2c : Li,k = Lj,k,∀k < n, Li,n > Lj,n (2.38)

In practice, we usually work with binary images, i.e. we observe discrete index set

I = u1, ..., un, so the definitions above have to be modified because we count ranks at

discrete points u1, ..., un, see Figure 2.10.

The p-value of the envelope test is defined as

p =
1

Nperm + 1
(1 +

Nperm+1∑
i=1

1(Ni ≺ N1)), (2.39)

where

Ni,k =
n∑
j=1

1(R∗i (uj) = k), Ni = (Ni,1, ..., Ni,b(Nperm+1)/2c). (2.40)

Graphical explanation can be seen in Fig. 2.10.

The test then continues with the Monte Carlo permutation test, which is used to

make Nperm permutations of testing functions t11(u), ..., t1m1
(u) from the first observation

and t21(u), ..., t2m2
(u) from the second observation. The testing characteristic is then given

(see [24]) by the normalised difference of their means

T1(u) =
t̄1(u)− t̄2(u)√

vart1(u) + vart2(u)
. (2.41)

The characteristics T2, ..., TNperm+1 are calculated analogously with respect to the permu-

tations in the Monte Carlo test.
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1 2 3 4

0
1

2
3

4
5

u

T1

T2

T3

T4

T5

R1(1) = 1 R2(1) = 2 R3(1) = 3 R4(1) = 2 R5(1) = 1
R1(2) = 2 R2(2) = 1 R3(2) = 2 R4(2) = 2 R5(2) = 1
R1(3) = 1 R2(3) = 2 R3(3) = 2 R4(3) = 3 R5(3) = 1
R1(4) = 1 R2(4) = 1 R3(4) = 2 R4(4) = 3 R5(4) = 1

N1 = (3, 1, 0), N2 = (2, 2, 0), N3 = (0, 3, 1), N4 = (0, 2, 2), N5 = (4, 0, 0)

⇒ N5 ≺ N1 ≺ N2 ≺ N3 ≺ N4

1

Figure 2.10: Example of five functional characteristics, their point-wise ranks and ordering



Chapter 3

State of the Art

In this chapter, our main goal will be to summarise some of the already existing results in

the field and to adumbrate paths taken by other authors with the aim of distinguishing

between two realisations of random sets.

3.1 Convex Compact Approximations

This section reviews the paper [13]. For a detailed description of the procedure, the reader

is referred to that paper. In Chapter 6, we will refer to this method using the abbreviation

RC, which stands for random covering, which is the dominant tool in this method.

3.1.1 Algorithm

The starting point for the algorithm is a binary image X containing a digitised planar

set S. Digitisation is done in two steps:

1. Thresholding, as defined in Definition 2.3.1,

2. Masking - the pixel z�i ∈ X is black if and only if its centre lies in S.

The second step after getting the digital approximation M of S is to try to approximate

the shape of S by covering M with 2D convex compact sets (the authors chose discs

and consequent construction of Voronoi tessellations on their union), because they have

desirable support functions, see Figure 2.1.

In order to cover M with (digitised) discs D(xi, r), whose centres come from the

maximal Poisson-disc sampling, we have to construct a point process Φ = {xi, ..., xn}
satisfying:

• For every xi, xj ∈ Φ, such that xi 6= xj we have |xi − xj| ≥ r,

19
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• If Mi−1 = M−⋃i−1
j=1 D(xj, r), then for each xi ∈ Φ and each A ⊂Mi−1

P (xi ∈ A) =
|A|
|Mi−1|

. (3.1)

However, this process is problematic because it is strongly dependent on choosing

the right r - this deviation can increase some of the body functionals, namely area and

boundary length. The authors tried to avoid this flaw by firstly eroding the set M using

D(o, r), where o represents the origin, and then covering eroded set Mr = M 	D(o, r)

using maximal Poisson-disc sampling [25] and thus gaining the covered set Mc. This new

method was firstly applied to border pixels in order to preserve the shape, but it led to

the loss of some inner pixels in the resulting set Mc. In order to cover some of them, to

some predefined threshold τ , the authors introduced pixel difference measure.

Definition 3.1.1 (Pixel difference measure). Let X be the original digital picture. Pixel

difference measure is defined by

PD(r) =
#B̂W (r) + #ŴB(r)

#Borig
X

, (3.2)

where #Borig
X denotes the number of black pixels in X, i.e. #Borig

X = A(M), and B̂W =

B −→ W (similarly, ŴB = W −→ B) denotes the number of pixels that changed from

black in X to white in Mc (respectively from white to black).

This led to another inaccuracy because choosing different τ can lead to different results

of covering algorithm for previously selected r.

After covering some inner pixels, the authors constructed Voronoi tessellation on the

union of discs D covering the set M which served as a basis for similarity measurement.

Definition 3.1.2 (Voronoi tessellation). Let a finite disc configuration {D1, ...,Dn} of

discs Di(ci, r) be given. The system V of all sets Vi such that

Vi = {y ∈ Di : |y − ci| ≤ |y − cj|for all j 6= i} (3.3)

is called Voronoi tessellation on the union ∪ni=1Di of the discs {D1, ...,Dn}.

The workflow of the algorithm is shown in Figure 3.1.

3.1.2 Results

In the simulation study, authors heuristically derived optimal values for r and τ for each of

the studied models: random-disc Boolean model, as shown in Figure 2.3, a cluster model
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Figure 3.1: Covering of a planar set by discs of identical radii using adjusted Poisson disc
sampling, and consequent construction of Voronoi tessellation on their union: digital ap-
proximation, reduced set, covering of border pixels, covering of inner pixels, construction
of Voronoi tessellation, respectively [13]

and a repulsive model (Quermass-interaction processes with suitably chosen parameters),

as shown in Figure 2.4. For more information about simulating algorithms, see [26]. For

each of 200 realisations organised in 100 pairs, 100 randomly sampled non-neighbouring

Voronoi cells were chosen. Consequently, their support functions were calculated and

aligned using agglomerative hierarchical clustering. Support functions obtained in this

way were used as testing functions for the envelope test [21] and described in Section

2.4.2. Histograms of p-values that were acquired in this manner show that the proposed

algorithm is able to distinguish between different processes (p-values are close to 0) while

it was slightly weaker when comparing the Boolean and the repulsive model, see the first

row in Figure 6.1 (E stands for envelope test).

The main disadvantage of this approach is the obligation to choose ’free’ parameters

- size (radius) of covering discs, and pixel difference level. Due to the inability of the

envelope test to capture the similarity of differently oriented cells of the same shape, the

method is sensitive to rotation. Also, edge-effects may play a significant role.

3.1.3 Improvement by Using N -distance Test

In [9], the authors used the same algorithm for the approximation of components by

convex compact sets, but instead of the envelope test, they used the test based on N -

distances, see Section 2.4.1. They constructed some special negative definite kernels for

testing the equality in distribution for random functions. Such tests have much higher

power than the envelope test since they are not as sensitive to rotations of the tested

convex compact sets. For comparison, see Figure 6.1.

3.2 Skeletons

This section is the shortened description of the method explained in detail in the pa-

per [24]. For more information about the algorithm, a reader is referred to that paper.

In Chapter 6, we will refer to this method using the abbreviation S.
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3.2.1 Algorithm

The starting point for this algorithm is a binary image X. Note that Definition 3.2.1 has

to be slightly corrected: discs considered in this section are open and A is an open set

in R2. Let further Dmax(A) be the set of all maximal discs with respect to A, see below.

Definition 3.2.1 (Maximal disc). A disc D(x, r) is called maximal with respect to the

set A if there is no other disc D’ included in A and containing D(x, r).

Definition 3.2.2 (Skeleton). The skeleton SK(A) of the set A is defined by

SK(A) = {z : D(z, r) ∈ Dmax(A), r > 0}. (3.4)

For r > 0, the r-th skeleton subset is defined as

Sr(A) = {z ∈ SK(A) : D(z, r) ∈ Dmax(A)}. (3.5)

It is easily deduced that

SK(A) =
⋃
r>0

Sr(A). (3.6)

Using the language and notation of morphological transformations defined in Defini-

tion 2.3.1, we can write that

SK(A) =
⋃
r>0

⋂
s>0

{(A	 Ď(z, r))− {[(A	 Ď(z, r))	 Ď(z, s)]⊕D(z, s)}}, (3.7)

where D(z, r),D(z, s) ∈ Dmax(A). The original set can be easily reconstructed (as shown

in Figure 3.2):

A =
rmax⋃
r>0

{Sr(A)⊕ Ď(z, r)} (3.8)

Figure 3.2: Example of a binary image of a set, its skeleton and reconstruction of the set
using the skeleton and corresponding maximal discs [24]
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Since we work with binary pictures, which are matrices of pixels z� centered at

points z, and since the number of pixels is a discrete value, instead of Euclidean met-

rics, the authors used Manhattan metrics as set in Definition 2.1, so the discs D(z, r)

were transformed into discrete discs D(z, r) = {⋃i z
�
i : dM(z, zi) ≤ r}.

In order to assess the similarity of random sets, for each binary image X the authors

defined the random testing function

tX(u) =
∞∑
r=1

∑
y∈W

r1(|x− y|) < u)1(D(y, r) ∈ Dmax(X)), u ∈ N, (3.9)

where x is a randomly chosen point from SK(X), and W is a bounded observation win-

dow. Since the skeletons are formed from centres of maximal discs, the testing functions

will be similar for points that are close to each other. In order to avoid misleading results,

they introduced minimal distance dmin of points in which testing functions are calculated.

Let us consider a binary image containing a stationary random set X and its skeleton

SK(X). For each point zi ∈ SK(X) denote rimax the radius of the maximal disc centred

in zi. Then, the testing function at the point zi can be approximated by

ti(u) =
∑
j 6=i

rjmax1(|zi − zj| < u), (3.10)

where u = 1, 2, ..., Umax and Umax ∈ N.

After choosing the minimal distance dmin, which is strongly dependent on the cho-

sen Umax (both values affect overlapping of discs D(zj, r
j
max) which leads to depen-

dency between respective tj) a subset M of SK(X) is constructed using Mátern thinning

method [27], where for each point zj ∈ SK(X) corresponding rjmax are used as marks. Its

points are then used as starting points for calculating tj.

3.2.2 Results

In the simulation study, the authors compared realisations of the same models as intro-

duced in Section 3.1.2. For all of 200 realisations of each model organised in 100 pairs,

testing functions were calculated in 20 values, i.e. Umax = 20, with dmin = Umax. His-

tograms of p-values that were acquired show that the algorithm based on skeletons can

distinguish between different processes (p-values are less than 0.05, see Figure 6.1, where

E stands for envelope, while N stands for N -distance test) but it is sensitive to the choice

of parameters when we compare two realisations of the same processes and assess them

as similar. The authors provided a discussion about the choice of the parameters, their

advantages, disadvantages, possible complications and instructions on how to avoid them.

The main disadvantage of this procedure is voluntarism when choosing testing param-
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eters and extreme sensitivity to small changes in shape, for example, change of width or

the number of internal holes. The second disadvantage is critical when working with real

data (i.e. images of tissues, see Section 5.2) because the presence of optical noise can

create small holes in resulting images.

3.3 Symmetric Differences of Components and Neigh-

bourhoods

This method comes from [16]. For detailed description, a reader is referred to the paper.

In Chapter 6, we will refer to this method using the abbreviation T, which stands for

tessellation.

3.3.1 Algorithm

The starting point for the algorithm is, as in the previous cases, a binary image X con-

taining a realisation of a random planar set S consisting of components Mi, i ∈ I (which

are, in fact, discretised versions of disjoint random sets).

The first step in the algorithm is to mark all connected components of the studied

realisations. For each pair of components, the authors defined their symmetric difference.

Definition 3.3.1 (Symmetric difference between components). For each pair of compo-

nents (Mi,Mj), Mi,Mj ⊂ X we define their symmetric difference as

∆(Mi,Mj) = {x ∈ X : (x ∈Mi ∧ x /∈Mj) ∨ (x ∈Mj ∧ x /∈Mi)}. (3.11)

Definition 3.3.2 (Frobenius matrix norm). Let A be a m×n matrix. Then its Frobenius

norm is defined as

||A||F =

√√√√ m∑
i=1

n∑
j=1

|ai,j|2. (3.12)

The second step, after the components are determined, is to construct their respective

neighbourhood tessellations.

Definition 3.3.3 (Neighbourhood tessellation). Let Hi
H denote Hausdorff neighbourhoods

of components Mi, i ∈ I, see Definition 2.1.20. Then the system H of all sets Hi
H , i ∈ I is

called the neighbourhood tessellation on the union of the sets Mi.

Examples of the neighbourhood tessellations are shown in Figure 3.3. Note that in

this paper, the author used a cluster model simulated using slightly different parameters

in order to obtain more components in realisations.
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Figure 3.3: Components of the realisations of Boolean (left) cluster (middle) and repul-
sive (right) model used for simulation study together with their centroids and neighbour-
hoods [16]

The final step, after the neighbourhood tessellations are constructed, is to construct

the similarity measure, for which the author used the approach based on N -distances, as

described in Section 2.4.1, with appropriate negative definite kernels.

For each pair of components Mi,Mj we can consider the negative kernel (used later

for the construction of N−distance)

L(Mi,Mj) = µr/2(∆(Mi,Mj)), (3.13)

where 0 < r ≤ 2 and µ(A) is the area of the set A.

Since for a binary image X the square of its Frobenius norm is equal to its area

(measured in pixels), i.e. ||X||F = µ1/2(X), we can write L(Mi,Mj) = ||∆(Mi,Mj)||F .

This kernel is used when we consider only the shapes of the corresponding components

(this is denoted as CC kernel in the sequel), or we use L(Hi
H ,H

j
H) = µ1/2(∆(Hi

H ,H
j
H)) =

||∆(H i
H , H

j
H)||F when working with their neigbourhoods (this is denoted as N kernel in

the sequel).

For each combination of ordered pairs ((Mi, H
i
H), (Mj, H

j
H)) of components and their

corresponding neighbourhoods we can consider the negative kernel

L((Mi, H
i
H), (Mj, H

j
H)) =

√
µ(∆(Mi,Mj)) + µ(∆(Hi

H ,H
j
H))

=

√
||∆(Mi,Mj)||2F + ||∆(H i

H , H
j
H)||2F .

(3.14)

Note that this kernel should be used when we want to consider both shape and the

position of a component inside realisation X. It will be denoted as CCN kernel from

now on.

3.3.2 Results

In the simulation study, the author studied the same models that were already introduced

in Section 3.1.2, with the exception of the cluster model, which was slightly modified (see
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Figure 5.3 in Section 5.1). For all possible pairs of models, 100 pairs of realisations were

studied, i.e. their connected components were isolated and respective neighbourhood

tessellations were constructed. Histograms of p-values obtained in this way were approx-

imately uniformly distributed when comparing pairs of the same model (thus rejecting

dissimilarity), and close to 0 when comparing pairs coming from different processes (thus

rejecting similarity), see the third (CC kernel used), the fourth (N kernel used) and the

fifth row (CCN kernel used) in Figure 6.1. When using the kernel which takes into account

the shape of the neighbourhoods, the obtained p-values are even smaller when comparing

different models.

The method was also applied to real data, i.e. to the images of two types of mammary

tissue (thoroughly described in Section 5.2). In the first step, the multiply connected

components (i.e. with many white holes) had to be decomposed into simply connected

components so that each component has only one white hole and black pixels that are

closer to that hole than to any other hole within that realisation. After that, the respec-

tive neighbourhood is constructed around the centroid of each component. Finally, 50

components from each image are sampled. The p-values of the pairs of samples that were

obtained after testing the similarity show that the method is able to distinguish between

the two types of tissue.

The main disadvantage of this method is its sensitivity to edge effects and its depen-

dence on the distribution of the components and their neighbourhoods. For that reason,

the method poorly distinguishes between cluster and other models.



Chapter 4

New Method for Assessing

Similarity of Random Sets

As we have seen in Chapter 3, the method based upon morphological skeletons gives the

best results in the simulation study. However, it is highly dependent on the placement

of the components inside the image and small changes in shape. For that reason, we

will examine individual components inside the picture. More precisely, we will focus on

finding an algorithm that will be able to describe each component in a way as unique

as possible for our purposes, focusing on the shape of the component. Simultaneously,

the algorithm has to take into account the influence of components that are neighbouring

the examined component (assumption of independence). Furthermore, it should minimise

the effect of small changes in shape. In this chapter an algorithm will be proposed and

presented, together with the theory it was built upon.

4.1 Curvature of a Planar Curve

The following two definitions come from [28]

Definition 4.1.1 (Curvature of a curve). Let C be a smooth twice differentiable 2D curve

that is properly parameterised by a parameter s ∈ [0, smax] ⊂ R, i.e. C(s) = (x(s), y(s)).

The curvature of the curve C in the point C(s) is then defined by

κ(C(s)) =
x′(s)y′′(s)− x′′(s)y′(s)

(x′2(s) + y′2(s))3/2
, (4.1)

where ′ denotes derivative with respect to s.

In other words, if R(s) is the radius of the osculating circle touching the curve in

the point [x(s), y(s)], then the curvature is given by κ(s) = ±1/R(s), where the choice

between “+” and “−” is dictated by the local convexity convention.

27
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Let C be a continuous, closed (i.e. C(0) = C(smax)), and non-self-intersecting curve

(i.e. if C(s1) = C(s2) then s1 = s2). Suppose that S is a planar (connected) set whose

boundary is determined by C (with appropriately chosen orientation in order to ensure

the right sign +/-). Curvature κ(z), at the point z ∈ C and for r small enough, is then

given by

κ(z) ≈ 3A∗(D(z, r))

r3
− 3π

2r
=

3π

r

(
A∗(D(z, r))

A(D(z, r))
− 1

2

)
, (4.2)

where A(D(z, r)) is the area of the disc D(z, r) centred at z and A∗(D(z, r)) is the area

of D(z, r) ∩ S [28].

4.2 Implementation

The starting point for our algorithm is a binary image X containing a digital approxima-

tion M of a planar set S, such that there are n black disjoint components Mk, k = 1, 2, ..., n

inside M, see Section 3.1.1. As it was already mentioned at the beginning of this chapter,

we will focus on individual components. First, we have to (re)define a few terms in order

to adapt them for working with binary pictures. Note that in the rest of the text, the

terms point and centre of a pixel will have a synonymous meaning, while a pixel z� will

be interpreted as a square of the unit area centred at point z = [x, y].

Since we are working with the binary image X of the set S, we have to discretise the

function (4.2) in such a way that area A(D(z, r)) represents the number of pixels inside

the disc D(z, r) centred at the boundary of X, and A∗(D(z, r)) is the number of pixels of

D(z, r) inside X.

Definition 4.2.1 (4-neighbourhood). Let z be a point in a binary image X.

4-neighbourhood of the pixel z� is then defined as

H4 = {
⋃
i

z�i ∈ X : dM(z, zi) ≤ 1}. (4.3)

Definition 4.2.2 (Boundary pixel, boundary). Let Mk be a connected random set con-

sisting of black pixels z�i , Mk ⊂ X. A pixel z� ∈ Mk is called a boundary pixel if and

only if at least one of its neighbouring pixel in a 4-neighbourhood H4 is white. Union of

all boundary pixels of the same component is called boundary and denoted by BMk
.

Let Mk be a connected random set with boundary BMk
. Then

• the boundary length L(BMk
) is called perimeter and calculated by

L(BMk
) = #{z�i : z�i ∈ BMk

}, (4.4)
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• the area A(Mk) is calculated as

A(Mk) = #{z�i : z�i ∈Mk}, (4.5)

• for each component, we define a ratio of its perimeter and area as

RMk
=
L(BMk

)

A(Mk)
=

#{z�i : z�i ∈ BMk
}

#{z�i : z�i ∈Mk}
. (4.6)

Example. An illustration of the algorithm is shown in Figure 4.1 where ellipse-shaped

component X is given and a disc D with centre on the boundary point of the set X has

been constructed. The resulting estimate of the curvature will be #C
#C+#D

= 5
5+8

= 5
13

,

while the respective ratio of the perimeter and area will be #B
#E

= 12
19

.

Figure 4.1: Estimating the curvature and the ratio of the perimeter and the area

4.3 Statistical Test

Once we have marked all border points of the connected random sets Mk, we have to

calculate curvature κk(z), at each point z ∈ BMk
. From equation (4.2), we can see that

κk(z) is proportional to

κk(z) ' A∗(D(z, r))

A(D(z, r))
= Ok,D(z,r), (4.7)

for appropriately chosen r. This fact will be used as a guideline for devising a testing

characteristic.

Definition 4.3.1 (Distribution of curvature). Let Ok,D(z,r) be the ratio as defined by

equation (4.7). Define by

κ̃Mk,D(.,r)(u) =
1

L(BMk
)

∫
BMk

1{Ok,D(z,r) ≤ u}dz, u ∈ 〈0, 1〉. (4.8)
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It is an analogy of the distribution function of the curvature at points on the boundary,

with the difference that we work with highly dependent values here. From this function,

an analogy to the density function can be defined as

tMk,D(.,r)(u) = κ̃′Mk,D(.,r)(u) (4.9)

which will be used as a testing function.

Definition 4.3.2 (Similarity). Two connected random sets X and Y are considered to

be similar if the distributions of limr→0 tX,D(.,r) and limr→0 tY,D(.,r) and the distributions

of RX and RY defined by (4.6) are equal.

Since we are working with binary pictures, i.e. with discrete values, we have to ap-

proximate the distribution function of curvature.

Let X be a binary image containing a digitised realisation of a connected random

set Mk. For each boundary pixel zi and a fixed radius r ∈ N we approximate

K(zi) =
#{z�j ∈ X : z�j ∈ D(zi, r) ∩Mk}

#{z�j ∈ X : z�j ∈ D(zi, r)}
. (4.10)

Using this approximation, we can further set

t(u) =
#{i ∈ {1, . . . , n} : K(zi) ∈ [u− 1/l, u)}

n
, u =

1

l
,
2

l
, . . . , 1, (4.11)

which will be used as a testing function.

For testing the equality in distribution of random functions, we use the test based on

N−distances described in [9], as well as in Section 2.4.1. A kernel constructed especially

for random functions can also be found in [9] and is defined by

L(t1, t2) =
d∑

m=1

∑
{k1,...,km}⊆{1,...,n}

(
m∑
l=1

(
t1(ukl)− t2(ukl))

)2

)1/2

, (4.12)

or an appropriately chosen d (d = 3 in our case, see [9] ), so the estimate of N−distance

is of the form

N̂1 =
2

m1m2

m1∑
i=1

m2∑
j=1

L(t
(1)
i , t

(2)
j )− 1

m2
1

m1∑
i=1

m1∑
j=1

L(t
(1)
i , t

(1)
j )− 1

m2
2

m2∑
i=1

m2∑
j=1

L(t
(2)
i , t

(2)
j ).

(4.13)

When testing equality of the distributions of two realisations X1, ...,Xm1 and Y1, ...,Ym2 ,

of connected random sets X and Y, we evaluate ratios RX1 , ..., RXm1
, RY1 , ..., RYm2

(using
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(4.6)) and testing functions tX1(u), ..., tXm1
(u), tY1(u), ..., tYm2

(u) (using (4.11)). In the

next step we estimate corresponding N -distances: N̂R
1 (calculated by (2.32) where Xi, Yi

are replaced by corresponding RXi
, RYi

respectively) and N̂ t
1 (calculated by (4.13)). The

pair (N̂R
1 , N̂ t

1) is the test statistic.

Then, the test continues as already described in Section 2.4.1: a Monte Carlo permuta-

tion test makesNperm permutations of X1, ...,Xm1 and Y1, ...,Ym2 , and separate them into

two groups of sizes m1 and m2, respectively. This way we obtain N̂i, i = 2, ..., Nperm + 1,

and evaluate p-value as

p =
#{i ∈ {2, . . . , Nperm + 1} : N̂R

i ≥ N̂R
1 ∧ N̂ t

i ≥ N̂ t
1}+ 1

Nperm + 1
. (4.14)
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Chapter 5

Simulation Study and Application to

Real Data

Our main goal in this chapter will be to show on simulated data how the two-step method

for assessing similarity proposed in Chapter 4 is able to determine whether two processes

are similar or not. In the second part of this chapter, we will apply the method to the

real data - two different types of mammary tissue.

5.1 Simulated Data

Once we have defined appropriate test statistics (by (4.12) and (4.13)) and p-value (by

(4.14)) of the N -distance test, we should apply the procedure to the simulated data. The

first step that is required is choosing the right value for the radius r of the disc that is

used for calculating the curvature at the boundary point (by (4.10)). The area (measured

in pixels) of the disc with radius r is given [29] by

A(D(., r)) = 1 + 4 ·
∑
j≥0

(⌊
r2

4j + 1

⌋
−
⌊

r2

4j + 3

⌋)
. (5.1)

A list with values for r = 1, ..., 10000 can be found in [30]. For our study, we will use

r = 3 and r = 5, because choosing too large radius will lead to great mistake because

the disc will not be able to recognise local changes in curvature while choosing too small

radius will also lead to a mistake because the disc will not be able to detect curvature

due to discretisation.

The next step is to simulate the data that will be compared. For all models that are

taken into consideration, we simulate 200 realisations and compare 100 vs 100 realisations

of the same models. Consequently, we compare 100 vs 100 realisations of different models.

In the first place, for proper illustration of the strategy of the method, we will use the

33
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models shown in Figure 5.1, especially simulated for this purpose. The first two illustrating

models are the Boolean model and reduced Boolean model (simulated from the Boolean

model where deletion probability of each component is set to 0.5). The third model is

the square model consisting of disjoint squares whose perimeter to area ratio comes from

the same (empirically obtained) distribution as that of the ratio of the Boolean model.

Finally, the fourth model is the rectangle model containing disjoint rectangles whose one

side is fixed to a length of 4 pixels and whose perimeter comes from the same distribution

as the perimeter of the squares. The simulated data of the Boolean model were provided

by the authors of [13] and [16].

Figure 5.1: Examples of realisations of the Boolean, the reduced Boolean, the square and
the rectangle models, respectively

Once we have the input data, we estimate the ratios and the curvatures. Consequently,

we run the similarity test as described in the previous chapter. Firstly, we compare

Boolean and reduced Boolean to show that the method does not distinguish between them

because it is based on the similarity of components. Secondly, Boolean and square models

are compared to show that the algorithm distinguishes between them due to the difference

in the distribution of the curvature. Finally, squares and rectangles are compared to show

that the procedure distinguishes them due to the difference in the ratios of the perimeter

and the area of the components.

After running the test, we obtain 100 p-values (one for each tested pair). The his-

tograms of the p-values are shown in Figure 5.2, where in the first column we have the

histograms obtained by testing the equality of the ratios and the curvature, while in the

second and the third column are the histograms of the p-values obtained by testing the

equality of the ratios alone and the curvatures alone, respectively. The p-value should be

interpreted as follows: if the p-value is close to zero, then the equality of the distributions

is rejected. That means that if we test the similarity of realisations, then the p-value is

uniformly distributed on [0, 1] if the realisations come from the same model, while for

different models p-value is close to zero.

The histograms of p-values shown in the first row in Figure 5.2 display approximately

uniform distribution of p-values that we got comparing the Boolean vs the reduced Boolean

model, so we can conclude that the method works as expected, i.e. it marks models that
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Figure 5.2: Histograms of p-values obtained by testing the Boolean model vs the reduced
Boolean model (the first row), the Boolean model vs the square model (the second row)
and the square morel vs the rectangle model (the third row), where in the first column
are the results obtained using both the ratios (of the perimeter and the area) and the
curvatures (of the boundary), in the second column using only ratios and in the third
column using only curvatures

have components of the same shape as similar. However, when comparing the Boolean vs

the square model, and the square vs the rectangle model, we can see that using only one

characteristic, e.g. using the ratio for Boolean and square models, or using the curvature

for square and rectangle models, we obtain erroneous results, i.e. histograms that suggest

similarity. However, when comparing the curvatures of the first pair and the ratios of the

second pair of models, we can see that p-values are close to zero. Thus, we can conclude

that when comparing models that contain differently shaped components, we have to

consider both characteristics.

In the second part of the simulation study, we compare the models that have already

been studied by different authors in order to compare our results with previous work. The

models studied are shown in Figure 5.3. The first model is the Boolean model, which is

widely studied, the second and the third model are the cluster and the repulsive model

(both are simulated using Quermass-interaction process as described in Definition 2.2.6

with suitably chosen parameters) studied in [16] and [9], [13], [16], [24], respectively. The

last model is the Boolean ellipse model studied just in [16]. The simulated data were

provided by the authors of [13] and [16].

Since we are working with models that significantly differ by the number of components
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Figure 5.3: Previously studied models: the Boolean, the cluster, the repulsive and the
ellipse model, respectively

in their respective realisations, we had to empirically determine the optimal number of

components used for testing similarity. To obtain this information, we compared 100 pairs

of the Boolean model using samples of different size. Histograms of p-values obtained using

samples of 10, 20, 30 and 50 components are shown in Figure 5.4. We can see that p-values

are approximately uniformly distributed for samples of size 10 and 20, because between

sparsely sampled components we have a smaller correlation. Thus, we will use samples of

size 10 and 20 for testing the aforementioned models.

Figure 5.4: Histograms of p-values when testing pairs of the Boolean model using samples
of 10, 20, 30 and 50 components from each realisation, respectively

For each model and for each pair of different models we test 100 pairs of realisations,

as we already described above when we were testing illustrative models. The histograms

of p-values for pairs coming from the same model (except for the Boolean model, which

is shown in Figure 5.4) are shown in Figure 5.5.

From histograms in Figure 5.5 we can see that p-values are uniformly distributed for all

cases except when comparing the pairs of samples of size 20 of the cluster model because

in this case the sample is not scarce enough. Thus, we will use samples of size 10 for

comparing different models.

The histograms of p-values obtained when testing different models with sample size 10

are shown in Figure 5.6. We can see that the rejection of similarity is not very convincing.

Assuming that this error comes from the small number of components tested, we apply

the bootstrap method, i.e. we randomly choose 100 components from the mix of all

realisations of each model and consequently, we compare them. This way, we avoid

dependence between components. After comparing 100 pairs obtained in this way, we
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Figure 5.5: Histograms of p-values when testing pairs of realisations that come from the
same model: cluster, repulsive, and ellipse, respectively with sample size 10 in the first,
and 20 in the second row

Figure 5.6: Histograms of p-values obtained when testing similarity of the Boolean model
vs the repulsive model (upper left), the Boolean model vs the cluster model (upper mid-
dle), the repulsive model vs the cluster model (upper right), the ellipse model vs the
Boolean model (lower left), the ellipse model vs repulsive model (lower middle) and the
ellipse model vs the cluster model (lower right) using the samples of 10 components

construct histograms of p-values that are shown in 5.7. We can see that except for cluster

and repulsive models, all p-values are smaller than 0.05. We assume that the reason

behind bigger p-values for those models is the fact that both of them contain components

that are made from isolated discs that come from the same distribution.

5.2 Real Data

Once we have shown that the procedure is able to measure (dis)similarity of random

processes, we will apply it to the real data. The morphology of the tissue between the

lactiferous duct system and mammary glands can indicate various types of benign or ma-
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Figure 5.7: Histograms of p-values obtained when testing similarity of the Boolean model
vs the repulsive model (upper left), the Boolean model vs the cluster model (upper mid-
dle), the repulsive model vs the cluster model (upper right), the ellipse model vs the
Boolean model (lower left), the ellipse model vs repulsive model (lower middle) and the
ellipse model vs the cluster model (lower right) using the bootstrap method and the
samples of 100 components

lignant changes. In our study, we will consider two types of mammary tissue - mastopathic

(referred to as Masto or ”m” only from now on) and mammary cancer tissue (referred

to as Mamca or ”c” only). Note that this data has already been studied in [7] and [16].

Samples (in the form of binary images containing 10 sub-samples of size 512 × 512 rep-

resenting cross-sections of the duct system), which are used in our study, are shown in

Figure 5.8 and Figure 5.9, with black areas representing the aforementioned tissue. The

data of mammary cancer and mastopathic tissue were kindly provided by the authors of

[7] and edited in [16].

In order to test the similarity, we will apply the procedure in the same way as we

applied it to the simulated data, i.e. we will first mark the components in the usual way

and then evaluate the respective curvatures and ratios for both values of r. In the next

step, we evaluate the p-values for all pairs of tissue samples (including the image with

itself), where we consider samples of size 10 and 20 components.

The numbers of p-values below 0.05 obtained in this way for R = 5 and samples of size

20 are represented in Table 5.2. We can observe that the number of p-values below 0.05

is significantly lower when comparing pairs of the same type of tissue. Similarly, mean

p-values represented in Table 5.2 are significantly lower for different types of tissue, which

indicates that they are less similar than the pairs formed of the same type of tissue.
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m1 m2 m3 m4 m5 m6 m7 m8 c1 c2 c3 c4 c5 c6 c7 c8
m1 0 4 9 92 29 5 81 81 97 92 82 57 88 79 80 70
m2 3 67 100 71 13 71 84 95 86 78 37 86 65 74 57
m3 0 5 1 29 99 100 100 100 98 98 100 96 99 98
m4 0 47 77 100 100 100 100 100 100 100 96 100 100
m5 0 19 100 100 100 100 97 96 100 95 99 93
m6 0 87 96 96 91 89 54 97 62 84 62
m7 1 5 40 36 64 16 6 91 29 50
m8 1 52 29 60 15 17 97 33 50
c1 6 12 19 43 20 63 13 28
c2 2 13 8 20 52 3 14
c3 2 18 47 18 5 12
c4 1 21 39 20 12
c5 1 89 23 44
c6 7 35 16
c7 2 12
c8 3

Table 5.1: The number of p-values below .05 when comparing the corresponding samples
100 times. The values related to couples of different types of tissue are marked with italic
font

m1 m2 m3 m4 m5 m6 m7 m8 c1 c2 c3 c4 c5 c6 c7 c8
m1 .81 .46 .35 .02 .19 .41 .04 .04 .01 .02 .04 .10 .02 .03 .04 .06
m2 .60 .10 .00 .05 .38 .07 .03 .01 .04 .06 .20 .03 .05 .06 .11
m3 .87 .35 .57 .20 .00 .00 .00 .00 .01 .01 .00 .01 .00 .00
m4 .90 .13 .04 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00
m5 .78 .32 .00 .00 .00 .00 .01 .01 .00 .01 .00 .01
m6 .65 .03 .01 .01 .03 .03 .14 .01 .09 .04 .10
m7 .59 .49 .14 .16 .10 .36 .45 .02 .19 .15
m8 .61 .10 .19 .10 .28 .40 .01 .15 .13
c1 .53 .38 .32 .17 .27 .11 .35 .26
c2 .55 .43 .41 .35 .17 .50 .37
c3 .57 .29 .18 .31 .47 .38
c4 .57 .25 .20 .35 .40
c5 .55 .03 .35 .16
c6 .54 .24 .40
c7 .51 .42
c8 .54

Table 5.2: Mean p-values (rounded to 2 decimal places) when comparing the corresponding
samples 100 times. The values related to couples of different types of tissue are marked
with italic font
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Sample ”m1”

Sample ”m2”

Sample ”m3”

Sample ”m4”

Sample ”m5”

Sample ”m6”

Sample ”m7”

Sample ”m8”

Figure 5.8: Samples of mastopathic breast tissue [7], [16]
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Sample ”c1”

Sample ”c2”

Sample ”c3”

Sample ”c4”

Sample ”c5”

Sample ”c6”

Sample ”c7”

Sample ”c8”

Figure 5.9: Samples of mammary cancer [7], [16]
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Chapter 6

Comparison of Methods for

Assessing Similarity of Random Sets

In this chapter, our main goal will be to compare the methods described in Chapter

3 with the method proposed in Chapter 4 and tested in Chapter 5. All the methods

mentioned in this work are based on deriving a sample of values and/or functions for

every realisation, which describes its characteristic features. Consequently, the equality

of probability distributions of these functions is tested using tests described in Section

2.4. Note that both tests denote the tested realisations as similar if the testing functions

come from the same distribution.

Many advantages and disadvantages of the considered methods have already been

mentioned in previous chapters. However, for better orientation, we will summarise and

compare them once more, this time putting stress on key similarities and differences. We

will focus on the following questions:

• What does the given method distinguish between?

• What are the advantages of the given method?

• What are the disadvantages of the given method?

• How accurate is the given method?

Recall that some methods focus on the shape of the component, while others also

consider their mutual positions. Both approaches are applicable in different situations,

based on what do we want to achieve and what kind of data are we considering. The

answer to the first abovementioned question is given in Table 6.1.

The advantages of the given methods are summarised in Table 6.2. Separate column

is dedicated to advantages of different versions of the method (where they exist), based

on the version of the test that was used.
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Method Test/version Distinguishes between
Approximation by random envelope (RCE) shapes of components
convex compact covering N -distance

(RCN)
Skeletons envelope (SE) positions and shapes

N -distance (SN) of components
Connected components and
neighbourhoods tessella-
tions

N -distance;
connected com-
ponents (TCC)

shapes of components

N -distance;
neighbourhoods
(TN)

positions and shapes of
components

N -distance;
both (TCCN)

Two-step procedure N -distance (2S) shapes of components

Table 6.1: Distinctive aspects of the considered methods

Method Test/version Advantages
Approximation by
random convex
compact covering

envelope (RCE) simple interpre-
tation of testing
functions

low time-
consumption
(w.r.t. RCN)

N -distance
(RCN)

accuracy (w.r.t.
RCE)

Skeletons envelope (SE) high accuracy,
no random

low time-
consumption

N -distance (SN) approximation the highest accu-
racy in general

Connected compo-
nents and neigh-
bourhoods tessella-
tions

N -distance;
connected com-
ponents (TCC)

simple interpre-
tation, flexibility
(specific objects
of interest can be
considered),

low time-
consumption (no
neighbourhood
construction
needed)

N -distance;
neighbourhoods
(TN)

no random ap-
proximation

neighbourhoods
of components
taken into

N -distance;
both (TCCN)

account

Two-step N -distance simple and straightforward interpre-
procedure (2S) tation, no random approximation,

flexibility (specific objects of
interest can be considered), high
accuracy

Table 6.2: Advantages of the considered methods
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Method also has disadvantages, which were addressed in greater detail in previous

Chapters. They are, similarly to disadvantages, summarised in Table 6.3. A separate

column is again dedicated to the advantages of different versions of the method (where

they exist), based on the version of the test that was used.

Method Test/version Disadvantages
Approximation by
random convex
compact covering

envelope (RCE) random cover-
ing, choice of
optimal radius,
influence

very low accu-
racy in general

N -distance
(RCN)

of rotation,
heuristic ap-
proach

high time-
consumption in
general

Skeletons envelope (SE) choice of input
parameters

slightly lower
accuracy (w.r.t.
SN)

N -distance (SN) slightly
higher time-
consumption
(w.r.t. SE)

Connected compo-
nents and neigh-
bourhoods tessella-
tions

N -distance;
connected com-
ponents (TCC)

request of many
components

very low accu-
racy

N -distance;
neighbourhoods
(TN)

omission of some
con.comp. from
TCC

N -distance;
both (TCCN)

(neighbourhood
edge effects)

Two-step proce-
dure

N -distance (2S) possible dependence of components

Table 6.3: Disadvantages of the considered methods

From results of simulation studies, which were summarised in Chapters 3 and 5, we

can conclude that all the methods exhibit the same accuracy when realisations of the

same model are compared, i.e. respective p-values obtained in this way are close to 0.

However, inaccuracies appear when comparing realisations from different models. These

inaccuracies are caused by different factors, which were studied in the abovementioned

chapters and are closely related to the disadvantages listed in Table 6.3. For example,

histograms of p-values that were obtained when comparing different models are presented

in Figure 6.1. We can see that the highest accuracy is acquired using the second method.
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Figure 6.1: Histograms of p-values when comparing Boolean vs repulsive (left), Boolean
vs cluster (middle) and repulsive vs cluster (right) models using RCE (the first row),
RCN (the second row), TCC (the third row), TN (the fourth row), TCCN, SE and SN
(identical histograms in the fifth row) and 2S (the sixth row)



Chapter 7

Conclusion

The first goal of this thesis was to summarise already existing results in the field of testing

similarity of random sets. The main focus of this work was on methods devised in the last

five years, because if we exclude traditional methods of comparing random sets, the field is

relatively new and still developing. For better understanding of the described algorithms,

an introduction to stochastic geometry had to be made in Chapter 2. The most notable

papers, namely [13], [24] and [16] were reviewed in Chapter 3. The approaches presented

in these papers are either not applicable in all cases or they are too sensitive to small

changes in certain parameters. For that reason we drew a conclusion that new methods

have to be proposed, which was our second goal.

In Chapter 4 we constructed a new two-step method for assessing similarity of random

sets. The method is based on evaluating the curvature measure at the points of the bound-

ary and evaluating the ratio of the perimeter and the area of components. Components

that are examined are isolated for the purpose of minimising the weak points mentioned

above, so the first step in our algorithm is to isolate the components. The next step is

to evaluate chosen features, namely boundary curvature (at every point of the boundary)

and ratio of perimeter and area for each component. After that we construct appropriate

kernel that is used for estimating the N -distance, which is later used as test statistic.

Finally, we run the Monte Carlo permutation test.

In Chapter 5, we validated the procedure by applying it to simulated data. From

the histograms of p-values, we conclude that the method is working in the expected

way. Of course, the method exhibits some limitations. The first one is dependence on

density of the components, because densely packed components can affect shapes of some

surrounding components. This behaviour is existent because we ignored the correlation

between the individual components, which is clearly present. In many cases this mistake

can be eliminated by randomly choosing a sample of components. We took this fact in

consideration when testing the similarity of models that were studied by different authors
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and in the second part of our simulation study. The histograms of p-values showed that our

method is able to tell if the realisations have similar components in the sense of Definition

4.3.2. However, due to the small sample of components, there were problems that the

similarity of different models is not rejected as often as we would like. This error can be

compensated using bootstrapping, i.e. taking a random sample of components from the

mix of all realisations of examined model. In this way the correlation between components

can be significantly reduced. Similarly to other methods, one of the disadvantages is also

obligation to choose the size (and shape) of the circle that is used for evaluating curvature.

As a final step, we applied the procedure to the samples representing different types of

mammary tissue (mastopathic and mammary cancer tissue). The results are satisfactory

when we take into account all the difficulties coming from the variation in shapes and size

of components for the same type of tissue, and problems with identifying characteristic

features for different types of tissues.

In the sixth chapter, we compared our method with the previous methods in the key

aspects. We conclude that the new method has numerous advantages, namely flexibility,

straightforwardness and high accuracy.

Note that the presented method and results have been already uploaded to arxiv.org,

see [31].

In the future, when concerning its application in practise, especially on data which

contains multiply connected components, the method could be improved by finding a way

to differentiate between inner and outer boundaries. Furthermore, the algorithm for

estimating curvature could also be improved by deriving the optimal value of the radius

using machine learning. The method also shows the potential to be used as a tool for

classification of realisations of random sets.
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Contents of Enclosed CD

readme.txt .................................. the file with CD contents description
Inputs....................................the directory with simulated input data

readme.txt...................................the file with contents description
Outputs..the directory with output files, i.e. calculated ratios of perimeter and area
and respective curvatures* used for testing similarity

readme.txt...................................the file with contents description
Programs ........................................ the directory with source codes

readme.txt...................................the file with contents description
Results...........the directory with files containing p-values obtained from testing

readme.txt...................................the file with contents description
Thesis............................the directory of LATEX source codes of the thesis
thesis.pdf.........................................the thesis text in PDF format
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